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Abstract. This paper is concerned with the design of a spatial discretization method for polar and
nonpolar parabolic equations in one space variable. A new spatial discretization method suitable for use in
a library program is derived. The relationship to other methods is explored. Truncation error analysis and
numerical examples are used to illustrate the accuracy of the new algorithm and to compare it with other
recent codes.
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1. Introduction. The aim of this paper is to describe and to give evidence in
support of a new spatial discretization for the method of lines solution of parabolic
equations in one space variable. The intent is to provide a method that is suitable for
use in a general-purpose library program, such as the D03P section of the NAG library.

Ordinary and parabolic partial differential equations in one space variable x often
have a singularity due to the use of polar cylindrical or spherical coordinates. Because
of their common occurrence, some of the differential equation softwaremsuch as the
PDEONE code of Sincovec and Madsen [16] and the D03P** code of Dew and Walsh
[8J--treat these singularities explicitly in order to reduce accuracy problems that arise
for coefficients like 1Ix when x is near zero. Nonetheless, methods that have been
proposed (see Eriksson and Thom6e [9] for references) or implemented do not obtain
the same (local order of) accuracy for the case m 1 (and sometimes m 2) as they
do for m 0.

The method we propose is a simple piecewise nonlinear Galerkin/Petrov-Galerkin
method that is second-order accurate in space. (It supersedes the method proposed
by Skeel [17].) The case m 1 involves the use of the logarithm function, which is
probably the only accurate way to model the logarithmic behavior that can be present
in the solution. A code based on a variant of the proposed method has already been
included as part of the SPRINT package of Berzins, Dew, and Furzeland [4] (which
is available from M. Berzins). The method we propose here has been implemented
and will be distributed in the next or next but one release of the D03P (parabolic
equations) section of the NAG library.

A derivation of the method is given in 2. Rather than simply announcing our
choice of trial space, test space, and inner product, we give a more concrete finite-
element derivation that motivates these choices. Section 3 gives the concise Galerkin
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formulation of the method. The primary purpose of the remainder of the paper is to
supply the details of the evidence in favor of the new method. Section 4 discusses the
variant of the proposed method used in SPRINT as well as other competing methods,
5 considers the time integrator for the system of ordinary differential equations, and
6 describes the results of numerical testing. Finally, 7 summarizes our conclusions.

Also, there is an Appendix that contains the error analysis that supports the claim of
good accuracy for the proposed methods.

2. Derivation of the spatial diseretization method. Consider the system of
quasilinear partial differential equations (PDEs)"
(1) D(x, t, U, Ux)Ut=X-’n(xrng(x, t, U, Ux))x+f(x, t, U, Ux)
for a -< x =< b where D is a diagonal matrix with nonnegative entries and rn is nonnega-
tive. If rn > 0, we require a >-0. The cases m 1 and rn 2 represent cylindrical and
spherical polar coordinates, respectively. Boundary conditions are

pi(x, t, u)+ q’(x, t)gi(x, t, u, ux)=0 at x a, b

for 1, 2, , NPDE. If rn >= 1 and a 0, the boundedness of the solution near x 0
implies g (x, t, u, Ux) 0 at x 0. The problem class defined by (1) has been deliberately
chosen so as to have recognizable flux and source terms and to have the possibility of
recognizable Cartesian polar and spherical polar coordinates. The general form of the
flux function g(... is designed to permit conservative differencing of both advective
and diffusive flux terms. For notational convenience we work with a single PDE and
omit the argument t.

We consider a spatial mesh a Xo < Xl <’" < xj b. Because continuity of the
solution u(x) and of the (negative) flux (per unit area) v(x):= g(x, u(x), ux(x)) is
demanded for all x, we use as unknowns values of u and v at meshpoints. It is assumed
that meshpoints are placed at discontinuities in the PDE so that the problem is smooth
within each subinterval.

The SPRINT implementation also has two additional features of interest. The first
is that the problem class is extended to include the coupled ODE (ordinary differential
equation)/PDE problems considered by Schryer [15]. The only restrictions are that
the problem class must be linear in the PDE time derivative and that time derivatives
must not appear in the flux term. The second feature is that an optional remeshing
facility has been provided, based on the padded monitor function of Kautsky and
Nichols [11]. The monitor function is chosen by the user and typically depends on
the flux or on the solution and its space derivatives. These two features are discussed
further by Berzins and Furzeland [5], [6].

We seek a difference scheme that
(i) Uses only one evaluation of D, f and g per subinterval;
(ii) Is elegant;
(iii) Is as accurate as possible for the special case

g(x,U, Ux)=G(x,u)u;
and

(iv) Leads to an explicit system of ODEs (which is desirable for reasons given
in 5). Ideally local second-order accuracy is desired, meaning that the contribution
to the global error from subinterval [xj_l, xj] is O(h) where h := x-x_. It is clear
what this means for linear problems where the global error is a superposition of
propagated local errors; more care would be required to define this idea for nonlinear
problems. Global second-order accuracy is a weaker property meaning that the local
errors are O(h3) on the average.
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()

(3)

The special problem we consider can be expressed as the two first-order PDEs:

ux=H(x,u)v,

(xmv)x=xmQ(x,U, Ux, Ut)

where

H(x,u):=I/G(x,u)
and

Q(x, u, ux, ut) := D(x, u, Ux)Ut-f(x, u, u,,).

The derivation begins by focusing on a typical subinterval, or element, that we
denote by [a,/3]. The length h :=/3-a and the midpoint 3,: (a +/3)/2. The first
section considers quadrature and lumping, the second treats interpolation, and the
third assembles the element equations into difference equations by eliminating the
unknown values of v(x) at meshpoints.

Two separate cases are considered depending on whether or not the 1/x singular-
ity is present. The "regular case" occurs when m 0 or a > 0 and is treated with a
Galerkin method. The "singular case" occurs when rn-> 1 and a =0, and a Petrov-
Galerkin method is used, in which a special trial space is chosen. In the singular case
the presence of a discontinuity has an important effect, and for this reason the error
analysis takes into account the location of the first discontinuity from the left, which
we denote by c (so that on [0, c] the problem is smooth). In the regular case when
m -> 1 let c := a. The factor 1! c shows up in some error bounds, but we try to avoid it
as much as possible in the belief that there are problems for which c << b (such as an
annulus with a very small center hole).

The choice of scheme was motivated by an error analysis, which in turn was
influenced by numerical experiments. The detailed analysis, given in the Appendix,
shows that the proposed scheme is second-order accurate for both the regular and
singular cases outlined above. We obtain error bounds depending on problem para-
meters P consisting of bounds on various derivatives on the open subintervals of [a, b].
For the singular case we also use P, which consists of bounds on the same derivatives
on all of [0, c], including interior meshpoints. Most of the error analysis for m_-> 1
applies to any real m => 1 not just m 1 and m 2.

2.1. Quadrature and lumping. Integrating (3) and then (2), we obtain

(4) u(fl)= u(o)-- om/)(O)"{ y"Q(’’’) dy dx,
X

and interchanging a and/3, we obtain

ix(5) u(,)= u()- I-I!.:. mv()
X

y"Q(. dy} dx.

The basic idea is that of the finite-element method. We form discrete approximations
of these two equations, thus obtaining an equation for each of v(ct) and v(/3) in terms
of u(c) and u(/3). Then the boundary conditions and the continuity of v(x) at
meshpoints can be used to eliminate these unknown values of v(x), thus obtaining
difference equations for the values of u(x) at meshpoints.

Approximations to (4) and (5) are developed by using the values

H0 := n(:, u(sC)), Do := D(, u(), Ux()),

f0:=f(sc, u(), Ux())
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at a point sc inside the interval [a,/3]. (Error analysis suggests to us that separate
choices of : for each of H, D, and f would, at best, offer only slight improvement in
the accuracy of the scheme. Moreover, this would complicate the user interface,
requiring either the provision of more than one PDE routine or the evaluation of
different PDE functions at different space points in one call.) The question of
approximating u() and Ux() is deferred to 2.2. If we assume that with one degree
of freedom H, D, and f are best approximated by constants, then we get

(6)

and

tt j tl Ol 3
t" H m(amy(a)+ y Dout(a)-fo) dy dx+cr+Hor,xm

(7) u(c) u(fl)- Ho flmv(fl) ym(Dout(fl)-fo dy dx-o’+ Ho’rt
X

where we have used ut(a) in (6) and ut(fl) in (7) to get an explicit system of ODEs
in time and the quadrature errors , r, and ro are defined by

(8) ff H(. )v(x) dx=: Ho ff v(x) dx + ,

(9)
X X

and

(10) y’Q(. dy dx=: ym(Dout(fl)-fo dy dx +
X X

Note that (7) is undefined for a 0 and rn_-> 1. For this and other reasons we
develop an additional equation and its discretization. Combining (4) and (5), we obtain

(11) fl"v(fl a"v(a + xmQ( dx,

and combining (6) and (7), we obtain

(12) fl"v(fl) =: a"v(a)+ ft x"{Do(ut(a)d/(x)+ut(fl)d/t(x))-fo} dx+"
d

where

and

/3(x) :=
y- dy y-m dy, a >0 or m =0,

a =0 and rn>- 1,

q (x) := 1 qt (x).

In the special case a 0 and rn >= 1, we use (12) instead of (7). Note that, otherwise,
the quadrature error - satisfies

’:=Iy-mdy"
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2.1.1. Choice of quadrature point. The choice of s gives us a second degree of
freedom in the numerical quadrature of (6) and (7). We choose this point to obtain
the most accuracy under the assumption that with two degrees of freedom H, D, and
f are best approximated by linear polynomials.

The choice of s should take into account the behavior of v(x). Consideration of
simple examples, such as H-= 1 and Q-= 1, suggests that v(x) behaves like x-" in the
regular case and like x in the singular case. Hence, we choose

where

m regular case,
/x :=

-1 singular case,

and where Yk denotes the Gauss point for the weight function xk, that is,
’o

(x yk)Xk dx := O.

Note that

Yk Y -t’ 4r" O
12 y

and in particular yl y+ hZ/(12y) exactly.
This choice of quadrature point is justified in the Appendix where in Theorem 5

it is shown that with y_., in the regular case the error

[rl<-haC(p)

where C denotes a generic constant (meaning that each occurrence of the symbol "C"
is a possibly different symbol), and after this it is shown that other choices of : are
theoretically inferior if a is small but positive. In Theorem 6 it is shown for the singular
case that with ’)t the error

Itrl <- yh3C()/(m+ 1),

and after this it is shown that this bound is not possible if s y. The additional factor
of y in the error bound indicates an extra order of accuracy near the origin x 0.
Recall that because discontinuities in H, D, f and the initial conditions are permitted
at meshpoints, the bound is good only on the interval [0, c]. On the remainder of the
interval, [c, b], Theorem 6 states that for the singular case with s yl the error

Itrl<=h3C(p),
which is no worse than the bound for -y_,. Finally, it is not possible to choose
to be the same for both regular and singular cases because y_, < 3’ < 3’1.

The effect of r and -0 on the global error is not straightforward. This is discussed
further in the Appendix. It is shown there that the error r in (12) as an approximation
to (11) is important but not so important so as to dictate the precise choice of :.
However, in the singular case when rn > 1, error analysis and numerical experiments
show that the use of : yl is better than either the midpoint y or the point y, suggested
previously by Bakker 1].

2.2. Interpolation. Each of the functions G(... ), D(... ), and f(... will have
to be evaluated at :; and since our derivation assumes the availability of u(x) only at
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x a and x =/3, it will be necessary to construct an interpolant. Note that ux Hv
and recall that v(x) behaves like x in the regular case and like x in the singular
case. This suggests for a _-< x_-</3 the use of

regular case,
U(x) :=

u(a)c,(x)+u()(x) singular case

where q and qo are defined in 2.1 and where

b(x):= (x2- a2)/(fl2- a 2), b, (x):= 1 b (x).

The regular case interpolant has been suggested by Russell and Shampine [14] for
collocation. Second-order accuracy for the regular case interpolant is shown in Theorem
1 and for the singular case interpolant in Theorem 3.

The derivative Ux() is also used. Theorem 2 states that for the interpolant

lux()- G()I 1+ C(P)

where

,,,+1:= x dx x-m dx.

The point " is between Y-m and y, and so we have second-order accuracy for the
regular case. Linear interpolation would cause this error to be increased by a factor
of 1/ if m-> 1 and a > 0. Theorem 4 states that for the singular case with the b
interpolant

[Ux()-- Ux(s:)[ <- Th2C(fi)/(m + 1).

Again linear interpolation increases this error by a factor 1/s. As before this bound
for the singular case holds only on that interval [0, c] on which Q is smooth. On the
remainder of the interval Theorem 4 gives the bound

m+l
lu(s)- U(sc)l-< hzC(p).

Having constructed an accurate interpolan.t, we replace 1/Ho, Do, and fo by
Go:- G(sc, U(sC)), Do:- D(, U(), Ux()), and fo:-f(:, U(sC), Ux(sc)) in (6), (7), and
(12) and leave the precise form of the truncation errors for the Appendix. Equations
(6) and (7) can be put into the simpler form:

(13)
O
m+l

m+l
(Dout(a) fo) + error

and

GoUx() mt)()-
[ m+l ,m+l

m+l
Dou,( fo) + error.

The foregoing derivation does not quite work for the special case a- 0 and m_-> 1.
Because st=0, we do not want to multiply (6) by srm+l. Therefore in (13) we adopt
the understanding that we first divide by ’m+l with a > 0 and then take the limit a - 0.
(Note that a/m+-O.) Also, because (7) is undefined, we use (12) to derive (14).

2.3. Assembly of the equations. If the term to U(:)in (13) and (14)is generalized
to g(s, U(), Ux()) and the truncation errors are neglected, we get difference equations
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for the semidiscrete solution {uj}, {vj}. If we identify [a,/3] with [Xj_I, Xj], then with
an obvious change of notation we get

(15)
Fm+l m+l

7-721-1/2gj-1/2"- x)m-lVj-1 J-1/2-- XJ-1 (Dj-1/2fgj-l fj-1/2),
m+l

and

(16) x?+l ,,,m+l
m--l* j--1/2

--j-1/2 -ll2gj-ll2 --Xj Vj " (Dj_ll2lJj fj_ll2)
m+l

for j= 1,2,... ,J. At interior meshpoints x we add (15j+l) to (16) to obtain

j2x+1/2 gj+ 1/2 ?--72 z_1/2 gj--1/2

X?+1
+1/2

m+l

+l .,m+l

-’J-1/2(Dj_ lj -_1/2)(Dj+l/2lJJ-fj+il2)+ 7i 1/2

At the right boundary we can solve (16j) for vj and substitute this for g(b, u(b), u,,(b))
in the right boundary condition. The same approach is used at the left boundary unless
m > 1 and a =0 in which case we divide (151) by 1/2 with a > 0 and then take the
limit a - 0.

3. Galerkin formulation. Integration ofthe PDE (1) on a,/3 with weight function
x" and test function 4,(x) and then integration by parts yields

(17) (fl)flmv(fl)-q,(a)a’v(a)- q,xgX dx= Qx dx.

We use as our shape functions (x) and ff(x) in the regular case and (x)
and (x) in the singular case, and so our interpolant U(x) is as defined in } 2.2.
With , (17) becomes

x=gdx=a=v(a)+ Qxdx,

and after numerical quadrature and lumping we get

-"g(, U(), U()) f[ x-’@.dx
ffmo()+ Q(, U(), Ux(), U,(a)) xma dx,

which is the same as (15). In a similar way as with we get (16).
In the regular case the test and trial (shape) functions are the same and thus the

method is of Galerkin type. In the singular case the test and trial functions are different
and thus the method is of Petrov-Galerkin type.

4. Other methods. In this section we discuss other low-order methods for solving
the problem under consideration. The method described in 4.1 is nearly the same as
the method proposed in 2 and 3, and it has been implemented in the SPRINT
package. The remaining sections discuss linear Galerkin methods of Bakker [1],
Eriksson and Thom6e [9], and Berzins and Dew [3] and finite difference methods used
in the algorithm PDEONE 15] and in the D03P** family [8] of NAG library routines.
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All of these other methods, including the one implemented in SPRINT, use linear
interpolation for U(x). As explained in the Appendix this makes no difference to the
order of the truncation error and matters only if a is small but positive.

4.1. The method used in SPRINT. The method implemented in SPRINT software
of Berzins, Dew, and Furzeland [4] was developed as a first stage in the eventual
development of the method described in 2. It is a Petrov-Galerkin method that
includes only some of the features of the proposed Galerkin method that improve the
order of the local truncation error. In the nonpolar regular case the method is identical
to that of 2.

The test functions for an element [c,/3 are chosen to be

O,(x) := y-may y-may

except if m > 0 and a 0, in which case

(x)=(-x)/(-)

and in both cases

(x) := 1- (x).

Instead of evaluating xg at x we evaluate g at x =y, and the evaluation of D
and f is at y rather than except for the case m 1 where it is necessary to use to
maintain a propagated local error of O(h3).

4.2. The method used in PDEFI. A piecewise linear Galerkin method has been
implemented by Bakker [1]. The crucial difference from the method described in ] 2
is this" instead of (8) we get

H( )v(x) dx
hH( y, U( y))

I xm dx
XmD(X) dx + .

If we consider the example H 1 and v(x) x, we have

-+Oo=-h(-)=

so that one order of accuracy is lost near the origin. This is serious because the
accumulation of such local errors leads to a global error of O(h log 1 / h )), an estimate
derived by Jespersen [10].

4.3. TeefErss Te. To obtain better accuracy when m > 1,
Eriksson and Thome [9] consider the more specialized PDE

x-(xu +(m-)u) (x, u, u,

A variational equation is obtained by replacing u with its piecewise linear interpolant
U, multiplying by a "hat" function (x), and integrating with weight function x. The
stiffness matrix, in the case Q(... )= q(x)u-f(x), is not symmetric for this method,
although it is for the method of 4.1. However, it is proved [9] that the global error
is O(h).

Before applying numerical quadrature we obtain the equations

+
h

v()+ x(x)Q(x, U(x), U(x), U(x)) dx+error
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and

=-flv(fl)+ xqbo(x)Q(x, U(x), Ux(x), Ut(x)) dx+error.

In the case m 2 this is identical to the method of 4.1 if the Q’s are replaced by
their lumped midpoint values and U by a linear interpolant (and it is identical to the
finite difference method of Chawla and Katti [7] if the trapezoidal rule is used for
quadrature). If m # 2, the methods are quite different.

4.4. The method used in SGENCO. If the Berzins and Dew [3] CO collocation
code SGENCO is used with linear basis functions for the equation

(g(x, u, Ux))x Q(x, u, ux, u,)___m g(x, u, Ux),
x

then we get the equations

a+mh a h
g++- go- av(cr) +: aQ+ +error

and

fl fl mh
2
g+

2

h
g_ -flv(fl) +/308- + error

where

Q+= Q(a+, u(a), u(a+), ut(o)) etc.

If g(x, u, u,)=-u, then this is identical to the method of Eriksson and Thom6e with
trapezoidal quadrature. For m 1 it is thus a Galerkin method with weight function
x, and the global error is O(h2 log (I/h)).

4.5. The method used in PDEONE. We derive here a scheme like that of Sincovec
and Madsen [16] and Varga [18, p. 175]. In (4) and (5) instead of evaluating H and
Q at x so, we evaluate the entire integrand at x =y giving

u(fl)=u(oz)+h ozmv(a)+ xmQ(...)dx +6-
y

and

u(ot)=u()-hT flmv(fl)-- xmQ( .) dx -where Ho= H(% U(y)). For the integrals of Q(...) we use one-point quadrature
rules yielding

( Tm+l--om+l }(18) u(fl)=u(a)+h amy(a)+ Q+ +Ho?+#
m+l

and

/{(19) u(al=u()-h--- mv()--
m+l

Q_ +Ho?z-e.
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If we proceed as in 2 we obtain the difference equation

m/l
_m+l m+l (x)m+l/2gj+l/2 xjm-1/2gj-1/2)

(20)
xj+/2-xj-/2

m+l m+l m+l m+l
Xj+i/2 Xj Xj Xj_l/2

X)+l/2-- X)-1/2 Xj+l/2- Xj_l/2

Remark. The averaging of Qj+ and Q;_ actually recommended by Sincovec and
Madsen [16, p. 242] is different; it is obtained by setting m-0 in the right-hand
side of (20). Also the spatial derivative term in Q(x, u, ux, u,) is approximated by
(u;+-u;_)/(h;+ + hj), which is not so accurate if Ux has a discontinuity at x;.

Combining (18) and (19), we get

m+l ym+l ,ym+l a m+l

ml.)( ol mv( o; / Q-- / Qot+ /
m+l m+l

where

fot m+l

:= xmQ( dx _flm+l "Y
m+l

If we consider H-= 1, Q(x)=x, and a 0, then

s +,
hy

m+l m+l
’),Qt--

m+l
Q’+"

_f dy m/2--2m+l h

h ym (m+l)(m+2)2m+ hm+-+4(m+2)’
and if rn 1 the resulting contribution to the global error is O(h log (1/h)). Nonethe-
less the accumulation of such errors is only O(h2).

The error O is simply

Ux(X) Ux( dx.

If a > O, H =- 1, Q =-O, v(a)= 1, and a a, then

m(m+ 1) h
O=

24
--/ O(h4)’

which is worse than the method of 4.1 by a factor of 1/a and worse than the method
of 2 by a factor of 1/a2. If we consider a 0, H 1; Q 0 for x < c, Q 1 for x > 0,
and a =c, then

mh
ff t- O(h4),

24 c

which is worse than the methods of 2 and 4.1 by a factor of 1/c.
In conclusion we see that this method does achieve global second-order accuracy

for general n but is less accurate than the method proposed in 2.

4.6. The method used in D03P**. The difference scheme of this collection of NAG
routines by Dew and Walsh [8] is modeled after that of PDEONE. To simplify
somewhat the usage of the routines, the coefficient G(7, U(7)) is replaced by
1/2(G(a, U(a))+ G(, U(fl))). This is all right except at a discontinuity x where there
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seems to be no way to define an averaging for G(xj, uj) that does not degrade the
accuracy in either the left subinterval or right subinterval. The codes D03P** and
PDEONE are compared by Berzins and Dew [2].

5. Integration in time. The issue of integration in time is not considered in any
detail here. Instead it is noted that the spatial discretization of elliptic-parabolic PDEs
using the method of 2 results in large systems of differential-algebraic equations that
are integrated using standard software (see Berzins, Dew, and Furzeland [4] and
Petzold [12] for further details).

5.1. Explidt or implidt ODEs. Although it is possible to integrate stiff implicit
ODEs with almost the same overhead as explicit ODE systems written in normal form,
there are still a number of reasons why it is preferable to reduce systems to normal
form whenever possible, such as by the lumping applied in 2.1.

A substantial difficulty with implicit differential or differential-algebraic equations
lies in the calculation of the initial solution values and their time derivatives (see
Petzold [12]). This is not a problem with systems written in normal form. A further
difficulty is that with implicit equations it is sometimes possible to calculate physically
misleading values for the initial time derivatives. This point is easily illustrated by the
simple example below and leads to a noticeable deterioration of the performance of
the ODE integrator.

5.1.1. Example. Consider the heat equation ut uxx with boundary and initial
conditions given by

u(O, t) O,

0, t<l,
u(1, t)=

1, t_-->l,

u(x,0)=o,

and suppose that we semidiseretize in space without lumping using a uniform mesh.
This yields the system of ODEs

1 2 1 1
i+,+ ti+ _, =-- (u+,-2uj + u_,).

The analytical solution (the limiting case of the backward Euler solution as the time
stepsize goes to zero) at time 1 is

(-1)s- 1 (2 +x/)-2J
u(1) 2+x/ 1 (2 +,/) -2J’

and in particular

uj_1(1)-.268, uj_2(1).072, uj_3(1)----.019

for large J. Thus, the semidiscrete solution at interior meshpoints is discontinuous in
time and oscillates in space with every other value having the wrong sign.

More generally, a discontinuity or a rapid variation of a boundary value produces
corresponding behavior with alternating signs at nearby meshpoints. A discontinuity
is often present at 0, when the boundary condition is inconsistent with the initial
condition and the PDE. For example, if u(1, t)- sin in the above example, then the
derivatives tij(0+)= 1, tij_l(0+)=-.268, etc. We have observed that the effect of all
this is to degrade the efficiency of the integration.
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A further incentive to derive ODE systems in normal form is provided by a new
generation of ODE initial value problem codes for both stiff and nonstitt equations
(for example, see Petzold [13]). Such integrators attempt to use functional iteration
whenever possible to increase the efficiency of integration. The unsuitability of func-
tional iteration for the systems of equations that arise from implicit ODEs means that
these codes cannot be applied to such equations at the moment.

6. Numerical testing on parabolic equations. In the numerical testing that was
conducted the following measures were taken to ensure that a fair comparison was
made. First, all integrations were performed using the same ODE integrator and the
same linear algebra routines. The integrator used was the BDF/Adams code with the
LINPACK banded matrix routines as implemented in SPRINT (Berzins, Dew, and
Furzeland [4]). All discretization methods compared here were compared in a common
framework. Only minor changes had to be made to the PDEONE code of Sincovec
and Madsen [16] and to the PDEF1 code of Bakker [1] to fit them into this framework.
These codes are abbreviated in this report as follows:

PDEONE: the Sincovec and Madsen [16] code,
SGENCO: the Berzins and Dew [3] C-collocation code used with linear basis

functions,
SPRINT: the discretization method of 4.1,
PDEFI: the lumped finite element method of Bakker [1] that uses linear basis

functions,
NEW: the discretization method of 2.

6.1. Nonpolar parabolic equations. Testing over a range of simple nonpolar para-
bolic equations has shown that the formula used by Bakker 1 and by Skeel 17] gives
consistently better results than the finite difference methods of Dew and Walsh [8]
and Sincovec and Madsen [16], although only to the same order of accuracy. The
following problem gives results typical of those obtained on the nonpolar test problems
of Berzins and Dew [3]. The methods of Skeel [17], 4.1 and 2 are identical for
nonpolar test problems.

6.1.1. Problem 1.1. This problem has an analytic solution and a material interface
at x 0. The problem is defined by

dr C1 e-2u + e-, x [-1 0),
Ot Ox

+Ce-+e-, xe(O, 1]
Ot Ox

(x, t) [-1, 1] x (0, 1]

subject to the boundary conditions

u(-1, t) log (-C + + P),

Ou
u(1, t)+(C2+ t+P)xx(1, t)=log (C2+ t+P)+l.0.

The initial condition is consistent with the analytic solution of

u(x, t) log (Cix + + P)

where 1 if x < 0 and 2 if x > 0. In this case P 1.1, C1 0.1, and C2 1.0. This
problem illustrates well the performance of the three codes on nonpolar parabolic
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TABLE
Error norms for Problem 1.1.

Time 0.01 0.22 0.55 0.77 1.0

N--ll
PDEONE 1.9-2 9.0-3 3.9-3 2.7-3 1.9-3
SPRINT 1.9-2 8.3-3 3.7-3 2.3-3 1.5-3
SGENCO 1.4-2 6.4-3 2.8-3 1.9-3 1.3-3

N =41
PDEONE 1.5-3 6.0-4 2.5-4 1.7-4 1.2-4
SPRINT 1.3-3 5.4-4 2.4-4 1.5-4 9.9-5
SGENCO 1.5-3 6.0-4 2.5-4 1.8-4 1.2-4

N=161
PDEONE 9.4-5 3.8-5 1.6-5 1.1-5 7.6-6
SPRINT 7.8-5 3.4-5 1.5-5 9.3-6 6.2-6
SGENCO 9.4-5 3.8-5 1.6-5 1.1-5 7.6-6

TABLE 2
Maximum grid errors.

N 11 21 41 81 161

PDEONE 1.9-2 6.2-3 1.7-3 4.3-3 1.1-4
SPRINT 1.3-2 3.3-3 8.3-4 2.1-4 5.2-5
SGENCO 1.9-2 6.1-3 1.7-3 4.3-3 1.1-4

equations. The Dew and Walsh [8] code cannot be compared as it does not correctly
treat the material interface at x 0. The Bakker 1 code PDEF1 gives identical results
to SPRINT for nonpolar problems. Table 1 shows the L2 error norms at different time
levels as the number of equally-spaced meshpoints is increased. N is the number of
evenly-spaced meshpoints used in spatial discretization.

The error norms were formed by using a 201-point trapezoidal rule with evenly-
spaced meshpoints and with solution values in between the PDE meshpoints being
estimated by linear interpolation. Table 2 shows the maximum grid error for each of
the methods sampled over the time values used in Table 1 with the additional points
0.11, 0.33, 0.44, 0.66, 0.88. The factor of two difference between the codes SPRINT
and SGENCO can be directly attributed to the fact that both are essentially lumped
Galerkin methods but that SPRINT uses a midpoint quadrature rule and SGENCO
uses a trapezoidal rule.

6.2. Numerical testing on polar parabolic equations. The following test problems
were used to compare the different codes on polar parabolic test problems.

6.2.1. Problem 2.1.

au
Ot

X2U -" 5U2 "- 4xu--,X
2 0X 0X

(x, t) 6 [0, 1] x (0, 1].

The left-hand boundary condition is the symmetry condition and the right-hand
Dirichlet condition and the initial condition are consistent with the analytic solution of

u(x,t)=e1-x2-’.
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6.2.2. Problem 2.2.

au 1 0 (10u) 2
at x20x x2

" +- x2e-2", (x, t) [0, 1] x (0, 1].

The boundary conditions are the symmetry condition at x=0 and the boundary
condition at x 1 given by

u(1 t)+(1.O+p+t) O---u=2.0+log(l+p+t)
OX

where p 1.0 and the analytic solution is given by

u(x, t) log (xZ+p+ t).

6.2.3. Problem 2.3.

x2 +F(x, t) (x, t)e [0, 1] x (0, 1]
Ot x20x

where

F(x, t)= e-t[(6+ (1- x2)(r2t2-1)) cos (rxt)

-[(1 -x2)x +4xt-2t/x]r sin (-xt)].

The boundary conditions are the symmetry condition at x 0 and u 0 at x 1. The
exact solution is given by

u(x, t) (1 xZ)e-t cos (-trxt).

The limiting value of the function F at x 0 is obtained by using

sin (rxt)
lira rt.
x0 X

6.2.4. Problem 2.4.

Ou

X20X (x, t) [0, 1] x (0, 0.8]
Ot

where the boundary conditions are the symmetry condition at x 0 and

u(1, t)--l+6t.

The exact solution is given by

u(x, t) x2 +6t.

6.2.5. Problem 2.5. This problem consists of the elliptic parabolic system defined

Ou

Ot
x +F(x),

x Ox

0=--- +F(x),
x Ox \ -x/

by

(x, t) 6 [0, 1] x (0, 1]
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where F(x)= x for x <p and equal to zero otherwise and p =0.1. The boundary
conditions are the Neumann condition

and the Dirichlet condition

0u

Ox Ox
-0 at x=O

U V /’/exact

where the exact solution is given by

p3
u v -log (x) -,

atx=l

x>p

p3 p3_x3
-t- x<--p.--log(p)
3 9

6.2.6. Problem 2.6. The heat equation in cylindrical polar coordinates is

Ot x Ox x/’ (x, t)e[0, 1Ix(0, 1]

where the exact solution is given by

u(x, t)= Jo(px) e-p2’

and p 2.40482557 is the first zero ofthe Bessel function Jo(x). The boundary conditions
are a Dirichlet condition at x 1 and the usual symmetry condition at x 0.

6.2.7. Problem 2.7. The following problem is taken from Eriksson and Thom6e [9]"

sinh (2x)Ou_ 1 0 (xu)_ 3u + --4e +3
Ot x2 0x x sinh 2

(x, t) [0, 1] x (0, 1].

The boundary and initial conditions are given by

ou
ox (o, t)= u(1, t)= u(x, o)= o, t>0

and the exact solution is given by

sinh (2x)
u(x,t)=(e’-l) -et+l.

x sinh 2

6.2.8. Problem 2.8. The following is a slightly more complicated problem in
cylindrical polar coordinates"

Ou l O ( Ou
x
Ou

Ot x Ox \ Ox/+3u+2x-OX
(x, t) [0, 1] x (0, 1].

The boundary conditions are given by

__U_Uox(O,t) =0, u(1, t)=e-t, t>0
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and the exact solution and the initial condition are given by

u(x,t)--e 1-t-x2.

6.2.9. Problem 2.9. This problem consists of the parabolic equation defined by

au 1 0

Ot x Ox (ou)X-x +F(x), (x, t)[O, 1]x(O, 1]

where F(x)= 100 for x <0.1 and equal to zero otherwise. The boundary conditions
are the symmetry condition at x 0

Ou
-0 at x=O

Ox

and the Dirichlet condition

u=0 at x=l

where the exact solution is given by

0.5 log (O.1)+25((O.l!2-xZ)+Jo(px) e
u

0.5 log x + Jo(px) e-p ’,

where p 2.40482557 is the first zero of the Bessel function Jo(x). This problem has
a severe discontinuity in the PDE defining function close to the polar origin.

6.3. Summary of numerical testing results. The numerical testing results are sum-
marized by the eight graphs of Fig. 1. The results for Problem 2.4 are not presented
graphically and this problem is covered separately below. The procedure employed
for each of the test problems was to use five evenly-spaced meshes of 11, 21, 41, 81,
and 161 meshpoints. Each of the integrations in time was performed to a local ODE
error tolerance that was sufficiently small for the PDE spatial discretization error to
dominate the global error in the solution. All the graphs below are of the loglo of the
maximum grid error against the loglo of the number of spatial meshpoints. The
maximum error at the spatial meshpoints was found by stopping the integration at
times =0.01 and then k/9 for k= 1, 2,..., 9.

For the sake of clarity certain codes were not included on certain graphs. The
following points should be noted:

The Bakker code PDEF1 is not applicable to Problem 2.1.
The results produced by PDEONE and SGENCO are indistinguishable on Prob-

lems 2.5, 2.6, 2.7, and 2.9.
The graph for Problem 2.6 compares the published results at 1.0 of Thom6e

and Eriksson [9] with the results at 1.0 for the other codes.
The codes SGENCO and PDEONE have a great deal of difficulty with the

discontinuity in Problem 2.9.
The SPRINT code and the method of 2 produce identical results for Problems

2.8, 2.6, and 2.9.
The results for Problem 2.4 are not presented graphically because all the codes

apart from PDEF1 produce solutions that are exact at the meshpoints to computer
roundoff error. The results for the maximum grid error at the meshpoints (EMAX)
for code PDEF1 are as follows.
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SPRINT
SGENCO
PDEONE
NEN

11O0 LIO 80 2.20
LOG NPTS

Problem 2.1

1 SPRINT
+ SGENCO
X PDEONE

o POEF1
X NEN

O0 0 80 20
L@S NPTS

Problem 2.2

SPRINT
SGENCO
PDEONE
POEF1

O0 I.LIO 1.80
LOG NPTS

Problem 2.3

2’. 20

SPRINT
SGENCO
POEONE
PDEF1

.00 l.tlO 1.80 2.20
LOG NPTS

Problem 2.5

SPRINT
PDEONE
PDEF]

I’. tlO 1.80
LOG NPTS

Problem 2.6

g

2.20

+ SGENCO
X PDEONE

THOMEE
X NEN

O0 I’.0 I’.80 2’.20
LOG NPTS

Problem 2.7

FIG. 1. Summary of numerical testing results.
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SPRINT
PDEONE
PDEF]
SGENCO

O0 1.0 1.80 .20
LOG NPTS

Problem 2.8

FIG. 1--continued.

PDEgNE
PDEF1
SPRINT
SGENCO

.00 .0 1.80
LOG NPTS

Problem 2.9

20

Max. Grid errors for PDEFI on Prob. 2.4.

NPTS 11 21 41 81 161

EMAX 6.1E- 1 2.1E- 1 6.6E- 2 2.0E- 3 5.9E- 3

The explanation for the poor showing of this code on this problem is that it semidiscret-
izes the PDE of Problem 2.4 to give the following equation at the internal meshpoints:

6+h2/2x2

u,
1 + h2/4x2 at x xj

where h is the even mesh spacing; whereas the other codes semidiscretize the PDE to
the exact equation given by

u,=6 atx=xj.

The results for Problem 2.9 in particular show the advantage of the discretization
method that we have developed over PDEONE and SGENCO.

The results for the Dew and Walsh [8] code D03PGF are not presented in the
tables and graphs. On all the problems except Problems 2.2 and 2.5 the performance
of the code is slightly worse than but very similar to SGENCO. On Problem 2.5 the
code does not perform well due to the way it treats the discontinuities in the first
derivative of the solution.

The graphical results clearly illustrate the superior performance of the SPRINT
discretization and the discretization of 2. The failure of the latter to perform the best
on every problem has been analyzed, and it appears to be due to the fact that the new
method has been designed to minimize a bound on the individual contribution of each
local error rather than to achieve some cancellation of errors from different elements.
Such cancellation can be fully realized, however, only for smooth problems on uniform
meshes. Thus, it could be suggested that the method of 2 sacrifices small possible
gains in accuracy in order to achieve greater robustness.

7. Conclusions. Theoretical and experimental evidence indicates that the Galerkin
method derived in this paper for the regular case and the Petrov-Galerkin method
derived for the singular case produce more accurate results than existing methods and
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in particular they seem to be the best methods to use in a general-purpose library
subroutine.

Appendix A. Error analysis. This Appendix gives bounds on the local truncation
error of the method derived in 2. Some of the proofs are longer than necessary in
order to obtain tighter bounds, although this does not show up in the statements of
the theorems. We use P to denote the 17-tuple consisting of the supremum norms on
the open subintervals of [a, b] of ut, Utt, I), l.)t, H, H, Ht, H, Hxt, D, D, Dt, Dx,
ff,f,f,x. Here H denotes (H(x, u(x))) rather than H(x, u) evaluated at u= u(x).
This is similar for the other derivatives of H, D, and f with respect to x and t. For
the singular case we use P to denote a similar 17-tuple except that we use the supremum
norm on all of [0, c] for all 17 quantities (although for Hx open subintervals would
suffice). The error analysis assumes b a + 1.

We shall examine the various errors introduced in a typical subinterval [a,/3].
The substitution of Ho, Do, fo for Ho, Do, fo in (8), (9), (10), (12) changes the error
terms tr, z, re, r to, say,

r+r, , +,

where the terms tr, r[, r, and ’ are the interpolation errors resulting from replacing
u(x) and u(x) in H, D, and f by U(x) and U(x). (See, for example, (23) and (24).)
Quadrature/lumping errors are considered in A.2 and interpolation errors in A.1.

Of course, it is the effect of the local truncation errors on the global error that is
important, especially since there is considerable latitude in how the local errors might
be defined. Hence, we define the propagated local error to be the global error that
would result from the use of a single finite element for a,/3 and the use of infinitesimal
elements outside of this subinterval. This can be rather complicated, and so we model
the problem outside of [a,/3] by the differential equation x-’(x"ux/H(x))x Q(x)
with linearized boundary conditions. Thus, the effect of the singularity is included. A
lengthy argument indicates that the boundary conditions which give the largest errors
are the following"

(i) Singular case. v(a) given, u(b) given, for which the propagated local error
"Ts can be as large as

f’ I-I (,,y,)(21) ’rrs y,. dy

and

(ii) Regular case. u(a)= given, v(b) given (which supposes that a > 0 or rn O)
for which the propagated local error 7r can be as large as

H(y)
(22) ,;= ",;, dy" 7+Ho-&

Y

Because the primary purpose of our error analysis is to support our choice of interpolant
and quadrature point, we stop just short of giving an explicit bound for either (21) or
(22) and instead produce just the necessary constituents for such a bound.

by

(23)

A.I. Interpolation error. The local truncation errors due to interpolation are given

:= (no- rio) v(x)dx
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and

(24) " := (Do-/o) Xm(Ut(Ol)loz(X)’4r’Ut([)l]Cci(X)) dx-(fo-fo) xmdx

together with suitable equations for r/ and -. All these errors involve partial derivatives
of H, D, and f times the differences u(x)-U(x) and Ux(X)-U,(x).

In the proofs that follow let H(x) := H(x, u(x)), D(x) := D(x, u(x), u,(x)), and
f(x) :=f(x, u(x), Ux(X)). Also define Q(x) := D(x)ut(x) f(x).

THEOREM 1. The q interpolant satisfies

Ilu-UIlh=C(P)
where I1" denotes the maximum norm on [a, fl ].

Proof. Consider first the case a > 0 or m 0. Integrating by parts, we obtain

u(x)= u(a)+ dY H(x)x’nv(x)- --d(H(y)y’nv(y))ydy.ym
A second equation is obtained by replacing a by/3. Multiplying the first equation by
O,(x) and the second by q(x), we obtain

u(x)= U(x)-d/(x) (H(y)ymv(y))ydy-d/t(x) (H(y)y’v(y))ydy.
Z Z

Because

we have

where

(H(x)xmv(x))x xm(Hx(x)v(x)+ H(x)Q(x))

lu(x) g(x)l o (x)(ll gv + gOll)

f,,:I,,’dZy,,, Ixf, dz
to(x) := b,(x) dy+ d/t(x y’n dy.

Z Z

Integration once by pas gives

1(1 I:dy 2) fx’dy/rdyw(x)=2(m+ (f12-- X2) (X2--aY J/L ym
and a second time gives

1{ f, y2
ot

2 dy
tO(X)

Clearly,

l ay
’(x2-a2) y2 f-gj/j ym"

o(x)=<
(-x)(x- o,)

4x2

which is maximized for X2"-" a to yield the stated bound. For the case a 0 and
m -> 1, we have

u(x) u()- (H(z)zmv(z))zdz-f-.



PARABOLIC EQUATIONS IN ONE SPACE VARIABLE 21

When we note that U(x)= u(fl) and

](H(z)z"v(z))l <- zrC(p

the theorem easily follows. D
In an identical fashion we can show that

(25) Ilu,- u, II--< h2C(P).
Less accuracy can be expected for the approximation Ux().

LEMMA. If k # O, then

h2

k -43,
Furthermore,

and

Proof offirst inequality. We have )’k yI’/ I where

I’ := 7
-k-2 I/ xk+l dx

I := y-k-1 X
k dx.

With a change of variables x-: y(l+s) and 0:= h/(2y), we get

I (1 + s) k ds
-0

(26) -o

=j {(l+s)k+(1-s)k}ds.
o

For I’ we get (26) with m reduced by 1. Subtraction gives

I’-I= S{(I+s)k--(1--s)kt as
o

(27)
l" 0 02 s2

=k J {(I+s)k-I+(1--S) k-l} ds.
o 2

Therefore, using (26) and (27), we have

kh2

m+ 3’ ’Yk k022 + 2’ 2’I’/I
4 2’

Y--- { kO2I + I- I’}
I

k__y 202 {(1 + s) k + (1 s) k) ds
21

(O-s{(+s-+(-s-t ds

-2_ {(o+2sO+s)(+s)-+(O-2sO+s)(-s)-} s.

The integral is nonnegative because -2sO-2sO.
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Proof of second inequality. The inequality %,, <-sr is a consequence of

with f(x) x1/(m+1) and g(x) x-"2/(+).

and

f(x)g(x) dx <: If(x)[+ dx Ig(x)l Cm+)/m dx

THEOREM 2. The q, interpolant satisfies

lux()-g()l < 1+ C(P).

Proof. Defining w(x)= xu(x), we note that

w=x(Hxv+HQ),

w xm(Hxv+2HxQ+ HQ) + mx-lHQ,

m/(m+l)

3,1m+l m+2 3,1- )m+l ._ m+2__ :m+2
--< (3,1- ,),m+l q_(__ :)(m + 2)"m+l

(3,1- 3,),m+1
__
(3,_ )(m +2)m+l

where we use the fact that : < " < 3’. Similarly,

m+l--m+l<(3,--)(m+ 1)m.
The theorem follows from the lemma and the fact that if/y < 1.

In the case where a is small but positive, linear interpolation is not as good. For
example if H--1, Q-=O, v(a)= 1, and a-a, then u,(x)=(a/x)" and the error for
linear interpolation of u() is

mh2

8 a
F O(h3)

We have

(28) Qx DxUt + D(Hv),-f.
If m -> 1 and a --> 0, the bound goes to +c, and therefore assume either m 0 or a > 0.
Hence we consider

c()- u() (w(x)- w()) -The numerator

(w(x)- w()) "= Wx() (x-)+ Wzz(Z) dz dye.
X X

The first term vanishes because = y_. Replacing Wz by bounds and using the
definition of if, we obtain

Ux()- Ux()l ( + mz-1) az ay ax
c(e)

X
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and the error for ux(:) is

m(m 1) h2

24 -5+ O(h3)

using the fact that := y-(m/12)(hE/y)+ O(h4). Thus, the error is worse by a factor
of 1/a than it is for @ interpolation.

THEOREM 3. For the singular case the b interpolant satisfies
h2

I1 ,- uII m+l

and

u U <-- h2C(P) in any case.

Proofoffirst inequality. Setting w(x) Ux(X)/X and integrating by parts, we obtain

X2-- t2 Ia: y2__ C 2

u(x) u(a)+ w(x)- Wy(y) dy.

A second equation is obtained by replacing a by ft. Multiplication of the first equation
by b(x) and the second by b0(x) yields

y2_ a2 fx [2 y2
u(x) U(x)-6,,,(x) -T- wy(y) dy-4,t(x)

2
Wy(y) dy.

Note that

H,cV+ H{V v(x) 1
w

X ’-/ x’ X X
m+l ymQ(y) dy,

and

(29)
x xm+2

ymQ(y) dy

1 y+lOy(y) dym+2

where the overbar indicates a spatial derivative defined across meshpoints. Hence
Iv(x)/xl<=llQIl*/(m+l) and I(v(x)/x)xl<-IlOxll*/(m+2)where I1"11" denotes the
maximum norm on [0,/3]. Combining these facts with (28), we obtain

]u(x)- U(x)[ <- w(x)C(P)/(m+ 1)

where

w(x) d(x) I,: Y- a2 fx f12- y2
2

dy+co(x) "--dy
(fl-x)(x-a)(afl+2yx) h2

<--y. O
6y 8

Proof of second inequality. From (29) we have lWx(X) (llHvll + 211HII llQIl*)/x
and so

lu(x)- U(x)] <_- (x)C(P)
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where

I,: y-a Ix [2- y2 dydy+ Ct3(x)if(x) (x)
2 y 2 y

Using 1/y =</3/y2, we get

(x) <- 13(13 x)(x )/ (13 +
4

In an identical fashion it can be shown that (25) holds for the 4, interpolant in
the singular case.

TI-mORM 4. For the singular case the 4) interpolant satisfies
h 2

lux()- Ux(:)l--< Y C(/5) if <- c
m+l

and

m+l
lux(:)-Ux(:)l_< hC(P) in any case.

Proof offirst inequality. With w(x) := ux(x)/x we have

2Ux()- u() 13_ (w(x)- w())x dx

h Wy(y) dy x ax

Wx() + Wzz(Z) dz dy x dx.
h

Using the results in the proof of Theorem 3, we have that Iwx(x)l C(P)/(m+ 1) and

X

x+3 y (y) dy,

Qx Dxu, + 2D(Hv), + D(Hv)x, f,

(-Hv , Hv+ HQ mH

D,u, + Du.-,
whence lx(X)lN C()/(m+ 1). Therefore,

lu()- v(e)l dyxdx + dzdyxdx

(=e I-r,l+ xax m+

24 m+l

where the last inequality follows because
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Proof of second inequality. Modifying the previous proof, we get

Ux()-u,,()=-ff-y :2Wx(s) + (Z2Wz)zdz -f2 xdx.

We have that

X2Wx x ( Hxv + HQ m + 1)H)
and

(X2Wx)x m( m + l Hv- HQ + x(Hxxv + 2H,Q + HQx),

whence

Ix=wxlxf(P) and I(x2w,,),,I<-_(m+x)C(P).

Therefore,

+ (m + z) dz-- x dx C(P).

When we use s 3’1,

h
first term hit :l =<.

123’

The

second term <-_ m + z) dz
dy

x dx

m+ (x- )2 dx
2

h
---< (m + so)

123’

when we use 3’1 3’ "" h2/(123’). Putting this together, we get

h
lUx()- Ux()l <-- (m + 1 + ).

lz3’

For the singular case linear interpolation is not as good. For example, if H 1,
Q= 1, and a =0, then u,,(x)=x/(m+ 1) and the error

u(h u(O) mh
h -Ux(:)=-2(m+ 1)(m +2)"
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A.2. Quadrature and lumping error. The local truncation errors due to quadrature
and lumping are given by

or= (g(x)- H())v(x) dx,

f3fx3dY m{D(x)ut(x)-f(x) D(,)ut(ce)+f(,)}dx,7"a Xym
(30)

f2 f2 dYxm{D(x)ut(x)-f(x)-D(’)ut()+f(’)} dx,’t ym

z= x"{D(x)u,(x)-f(x)-D()U,(x)+f()} dx.

Because there can be cancellation between - and either -, or ro (see Theorem 8, Proof
of first inequality), we obtain bounds on

(31) ’a := ym dy. ’+ Hoct3

in the regular case and on

’H(y)
(32) ’s := dy’z+Hoym
in the singular case. These come from the worst case propagated local errors given by
(21) and (22).

THEOREM 5. With Y-m the truncation error (8) satisfies
Icrl<=h3f(P).

Proof From (30) we have

or= H,(y) dyv(x)dx

(33)

Hx()+ nzz(Z) dz dyv(x) dx.

Using v(x)= x-m(omv(o)+ ymQ(y) @) and integrating by parts, we obtain

,= (x-)- Sx(),m(,)+ (y-)xmSx()(x) dxym
(34)

+ nz(z)dzayo(x)dx.

Because : Y-m, the first term vanishes and the inner integral of the second term is
positive. Therefore,

I1_-< (y-)x+ dz dy dx. C(P)ym
X xm+ Ol

m+ l fx m+l
dx. C(P)+ (x )2 dx C(P).
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Because sc y_,,,,

first term
m+l

(x- ()x dx C(P)

Hy
m+ (/1- )C(P)

h
<=--C(P)

4

when we use the lemma. The second term is bounded by (ha/6)C(P).
In the case where a is small but positive, a choice of : other than y_, is not

likely to be as good. For example, if H(x)- 1 +x, Q--0, v(a)= 1, and a- a, then the
error

O’-- (/-m )am
X

and if, for example, =% then

mh
O" t- O(h4).

12 a

This is worse by a factor of 1/a than the bound given by Theorem 5.
THEOREM 6. For the singular case with

]trl<=
h3y

C(P) if fl<-cm+l

and

Il h3C(P) in any case.

Proof offirst inequality. Using the fact that s Yl, we have from (33) that

= (x-)x
y

dy dx. Hx()+ x nzz(Z) dz dy
x

Using bounds from the proof of Theorem 3, we obtain

3 )2 C(P) h
I1<-: x(x- dx <=--2 m+l 8

C(P)
m+l

where the last inequality follows because 71.
Proof of second inequality. Equation (34) gives

I1_-< dx /
x m+l

(x-)
2

X dx)II Hx Q

Let r/</3 be such that
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Then

h
+--C(P).

6

m+l

m+l y,. dyx dx+ Y-
y. dyx dx C(P)

Interchanging the order of integration in the two double integrals and using twice
again the definition of r/, we obtain

The

X X
m+

irl__<2 -n
x m+l

m+l

dx. C(p)+h--- C(P)

h
(x-sC)(x-rl) dx. C(P)+7- C(P).

0

integral <-_ x x q dx

1 1 5 5= (/3 :)3+ (/3 s)2(:- r/) _-<g (/3 :)3 --<---48 h3"

A choice of : other than yl is not likely to be as good. If H(x) 1 + x and Q-= 1,
then the error

tr= h3;
m+l

and if, for example, s =% then

h
12(m+l)"

This is worse by a factor of 1// than the bound given by the first inequality of
Theorem 6.

THEOREM 7. For the regular case with 3,_,, the propagated truncation error rR
defined by equation (31) satisfies

I1 -< 1+ mfl m-1 h (P).

Proo We can write r r + r2 + r3 where

(D(x) D())(u,(x) u,())dx,

= x (D(x)-D())u,()-(f(x)-f())} dx,

( x(u,(xl- g,(xl x.

Clearly,

I’11 x’*(x-) dx IIDll Ilu,ll.
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Expanding D and f in 7’2 in a Taylor series about x s, we obtain 7"2 7" "+" 7" where

7"= xm(x ) dx (D:()ut() fx())

and

tt__. ff X
(X--)2

7"2 2

Applying the lemma, we have

Also we have

and

and so

(Dxx(’)u,()-fx(’)) dx.

17"t21 I xm dx(’ym "Y-m)C(P)

m
<__-- h3flm-lC(p).

2

17"31--< [D({)[ x dx Ilu,- s, ll,

17"1 --< 1 + haft (P)

The other part of rn can be expressed

f’o f’ dY xm{O(x)-O(,)+ D(,)(Ut(,)--blt(fl))} dx.7.= ym
and so

Note that for x _-</3

and so

Therefore,

i7"1 h2fl f| dx
C(P).

X

m X _1_ 3m X < X "Jr- m(8 x)fl "-1 < x + mhfl m-1

,. dx
< h + mhfl "-1xm xm

However,

17"RI < h3 tim ._+ --+ 1 C(P).- <--_ a a + m fl a fl m-1 <: 1 + mfl m-1
X
m--

X

from which the result follows.
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THEOREM 8. For the singular case with 1 the propagated truncation error

defined by equation (32) satisfies

Isl--< (/3 1og+) h3C(/5)

and

if fl <- c and m >-_ 2

Isl h3C(P) in any case.

Proof offirst inequality. We must modify the proof of Theorem 7. We have

+ (, + +)
where

(35)

Also

where

17., + 7. + 7"31 h 2 x dx C(P).

x"(x-O dx (Dx(OU,(O’fx(O)+’

I[ I dY xm {(D(x) D())(ut(x) ut())ym

(Dxx(’)ut()-fxx(’))+ D()(ut(x)- ut(a))} dx.

Use of the fact that lU,x(x)l<=xC(P)/(m+ 1) gives us

We have

where the

17.1 < x h +y" m+l
y dy dx. C(P)

Ia X
m+l

Ol
m+l

(m_iz dx+
1

m+l
y dy hEC(p)

<=h3yC(P)/(m+l).

1H
dy H dy +

y y
H(Y)

dy+ dyy

]last two terms]=< I/ dy Ictdyy-lllxll*+ llnll*,y-
Combining all this, we obtain

17.s] ym

(I:yd-y fctdY ) I1y

I’H(y) 2Ix+ y dyh dxC(P)+HohrC(P)/(m+l).
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Integrating the inner integral and using the definition of :, we have

IIx dY x’(x- ) dx x’(x- ) dx
y" m-1

Furthermore,

xm(x-- ) dx x(x"-- "-)(x- ) dx

<-- I x(m 1)fl’-E(x )2 dx

h
<--(m-1)fl’-’--

3

Also, we have

(36) I"1 x’(x-) dxC(P)N(m-1)’-h3C(p).

Putting all this together, we get

Isl<_- + (m- 1)fl’-’ ,h.dY_l + (m 1)fl "-1 dY+fl" --+y C(P).y" y"

The result follows from

m 1) fl -1

y --i fl
d "_,

y
dy

_-</3 log +/3

and

j’ldy" _dY_< and -<ym (m 1) c,.-1 y (m 1)fl m-l"

Proof of second inequality. We modify the proof of the first inequality. We have
from (35) and (36) that

Also,

ha(ti +(m- 1)fl’-I)C(P).

C(P)H(y)
dy <-

y" (m_ 1)fl

I1 dy dx h(ll + ID()I u, II).

Remark. For x =< c, we can obtain results for 1 < m <2 and for m > 2 that are
better than those given by Theorem 8.

and so

To conclude the proof we split z as

’,= xm{Q(x)-Q()+D()(u,()-u,(a))} dx,
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A choice of : other than 71 is not likely to be as good. If H(x) =- 1, Q(x) x, and
a 0, then the error

f ’aYfo"rs xm(x- ) dx + xm(x- ) dxym
5(yl-)h21ogh+O(h3), re=l,
(Yl-- )h2
2(m 1)

+ O(h4)’ m > 1.

IL for example, T, this is worse by a factor log (l/h) for m 1 and by a factor of
1/(h log (1/h)) for m 2 than the bounds given by Theorem 8.

Acknowledgment. Thanks are due to Peter Dew for suggesting this joint work.
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MULTIGRID FOR THE ONE-DIMENSIONAL
INVISCID BURGERS EQUATION*

TIM A. MULDERJ-

Abstract. A multigrid method for computing steady inviscid compressible flow is investigated
for the one-dimensional scalar case. The discretisation in space is obtained by upwind differencing
and has first- or second-order accuracy. Only relaxation schemes that affect the solution locally are
examined. To obtain some insight into the convergence behaviour, two-level convergence analysis
is carried out for the linear constant-coefficient case. The resulting two-grid convergence rates are
compared to the asymptotic convergence rates observed in numerical experiments on the nonlinear
one-dimensional inviscid Burgers equation.

For a test problem with a smooth steady solution, the observed asymptotic convergence rates
agreed within O(h) with the linear two-grid convergence rates. A discontinuous solution displayed
slower convergence, due to the shock and the sonic point. Although the resulting convergence rate
was still acceptable, it could be improved through local relaxation and regularisation of the shock.
In this way, a first-order-accurate solution could be obtained in one F-cycle per grid, using damped
Point-Jacobi relaxation and successive grid refinement. Second-order accuracy required about eight
cycles, using the Defect Correction technique.

Key words, multigrid method, hyperbolic conservation laws, shock waves

AMS(MOS) subject classiflcations.35L67, 65B99, 76A60

1. Introduction. The multigrid technique is a powerful tool for the construc-
tion of O(N) methods for a wide class of problems. Its application to the solution of
elliptic partial differential equations has received much attention, and the technique
is well established for these problems (cf. [3], [6], [20], and references therein). It took
some time before any results for the computation of steady solutions to hyperbolic
equations, specifically the Euler equations of gas dynamics, were obtained, but suc-
cessful experiments are now available [1], [7]-[11], [13], [14], [16]. Theoretical estimates
of multigrid convergence rates for hyperbolic equations are scarce and incomplete.

In this paper, the convergence towards the steady state by means of the multigrid
method proposed in [13] is investigated for the one-dimensional scalar case. Steady
solutions to a simple nonlinear one-dimensional hyperbolic equation, the inviscid Burg-
ers equation, are considered. Of course, it does not make much sense to apply the
multigrid technique to one-dimensional problems, because direct O(N) methods are
available (cf. [12]). Nevertheless, linear two-level analysis is carried out to estimate
the two-grid convergence factor. The results are compared with the numerical exper-
iments on the nonlinear equation. Special attention is paid to the effect of the sonic
point and the shock on the convergence rate. The full system of (linearised) Euler
equations in two dimensions is considered elsewhere [15].

Two periodic test problems, one with a continuous and one with a discontinuous
steady solution, are described in 2.1. The spatial discretisation is obtained by upwind
differencing, using the schemes of Godunov, Enquist-Osher, or Roe (cf. [23]). For the

*Received by the editors August 12, 1986; accepted for publication (in revised form) October
21, !987. This work was supported by the Center for Large Scale Scientific Computing (CLaSSiC)
Project at Stanford University, under Office of Naval Research contract N00014-82-K-0335.
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latter, the version that obeys the entropy condition is adopted (2.2). The discreti-
sation has first-order accuracy. The construction of second-order-accurate schemes is
reviewed in 2.3. The singularity at the shock is examined in 2.4.

Two-grid convergence factors are estimated by two-level local-mode analysis [3]
in 3. We only consider relaxation schemes that affect the solution locally, because
the multigrid method should handle the global aspects of the solution. The analysis is
carried out for a linear hyperbolic equation with a constant coefficient. We may expect
the result to approximate the two-grid convergence rate in the variable coefficient and
nonlinear case, as long as the convection speed varies gradually with x and does not
change sign. This simplification certainly cannot explain the convergence behaviour
at the shock and sonic point. The convergence rate at the shock is considered in 3.5,
and at the sonic point in the Appendix.

Numerical experiments are described in 4. The multigrid method is implemented
as a Full Approximation Storage (FAS) scheme, including successive grid refinement.
This combination is also known as Full Multigrid (FMG). A comparison is made
between predicted and observed convergence factors. Only damped Point-Jacobi (PJ)
and one type of Red-Black relaxation (RB) are used, since these schemes emerge as
the best in the previous section.

The main conclusions are summarised in 5.
2. Spatial discretisation.
2.1. The problem. We consider two types of steady solutions to the one-

dimensional scalar hyperbolic equation with periodic boundary conditions

+

the first being smooth, the second discontinuous. The solutions are periodic in x on
the interval [0, 1). Setting

(2.2a) u(x) co + sin 2r(x ), co 2,

we are led to a source term

(2.2b) s(x) 2r (co + sin 2r(x )) cos 2r(x ).

Although the steady state corresponding to this source term is continuous, a shock
may occur during the evolution toward the steady state.

A discontinuous steady solution is found for

(2.3a) s(x) 1/2r sin2r(x ),

namely,

(2.3b) u(x) { sin r(x ) for 0 < x < + 1/2,
-sin r(x- ) for + 1/2 < x < 1.

For 0 < < 1/2, this solution has a sonic point at x and a shock at x + 1/2 (cf.
[23]). Numerical examples will be given for 0.1. It should be remarked that (2.1)
must be interpreted as the limit for zero viscosity e of the same equation with eux
added to the right-hand side. This is equivalent to imposing an entropy condition in
addition to (2.1) and provides uniqueness of the solution. The average value of the
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initial data is conserved and must, therefore, be the same for the initial data and the
steady state.

2.2. Upwind differencing. The spatial discretisation of (2.1) is obtained by
upwind differencing, using Godunov’s [5], the nnquist-Osher (E-O)[4], [17], or Roe’s
scheme [18], [23]. The n-o scheme is identical to Flux-Vector Splitting (FVS) [19] for
the one-dimensional scalar case.

A computational grid with N zones is defined by xk (k + 1/2)h, where the cell
size h 1IN and k 0,..., N- 1. Equation (2.1) is discretised in space by averaging
per volume:

h 1 f U(X) dx.uk (Ihu)k =_ -xk -hi2The same discretisation operator Ih is applied to the residual

(2.5)

yielding the discrete first-order approximation

(2.6)

The fluxes fk+l/2 are evaluated by upwind differencing. Godunov’s scheme lets

fk+l/2 f(uk, Uk+) 1/2 max[max(O, uk)2, min(O, Uk+)2 ].

The E-O scheme is equivalent to FVS when applied to Burgers’ equation. For the
latter we have

(2.8a) f(uk, Uk+l) f+(uk) -t- f-(Uk+l),

where

(2.8b) f+(u) + f-(u) f(u), f+(u) 1/2[max(0, u)] 2.

The E-O, or FVS scheme, differs from Godunov’s only at the shock. Roe’s scheme
is identical to Godunov’s, except at the sonic point, where the modification that
suppresses expansion shocks lets

(2.9) Ufk+/2= f(uk, u+)= u + ifu<_0<_uk+

With this flux, the solution at the sonic point is smooth, whereas Godunov’s scheme
sets fk+/2 O, causing an O(h) jump. However, if the stationary sonic point is
positioned precisely at the cell interface, Roe’s scheme (2.9) allows for two solutions:
a smooth one and a discontinuous one. This problem will be ignored here by avoiding
such a situation.

The numerical steady solution kh obeys rk(k-1, k, k+l) 0 for 0,... ,N-
h Ihu(x) is the average1. It is first-order accurate, i.e., I] uekll O(h), where uekh =_

per cell of the exact solution. The norm is the l norm. Godunov’s and Roe’s scheme
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are first-order accurate in the/ norm as well. The E-O, or FVS scheme, smears out
the shock over two cells, thus causing a local O(1) error.

2.3. Second-order accuracy. Second-order spatial accuracy can be obtained
by assuming the solution to be piecewise linear rather than piecewise constant [22].
The idea is to write the solution as

) Ix- Xkl 1x Xk Ak <(2.10a) u(x) Uk + h h 2

Here Ak/h is a discrete approximation to IhOu/Ox, with

(2.10b) Ak ave(uk Uk-1, uk+ uk).

(A_ / A+) whereas limiting to theIn smooth regions we want ave(A_, A+)
smaller of A_ and A+ is required near discontinuities to preserve monotonicity (i.e.,
to avoid local under- or overshoots). We use an averaging-limiting procedure from

(2.11) ave(A_,A+) + + +

The bias ea prevents division by zero. Clipping of smooth extrema is avoided if ea
approximately equals the average value of lUk--Uk-ll in smooth regions of the flow. For
the numerical examples mentioned above we adopt ea 4 h for the smooth problem
(2.2) and ea 2 h for the discontinuous problem (2.3). Once the Ak are computed,

Ak A+) using one of thethe fluxes at k + 1/2 are evaluated by f(u + - uk+
schemes mentioned in 2.2.

2.4. The singularity at the shock. The numerical problem of determining
the steady state to (2.1) can be written as

(2.12) rk(Uk-p,’’’,Uk+p) 0 for k 0,...,N- 1.

Here p 1 for a first-order scheme and p 2 for a second-order scheme. For the
example given in (2.3), (2.12) is ill posed, as the position of the shock depends on the
initial data. To obtain a unique steady solution, we need the additional requirement
that

(2.13) - Uk C (a constant).
k-O

The singularity at the shock is appropriate, because the original differential equation
is singular. In the latter, the singularity is regularised by augmenting the differential
equation with the jump relation across the shock. This is implicit in the conservation
form of the equation. Here, however, conservation in time is abandoned to obtain fast
convergence, and (2.13) must be imposed to obtain a unique stationary solution.

To describe the singularity in more detail, we need to know the structure of
stationary shocks [23, 5]. Assume that (2.12) is obtained by Godunov’s or Roe’s
scheme, and that the source term is absent. Let UL > 0 be the state left of the shock,
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and uR --UL < 0 at the right. Between these two states there is a cell M containing
the shock: UL >_ UM >_ UR. The corresponding residual for the first-order scheme is

(2.14) rM --(u2- 1/2U2L),
which is independent of UM. Thus, the state UM never enters the discrete equations
(2.12) and can be chosen arbitrarily, as long as un > UM > Un. We thus have N
equations in N- 1 unknowns. Condition (2.13) is required to determine a unique
value for UM.

If the E-O, or FVS scheme, is used, a steady shock is represented by a sequence
of four cells" UL, UM, UN, and uR, where UL >_ UM

__
0

_
UN

__
UR and UL --UR.

The two residuals,

+
(2.15)

rM=--[(1 2 2

rN [1 2 2UM

show that both uu and UN enter the discrete equations, but only as the combination

!u2 + u, thus leaving the individual values of uu and UN undetermined. We
again have N equations in N- 1 unknowns, and (2.13) must be imposed as an extra
condition to obtain uniqueness.

The second-order-accurate discretisation is singular as well. However, the struc-
ture of stationary shocks is more complicated and will not be considered here.

3. Convergence factors.
3.1. Preliminaries. Two-grid convergence factors for a number of relaxation

schemes will be estimated by means of two-level analysis in Fourier space [6]. Here we
consider the linear equation u + aux O, where a is a positive constant. This is, of
course, a major simplification. Let the iteration error vh h uh, where h is the
steady state. The discrete linear operator is

a(I_T-1(3.1) Lh ).

Here I is the identity and the shift operator T acts according to Tsvk Vk+s. The
h will be denoted by . The shift operator in Fourierdiscrete Fourier transform of vk

space is

(3.2) () exp(iO), 2rl/i, l= -(N 1),..., i.
The high frequencies, which cannot be represented on the next coarser grid, lie in the
range r ]] r. The coarse-grid correction (CGC) operator, and also the RB
relaxation operator, couples the frequencies and + r. Therefore, define

O+Y/

A 2 x 2 matrix 2, operating on h, must have the property

(a.a) + .), + .).

Note that ( + r) -(0). The residual operator Lh vanishes for the longest wave
( 0), which reflects the fact that the solution is determined up to a constant. This
wave will be ignored.
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3.2. Coarse-grid correction (CGC) operator. The CGC operator describes
the result of (i) restriction of the fine-grid residual to the next coarser grid, (ii) exact
solution of the coarse-grid equations, and (iii) prolongation of the CGC to the fine
grid. We choose a restriction operator Ih that averages the values in two neighbouring
cells (2k, 2k + 1), where k 0, 1,..., 1/2N- 1. The prolongation operator Ih2h describes
piecewise constant interpolation from the coarse to the fine grid. Both are first-order
operators. The CGC operator,

K I Ih2h (L2h)-IhLh,

has a Fourier representation

(1 O)1 (1 +-1)(2h) -11E 1--) (h(O) 0 )R=
0 1 - 1--1 ,(1+ 0 Lh(O+r)

/ is understood to operate on h. Using (3.1) and L2h (a/2h)(1- -2), we obtain

i (l-C 1+)(3.6b) /= 1- 1+

This matrix obeys property (3.4). In physical space, the CGC operator lets

(3.6c) v2k V2k V2k+l k O, 1,..., 1/2N 1,
’2k-I-1 0

where v denotes the iteration error before the CGC, and 9 denotes the iteration error
after.

3.3. Relaxation. A relaxation scheme provides an approximate solution fih to
the nonlinear problem rh O. Here we will discuss relaxation schemes by starting
with a time-accurate integration of the equations and then making simplifications.
The resulting relaxation schemes are not time-accurate.

An example is the explicit scheme

(3.7) [___] (fih_ uh) rh,

or the implicit scheme

1 dr h]
The residual rh is computed from the solution uh, and fih is the solution after applying
the explicit or implicit scheme. Both are based on the time-dependent problem and
provide a steady state by a time-accurate integration of the differential equation. The
choice a 1 yields a "backward Euler" scheme. If the time-step At becomes large,
the latter reduces to Newton’s method. This property is exploited by the Switch
Evolution/Relaxation (SER) scheme, proposed in [12] and [24], where At c 1/llrhll.
After some initial time-accurate searching while the residuals are large, this scheme
automatically switches to Newton’s method when the solution approaches the steady
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state. The finite l/At term allows for the solution of the linear system (3.8) even if
(dr/du)h is singular.

Note that the implicit scheme (3.8) is not conservative in time, except for c 0.
For other values of c, we still have global conservation in time on a periodic grid.
For a residual of the form (2.6), and a periodic grid with N points, we obtain, after
summation of the N equations represented by (3.8),

N N

(3.9) i ui
8iAt

i--1

which is independent of (. The same result is obtained for the explicit scheme (3.7).
The test problems considered here have /N=I si 0.

The linear system (3.8) for the one-dimensional problem requires the solution of
a periodic tridiagonal matrix. This can be done directly, as in [12]. Here we will
consider schemes based on a PJ approximation to the left-hand side of (3.8), i.e., the
periodic tridiagonal system is replaced by a diagonal one.

Now consider the linear operator Lh. The relaxation operator Sh updates the
error according to h Shyh, where

(3.10a) Sh I (h)-l Lh
and Lh is an approximation to Lh that can be inverted easily. For the one-dimensional
scalar problem studied here, we obtain

(3.10b) Sh I- (I- T-I).

For the explicit scheme (3.7), f equals the local Courant-Friedrichs-Lewy number a:

(3.11a) /3 a =_ Atlallh,

whereas for the PJ approximation to the implicit scheme (3.8)

(3.11b) f 1

In both cases can be considered as a relaxation parameter, which can be optimised
to provide the best convergence factor.

We will now derive h for various relaxation schemes, in a form that obeys prop-
erty (3.4). First consider schemes that do not couple frequencies, i.e., 2 2 0.
The simplest is the PJ relaxation:

Stability requires

(3.2b) laf(o)l" 1- 2/(1-/)(1- cosO) _< 1, 0 _< IoI _< r,

implying

(3.12c) 0 _< f _< 1.
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At the stability limit, 1 and 1P1J -i. In that case, an explicit scheme runs
at the maximum local time-step, and errors are convected over a distance h, the cell
size. For a single-grid scheme, this choice is attractive, as errors are convected as fast
as possible toward the boundaries (if present), where they leave the computational
domain, or toward a shock, where they are absorbed by the dissipation in the shock.

The second relaxation scheme is a Multi-Stage (MS) Runge-Kutta scheme. Here
we consider only two stages. The first stage is a PJ step with i, advancing the
solution u to u. The second stage resembles PJ, but now/ 2 and the solution is
advanced from u to fi, using the residual r r(u). The growth factor for one MS
step is

(3.13a) IM1S 1 --/2(1 -1)[1 --/1(i -I)],

which is stable for

(3.13b) Il <- 1/2, 0 <_/2 <_ 1 + 2fl.

At the stability limit 1/2, 2, and # -.
As a third relaxation scheme, we consider checkerboard or RB relaxation. It

consists of a PJ sweep on the even points (k 0, 2,..., N-2), an update of the solution
and residuals, followed by a similar operation on the odd points (k 1, 3,..., N- 1)"

(3.14) 2k (1 )V2k + V2k-1 k O, 1,..., 1/2N- 1.
=+1 (1 Z)v=+ + Z=

Because of the asymmetric form of the CGC operator that is apparent in (3.6c), it is
necessary to distinguish between two variants of RB. The distinction is based on the
ordering with respect to the coarse-grid cell and the direction of the flow. The first
variant will be noted by RB1 and corresponds to the (even, odd) ordering described
in (3.14), i.e., first the cells with an even index and then those with an odd index
are relaxed, assuming that a > 0 and that the restriction operator combines the cells
(2k, 2k + 1). For negative a, first the odd and then the even cells are relaxed. The
second version, RB2, has the opposite ordering. In other words, RB1 follows the flow,
relative to the coarse-grid cell, and RB2 goes against the flow. We might call RB1
Convective Red-Black relaxation. For a single-grid scheme this distinction disappears.

In Fourier space we have, for a > 0,

(3.15a) IRIBI () 1 --/(i -i)_ 1R2B1(_),
R2BI( _1/2/2-1(i q_ -1).

The other variant has

(3.15b)

Both variants are stable for 0 _</ _< 1.
Similar expressions can be derived for a second-order-accurate residual. In that

case

(3.16)
ah (1 )(1 + 1/4(i- )) for a > O.
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With this residual, PJ as a single-grid relaxation scheme is unstable for all # 0. The
MS scheme is stable for 0 _< 1 g 1/2 and 0 _< 2 < 21, and RB for 0 _< g 1. We can
consider a multigrid scheme with either first-order or second-order accuracy on the
coarser grids. In the latter case, an expression for the CGC operator K is obtained
that is slightly more complicated than (3.6b). The values in Table 1 for second-order
accuracy are based on such an operator.

3.4. Two-grid convergence factors. The performance of the two-grid method
can be described by the smoothing rate of the relaxation scheme and by the two-grid
convergence rate. The first measures how well the relaxation scheme removes the
high frequency part of the error, and can be easily evaluated. The second measures
convergence across the entire spectrum, under the assumptions that the coarser grid
is solved exactly. Both rates will be considered in this section.

The smoothing rate is defined by

(3.17) _= max (),

for schemes without coupling, i.e., if2 2 0. It describes how well the relaxation
scheme removes the part of the spectrum that cannot be represented on the coarser
grid. For schemes with coupling, such as RB, we still can use (3.17), assuming that
there are no low frequencies, i.e., (0) -0 for 0 _< I/1 < r/2 (see [3, (3.2)]).

The two-grid convergence factor is

(3.18) X max p(’k’1 ),
O_<lOl<_r

where p(.) is the spectral radius. It describes the result of applying ul prerelaxation
sweeps, a CGC, and u2 postrelaxation sweeps.

Table 1 lists smoothing rates and two-grid convergence rates for the three relax-
ation schemes of 3.3. The number of relaxation sweeps u Ul / u2 1. The results
have been obtained by evaluating (3.17) and (3.18) analytically or numerically. Mini-
mum values with respect to the relaxation parameter(s) for a given relaxation scheme
are marked by an asterisk. They have been computed by analytical or numerical
optimisation of and A, respectively, as a function of the relaxation parameter(s).

For the first-order discretisation, PJ with/ 1/2 is obviously the best choice.
Both the MS scheme and RB relaxation require more operations per sweep. The MS
scheme reduces to PJ relaxation when optimised for A. It is clear that optimising
the smoothing rate does not necessarily imply a good two-grid convergence factor. RB
relaxation becomes dependent on the ordering when coarser grids are involved. For
/ 1, the version that follows the flow (RB1) has a zero convergence factor, whereas
RB2 is unstable.

It should be noted that PJ for a first-order-accurate residual and 1/2 lets

(3.19) /pj _1/4(, _) (1 -1)1 1

resulting in a spectral radius zero. However, if PJ is applied more than once (u > 1),
different results are obtained. For instance, 1/2 if u 2.

For Convective RB relaxation with/ 1 we have a stronger result than for PJ:

(3.20a) 0 0
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TABLE 1

Smoothing rate "fi and two-grid convergence factor ) for various relaxation schemes in the linear

constant-coe]ficient case. The amount o] underrelaxation is given by . Minimum values with respect
to the relaxation parameter(s) are denoted by an asterisk. The results are obtained for one relaxation

step (v 1). Second-order PJ is unstable as a single-grid scheme. RB1 ]ollows the flow, as seen

from the coarse-grid cell, whereas RB2 acts in the opposite direction.

Accuracy First-order Second-order

Scheme fl A
pj

MS

RB1

RB2

0.682
1

0.682

0.707*
0.707

0.333*
0.707

0.457*
0.707
0.530

0.457*
0.707
0.530

,

0 *

0.333
0 *

0.101
0
0.25

0.830
2
0.25

0.145

0.350, 0.592
0.295, 0.588

0.510
0.928
0.405

0.510
0.928
0.405

0.949*
0.953

0.645*
0.719

0.806*
1.153
0.821

0.806*
1.153
0.821

0.717
0.711"

0.677
0.517"

0.552
0.386*
0.596

0.676
3.829
0.636*

To obtain this performance in an actual computer code, we have to adapt the ordering
to the direction of the flow. This can be avoided by choosing/ 1/2, resulting in a

convergence factor 1/4. Alternatively, two relaxation sweeps with 3 1 can be
applied, one with RB1 and one with RB2. Then

(3.20b) RBIRRB2 RB2RRB1-- (O0 )0 0

The behaviour of RB for fl 1 is better understood by considering (3.6c) and (3.14),
assuming a > 0. After the CGC, v2k-1 0 and the first RB1 sweep at cell (2k)
convects this error from cell (2k- 1) to (2k), thus making 2k 0. The second RB1
sweep at cell (2k 4- 1) is actually superfluous. On the other hand, RB2 selects V2k 0
and convects this error, resulting in the amplification of the shorter waves.

The fact that the second sweep of RB1 is superfluous can be exploited to construct
a faster scheme, which we call Semi-Red-Black (SRB) relaxation. SRB only carries
out the first step of RB1. Obviously, A 0 for this scheme. However, for solutions
with a sonic point or shock, SRB is likely to be less robust than RB1.

The most attractive scheme for a first-order-accurate discretisation is PJ with

fl 1/2 and 1. The convergence factors for second-order accuracy are not so good,
as can be seen from Table 1. For a second-order discretisation, PJ is unstable as a
single-grid scheme but still provides acceptable two-grid convergence factors.

In the numerical experiments of 4 only PJ relaxation with fl and RB1 are
considered. Second-order-accurate solutions are computed by the Defect Correction
technique [6, (14.3.1)]. The corresponding two-level operator is given by

(3.21) I- (I- S2KS, )(Lhp=)-Lhp=2,
where Lhp=i denotes the discrete residual operator of first-order accuracy (3.1) and

Lhv=2 of second-order accuracy (3.16). For PJ with fl 1/2 and t tl + t2 1, we

find X 1/2vf 0.866, whereas RB1 with /= 1 provides X 1/2.
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3.5. The singularity at the shock. The two-level analysis presented above
describes the linear constant coefficient case. We might expect approximately the
same two-grid convergence rates in the variable coefficient and nonlinear case, as long
as the convection speed remains fairly constant with varying x and does not change
sign. We will study this by numerical experiments for the nonlinear case in 4.2. The
convection speed changes sign at a sonic point or shock. Convergence rates at the
sonic point are considered in the Appendix, under the simplifying assumption that
the convection speed is linear in x. Here we will examine the effect of the singularity
at the shock on the convergence rate.

For Godunov’s or Roe’s scheme, which are identical around the shock, we have the
following: if there is a shock, the two-grid convergence factor for a first-order scheme is
in general >_ 1/2. To assert this, assume that we have two grids, a fine grid m with cell
size h, and a coarse m- 1 with cell size 2h. Also assume that the coarse-grid problem
is solved exactly, and that the residuals are small everywhere, even at the shock. The
special situation of a steady shock positioned at the cell interface is excluded. In that

h will be small, except at the shock, where vhM can still be large.case the errors vk
Without loss of generality we choose an even index M for the cell that contains the
singularity. The coarse-grid error, after restriction, is vH 1/2(vhM / Vhu+l) hVMo
The exact solution of the coarse grid is prolongated back to the fine grid, resulting in

If the new fi still obeys

(3.23) fi_l>fihM>fihM+ withlThM_>O> fi+l,

then only fihM+ will result in fairly large residuals at M and M+ 1. An ideal relaxation
scheme such as RB1 with 1 will first bring hM+ down to practically zero, causing
the residuals at M and M + 1 to vanish. The error hM __’ .VM1h will be unaffected.
Thus the two-grid convergence factor A 1/2 in this case. In general, we expect > .

We can just accept the slower convergence at the shock. However, after every
prolongation, there will be fairly large residuals near the shock. If these are not
sufficiently damped by the relaxation scheme, convergence may be lost. PJ is likely to
be good enough to obtain convergence. This will be further investigated by numerical
experiments (4).

The problem is that the singularity shows up during relaxation. As a remedy, we
propose to use local relaxation (cf. [2]), with local conservation imposed as an extra
condition to remove the singularity at the shock. In practice this is accomplished by
selecting, say, four cells, the first having an even index (this determines its position
with respect to the coarse-grid cell), and the second or third containing the shock. Let
the indices of these cells be elements of the set :. The SER method (3.8) is applied
with ( 1 and

1
(3.24) A-- r2(Irl/at).
Here a is an numerical approximation to the convection speed, to be specified in

4. The linear system associated with the SER scheme is singular at the shock for
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At oc. At the shock, we replace the equation for which OrM/OUk 0, k E , by
local conservation:

(3.25) (fk uk) O,

even for finite At. In the numerical experiments described in 4.3, it appeared to be
sufficient to apply this once after every prolongation on every grid.

The condition of local conservation (3.25) can be justified as follows. Consider a
sequence of cells ul, 1,..., L, which is a renumbered subset of the solution on the
entire grid. Let one of these cells with index M, 1 < M < L, contain the shock, and
let ul be positive left from the shock, and negative right from the shock. Here we have
assumed that Godunov’s or Roe’s scheme is used. In addition, we assume that L is
even and that cells 1 and 2 coincide with a cell on the coarser grid. The same
is then true for the other pairs of cells corresponding to higher values of I. We may

expect the average value of the solution directly after prolongation to be converged:
-t=l ut. Given this expression, (3.25) follows by requiring fit to equal the1=1 U! -- L

desired result .
If we want to avoid the replacement of the singular equation at the shock by

(3.25), the SER scheme can be used without modification. This is due to the global
conservation property (3.9). For the explicit scheme (3.7) and the implicit scheme
(3.8) we have

1 (l_u,) ., 1/2(u+1-u).(3.26) A--
=I l=l

Note that u0 and UL+I are taken as fixed boundary values here, and that u is positive
left and negative right from the shock. After prolongation, the right-hand side of
(3.26) will have appeared on coarser grids as the restriction of the fine-grid residuals,,
or as the sum of restricted residuals. Convergence on coarser grids causes the sum
of these residuals to vanish, at least approximately, which implies that directly after
prolongation (3.26) is approximately the same as (3.25).

If the E-O, or FVS scheme, is used, local relaxation with local conservation can
be carried out in a similar way.

4. Numerical experiments.
4.1. Technical details. The numerical experiments are carried out in a FMG

setting. The steady state on a grid with two cells is computed directly from the
nonlinear equations, subject to (2.13), and then interpolated to the next finer grid to
obtain a good initial guess. The corresponding interpolation operator g2hh lets

(4.1) uh2k uh --klA2h, U2k+lh Uh q- 1/4/kh,
and is third-order-accurate if the solution is smooth. At the shock, however, an
O(1) error results. The numerical experiments described below show that this can be
reduced to O(hp) for Godunov’s or Roe’s scheme by using local relaxation. The E-O,
or FVS scheme, maintains an O(1) error at the shock, both for p 1 and p 2. Still,
local relaxation is carried out after grid refinement.

After interpolation by g2hh (and local relaxation, if desired) the stationary solution
is computed by a FAS scheme. As the multigrid strategy, we use three multigrid
cycles with respect to each of the coarser grids to simulate a two-grid algorithm. For
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convergence down to the truncation error, an F-cycle [20] is chosen. In all cases, one
postrelaxation sweep is carried out (1 0, 2 1). On the coarsest grid (N 2),
the nonlinear equations are solved directly.

Damped PJ and RB1 are used as relaxation schemes. The first is implemented
as

(4.2)

with/ 1/2. The two steps of RB1 are carried out in the same way with 1. The
nonlinear residual is updated after each of the two steps. We consider the following
approximations to the convection speed:

(4.3a) a= Ouk’
Ork Ork(4.35) a mx( Ouk’ Out )’

(4.3c) a 1/2 (_ _.r. + EtCk-)Ouk Ou

The first choice (4.3a) cannot be applied with Godunov’s or Roe’s scheme, because
of the singularity at the shock. The E-O, or FVS scheme, does not suffer from this
drawback. The second and third choice can be used at the singularity.

If Godunov’s, the E-O, or the FVS scheme is used, a may become small around
the sonic point or at the shock, resulting in too large changes of the solution. To avoid
this, a can be replaced by

(4.4) ak a + Irkl/a,

which is the equivalent of a SER scheme with a local time-step.
Local relaxation, if used, is carried out on a subset of four or six cells. These are

determined by finding the index of the maximum residual and positioning it in the
middle of the subset, in such a way that the first cell has an even index. If a singular
equation is detected, it is replaced by the condition of local conservation (3.25).

4.2. Results for the smooth test problem. We have used the smooth prob-
lem (2.2) to make a comparison between two-grid convergence factors for the nonlinear
equation and the linear two-level results. On coarser grids, three multigrid cycles were
used to simulate a two-level algorithm with an exact solution of the coarse-grid equa-
tions [6, 2.5]. No local relaxation was applied. The experiments showed an O(h)
difference between the observed asymptotic convergence factors and the two-level re-
sults for the linear constant-coefficient case listed in Table 1. It is likely that close to
the solution and away from sonic points and shocks, the nonlinear problem behaves
as a linear one with a variable coefficient. The convection speed then has an O(h)
variation with x, which probably accounts for the observed O(h) difference in the
convergence factors.

The predicted convergence factors for the Defect Correction technique, given at
the end of 3.4, were confirmed by the numerical experiments. Here the observed
values tended to be slightly better.

The results were insensitive to the choices of a (4.3) or 5 (4.4). There is no dis-
tinction between Godunov’s, Roe’s, and the E-O scheme for the current test problem,
as uk is positive on the entire grid.
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For practical purposes, convergence down to the truncation error is sufficient. In
that case, the experiments showed that a first-order solution could be obtained in one
F-cycle per grid, using damped PJ or RB1 as part of a FMG scheme. A second-order
solution computed with the Defect Correction technique required about four F-cycles
per grid with damped PJ as relaxation scheme. A few more cycles were required
for computing the steady state on the coarser grids (N > 64). RB1 required three
F-cycles on the coarser, and two F-cycles on the finer grids (down to N 512).

4.3. The discontinuous case. Several issues will be discussed for the discon-
tinuous case (2.3): the choice of the discretisation, the effect of the various a (4.3)
and (4.4), the singularity at the shock, and defect correction. We start with the
discretisation scheme.

The experiments indicate that Godunov’s scheme does not always provide proper
convergence rates around the sonic point. This is partly explained by the analysis
presented in the Appendix, which shows divergence for certain positions of the sonic
point. Another complication occurs if k > 0 is the steady state just right of the sonic
point, and the initial guess uk < 0. In that case uk has to go through zero to reach
the steady state. In more detail, the following happens.

Let the stationary sonic point lie between k-1 < 0 and k > 0. Allowing for
an initial guess uk < 0, the residual rk s -ulul/(2h ( -ulukl)/(2h), and
the corresponding value of a lukl/h by (4.3a) and (4.35). This value is modified
according to (4.4), and used in the iterative method (4.2). For 1 the right-hand
side of (4.2) becomes 2u/(1 / 3u) if Uk < 0 and k 1. Thus, convergence is
obtained to uk 0 rather than k 1. Once uk has become zero, the iterations
continue in a different way towards k 1.

As a whole, this process will take too long. For this reason, and because of the
instability found in the Appendix, we abandon the use of Godunov’s scheme in favour
of Roe’s (2.9) at the sonic point. In the following discussion, we will consider Roe’s
scheme (scheme I), and a variant of the E-O, or FVS scheme, that uses (2.9) at the
sonic point (scheme II). Local relaxation is always applied several times after grid
refinement. For scheme I, we use four cells for local relaxation. For scheme II, the
experiments showed that four cells did not provide satisfactory results, but six cells
allowed us to obtain convergence results comparable to scheme I.

If damped PJ without local relaxation was used, the convergence towards the
steady state was dominated by the shock. For scheme I (Roe’s) we observed a conver-
gence factor 0.5 for the choices (4.3b) and (4.3c) of a*, with or without the modification
(4.4). This is in agreement with the discussion of 3.5. The two-grid convergence fac-
tor was obtained for a simulated two-grid algorithm, using three multigrid cycles on
each of the coarser grids.

Scheme II provided values between 0.3 and 0.7, depending on the choice of a* and
the position of the shock. The choice (4.3a) did not work unless modified by (4.4),
and even then the convergence was not very good. For (4.3b) with or without (4.4),
we observed convergence factors between 0.3 and 0.6, and for (4.3c) between 0.4 and
0.5, depending on the position of the shock. Given the lower accuracy of scheme II,
not much is gained by the sometimes slightly faster convergence.

If local relaxation was used once after every prolongation, the convergence rate
was dominated by the slower convergence at the sonic point.

Next we consider convergence down to the truncation error. If no local relaxation
was applied after prolongation, but only after grid refinement, both schemes I and II
required two F-cycles with (4.3b) and three F-cycles with (4.3c). It turned out that
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with local relaxation, just one F-cycle was sufficient to obtain the steady state for
both scheme I and II with damped PJ.

Second-order accurate solutions can be computed by the Defect Correction tech-
nique. For schemes I and II this required about eight F-cycles when damped PJ was
used. Convergence for (4.3b) was slightly better than for (4.3c). For RB1 with (4.3b)
and/ 1, a stationary solution was obtained in five F-cycles. Without local relax-
ation after prolongation, about 15 F-cycles were required for both schemes I and II.
Here local relaxation was applied only after grid refinement. Thus, convergence was
about a factor two slower if local relaxation after prolongation was omitted.

5. Conclusions. Convergence towards the steady state of the one-dimensional
Burgers equation by means of a multigrid method has been studied. In order to exploit
the global character of multigrid relaxation, only relaxation schemes that affect the
solution locally have been considered. This excludes a global scheme such as line
relaxation, and also Gauss-Seidel relaxation which uses only local data but has a
global effect.

Linear two-level analysis has been carried out for a one-dimensional upwind dif-
ferenced convection equation with a constant coefficient. Both smoothing rates and
two-grid convergence factors have been derived. It turns out that optimising the
smoothing rate does not necessarily imply a good two-grid convergence factor.

Experiments on the nonlinear inviscid Burgers equation show an O(h) differ-
ence between the observed convergence factors for a simulated two-grid algorithm and
the two-grid convergence factors for the linear constant-coefficient case, if there are
no shocks or sonic points. The linear constant-coefficient case cannot explain what
happens if the convection speed changes sign, i.e., at the sonic point and the shock.
Convergence at the sonic point can be analysed separately.

At the shock the discrete nonlinear steady-state equations, obtained by upwind
differencing, become singular. This reflects the singularity of the differential equation,
which is overcome by invoking the jump condition across a discontinuity. The jump
condition is automatically satisfied if the equation is solved in conservation form. In
the present steady-state calculations, only conservation in space is retained. Conser-
vation in time is dropped to obtain fast convergence. This introduces the singularity
at the shock, and makes the steady state nonunique. The obvious way to regularise
the discrete equations is by requiring global conservation in time, which is imposed
as an additional condition on the coarsest grid. In this way, the multigrid method
converges towards the correct steady state.

The linear two-level analysis provides a zero two-grid convergence factor for
damped PJ. The numerical experiments confirm this, within O(h), for a smooth test
problem. At the shock, the convergence rate is about 0.5, which can be improved by
local relaxation using a variant of Newton’s method. Here the additional condition of
local conservation is imposed to remove the singularity. If local relaxation was applied
once after every prolongation, the steady state for the discontinuous test problem
could be computed in only one F-cycle, given an initial guess from the coarser grid.

RB relaxation, if used as a single-grid scheme, is independent of the colouring,
i.e., the convergence rate is the same if first the red and then the black cells are
relaxed, or the other way around. This property is lost if RB is used as part of a
multigrid scheme. The multigrid convergence rate depends on the colouring relative
to the coarse-grid cells and the direction of the flow. If the order in which first the red
and then the black cells are relaxed follows the flow as seen from each coarse-grid cell,
then RB has a convergence rate zero in the linear constant-coefficient case; otherwise,
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it is unstable. A damped version of RB does not suffer from the instability.
Steady solutions with second-order accuracy have been computed by the Defect

Correction technique. Convergence is considerably slower than in the first-order case.
An extension of the present work to two dimensions can be found in [15]. Non-

linear singularities of the discrete equations are not considered in that paper. In two
or three dimensions, such singularities are less likely to occur, because the coupling
between the state variables is increased by having more than one direction. Still, a
regularisation is required if the nonlinear steady-state problem is singular. The reg-
ularisation chosen here is based on global conservation in time of the initial states.
However, this approach cannot be used if singularities occur in more than one cell. In
[13], the isenthalpic Euler equations were solved, and some time accuracy was main-
tained, which avoids possible problems with singularities. This may not be sufficient
in all cases. An alternative regularisation can be obtained through additional viscous
terms, at the expense of the spatial accuracy. Brandt proposes the use of double dis-
cretisation [3, 10.2] to overcome this problem, but it remains to be seen if a robust
method can be obtained by this technique.

Appendix. Convergence rates at the sonic point. Two-grid convergence
rates at the sonic point are estimated by assuming the numerical steady state to be
linear in x, and by linearising the discrete nonlinear equations. We consider six cells
and a numerical steady state

(A1) k=ak=a2+(k-2)ha2+O(h2) withal>0, k=0,...,5.

There are two cases, corresponding to two different positions of the sonic point with
respect to the coarse-grid cells:

(A2a) Case 1" a2 ha2,
(A2b) Case 2" a2 =-ha2,

where 0 _< c _< 1. The numerical sonic point lies between cell one and two in Case 1,
and between two and three in Case 2. To obtain a linear discrete operator, we evaluate
the nonlinear residuals, rewrite them in terms of the iteration error vk k -u, and

2ignore terms of O(vk). The upwind differencing of the nonlinear equation is based on
k, not on Uk. Note that these two choices cannot be justified by assuming vk to be
small. Their only justification is the simplification of the analysis.

We will not present all the details of the derivation of the two-grid convergence
factors, but merely mention some of the intermediate results for Case 1 when using
Roe’s scheme. In that case,, we have, for instance,

(A3a)
11

(u u) ( ) - ((21 Vl)2 (T0 V0)2)r0 "-80-- -- (av aovo)/h,

and

(A3b)

1
r2 -82-- -2h-- (a2v2 1/2(alv2 + a2vl))/h.
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The other residuals follow in a similar way by using Roe’s scheme and choosing the
upwind direction from . In this way a linear operator Lh is obtained, which can be
written as a 6 6 matrix acting on (v0, vl,..., vs)T.

Only damped PJ is considered as a relaxation operator. For the choice (4.3a) of
a, this relaxation operator becomes

(A4) IN-LhSPJ =I-
where N is a diagonal matrix with its diagonal elements equal to those of Lh. The
restriction and prolongation operators are chosen as in 3.2. For the CGC operator,
we need LH, which can be obtained by Galerkin coarsening LH hirHT’hlrh--"g), or
evaluated directly from the coarse-grid equations, using--guk akg .(ah2kl
for k 0, 1, 2. Only the last option is considered here. In Case 1 with Roe’s scheme,
we obtain

(A5)
1/2a’ a’o

LH --aH
0

5a0 0

alH_l Ha0 0

Similar results are obtained for Case 2, and for Godunov’s scheme. It should be noted
anda>that in Case 2 we obtain operators that are different for a _< 3"

Once the relaxation operator Pg and the CGC operator K have been obtained,
the two-grid convergence rate follows from

(A6) A(a) p(KSPJ).

Table 2 lists the smallest and largest values of the two-grid convergence factor, i.e.,
mina )(a) and maxa )(c). Different results are obtained for Godunov’s and Roe’s
scheme, and for the choices of a listed in (4.3). The entry c is due to a vanishing
coarse-grid convection speed aH for a in Case 2. This problem does not occur
for Roe’s scheme.

TABLE 2

Two-grid convergence factors around the sonic point. The values shown are the minimum and

maximum of )(c) over (, which determines the position of the sonic point relative to the grid. The

choices of a are listed in (4.3). Damped PJ (/--- 1/2) is used as relaxation scheme.

Scheme a Case 1 Case 2

Godunov

Roe

ab

a,b
c

0.354 0.500
0.500 0.556

0.500 0.500
0.249 0.312

0.500
0.375 0.556

0.318 0.359
0.375 0.614
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MULTIGRID METHODS FOR LOCATING SINGULARITIES
IN BIFURCATION PROBLEMS*

SHLOMO TA’ASAN"

Abstract. This paper deals with multigrid methods for locating singular points for nonlinear equations,
such as limit points and bifurcation points (perfect or imperfect), and is restricted to the self-adjoint case.
A minimization problem that defines singular points is formulated. It treats uniformly limit points and
bifurcation points unlike other methods that are designed to solve for one of the two. So it is particularly
useful when the type of singularity, or even its existence, is not known in advance. Efficient multigrid
methods for locating singular points based on the minimization problem are described. They solve the
problems to the level of discretization errors in just a few work units (about 10 or fewer), where a work
unit is the work involved in one local relaxation on the finest grid.

Key words, multigrid, singularities, bifurcation points, limit points

AMS(MOS) subject classifications. 65N20, 65C99, 65D99

1. Introduction. This paper discusses the detection of singular points as part of a
continuation process and its accurate location once it has been detected. Generally, a
nonlinear equation with a parameter is given, and the behavior of the solution as a
function of the parameter is required. This may include, for example: (1) continuation
along solution curves; (2) detection of singularities in the marching process; (3) locating
singular points.

Continuation methods in which the problem is solved for one choice of the
parameter and then changing it until a prescribed value is reached are commonly used.
Such methods may encounter difficulties in cases where the problem becomes singular
for some choice of that parameter. Different continuation techniques therefore have
been developed [K], [M]. In the arclength continuation methods [DK], [K], [M], a
new parameter, which represents an arclength along a solution curve, together with
an extra equation, is introduced. This makes the continuation process very robust at
regular and at limit points.

Since singularities play an important role in physical systems, their detection as

part of the marching process may be required. This paper proposes a detection method
based on monitoring (on the coarsest level in a multigrid algorithm) the eigenvalue
that is the closest to zero. If a small (precise meaning is given later) extremum is
detected in the behavior of the eigenvalue, further checks are done to ascertain the
existence of a singular point of the continuous level in that vicinity. In case the
extremum approaches zero, as the discretization parameter tends to zero, a singularity
has been detected. The advantage of this method is that it can detect singularities of
the continuous system that disappear.on discretization.

Once a singularity is detected, its exact location may be needed. Several approaches
for locating singularities have been developed by different authors [Moo], [MS], [BK],
[R]. A different method is suggested here that uses a minimization problem to define

* Received by the editors July 20, 1987; accepted for publication (in revised form) November 23, 1988.
This research was supported in part by the National Aeronautics and Space Administration under NASA
contract NAS1-18107 while the author was in residence at the Institute for Computer Applications in Science
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U.S. Air Force Office of Scientific Research under grant AFOSR-86-127.

" Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science,
Rehovot 76100, Israel.
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the singular point. That problem is being solved directly, without involving iterations
within iterations as other methods require. This leads to very efficient algorithms for
locating singular points. The importance of this becomes clear when curves (in the
parameter space) of singular points (envelope of singular points) are required. Such
envelopes of singular points can be defined as solutions of a new minimization problem.
A continuation method can then be applied to this new problem, resulting in significant
savings in the computational work. In case of simple limit points, the minimization
problem described above reduces to a set of equations treated in [MS]. The resulting
system is regular in the vicinity of a simple limit point (see [MS]) and standard methods
can be used for solving it.

Multigrid methods [B], [HT], [ST] can interact very naturally with the problems
mentioned. Continuation in order to get to a vicinity of a singularity can be done
mostly on coarse levels with refinement being done only when a singularity has been
detected. Fine grid location of a singularity is found by an FMG algorithm that starts
solving the problem on coarse grids and uses a fixed number of multigrid cycles per
refinement.

The multigrid cycling on each level involves a relaxation that combines local and
global steps. The local step is a standard one and serves to smooth the error in local
quantities. The global step accelerates the convergence of the singular components in
the solution that are slow to converge in local processes. While the local step is
employed on all levels, the global steps are performed on the appropriate level
(explained later).

Section 2 describes the basic tools such as an arclength continuation method, and
the detection and location of singularities from solution of appropriate minimization
problems. Section 3 describes multigrid algorithms for detecting and locating singular
points. In 4 the effectiveness of some of the algorithms presented in the paper is
demonstrated. It is shown that limit points are located to the level of discretization
errors using the 1-FMG Algorithm for an appropriate system of equations defining
these points. Similar results using the 2-FMG Algorithm are obtained when bifurcation
points are to be located.

2. Basic tools.
2.1. An arclength continuation method. Consider a nonlinear problem in the form

(2.1) L(u, A) =0
where L: W, is the set of real numbers and W is some Hilbert space and
such that L,(u, A) is a self-adjoint operator. Smooth branches of solutions

(2.2) {F: [u(s),A(s)],so<=s<=s}
are required, where u(s) , A(s) . Here the parameter s is arbitrary, and we refer
to it later as the arclength parameter.

The standard approach of using A as the continuation parameter encOunters
difficulties when L, becomes singular. A method that circumvents such difficulties to
some extent is the arclength continuation. In this method (2.1) is replaced by

(2.3) L(u(s), ,x(s))=O,
(2.4) N(u(s), A(s), s)=0
where N: and s is the independent parameter on the arc ofsolutions
[K], [M]. Several choices for N are possible. Throughout this paper N is defined by

N(u(s), A(s), s)=- O(u-uo, Uo-Ul)h-(1-O)(A -/o)(/0-/1)
(2.5)

(S S0)40 Ul uoll = + (1 0)]A A0] 2
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where So and sl are two previous points on the branch of solutions, u u(s), Uo U(So),
Ul I’/(S1), /-1 " / (S1), 0 0 1 and (., denotes the inner product in Y(. This definition
of N is an approximation to a choice given in [K] and does not require the computation
of the tangent to the solution curve.

The role of 0, in the definition of N, is to enable inexpensive marching through
limit points where the curve has a high curvature. Note that the geometric meaning
of (2.5) is that the angle between two successive changes in the solution, in the (u, A)
plane, is less than 7r/2 (assuming s > So). In case the stepsize is too large, for example,
in encountering an angular limit point, this may not be the case, and the augmented
system (2.3)-(2.4) may not have a solution unless s is close enough to So. With a proper
choice of 0 (usually either 0 1 or 0 0) marching through such points is possible,
without decreasing the stepsize. This is possible since changing 0 is related to a change
in the curvature of the solution branch. Treating a limit point in A, for example,
becomes trivial with the choice 0 1, since with this parametrization the problem is
regular.

A CONTINUATION PROCESS. For completeness of the presentation, a full continu-
ation process is described here. Let 0 0.5.
Step 1.

Set so=O,A=Ao, uo=O.
Solve L(uo, A)= O, for Uo, keeping A fixed.

Step 2.
SetA=Al, u=uo.
Solve L(u, A)= 0, for ul, keeping A fixed.
Compute sl from the equation

(s, So)= 0 Uoll 2 / 1 0 )IX, Ao[ 2.

Further Continuation Steps.
Choose As (for example, s-So). Set s s + As and

S --S
U Ul-]- [Ul--Uo

S SO

S--S

S SO

Solve the following equation for (u, A)

L(u, A) =0

N(u,A,s)=O.

Set So s1, s1 s, /,/o Ul, Ul /,/.

2.2. Detection of singularities. A singular point is a point (u,, A,) on a branch of
solutions for which Lu(u,, A,) is singular. A common way for detecting singularities
is to check for a sign change in the determinant of the linearized system [K]. This,
however, cannot detect bifurcation from eigenvalues of even multiplicity. Also it cannot
detect a bifurcation ofthe differential equation that has become an imperfect bifurcation
on the discrete level, since the determinant may not change sign along discrete solution
curves in such cases. In fact, singularities may disappear on discretization (see [BRP],
[Moo], [KK]).
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In this paper a different approach is taken. Let (u,, h,) be a singular point, and
let p be a corresponding singular eigenfunction, i.e.,

(2.6) L,(u,, h,) 0.

In the vicinity of the point (u,, h,)

(2.7) tx2(s)=- min [(Lu(u(s)’ h(s))’ )]2

o (q, o)
subject to

(2.8) L(u(s),A(s))=O,
is close to zero, and it vanishes at (u, A)= (u,, A,).

Detecting singular points is done by computing approximately /z-(s) on the
coarsest level. Once a minimum has been found, further checks are needed to decide
whether a zero for/x(s) exists on the continuous level. For the continuous level the
extremum of/z(s)2 is zero at singular points, while it may not be so on the discrete
level. However, it approaches zero as the discretization parameter goes to zero.

We refer the reader to some standard references, e.g., [SW], [Moo], for definition
of limit points, bifurcation points, and imperfect bifurcation points.

2.3. Locating singularities. Having detected the possibility of a singular point
using the coarsest level, further checks (to confirm the existence of a singularity) and
its exact location may be required. In the vicinity where/z(s)2 has a minimum, the
following minimization problem may be used to accurately locate a singularity:

(2.9) min /x
2 subject to

(u,a,,)

(2.10) L(u, A) =0,

(2.) L,(u, x) =,
(2.12) IIll==

The problem is solved on the coarsest levels. If/x(s) 7 0, as the meshsize decreases,
the process of solving (2.9)-(2.12) is stopped and the original continuation process
continues.

This minimization problem can serve for locating either limit points or bifurcation
points. Together with/x2(s), (Lx, p) is also needed to decide about the nature of the
singularity located, i.e., whether it is a limit point, a bifurcation point, or an imperfect
(discrete) bifurcation. At bifurcation points (Lx, o)= 0, and at limit points (Lx, q)# 0,
while at both/x(s) =0. When a discretization is used to approximate a singular point,

h andthe two quantities /x, are available. The nature of a singularity is
determined as follows:

if/x h* 7 0, as h - 0 then no singularity exists
else

if (Lh, 0h) 0 as h-> 0, a possible bifurcation point has been detected
else a limit point has been detected.

The distinction between different types of singularities is done based on inner
products involving higher derivatives of L(u, h) (see, e.g., [SW], [Moo]).

The location of the singular point, if detected, is obtained from the limit of the
h hsequence (u., h.) that minimizes the discrete analogue of (2.9)-(2.12). Note that the

decision about the existence of a singular point can be made in general only by solving
a sequence of discrete problems, since a perfect bifurcation may become an imperfect
one on discretization.
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Sometimes it is known in advance that only limit points are involved. In such
cases they can be located using the following system of equations, once the vicinity
of the limit point is reached:

(2.13) L(u, A) =0,

(2.14) Lu(u, A)p 0,

(2.15) I111== 1.

Note that the minimization problem described above reduces to (2.13)-(2.15) for
the case of limit points. In a vicinity of a limit point the above system is regular (see
[MS]).

3. Multigrid algorithms. As explained before, detecting a singularity begins with
a continuation process that reaches the neighborhood of the singularity. In our numeri-
cal experiments a multigrid continuation algorithm was used. It is similar to the one
used in [BK] with a few differences. One is the choice of N in (2.4). The other is the
way the arclength equation was used. In [BK] it was used on the coarsest level only,
while here it was used on the finest level with the FAS formulation on coarse grids.
Another difference is the way the coarsest grid equations are being solved. In [BK] a
Newton iteration was performed while here it was done using a local relaxation together
with a global step to accelerate it. This idea can be used in case the Newton method
does not work, for example, if the linearized system is singular (see the algorithm for
locating singularities). Because of the similarity of our algorithm to the one in [BK]
we will not describe it in detail here. A detailed description can be found in [T].

3.1. Coarse grid detection of singularities. The continuation algorithm is combined
with a simple and inexpensive detection of singularities basically done on the coarsest
level.

Actually what we compute on the coarsest level are the nearly singular eigenfunc-
tions of Lu, and their corresponding eigenvalues. The device for that is Kaczmarz
relaxation. It has the property of damping the error components that belong to
eigenfunctions with relatively larger eigenvalues (in magnitude). The ones that corre-
spond to nearly~singular components are the slowest to converge. By starting with a
random guess W and relaxing the equation

(3.1) L,(u,A)W=O

enough times until the convergence rate becomes very slow, the approximation W, to
the actual solution W 0, lies mainly in the subspace of nearly singular functions.
Starting with this as an approximation we can solve the following eigenvalue problem"

(3.2) L,(u, A W- IzW= O,

(3.3) 11WI] 2 1

in order to define a function in the almost singular subspace. Assume for the moment
that this subspace is of dimension one. A relaxation for that purpose consists of local
and global steps. The local one is a Kaczmarz relaxation. The global one is of the
following form:

(3.4) W Wfl,

(3.5)
(/u (u, ,x) w, w)

(w, w)

where/3 is such that the norm requirement is satisfied.
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In the event that the nearly singular subspace is of a higher dimension than one,
that algorithm will converge slowly very soon. In that case new eigenfunctions must
be introduced into the process, where at each time the initial approximation for such
an eigenfunction is taken from the residuals of the problems already in process that
have been orthogonalized to previous eigenfunctions already found. The process should
also include a Ritz projection as in [BMR] for that set of functions. In this way an
orthogonal set of functions that spans the nearly singular subspace is found. Each of
these solves a system such as (3.2)-(3.3) with a possibly different

Once the minimal eigenvalue (in magnitude) is found, it is compared to the one
-found in the last two continuation steps to look for a minimum. Note that since this
entire process is performed on the coarsest level, it is very inexpensive.

3.2. Multigrid method for locating singularities.
3.2.1. Limit points. Once a limit point has been detected by observing the behavior

of A (s), for example, it may be required to actually locate it. This is done by applying
an FMG algorithm to a discrete version of (2.13)-(2.15) once the continuation process
has reached the neighborhood of the limit point. The relaxation process is described
first. The rest is a standard FMG method for equations (2.13)-(2.15) using the FAS
formulation.

Relaxation. A local process is used to smooth the error in both u and by relaxing
the discrete version of (2.13) for u (keeping A fixed), and (2.14) for (keeping (u, A)
fixed). This local step is employed on all levels. On the coarsest level an additional
step is performed. It begins by updating the norm of by multiplying it by a proper
constant, to satisfy the norm condition on this level, followed by

(3.6)

where (/3, 8) satisfies

(3.7)

(3.8)

u<--u+q, A <-- A + 5

(L(u +/3q, A + 8), q)= (F, 0),

(L,(u + fl0, A + 6), )= (G, ).

Here F and G are the right-hand sides for the corresponding coarsest grid equations,
respectively. The solution of (3.7)-(3.8) is done using a linearization and is justified
since the system (2.13)-(2.15) is nonsingular in a vicinity of a limit point. Note that
since the operator L, is singular at a limit point, a local relaxation will be slowly
converging for the component in u. This, however, is taken care of by the global
step that changes u exactly in the direction of slow convergence.

The full description of the cycling algorithm is described next.

MrIGRIO ALGORITHM MGLLP. Consider a sequence of grids Ok(k M) with
mesh sizes hk satisfying 2hk+ hk. Suppose on each grid operators (Lk, L) are given
in such a way that (L, L) (k < M) is an approximation to (Lk+l, L+) and the
grid equations are

(3.9) Lk(a,A)=Fk,

(3.10) Lk=Gk,

(3.11) II ll =n
Assume also that interpolation operators I_, from coarse to fine grids, and restriction
operators I-, [-, from fine to coarse grids, are given.
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Given an approximate solution (U k, (ok, i) to (3.9)-(3.11), the multigrid cycle for
improving it is denoted by

(3.12) (uk,ok, A)-MGLLP(k, uk,ok, h, Fk, Gk, Hk)
and is defined recursively as follows:

if k 1 then solve (3.9)-(3.11) by enough relaxations (to achieve a desired accuracy)
else

Perform ’1 relaxation sweeps on (3.9)-(3.11), starting with (u k, k,A) and
resulting in a new approximation (tk, q3 k, ).
Starting with U k-l-" ikk--l k, (0

k-l’-" i-1( k make 3’ successive cycles of the type

U
k-1 A k-l, A <-" MGLLP (k 1, gl

k-1
(O k-l, A, F-1, Gk-, Hk-l)

where

Fk-l I+-I(Fk Lkak) + Lk-1-’ak

Gk-1 I-I(Gk k -k) k-1 k-L. +L, kk-l
Hk-l.-. (Hk -1+ +_,.

Calculate a a + I_,(u-1- -la+), ++ ++ + I_,(++-’- -1++).
Perform v2 relaxation sweeps on (3.9)-(3.11) staing with k, , J and yielding
(u k, k, J), the final result of (3.12).

FMGLLP ALGORITHM. TO obtain full efficiency, the first approximation on a
given level is obtained from a solution of the same problem on the next coarser level,
which itself has been calculated in a similar way. The resulting algorithm is called
(FMGLLP) and is described next.

Let 1-I_l be an interpolation operator (usually of higher order than I-1). Given
the problem (3.9)-(3.11) with k--M, the N-FMG solution of that problem is:

Initial setup.
Set F4 0, GM 0, HM 1.
fork=M-I,...,1 do"

Fk--I+lFk+l Gk--Ikk+l Gk+l Hk=Hk+l

N-FMG ALGORITHM.
Calculate u the solution of (3.9)-(3.11) for k 1 by several relaxations.
fork=2,...,M do:

Calculate u k ,- II_luk-, o k ,-- II_ok-1.
Perform the cycle (u k, tp k, A MGLLP (k, u k, o k, Fk, Gk, Hk) N times.

The effectiveness of the multigrid algorithm for locating limit points is demon-
strated in 4.1, where the limit point for the Bratu problem is computed to the level
of discretization errors with the above algorithm using N =.1, i.e., the 1-FMG algorithm.

3.2.2. Bifurcation points. An efficient multigrid method for locating singularities
or even an envelope of singular points is now described. Basically the problem
(2.9)-(2.11) needs to be solved. An FMG algorithm can be designed to solve these
equations. The first thing that must be described is the relaxation method.

Relaxation. As before the relaxation will involve local and global steps. The local
step is a Newton-Kaczmarz on coarse levels and Newton-Gauss-Seidel on fine ones
for the first constraint equation. The next one, which is linear in % can be relaxed on
coarse levels by Kaczmarz and on fine levels by Gauss-Seidel (see [BT]). Because of
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the singularity of the linearized part of the system at a bifurcation point, difficulties
arise in the coarsening process. The coarse grids do not represent well the singular (or
nearly singular) components in u. Two possibilities exist here for correcting the
situation. One is to use on the coarse grids a modified multigrid method in the spirit
of [BT]. The other possibility is to free u from errors in the singular subspace on the
finest level before coarsening takes place. This is similar to the treatment of singular
problem as described in [HI. It can be done only by using a global step there since
local ones are very slow to converge for these components. The global step includes
changing the singular components of u, changing h, and at the same time minimizing
/x 2. For simplicity of exposition we assume that the singular subspace is of dimension
one. We use the same global step as the one used for locating limit points, except that
now/3, 6 solve a minimization problem. Namely, the following:

global step 1.

(3.13) u-u+o, A -A +t5

where (/3, ) solve the following minimization problem:

(3.14) min/x 2 subject to

(3.15) (L(u +flo, A +6), o)= (F, o),

(3.16) (L,(u + o, A + 6)o tz(o, o)= (F, o).

This by itself is not enough since the second constraint equation (2.11) will converge
very slowly in the o direction. This can be taken care of by changing/x on the coarsest
levels in the following way:

global step 2.

(G- L,(u, A )o, o)
(3.17) 0 yo, /x (q, q)

where y is such that the norm constraint is satisfied. Note that a change of tz in this
way is effectively relaxing this equation in the 0 direction.

To summarize, the algorithm is basically an FMG algorithm using the FAS
formulation where the local relaxation is combined with two global steps. One is
performed on the finest level and the other on the coarsest levels. The minimization
problem (3.14)-(3.16) is solved by approximating it by a minimization problem obtained
by expanding L(u+flo,h +8) and L(u+flo,h +)o by Taylor series taking up to
quadratic terms in the first one and only linear terms in the second; that is,

(3.18) min/z subject to
(,)

(3.19) [3A + 6B +1/213C + [36D+1/26E (F1- L(u, A ), o),

(3.20) tiC + 6D- /x (o, q)= (F2 Lu(u, A )o, o)

where

A (L,(u, A)o, ), B (Lx (u, A), o), C (L.,(u, A)oq, ),

D (L,aq, q), E (La, o).

MULTIGRID ALGORITHM MGLBP. Consider a sequence of grids k(k----< M) with
mesh sizes hk satisfying 2hk+l hk. Suppose on each grid operators (L., L) are given



MULTIGRID FOR LOCATING SINGULARITIES 59

in such a way that (Lk, Lk) (k < M) is an approximation to (Lk/l, L
grid problem is

(3.21) min /x
2 subject to

k,A,q

(3.22) L(ffk, A) F

(3.23) Lq -/z G,
(3.24) ]]q]] Hk.

Assume also that interpolation operators I_l, from coarse to fine grids, and restriction
operators Ikk-l, [kk-l, from fine to coarse grids, are given.

Given an approximate solution (u k, q, h) to the problem (3.21)-(3.24), the multi-
grid cycle for improving it is denoted by

(3.25) (ll k, qk, A) <-- MGLBP (k, u k, qk,A, Fk, Gk, Hk)

and is defined recursively as follows:

if k 1 then solve (3.21)-(3.24) by enough relaxations (to achieve a desired accuracy)
else

Perform ’1 relaxation sweeps on (3.21)-(3.24), starting with (u k, qk,A) and
resulting in a new approximation (fig, q3 k, ).
Starting with uk-l= [kk-lfk, qk-= [kk-k make y successive cycles of the type

uk-, , k-, A <-- MGLBP (k 1, u k-, pk-1, A, Fk-l, Gk-l, Hk-)

where

Fk-I= i-l(Fk Lkfk)+ Lk-I[-Ik

Gk-I=I-(Gk k-k) k-1 k

Calculate
Perform ,2 relaxation sweeps on (3.21)-(3.24) starting with fik, +5, J and yielding
(U k, (t)k}I.), the final result of (3.25).

FMGLBP ALGORITHM. TO obtain full efficiency, the first approximation on a
given level is obtained from a solution of the same problem on the next coarser level,
which itself has been calculated in a similar way. The resulting algorithm is called
(FMGLBP) and is described next.

Let II_1 be an interpolation operator (usually of higher order than I-1). Given
the problem (3.21)-(3.24) with k M, the N-FMG solution of that problem is:

Initial setup.
Set FM O, GM O, HM 1.
fork=M-I,...,1 do"

Fk’- I+1Fk+l Gk’- I+IGk+l, Hk-" Hk+l

N-FMG ALGORITHM.
Calculate u the solution of (3.31)-(3.34) for k 1 by several relaxations.
fork=2,...,M do:

uk-1 k k-1Calculate u k <--- II_l q <- rikk-lq
Perform the cycle (u k, pk, h) <- MGLBP (k, u k, qgk, Fk, Gk, Hk) N times.
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4. Numerical experiments. In this section we demonstrate some of the algorithms
presented in the paper. We consider partial differential equations of the form

(4.1) Au+f(x,y, u, A) =0, (x, y) (0, 1) x (0, 1).

The discretization used for all cases is the standard five-point Laplacian for the Au
term in the equation, and a pointwise approximation to f(x, y, u, A). The grids used
were equally spaced in both directions.

4.1. Locating limit points. To demonstrate the algorithm for locating limit points,
we have chosen the well-known Bratu problem. That is,

(4.2) f(x, y, u, A)= A e".

A bifurcation diagram for this problem is given schematically in Fig. 1.
Table shows the results of algorithm FMGLLP. The coarsest grid has a mesh

size of ho .25. Bilinear interpolation used for I_1, bicubic for II_l, and a nine-point
full weighting operator for I-1. The following values were used for the different
parameters: /1 1, v2 2, and y 2. The local relaxation was employed in lexicographic
ordering.

The residuals given in Table 1 are for the currently finest level at the end of the
cycle. The two residuals at each row (starting at the left one) are for (3.19), (3.20)

lul

FIG. 1. Bratu problem.

TABLE
Locating a limit point.

Level Cycle No. Ilresidualsll2

5 0.332E- 14 0.435E- 14 6.69051 .57217 1.86767
2 0.390E- 0.111E+ 6.79469 .67252 1.98973

2 0.172E- 2 0.123E- 6.78333 .67258 1.99357
3 0.135E- 0.417E +0 6.80282 .69854 2.02417

2 0.308E 3 0.136E 6.80217 .69857 2.02440
4 0.421E 2 0.130E+ 0 6.80669 .70515 2.03212

2 0.129E 3 0.213E 2 6.80665 .70515 2.03214
5 0.180E 2 0.351E 6.80776 .70680 2.03408

2 0.603E 4 0.209E 3 6.80775 .70680 2.03408
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respectively. It is clearly seen that 1-FMG solves for the location of the limit point to
h obtained bythe level of discretization errors. The approximation to the limit point

1-FMG converges as O(h:Z). The same rate is obtained for (Lh,
4.2. Locating bifurcation points. In this section the algorithm FMGLBP is demon-

strated. Two cases are given for which the differential equation has bifurcations at
A 7r2(m2+ n 2) where n, m are integers. A simple way of constructing a problem in
the form of (4.1) for which bifurcations exist at the above mentioned A’s (see [K]) is
to begin by prescribing a branch of solutions of the form u(x, y, A)=q(A)Uo(x, y)
where q(A), Uo(x, y) are given. This is achieved if

f(x, y, u(x, y, h ), h -Au(x, y, h ).

For branches to bifurcate from this branch at the above h’s, we require that

L(x,y,u(x,y,A),A)=l.

As a special case of this we take

(4.3) f(x,y, u,h)=-q(h)AOo(x,y)+hP(u-q(h)Oo(x,y)), P(z)=z+z.
We consider two cases: (i) Uo(x,y)=x(x-1)y(y-1), and (ii) Uo(x,y)=
sin (zrx) sin (Try). The first is a case of a perfect bifurcation for the discrete levels while
the other is an imperfect bifurcation for the discrete levels. Tables 2 and 3 show the
result of the FMGLBP Algorithm for locating the first bifurcation point. Intergrid
transfers used are identical to the ones used in 4.1. The two residuals (left and right)

TABLE 2
Locating a bifurcation point: Perfect bifurcation.

Level Cycle No. Ilresidualsll2 h [lull

5 0.915E- 10 0.176E-7 18.74516 .1226 -6.58175E- 8
2 0.264E-2 0.381E+0 19.28335 .14578 3.64700E- 3

2 0.725E- 3 0.387E- 19.46164 .14329 4.43231E- 4
3 0.509E- 3 0.264E- 19.67002 .14831 1.01890E-4

2 0.364E- 4 0.336E- 19.67527 .14721 1.04083E- 5
4 0.715E-4 0.280E- 2 19.72318 .14829 2.98171E-6

2 0.235E-5 0.110E-3 19.72336 .14793 -3.31378E- 8
5 0.133E-4 0.297E-3 19.73545 .14817 -3.63521E-6

2 0.974E 7 0.129E 3 19.73528 .14806 -7.34759E 7

TABLE 3
Locating a bifurcation point: Imperfect bifurcation.

Level Cycle No. [[residualsl[2

5 0.186E- 13 0.628E- 13 9.48662 1.5945 0.56972
2 0.160E- 0.545E+0 13.46777 1.8857 0.20472

2 0.291E-4 0.125E- 13.46833 1.9076 0.20487
3 0.308E- 0.901E +0 16.21966 2.0428 0.85237E-

2 0.149E-2 0.400E- 16.21687 2.0632 0.85390E-
4 0.510E- 2 0.591E +0 17.86465 2.1293 0.38793E-

2 0.113E-3 0.135E- 17.86442 2.1419 0.38813E-
5 0.829E-3 0.335E+0 18.77085 2.1746 0.18483E-

2 0.542E- 5 0.421E-2 18.77096 2.1815 0.18484E-
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are for the first and second constraint equations (3.32), (3.33), respectively. The
h converges at a rate that looks like O(h) for theapproximated singular point A.

imperfect bifurcation case and like O(h2) for the other case. Also note that (Lh, h)
in case (ii) converges to zero as O(h). As the actual value of this quantity shows, it
is not enough to consider single grid experiments when locating bifurcation points. A
refinement is essential for distinguishing between actual limit points and imperfect
discrete bifurcation. The results of Tables 2 and 3 clearly demonstrate the effectiveness
of the algorithm described.
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A NUMERICAL ALGORITHM FOR STABILITY ANALYSIS OF DIFFERENCE
METHODS FOR HYPERBOLIC SYSTEMS*

MICHAEL THUNI’

Abstract. The stability theory for difference approximations of hyperbolic initial boundary value
problems is based on normal mode analysis. To perform such a stability investigation analytically is very
difficult even for low-order approximations of scalar problems. For more complicated cases some numerical
technique must be used. Here, a numerical algorithm designed for this purpose is presented. It can handle
one- and two-dimensional problems and can easily be extended to higher-dimensional cases. The algorithm
is justified by a theoretical analysis and experiments show that it is reliable and efficient.

Key words, stability, initial boundary value problems, hyperbolic systems, difference approximations

AMS(MOS) subject classification. 65M10

1. Introduction. Stability is a key concept in the numerical solution of time-
dependent partial differential equations (pde). Here, we will consider the stability of
difference approximations of first-order hyperbolic initial boundary value problems.
We treat systems in two space dimensions, but the results can be extended easily to
higher-dimensional systems.

The question we address is how can stability be analyzed in practice ? The stability
theory is well known [7], [gJ. It is based on normal mode (NM) analysis. However,
to actually perform such an analysis is very difficult even for small problems and
low-order accurate approximations. Most of the cases reported in the literature concern
problems that are small enough to be treated analytically, mostly with considerable
effort. The authors that have treated more difficult cases (e.g., [11], [14]) have used
numerical techniques that do not take advantage of the special properties of the NM
analysis problem.

Some years ago, we reported on a first version of the software system Ibstab [16].
It included a numerical algorithm specially tailored for the NM analysis of one-
dimensional problems. In the present paper, we present a new version of the algorithm,
for two-dimensional problems. The outline ofthe paper is as follows. In 2, we describe
earlier, related research. In 3-4, the new algorithm is presented and analyzed. Some
additional comments are given in 5 and finally, in 6, some test results are discussed.

The algorithm presented here is available in a Fortran implementation, which can
be ordered from the author on a noncommercial basis.

2. A survey of earlier related research.
2.1. The stability theory. Our model problem will be the linear, hyperbolic initial

boundary value problem

(1) U AlUx + A2uy

(3

(4)

0--<x<, -o<y <,
u(x, y, 0) =0,

Bu(O, y, t)=f(y, t),

u(x) (o, oo).
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Sweden.
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We take u to be a d x 1-vector. A1 and A2 are constant d x d-matrices and B is a
matrix that makes (1)-(4) well posed. For problems with two boundaries in the
x-direction and lower-order terms, the stability investigation can be reduced to the
analysis of (1)-(4). Under additional assumptions the same is true for problems with
variable coefficients and inhomogeneous initial data.

We consider some difference approximation of (1)-(4), with solution Uk
U(X, Yk, t), where (x, Yk, t) is a point in the computational grid. The mesh sizes in
the grid are Ax, Ay, and At. For simplicity, we assume Ay Ax. The crucial parameter
for the stability of the approximation is A =-At/Ax.

The theory of Michelson [9] gives necessary and sufficient stability conditions
assuming a domain as in (1), i.e., where all except one of the space directions are
unbounded, and assuming that the difference approximation is dissipative. For more
general domains and nondissipative approximations the conditions are necessary.

The NM stability analysis starts out with the ansatz

Z ik(5) Ujk e vj

where z is a complex scalar, s to Ay comes from a Fourier transform in the y direction,
and v is a d x 1-vector. By inserting (5) into the approximation of (1), we obtain the
resolvent equation, a system of ordinary difference equations for the components of v.
The related characteristic equation is

(6) P(z, to, , A)=0
where P is a polynomial in z, K, A and a trigonometric polynomial in s.

Let us now freeze z, s, and A at arbitrary values, such that Izl > 1 and A < Acp,
where Acp is the stability limit for the Cauchy problem associated with (1)-(4). The
condition on h implies that (6) will have no solutions with Izl > 1, 1. Thus, for
our frozen z, s, ,, the solutions of (6) will split into two disjoint sets M<(z, , A) and
M>(z, s, A)

M<(z, so, A) {to (z, so, h); Itc < 1}, M>(z, s, A) {to (z, sc, h); It[ > 1}.

Now, let t, v 1,..., N, be the elements of M<(z, so, A), counted with algebraic
multiplicity. The general solution v 12(0, ) of the resolvent equation has the form

N

(7) vj= E o-,O,(j)K{
v=l

where (j) are vectors and r are arbitrary scalar coefficients.
The values of the coefficients o- are determined by inserting (5) and (7) into the

numerical boundary conditions, which can be expressed in the general form:

k2 q

kujk f, /x 0," , 1.
"r=--I k=-k! j=0

Here, -,,k are constant d x d-matrices. The equations for o’v, v 1,..., N, then are

(8) .(J)
=1 =-l k=-k j=O

1A more general treatment is achieved by assuming Ay =o Ax. The stability analysis can then be
performed in terms of A for different choices of o.
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This is a linear system of equations, the coefficient matrix of which we denote by
G(z, 1," ", N, Sc, A). We further introduce the notation g(z, ,. ., KN, , A)=
det (G(z, ,. , tcr, sc, A )). The condition for a nontrivial solution to (8) is

which will be referred to as the determinant condition.
The equations (6) and (9) form an implicit stability condition on A: the approxima-

tion of (1)-(4) is unstable for those values of A for which (6), (9) has solutions with

Izl> 1, 11< 1, t,= 1,..., N. In addition, we have to pay special attention to all
solutions with [z] 1. For further details, the reader is referred to [7] and [9].

Performing an NM stability analysis thus means deriving and solving (6) and (9).
For each fixed h we have to solve these equations for all sc [0, 27r). Our aim is to
find the smallest h for which the approximation is unstable.

There are two different ways of looking at (6), (9). The first and most natural one
will subsequently be called the scalar view. For fixed h and sc our problem can be
regarded as being that of solving (9), the unknowns 1(z),’’’, N(Z) being defined
by (6). When we adopt this view, the determinant condition car/be written as g(z) =0,
i.e., as a scalar equation in one unknown. The parameters h and sc will be included
in the parameter list only when they are of importance to the context.

The second way of looking at (6), (9) will be referred to as the systems view. This
is to see (6), (9) as a system of equations for z, tC,’’’,CN, the system being
parametrized by s and h. This view is natural in some one-dimensional cases, for the
following reason. By definition, the coefficient matrix of a linear, hyperbolic, first-order
system in one space dimension can be diagonalized. Thus, a suitable transformation
of variables will take the pde system into a set of d uncoupled, scalar equations. For
many difference methods this implies that (6) will factor into d factors, one for each
pde:

d

P(z, to, so, A) 1-I

We thus get d characteristic equations

(10) Pi(z, ’), , A)=0, i= 1,..., d

where equation will contribute /zi elements to the set M<(z, sc, A). In the case of a
centered, second-order difference approximation in space, we will have /zi 1,
1,..., d. Consequently, N d and (10), (9) will be a set of N+ 1 equations for the
N + 1 unknowns z, 1, , N. When we analyze higher-order approximations, then
/zi > 1 and we have more unknowns than equations. However, we can still look on
(10), (9) as being a system of N+ 1 equations in N+ 1 unknowns by letting Pi be
repeated/-ti times.

2.2. The analysis in lractice. The essential task when performing the stability
analysis is to solve (6), (9) in order to find any solution with Izl--> 1, Irl-< 1, v 1,. ", N.
For each fixed A we must consider all : [0, 27r). The analyses that have been reported
in the literature, with few exceptions, concern one-dimensional problems (i.e., the
special case -= 0). The common approach has been to adopt the systems view of (6),
(9). Oliger [11] used a reduction technique, by which he reduced the system into one
polynomial in one unknown. This polynomial, of a very high degree, was then solved
by a standard numerical method. This was a very time consuming way of solving (6),



66 MICHAEL THUNI

(9). Another way of using the systems view (e.g., [4], [14]) has been to solve (10), (9)
by means of some general continuation method, for fixed, predetermined values of h.
The primary drawback of this approach is that it means solving for all solutions of
the system, including those with Izl << 1. This is inefficient, as we are only interested in
the case [z[ _-> 1.

A conceptually different approach has been suggested by Goldberg and Tadmor.
They have treated a fairly general class of difference approximations of problems in
one space dimension. By exploring the properties of this class they have been able to
simplify (6), (9), thus arriving at what they call convenient stability conditions for these
approximations [5]. The Goldberg/Tadmor conditions simplify the stability analysis
considerably. However, they are limited in scope, in that

The class to which they apply does not include all the approximations worth
considering;
It is crucial for the simplification that the coefficient matrix of the pde system
can be diagonalized, which means that the conditions cannot be generalized to
multidimensional systems.

2.3. The Ibstab approach. For problems to which the convenient stability condi-
tions do not apply, we must use a numerical technique to perform the stability analysis.
To avoid the inefficiencies involved in applying a general method to solve (6), (9),
there is need for a special purpose numerical algorithm. In 16], Thun6 presented such
an algorithm for the one-dimensional case. It was embedded in a software system
called Ibstab (from "Initial boundary value problem stability analysis"). This algorithm
starts out with the scalar view, searching for solutions in the set

{(z, x); x > 0, I1- + }

where r/> 0 is a small parameter. The essential improvement here is that we only need
to look for solutions on the search circle Izl- 1 + r/. This is possible, as is shown in 4,
due to properties of (6), (9) and of the underlying difference approximation. Presently,
it is sufficient to note that the premises of the algorithm are

For h 0 all solutions z(h) are on or inside the unit circle in the complex plane;
A slight increase in h will only cause a slight change in the solutions z(h); no
new solutions will enter.

Whenever the algorithm finds some z Zo, that is close to being a solution, it switches
to the systems view and starts an iterative procedure for solving (10), (9) with
(Zo, Kl(Zo),""", KN(Zo)) as initial guess.

The basic structure of the Ibstab numerical algorithm is shown below. The
following notation is used:

next-lambda--a procedure for computing a new, increased h value,
next-theta--a procedure for computing a new increased value of 0 arg (z),
close(z, h)a logical procedure that is true if z is close to being a solution to

g(z) =0 for a fixed ,
solve(a)ma procedure for solving (10), (9) iteratively, using the point a as initial

guess,
(z*, 1",""", *)--a solution of (10), (9), obtained by solve.

The exact definitions of next-lambda, next-theta, close, and solve are not important to
the basic idea of the algorithm, but will be discussed in detail in 3, when we consider
the efficient implementation of the algorithm.
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ALGORITHM Basic Ibstab.
for A h (/ -" next-lambda) As do

for 0 0 (0 <- next-theta) 2 7r do2

z <-- (1 + r/) e iO

(K1,""", KN) <-- M<(z, h)
if close(z, A) then

solve (z, 1," ", I(,N

if convergence then
check-stability-criteria z*, *1, , *)

endif
endif

endfor
endfor

The algorithm terminates when we find a solution (z*, K *, , ) which, accord-
ing to the stability criteria, shows that the difference approximation is unstable, or, if
no such solution is found, when A > As. The value of the parameter As is given by the
user of the algorithm. If Acp is known, then As Acp is the natural choice.

The results presented in [16] for an implementation of this algorithm show that
the Ibstab approach is efficient.

3. The new algorithm. The development of the Ibstab algorithm since the publica-
tion of [16] has followed three directions: a more efficient implementation of details,
a better theoretical justification, and an extension to problems in two space dimensions.
The theoretical justification is treated in 4. Here, we present the new two-dimensional
version of the algorithm, including the improved implementation details.

There are two difficulties involved in going from one to two space dimensions.
The first is that in the two-dimensional case we cannot assume that the pde system
can be diagonalized. Thus, the formulation (10) of the characteristic equations is no
longer possible, which makes it less natural to adopt the systems view of (6), (9). The
other difficulty is that the search space will now include the parameter sc, coming from
the Fourier transformation in the y direction.

There are two possible ways to resolve the first difficulty. The systems view is
adopted only in solve and thus one way to avoid the difficulty would be to adopt the
scalar view in solve as well. However, we can look on (6), (9) as being a system of
N+ 1 equations in N+ 1 unknowns by repeating (6) N times, which is the second
possibility. To adopt the scalar view in solve would mean that solve should be a
procedure for solving g(z) =0, where g(z)=-g(z, (z),..., N(z)). Here, j(z), j=
1,..., N, are defined by (6). This approach could have been used already in the
one-dimensional case and the reason for not using it is the following. In cases when
IdK/dz is large, the procedure of solving for j(z) from (6) is not sufficiently well
conditioned to allow for convergence with the scalar approach. Experiments with solve
based on Newton-Raphson’s method confirm this. Another fact that makes it trouble-
some to base solve on the scalar view is that the set M<(z, so, A) is not defined for
Iz <- 1. This means that if solve generates an iterate z with Iz =< 1, then it is difficult to
know which of the solutions of (6) should be chosen for this z.

The second possibility, to use the systems view in the two-dimensional case by
repeating (6) N times, seems liable to be ill-conditioned as well, for the following

As pointed out by one of the referees, it is in the common case with real coefficients in the pde system
enough, by symmetry, to consider 0
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reasons. First, with N _-> 2 the systems view may lead to false solutions if solve is called
far from a true solution. Two components of the initial guess, Ki(Zo) and Ks(Zo),
corresponding to the same characteristic equation, may then converge to the same
value *. Second, in the situations where a scalar solve failed, the systems solve might
be expected to come into difficulties as well. However, the first is no problem, because
we assume solve to be called very close to a solution. The second difficulty can be
dealt with successfully by using a solver that is robust in treating systems with a
nonsingular or ill-conditioned Jacobian matrix. Among the test cases reported in 6
are several where one or more characteristic equations had to be repeated. With solve
based on Powell’s hybrid method these cases caused no problems. The conclusion
from this discussion is that it is preferable to base solve on the systems view.

We now turn to the problem of how to treat the new variable s. Here, too, there
are two possibilities. One would be to treat in the same spirit as we treat h and 0
in the basic one-dimensional algorithm. This would mean including a loop over sc from
zero to 2r, with a possibly variable stepsize 8:. The second possibility would be to
find all solutions for sc- 0, say, and then trace these solutions by continuation in .
However, for efficiency reasons we have already rejected the idea offinding all solutions,
since these include those that are of no interest in the stability analysis.

Consequently, we have chosen to treat : in analogy with the treatment of h and
0. We derive a variable stepsize 8s in the following way. Let z(sc) denote a solution
path for a fixed h -ho. It is defined by

(11) g(z(), n,(z(sC)), N(z(sC)), , Ao) 0,

i.e., the determinant condition is satisfied identically. We can write z() in polar
coordinates as

(12) z(sc) ’(:) e i(), () R+, 0() R.

Consider a fixed = :o and Z(o) such that r(o)< 1. We need to choose 8>0, in
such a way that

There are two cases:

1 ->_ ’(:o+ 8) ’(so)+
d

(i) d(o)/d <- O, implies no restriction on
(ii) d(o)/d> O, implies that we can at most allow := (1- (o))/(d(o)/d).

Considering that the argument above was based on a Taylor expansion, and is thus
valid only for sufficiently small t:, we must impose an upper limit 6:. Furthermore,
adopting the scalar view, let (o, Ao) denote the set of solutions z(:o, Ao) that the
algorithm found for sc --sCo, A Ao. The formula for t: can then be expressed as

Id(o)l
(13) 8s min 8:; min (1 sr(so))/ 12(o,Xo) /

Of course, we could think of other ways of computing 8, but the one presented here
has the advantage of being simple and computationally efficient. To compute d(o)/d

The only special treatment that is needed is when the procedure close gives a false alarm. Then the
systems view may lead to false solutions. Such a case is easily detected by checking the multiplicity of K*.
If the multiplicity is one, then the solution is false. As these false solutions occur only when solve is called
far from a solution, they are harmless.
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we use (12), which implies

d:- " Re
Here, dz/d can be derived from (11) and (6) by implicit differentiation. This completes
the derivation of a stepsize 6.

Before presenting the new algorithm as a whole, we will also comment on the
improvements that have been made to the implementation details. In the basic
algorithm, the procedures next-lambda, next-theta, close, and .solve were not specified.
It is the precise definitions of these that have been changed to improve efficiency.

The most important change is that of close. In the definition we adopt the scalar
view, i.e., for a fixed A Ao, sc o, we solve g(z)=0. In the early implementation of
Ibstab [16], we used

close(z, A) Ig(z)l Ig’(z)l -,

where e and were small parameters. Numerical experiments show that this leads to
unnecessarily many calls to the procedure solve, which is the most time consuming
pa of the algorithm. The definition has now been changed into

close(z, , A) Ig(z)l/Ig’(z)l .
This has decreased the number of calls to solve by a factor of about 5-10, a significant
improvement.

The procedure next-theta was earlier designed to compute a variable stepsize. The
new theoretical analysis (cf. 4) shows that it is sufficient to use a constant stepsize
60. The procedure next-lambda involved some unnecessarily expensive computations
[16, p. 966]. However, we may note that the stepsize 3A can be derived in a way
analogous to the derivation of 6. We introduce the following notation:

Z(Ao)the set of solutions Z(Ao) that the algorithm found for A Ao,
Awe require that for A Ao+ 6A all solutions fulfill Izl 1 + A,
6A--an imposed upper limit on the stepsize.

The formula for 3A will then be

(14) 6A=min 6A; min (I+A-C(Ao))/ j./ dA2(Xo)

The changes in next-theta and next-lambda reduce the amount of computations needed
in the algorithm.

Finally, solve has been changed. Earlier, Brown’s method [3] was used, but it was
not sufficiently robust. Presently, Powell’s hybrid method is used [10] and it has
performed in a very reliable way.

We conclude this section by showing the new algorithm for two space dimensions
and with the improved details included.

AL6ORXH Ibstab2.
for A A (A next-lambda) A do

for 0 ( next-xi) 2 do

for 0 0 (0 next-theta) 2 do
ioz(l+n) e
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(K1,""", Kt) M<(z, st, h)
if close(z, s, A) then

solve (z, 1," ", )
if convergence then

check-stability-criteria z*, C *update-stepsizes( tS rs, A
endif

endif
endfor

endfor
endfor
update-stepsizes(, A =-

if d*/d>O then :,-min [s; (1-*)/(d*/d)]
if dsr*/ dh > 0 then h - min h; 1 + A ’*)/ (dsr*/ dh

next-lambda =- h +
next-xi =- +
next-theta =- 0 +
close(z, , A )= ]g(z)l/lg’(z)[ _-<

solve =-Powell’s hybrid method

4. Theoretical justification of Ibstab2.
4.1. The theory. The theoretical arguments are based on the scalar view of (6),

(9), i.e., that our problem is to solve g(z)= 0 for all solutions that fulfill Iz] _-> 1. The
following notation will be used:

D(h)The difference approximation at interior points of the computational
domain,

n(h)The highest time level involved in D(A),
Z(h)--{z; g(z, h, sr) 0 for some

We begin by making some assumptions and a definition.
Assumption 1. D(O) is a stable approximation of ut O.
Assumption 2. n(h) -< n(0) for all h > O.
DEFINITION 1. Consider two distinct h values, Ai and hj. If, as h, changes

continuously into hi, Z(hi) changes continuously into Z(Aj), then Z(Aj) is a perturbation
of Z(h).

The following lemmas show that under the above assumptions, the premises of
the basic algorithm are fulfilled.

LEMMA 1. Assumption 1 implies that [z[ _-< 1 for all z Z(O).
LEMMA 2. Assumption 2 implies that Z(A is a perturbation ofZ(O) for all h > O.
Lemma 1 is evident. For a proof of Lemma 2, in the one-dimensional case, see

[15, III.2.2].
Next, we restrict the domain of critical solutions, by making the following

assumption.
Assumption 3. The pseudocontinuous variation of h is made in such a way that for

every h generated by Algorithm Ibstab2, we have

z m Z(x )lzl <- l + ZX.

(Formula (14) was designed to fulfill this assumption.) Thus, it is sufficient that Ibstab2
finds all solutions with 1 _-< [z[ _-< 1 + A.

Let us finally make an assumption concerning the convergence properties of the
procedure solve.
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Assumption 4. Let Zo be a point on the search circle. If, for fixed A and , the
Newton-Raphson method with Zo as initial guess would converge to a solution z* of
g(z) =0, then solve (Zo, tc,(Zo), r(Zo) converges to (z*, ,(z*), z(z*)).

This assumption is very reasonable. The method currently used in solve, Powell’s
hybrid method, is a combination of Newton’s method and the gradient method, with
the purpose of increasing the robustness compared to the pure Newton’s method.

In the remainder of this section, we will show convergence supposing that solve
is based on solving g(z)=0 with Newton-Raphson’s method. By Assumption 4, the
results will then also hold, for example, to Powell’s hybrid method. We let z* denote
a solution of g(z)=0. Furthermore, we introduce C(fl)={z; Iz-z*l<-fl}. First, we
state a general lemma.

LEMMA 3. Assume that g’(z*) 0 and that

Z1, Z2E C(3)
g"(Zl)
g’(z2)

Then the Newton-Raphson method applied to g(z)=0 will converge to z* for all initial
guesses Zo C( ).

Proof. The lemma is proved by showing that the assumptions imply that

z C(13)
g(z)g"(z)
[g’(z)]z

We have

0 g(z*) g(z)+ g’(z)(z* z)+1/2g"(z,)(z*- z)2

for some intermediate point z. This implies

g(z)g"(z)
[g’(z)]2

g"(z)
g’(z)

For z e C(fl), we then we have

g(z)g"(z)
[g’(z)]2

l x/-1 ]x/-I 1,<fl 1-t
2

and the lemma follows. [3

Next, we study conditions such that the procedure solve will be called.
LEMMA 4. Assume that g’(z*) O, tx > fl, and

z,, ze C(3)

Then, the procedure solve will be called for every search point Zo C().
Proof. By Taylor expansion, we find that the assumptions imply

Zo C(3)
g(zo)
g’(zo)

Thus, close(zo, o, )to) (where sCo and )to are the current, fixed values of sc and )t) is
true and solve is called.

Finally, we can state Theorem 1.
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THEOREM 1. Assume that the parameters l and Iz are chosen such that

1
n <=-A,

>fl= (1 +A)2-2(1 +A)(1 + ) cos+ (1 + )2

Furthermore, assume that for every solution z* ofg(z) =0, such that 1 lz*[ 1 + A, we
have g’(z*) 0 and

(15) Z1,z2eC(fl) <min -1
g’(z:) ’en, Algorithm Ibstab2 will find every such solution z*.

Proof Let 0* denote arg (z*). Algorithm Ibstab2 generates at least one search
point Zo such that 0o arg (Zo) fulfills 10o- 0"[ 60/2. Now, define as the upper limit
of [Zo-z’l, when 1 Iz*l 1 + A. (By Assumption 3, we need not worry about any
other solutions.) It is easy to see that the assumption on implies that

fl =l(1 + a)e’*-(1 + )e’(*/z)I.
This is fl as stated in the theorem. According to Lemma 4, Algorithm Ibstab2 will now
generate a call to solve, and, by Lemma 3 and Assumption 4, convergence follows,
which proves the theorem.

Evidently, condition (15) is impossible to check a priori. However, we will give
two examples with realistic difference approximations for which g’(z) and g"(z) can
be derived explicitly and for which condition (15) is fulfilled. This suggests that
condition (15) is realistic and, thus, that Theorem 1 is acceptable as a justification of
Algorithm Ibstab2.

Note that we can choose such that the crucial limit in (15) will be (-1)/ft.
In the current implementation of Ibstab2, we have fl 0.11 and (- 1)/fl 6.54. With
these numbers in mind, we turn to the examples.

Example 1. We study the one-dimensional, scalar model problem

ut=Ux, 0x<, 0t.

At interior points, we apply the Crank-Nicolson approximation. At the boundary
n+lx=0, we take the one-sided approximation Uo -Uo h(u-u). This yields

2P(z, , A)=-: (z+ 1)( 1)+ :(1- z),

g(z, K, h) z- 1 +A(1--K).

(The set M<(z, A) will only contain one element and thus we can omit the subscript
on K in (9).) From (6) we get

2z-1
r(z)- [1 + q(z)]

hz+l

where
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The approximation is unstable for h > 2. The critical solution is z* 3- 2A. Thus, we
consider the case h 2, z =-1, which implies

+ O((Z+ 1)4

and the element of M<(z, A) is

hz+l
K(z) - o((z+ 1)3).

4z-1

We obtain

A 2 z+l
g(z) z- 1 + A - I- o((z + 1)3),

4 z-1

A 2

g’(z) 1-2(z- l)--------i + o((z + 1)2),

A 2

g"(z)
(z- 1)+o((z + 1)).

We wish to study Ig"(z)[/lg’(z2)[ for zj=z*+6jei, where 0_<-6j_-</3=0.11, j=l,2.
Using the expressions above we get

A 2

g"(Zl)
8(1 X)’------+ O(tl),

A 2

g’(z2) 1
8(1 A )+ 0(2),

and finally

where

Ig"(z,)l
Ig’(zz)l I(x)l + o(a,)+ o(),

,2
8(1-A)3-A2(1-A)"

For A 2, we have that ,(A)-1 and consequently, the condition of Theorem 1 is
fulfilled when Algorithm Ibstab2 approaches the critical solution A 2, z*= 3- 2A.

Example 2. Consider the same pde problem as in Example 1, but with the leapfrog
n+l n+lapproximation at interior points. At the boundary x 0, we extrapolate, Uo u

This yields

P(z, K, A) (z2-1)r-Az(r2-1), g(z, , A) - 1.

From (6), we get that the only element of M<(z, A) is

Z2--1 /[Z2-- 1] 2

(z) 2A---+ l_2Az + 1.

The approximation is unstable for all A, the critical solution being z*=-1. Thus, we
consider the case z --1, which implies

z2--1 1 [z2--!] 2

K(z) 2A---+ 1 + L 2Az J
+ ((z2-1)4)"



74 MICHAEL THUNI

We obtain

z2

1+1+ -1
g(z)= 2A--- 2Az

+ O((Z2-- 1)4),

z2+l 24-1
g’() xz: +gz3+ o((-,-1 Z4+3
g"(z) + o((z2 1):z).

AZ 4Azz4+

Proceeding as in Example 1, with zj z*+ 6j ei, j 1, 2, we get

A+I
g"(z) 2 + (1),

1
g’(z:z) -7 + o(62),

A

and finally

where

Ig’(z2)l

1
O(A) 1+--.

The smallest value of A used in the implementation of Algorithm Ibstab2 is A1 0.1.
In practice, Ibstab2 does find the instability for A1. The sufficient condition of Theorem
1 is fulfilled for A >0.19, which shows that the limit (,/- 1)/fl is of a reasonable size.
Under the assumptions of Theorem 1, Ibstab2 is guaranteed to find the instability for
A 0.2, which is quite sufficient. With such a low stability limit, the conclusion would
be that the approximation is useless for practical purposes.

4.2. The adjustable parameters. The adjustable parameters in Algorithm Ibstab2
are 80, A, r/, , and A. From their definitions it is clear that 80, A, and r/ should be
small; finding suitable values by experiments is straightforward. Once the values of
these three parameters have been settled, Theorem gives guidelines for the choice
of

The last parameter A1 should also be small because we want Z(A) to be a small
perturbation of Z(0). However, Z(0) has few distinct elements that are typically roots
of one. Thus, for very small A, the elements of Z(h) will form clusters around the
elements of Z(0). Evidently, if one of the elements of such a cluster should be critical,
while the others are not, then it would be very difficult for solve to distinguish precisely
that element from all the surrounding ones. (As an example, take Test problem III of
[16]. A closer investigation of that problem shows that for A 0.015 there is a cluster
of 18 different solutions with z 1. One of these shows that the difference approxima-
tion is unstable, while the others are harmless.) This inherent difficulty imposes a lower
limit on the choice of

In the current implementation of Ibstab2, the parameter values are

1=80=A=0.1, r/=0.001, =0.32.
This set of values have been used in all tests and they make the algorithm work
satisfactorily.

5. Additional comments.
5.1. Multiple eigenvalues . In the previous sections, some details were omitted

for the sake of clarity. They will now be treated.
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The first point of interest is that the exact form of the general solution (7) depends
on the multiplicities of the distinct elements of M<(z, , h). This affects g(z) and
implies that not only its value but also its structure depends on z.

To give a detailed description of (7), we introduce some concepts from matrix
theory, following Zurmiihl [17]. Let M be a matrix with m linearly independent
eigenvectors b(l), u 1,..., m, and corresponding eigenvalues K, u 1,..., m. The
chain of principal vectors corresponding to K is defined by

(M- I)b(f)= b(f-’}, r 2, , e.

The number e is the essential multiplicity of . Using these concepts, we now state
without proof Lemma 5.

LZMMA 5. The solution of the ordinary difference equation

i A,,v+,, O,

where A are d x d-matrices, Ar is nonsingular, and vj+ are d x 1-vectors, is given by the
d uppermost elements of the column vector w, where

w Z ,i, (j

Here, the scalar quantities are the eigenvalues, counted with geometric multiplicity, of
the d r + l) x d r + l)-matrix

-A-IAr_I A-IA_I
I 0 0

0 "" 0 0

Oo ".. o.
0 0 I 0

The coefficients xlr(j) are vectors given by

eu
rfi z) ..z-(J) E o’,,.,.,, j

where try, are scalar coefficients, c (f are the eigenvector andprincipal vectors corresponding
to , and e is the essential multiplicity of ..

Using Lemma 5, we can study the detailed structure of g(z). The fact that this
structure depends on z is a problem when the systems’ view of (6), (9) is applied.
When the system is.,solved by some iterative process, the equation (9) might change
its form as the iteration proceeds. A solution to this difficulty is given by the following
lemma.

LEMMA 6. Let gl(Z) denote g(z) in the case when all eigenvalues (z) M<(z, , A)
have essential multiplicity one. Furthermore, assume thatfor z Zo at least one eigenvalue
(Zo) e M<(zo, :, A) has essential multiplicity greater than one. Then gl(zo)=0.

Before we prove this, let us discuss how to use it. The lemma implies that the
iterative process can be applied to (6), (9), taking g gl during the entire process. If
convergence is obtained to a point (z*, *,..., ), then, by examining the multi-
plicities of K*,..., r, we can obtain the appropriate form g. of g, corresponding
to z*. If g,(z*)= 0, then we have found a solution to (6), (9).



76 MICHAEL THUNl

In the implementation of Ibstab2, g g is used when solve is called. However,
in the two-dimensional case it is too complicated to investigate the essential multi-
plicities in detail, so in .case of convergence we only check if some of the components

* might have multiplicity greater than one and if so, issue a warning. In the one-
dimensional case (i.e., : =0), multiplicity two is properly treated, which is sufficient
for centered, fourth-order difference approximations in space. Finally, we wish to
remark that, to our knowledge, there is no report in the literature of a case where a
solution to (6), (9) contains a multiple eigenvalue *. Hopefully, such cases are rare
exceptions.

We now prove Lemma 6.

Proof. Recall that g--det (G). From (8), we have that the elements of G are
k

’=-1 k=-k j=0

/x=0,...,l-1, v=l,...,N.

Here, are d x 1-vectors and N dl. From Lemma 5, we have that if r is a simple
eigenvalue, then (j) contains the d uppermost components of the corresponding
eigenvector. Let G1 be the matrix obtained when all r are simple. If the point
(Zo, rl(zo),""", rN(zo)) is inserted into G1, then two of the z-values will coincide and
correspond to the same eigenvector, which implies that two columns of G1 are equal.
Thus, G(zo, rl(Zo),""", rv(Zo), s, A) is singular, which proves the lemma.

5.2. Remarks on the implementation. There are also some additional implementa-
tion details that should be mentioned.

First, the perturbation analysis that is necessary if (6), (9) has a solution with
[z 1 is included in the implementation. Furthermore, in the one-dimensional case
the implementation distinguishes between weak and strong stability according to
Gustafsson, Kreiss, and Sundstr6m [7]. The implementation also contains a simple
algorithm for checking the von Neumann stability condition.

Second, in case of an unstable difference approximation Algorithm Ibstab2 pro-
duces two values: AR, the value of h for which the instability was discovered; and h,
the largest value of h for which no instability was found. The implementation then
proceeds with a refinement phase, based on interval bisection, until a pair A, AR is
obtained for which AR h <_-- e, where e is a predefined tolerance (currently e 0.025).
Due to the discussion in 4.3, no refinement is made if AR h.

Finally, in solve(zo, r,..., r), the determinant g is scaled by a local scaling
factor:

scale 1/[g(zo)[.

This has been found necessary to make the solution process robust.

6. Experimental verification. Algorithm Ibstab2 has been successfully tested on a
number of difference approximations. There are two possible ways to perform the
tests. The first is to apply Ibstab2 to problems with known stability limits. The second
is to check the results afterwards by performing numerical experiments with the
difference approximation, using h AL and h AR, respectively (AL and AR were
defined in the previous section).

Otto and Thun6 reported on a large number of tests based on the second strategy
[13]. The interior approximation was the same in all those cases" a centered, second-
order approximation in space and a Runge-Kutta type scheme in time. The resulting
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difference method needed three boundary conditions at each boundary. Several sets
of numerical boundary conditions were analyzed. Furthermore, we considered grid
overlaps: Ibstab2 was used to investigate the stability of a number of overlapping
conditions. The results produced by Ibstab2 were all experimentally demonstrated to
be correct. The stability limits that were obtained are of independent interest and the
article shows the intended way of using Ibstab2 in realistic applications.

Here, we will discuss some test problems with known results. Below, the problems
are presented in a uniform way. Some explanations are needed. The computational
domain is 0-< t, 0 =< x < c and, in the two-dimensional case, -c < y < c. The partial
difference equations (pAe) are presented using the usual difference operators. The
argument to these operators is the stepsize, but whenever a full step (Ax or Ay) is
assumed, the argument is omitted. In some test problems, two alternative boundary
conditions, marked by (a) and (b), are included, giving two different test cases. Finally,
we have pointed out the cases where the boundary conditions do not decrease the
stability of the approximation. In these cases, the explicit stability condition contains
the necessary von Neumann limit, which we denote by Avon.

TEST PROBLEM 1.

Pde: a(O) 1
a(x) 0

PAe: Leap-Frog
n+l n+l n+l n+lBoundary condition(s): Uo =0, Vo =2Vl -v2

Explicit stability condition: 0< A < Avon 1, weak stability
Reference(s): [6].

TEST PROBLEM 2.
Pde: ut a(x, t)u,, (a) a(0, t)---1, (b) a(0, t)= 1
PAe: Leap-Frog (4, 2):

u + 2Ata. I
6

D+,,c D_ Do xu

Boundary condition(s):
n+l(a) Uo 0,

,,_+A( 3 1)U;+1 lg -2Uo (n+l +Ul +6U--U3

.+l ,,-1 a( 11
n-l)(b) Uo U0 "+’ --y (U+1 " U0 + 18ul -9u2 +2u’

ul =u + -2Uo- (u n+l +ul +6u-u3

Explicit stability condition: (a) 0 < a < avon 0.7287, (b) The numerical investi-
gation in 14] carried out for discrete values of A, showed instability for
a => 0.68

Reference(s): 11 ], 14].
TEST PROBLEM 3.

Pde: u, a(x, t)u,, a(O, t)= 1
PAe: Mesh refinement near the boundary x 0, with mesh refinement factor

S. We use S 5. On the refined mesh, Leap-Frog is used. On the coarse
grid, we take Leap-Frog (4, 2) (cf. Test Problem 2).
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n+l n--1 n+l n--1Boundary condition(s): Uo Uo +2As(u-(Uo +Uo )), where Af is the
value of A on the fine grid.

Explicit stability condition: Unconditionally unstable for S >_-2

Reference(s): 12].
TEST PROBLEM 4.

Pde: The linearized Euler equations:

+ fi =0.

p yp u

We assume subsonic inflow, i.e., 0 < fi < c, where c is the local speed of
sound.

PAe: Crank-Nicolson
Boundary condition(s): p+ 0, U+1 0,

n--1[jcu p]+l=2[cu_p]l_[cu_p]2
Explicit stability condition: In the test, , p, and c were chosen such that the

stability condition was 0 < A <-_ 2.
Reference(s): [8].

TEST PROBLEM 5.
Pde: ut Ux + Uy

n+lPAe: Euler backwards, split form: (I-At Do.x)(I-At Do.y)Uj.i
n+l n+l n+l n+l n+l n+lBoundary condition(s): (a) Uo,! =2Ul,/ -u2, (b) uo,l =2u 1,/+1 U2,/+2

Explicit stability condition: (a) 0 < A < Avon , (b) Unconditionally unstable
Reference(s): [2].

TEST PROBLEM 6.
Pde: U U + fly
PAe: Burstein"

,+1/2 1
_

U / .3t. j, + .3t. tlj, 2j,

+ Dox (Uj.i+I/2-Uj,I--1/2)
4

"at- Do,y (7)( gljn+l/2,1d" ujn-1/2,1) ]
u,+X At[ (7),n+l/2j,! Uj’I "’T Do. -j.l+l/2 "- "j,l--1/2]

+ Do,y "j+ 1/2,1 "- j-1/2,1}
n+l n+l n+l n+l n+l n+lBoundary condition(s): (a) Uo, 2Ul,/ u2,1 (b) Uo, 2u,/+1- u2,/+2

Explicit stability condition: (a) 0< A < Avon
(b) Unconditionally unstable

Reference(s): [2].
TEST PROBLEM 7.

Pde." (:)t--(10 .__01) ( :) -k ( 10) ()
y

PAe: Leap-Frog
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Boundary condition(s): -n+l n-I n+l
UO, 2U ,t-- l.12, DO, --’0

Explicit stability condition: In the reference, a numerical investigation was
made for discrete values A ]0, 0.5]. For those values no instability was
found.

Reference(s): 1 ].
TEST PROBLEM 8.

Pde: ut Ux + Uy
PAe: Leap-Frog
Boundary condition(s): .+i

Uo, Uo,/+At(D+,x+ Do,y)tlo,
Explicit stability condition: 0 < A <_- 0.4
Reference(s): 1 ].

In all the test cases, Ibstab2 gave correct stability limits. It is also of interest to
analyze the performance of the algorithm with respect to the following parameters:

nx--the number of A-values that were treated,
tz--the average number of z-values per A-value,
the average number of :-values per A-value,
ts--the average number of solve-calls per A-value,
tmthe total cpu-time (in seconds),4

ts--the cpu-time spent in solve (in seconds),
?--the average cpu-time per z-value, disregarding the time spent in solve,

(t- t)/(nxfz),
/the average cpu-time per solve-call.

The test results in terms of these parameters are collected in Table 1.
Test Problems 1-4 are the one-dimensional problems presented in 16]. They are

included here to make it possible to compare the new version with the earlier one.
The results for the early version are given in parentheses.

The most striking difference is the substantial decrease in the number of solve-calls.
The results in Table 1 show that in the early version of Ibstab, solve was called at

TABLE
Results of Ibstab2 tests. The notation is explained in the text.

Problem na fi fi t ?s/

9 (22) 42 (67) 7 (28) 35 33 99.0
2(a) 8 (16) 39 (71) 3 (31) 15 3 3.2
2(b) 7 (15) 49 (128) 21 (118) 29 11 1.4
3 (3) 31 (57) 6 (54) 3 2.6
4 14(33) 56(117) 11 (99) 81 74 53.8
5(a) 6 32 2016 54 76 13 7.7
5(b) 17 1009 66 16 10 25.5
6(a) 8 16 1008 31 55 14 11.1
6(b) 15 883 48 15 8 21.0
7 8 16 1008 208 1511 1209 19.4
8 8 110 6948 637 610 303 10.8

4 As we wish to study the performance of Algorithm Ibstab2, the quantity does not include the time
spent in the procedure for checking the von Neumann condition (cf. 5).

However, the timings are not comparable. The quantity ts was not measured in the early tests. As for
t, the early tests were run on a BASF 7/68 computer, using the WATFIV compiler, whereas the new tests
were executed on a MicroVax II using the standard Vax FORTRAN compiler. In both cases the nonoptimizing
compiler mode was used.
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42-95 percent of the search points. The corresponding figures for Ibstab2, including
the two-dimensional cases, are 2-43 percent. The average is 12 percent for Ibstab2.
This is important, as is shown by a comparison between Y and -s for all the test
problems. From the last column of Table 1, we see that in general one call to solve is
3-30 times as expensive as the treatment of one z-value when no solve-call is made.
Thus, keeping the number of calls to solve low is an important way of making the
algorithm efficient.

For the two-dimensional problems, Test Problems 5-8, we see that the time for a
complete analysis ranges from 16 seconds, for the unconditionally unstable case 5(b),
to 25 minutes for Test Problem 7. Much of the time difference between Test Problem
7 and, e.g., Test Problem 6(a), for which we have the same number of search points,
is explained by the difference in the number of calls to solve. However, there is also
a difference in -, because Test Problem 7 is a two-dimensional pde system. For a system,
the polynomials in (6) and (9) are more expensive to evaluate than for a scalar problem.
This affects the quantity Y, which essentially measures the time for operations consisting
of evaluations of these polynomials and their derivatives. For Test Problem 7, we have
that Y 0.04 s, whereas for the scalar two-dimensional tes.t problems Y 0.006 s.

In general, the cpu time will increase with the number of equations involved in
the pde problem and with the order of accuracy of the difference approximation. For
problems with many equations and/or high order of accuracy we might have to consider
a parallelized version of Ibstab2.

7. Conclusions. The ultimate goal of the Ibstab project is a complete problem
solving environment, combining symbolic and numerical routines, for the stability
analysis of difference methods for hyperbolic systems. A first sketch of such an
environment was presented in [16]. The conclusion of the present article is that we
can now consider the numerical part of the project to be essentially finished. The new
Algorithm Ibstab2 can handle two-dimensional problems and could easily be general-
ized to higher-dimensional problems. Furthermore, it is much more efficient than the
earlier one-dimensional algorithm, due to improvements of implementational details.
To increase the speed further we would have to consider a parallelized version of the
algorithm.

Continued work in the Ibstab project will concern the symbol manipulation
routines. In the pilot version these were written in Lisp and had a black box design.
The user gave a description of the difference approximation. The system (6), (9) was
then automatically generated as Fortran routines. A future version should be written
in some symbolic algebraic manipulations language, e.g., Reduce, and the black box
design ought to be abandoned. A flexible tool box design would be preferable. For
example, the environment should include tools for checking the convenient stability
conditions of Goldberg and Tadmor.
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"MISSING" BOUNDARY CONDITIONS? DISCRETIZE FIRST,
SUBSTITUTE NEXT, AND COMBINE LATER*

ARTHUR E. P. VELDMAN?

Abstract. A simple approach exists to prevent the need for constructing boundary conditions in situations
where they are not explicitly supplied by the original analytical formulation of the problem. An example
is the Poisson equation for the pressure in calculations of incompressible flow. Other examples are the
streamfunction-vorticity formulation where no condition for the vorticity is present, and ADI methods where
boundary conditions for the intermediate timesteps must be provided. In short, this approach can be described
as follows: first discretize the equations of motion, next substitute the original boundary conditions (for the
velocity), and finally combine the discrete equations (e.g., to a modified Poisson equation).

Key words, boundary conditions, discretization methods, incompressible Navier-Stokes equations

AMS(MOS) subject classifications. 65N05, 76D05

1. Introduction. When the incompressible Navier-Stokes equations are solved
numerically, often boundary conditions seem to be "missing." One example is formed
by the boundary conditions for the pressure when a Poisson equation is employed.
Another example is the boundary condition for the vorticity in case a streamfunction-
vorticity formulation is used. Uncertainty exists about the choice of these conditions;
when Neumann conditions are selected, the corresponding compatibility relation poses
an additional difficulty.

Gresho and Sani [1] give an extensive discussion of the former example. They
discuss a number of approaches used to solve the above problem. Their favorite
approach is what they call the "direct attack." This is a simple method that has been
known for at least two decades (see the references in Chapter 6.3.1 of [2]). Gresho
and Sani show that this approach circumvents the problem of the "missing" boundary
conditions in a natural way.

From discussions with colleagues it became clear that this "direct attack" is
applicable to many more situations where boundary conditions are "missing." There-
fore in this paper we want to highlight this approach and show some applications. It
will not be surprising that the methods being obtained in this way are familiar ones.
However, the way in which they have been derived ensures there is no need to distrust
them, whereas other derivations of the same formulas might leave some room for
distrust.

The starting point is an analytical set of equations, including boundary conditions,
that is well posed and for which a unique solution exists. For the unsteady incompress-
ible Navier-Stokes equations we may use its formulation in primitive variables (velocity
and pressure). At solid walls only boundary conditions for the velocity are required
to make the solution unique [3, Chap. 3, 3]. No conditions on the pressure have to
be prescribed in the continuum case. The Navier-Stokes equations will be discretized
and its boundary conditions substituted. Hereafter the discrete set of equations may
be combined in any way that is found convenient, e.g., to a discrete Poisson equation
or to a discrete streamfunction-vorticity formulation. This shuffling of the equations
does not change the solution, and hence is harmless. In short, this approach can be
described as: discretize first, substitute next, and combine later.

* Received by the editors June 17, 1988; accepted for publication (in revised form) November 28, 1988.
t Faculty of Technical Mathematics and Informatics, Delft University of Technology, P.O. Box 356,

2600 AJ Delft, the Netherlands.
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For those who are unfamiliar with this approach we will present it in detail for
the pressure conditions. Moreover, a number of other applications will be given. Next
to the streamfunction-vorticity formulation for the Navier-Stokes equations, we apply
it to the shallow-water equations and to ADI methods. In Appendix A it also will be
shown useful for the treatment of the constraints in differential-algebraic equations.

2. Problem. Consider a rectangular domain f with boundary F on which the
incompressible Navier-Stokes equations have to be solved:

(2.1a) div q 0,

q
m+ (q. grad)q -grad p + u div grad q,

with boundary conditions

(2.2) q=qr on F

(often qV= 0). Here q (u, v) is the velocity vector, p is the kinematic pressure, and u
is the kinematic viscosity.

As the treatment of the convective terms and diffusive terms is irrelevant for the
discussion that follows, the equations of motion (2.1) will be abbreviated as

(2.3a) div q 0,

(2.3b)
oq
--+ grad p R.
Ot

The above equations can be combined to obtain a Poisson equation for the pressure p:

(2.4) div grad p div R- div q.
Ot

From the analytical point of view, the second term in the right-hand side of (2.4)
vanishes, but it has been retained to stress that its discrete numerical treatment is
nontrivial: accumulation of errors is possible. This will be clarified in Appendix A.

Usually after this stage the equations of motion, (2.3b) and (2.4), are discretized.
The latter, elliptic, equation obviously requires boundary conditions for p. These are
not immediately available, since in (2.2) only the velocity appears. It is possible to
derive boundary conditions for the pressure from the momentum equation (2.1b)--
usually the normal component is used--but their evaluation requires values for the
velocity components in points located one full mesh outside the boundary F. These
values are not available. Various methods have been proposed as a remedy. This has
led to confusion, and some controversy has arisen, as referred to above. A more
complete discussion of this point is given by Gresho and Sani [1] and Peyret and
Taylor [2, Chap. 6].

3. Solution. The above problem can be circumvented by first discretizing the
original equations (2.1). In these discrete equations the boundary condition (2.2) is
substituted. Only hereafter we will perform in a discrete sense the above reformulation.
This leads to a discrete version of (2.4), but with a modification near the boundary,
such that no boundary conditions are required. This process will be worked out in
more detail for a discretization using the well-known staggered grid from the MAC-
method [4]. The time-integration will be performed with an explicit two-level scheme,
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but the discussion below applies to any time-integration method. The discrete time-
evolution can be written as

(3.1a) div q"+l=0,
q.+l _q,,

(3.1b) +grad p,+l= R"
8t

where n indicates the time level. The term gradp is written with an index n + 1 to
stress that its value has to be such that div q"+l=0; [2, Chap. 6] uses the same
convention. Equation (3.1b) can be reformulated as

(3.2) qn+l =q + 8tR -t grad pn+l.
At this moment we do not substitute (3.2) into (3.1a) to create the Poisson equation.
Instead, we discretize first. Let the equations in discrete form be given by

(3.3a) Dhq,+1 =0,

q+1-q+ Ghp+1 R(3.3b)
8t

where D and Gh are the discrete div and grad operator, respectively. Further qh, Ph,
and Rh are the discrete grid functions corresponding with q, p, and R. Equations (3.3)
are essentially the equations that are being solved. The way in which they are solved
only uses some "shuffling" of these equations.

The treatment of the continuity equation in a cell adjacent to the boundary is the
only thing that matters. Consider the cell given in Fig. 1. The discrete continuity
equation (3.3a) reads

1 n+l n+l 1
7+1)Vn --V =0.(3.4)

8x
(/’/e --Uw )--’-- (-n+l

Next the boundary condition (2.2) is applied, which states that u+l=ure. Only
thereafter is the discrete version of (3.2) substituted. We end up with an equation for

"Uw" PC--

l

X
X
x

Ue "l" PE

X

FIG. 1. Stencil for (modified) Poisson equation near a boundary.
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the pressure, in which the pressure defined in the grid cell E, lying outside the domain,
does not occur. For completeness, the pressure equation reads

{ 1,._., (] +1 (3x)pwln+l (6Y)1 p+l n+,)p + +
(3.5)

6
bl gl + "-y (1)n-I)7) + R +-y R R

In a more compact notation, the above can be formulated as follows. Split the discrete
divergence operator as defined in (3.3a) in two parts

(3.6a) Dh Dh + Drh
where D corresponds with velocity components defined in interior points, and D
corresponds with velocity components defined on the boundary F. Then (3.3a) can be
written as

(3.6b) Dq+l -Dq+a.
The right-hand side is known from the boundary condition (2.2). Now substitute the
discrete version of (3.2), i.e., (3.3b):

n+l
qh "--qh + 6tR,-6tGhp+1,

into (3.5). The result is

(3.7) DhGhpn+l D 1 q, +R, + Dhrq+1.

We have a system of N Ny equations (where N and Ny are the number of cells in
x- and y-direction, respectively) for an equal number of unknowns p. It can be solved
straightforwardly.

Remark 1. The system (3.7) is singular, since a constant pressure satisfies Ghp O.
However, due to the staggered grid, p Ct is the only solution of the homogeneous
system. The right-hand side of (3.7) has to satisfy a compatibility relation: it must be
perpendicular to the nullspace of (DhGh). Here, this amounts to

(3.8) r=0,
i=lj=l

where ro is an abbreviation for the right-hand side of (3.7) in the cell (i, j). It is easily
verified that

E Z (DP)ij =0
=j=

for any . Hence (3.8) reduces to

Z (Vi, N,+ll2--Vi,ll2) +1 (UNx+ll2,j--Ull2,j) =0"(3.9)
6y i=1 X j=l

After multiplication with 6x y, (3.9) equals a discrete version of

r
q nds 0,

which is a relation that must hold analytically. Hence any reasonable choice of the
discrete boundary condition (2.2) will satisfy the compatibility condition.
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Remark 2. Frequently, the full Poisson equation

(3.10) DhGhpn+lDh(-- )qh d-R

is solved with the Neumann boundary condition

(3.11) n. Ghp"+ n. R -- -q,) on F.

The problem is that R cannot be computed since it requires a velocity component in
a point one mesh outside the domain. This gave rise to approximations such as R, 0
(hence (c/cgn)p =0), resulting in ambiguities and confusion. However, when the terms
R, that appear in (3.10) and in (3.11) are treated consistently, then the ambiguity
cancels (see [2 Chap. 6.3]). Thus (3.5) can also be considered as obtained from (3.10)
in which (3.11) is substituted.

Remark 3. The above technique works equally well for other time-integration
methods. To see this consider the semidiscretized version of (2.3), i.e.,

d
Dhqh 0, qh W GhPh Rh.

By proceeding as in (3.6a), the pressure follows from

(3.12) Dh GhPh DhRh + Drh "- qh.

(To prevent error accumulation a term (1/St)Dhq, should be added to the right-hand
side of (3.12).) No matter which time-integration method is used, the pressure can be
computed from (3.12) without needing boundary conditions. When an ADI method
is used, 4 shows how to deal with the boundary velocities required by Rh at intermedi-
ate time levels.

Remark 4. In (3.3) the discrete divergence Dh and discrete gradient Gh are not
yet specified. Higher-order discretizations are allowed, as long as the total number of
equations in (3.3) plus the velocity boundary conditions equals the total number of
unknowns qh and Ph.

4. Other applications. The philosophy presented above can be described as
follows:

Step (1). Discretize the equations of motion in their original (velocity-pressure)
formulation.

Step (2). Substitute the boundary conditions.
Step (3). Combine the discrete equations into the desired form.

The preceding section shows how this philosophy can be applied to prevent the need
for a boundary condition for the pressure in incompressible flow computations. There
are more situations where this philosophy can be applied. We will briefly describe a
few of them:

The -to formulation in incompressible flow;
The shallow-water equations;
ADI methods.

In Appendix A another, generalized, application is presented:
Differential equations with algebraic constraints.
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t-to formulation.

(4.1a) , Ao (6, o)
a(x,y)’

(4.1b) Aq -o,

with homogeneous boundary conditions

(4.2) 0=--= 0 ont.
On

Thus we have two boundary conditions for the streamfunction , whereas one for the
vorticity o is "missing." Usually, the Dirichlet condition in (4.2) is added to (4.1b),
while the Neumann condition is manipulated into a condition for o) which is added
to (4.1a). Many ways exist to do this; (see [2, Chap. 6.5]).

As an alternative, the above philosophy can be applied.
Step (1) means that we should start with a velocity-pressure formulation that is

discretized, e.g., the steady version of (3.3) from the previous section. Then a discrete
streamfunction q’h and vorticity 0h are defined by

1
(4.3a)

8y
[(Oh)i+l/2,j+ll2 (h)i+ll2,j-1/2] Ui+ll2,j,

1
(4.3b)

8x
[(h)i+ll2,j+ll2 (h)i-ll2,j+l/2] --Vi,j+l/2,

1 1
(4.4) (Wh)i+l/2,X+l/2 Vi+I,S+ 1/2 Vi,s+1/2] -- Ui+l/2,S+l Ui+I/2,S].

Note that Oh and Wh are located in the veices of the grid cells: their familiar location.
The discrete continuity equation (3.3a) is identically satisfied by the choice (4.3). Also
we have Oh 0 on F. Fuhermore, it is easily verified that

(4.5) hh --h

where h is the usual five-point formula. Thus far, there is nothing new.
Step (2) implies substituting the boundary conditions for the velocity qh into (3.3b).
Step (3) means that we should take the discrete rotation (curl) of the discrete

momentum equation (3.3b). Hence we perform

y-equation at i+ 1, j+ -y-equation at i, j+

(4.6) - x-equation at i+, j+ 1 -x-equation at i+, jy
This need only be done in the interior veices. Substituting (4.3) into (4.4), we obtain
a discrete version of (4.1a). The resulting discrete Laplacian becomes the usual five-
point formula; the form of the discrete convective terms depends on the discretization
performed in (3.3). Impoant is that no boundary values of at F are required any more.

Remark 1. This approach does not lead to discretizations that were unknown thus
mr. We leave it to the reader to verify that the resulting equations can also be obtained
when the voicity boundary condition is chosen according to Thorn’s formula [2, eq.
(6.5.10)]. The latter is usually derived from a Taylor expansion using (4.1b) at the
boundary.
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Remark 2. Equation (4.6) is an algebraic combination of the discrete equations
(3.3). Thus, when the solution of (4.5) and (4.6) is expressed in u and v (using (4.3))
it is identical to the steady solution of (3.3).

Shallow-water equations. Another application of the above philosophy is formed
by the shallow-water equations. In a linearized primitive-variable form they read

(4.7) Oq+ (q. grad)q+ g grad sr =0,
Ot

0___+ (q. grad)st + H div q 0.(4.8)

Here q is the depth-integrated velocity vector, " is the surface elevation, H is the
linearized water height, and g is the gravitational acceleration. Boundary conditions
are often formulated in terms ofthe velocity components; no condition for sr exists then.

These equations are discretized in a staggered arrangement, as in the MAC-method.
The elevation sr is defined in cell centers, as is the pressure p. There is more similarity
between sr and p: the momentum equation (4.7) contains grad ’, while the continuity
equation (4.8) contains div q. As above, a Poisson-type equation can be derived. It is
an unsteady wave equation that reads

-gH div grad " RHS

where RHS contains all convective terms.
When this equation is used in the computation, a boundary condition for " is

required. This one is "missing" however, but the above philosophy can be used to
circumvent the problems. Due to the similarity between p and ’, this proceeds in a
way similar to that described in 3.

ADI-tnethods. Consider a semidiscretized equation

d4,
D4,[=(Dx+Dy)4,](4.9)

dt

where the spatial differential operator D can be split into one in x-direction (D,) and
one in y-direction (D). When (4.9) is solved by an ADI-method, or more generally
a splitting-up (fractional step) method [5], conditions are required for the boundary
values of 4’ at intermediate time levels. Consider, for instance, the Peaceman-Rachford
method (in Douglas-Gunn notation) in two dimensions [2, Chap. 2.8]:

(4.10) (I-1/23tD)(*-d")=6tD", (I-1/2ttDy)(bn+l-dn)--qb*-cn.
The term Dxc* will, in general, require values of 4* on the boundary that are not
immediately available. When the boundary conditions for b are independent of there
is no problem, as the above splitting is time-consistent. But in other cases the boundary
values of b* have to follow from nontrivial computations (see, e.g., Mitchell and
Griffiths [6]).

The above philosophy suggests first to substitute the boundary conditions in (4.9).
Hereafter the splitting is performed. This will lead to slightly modified Dx and Dy for
which no boundary values are required. Hence the problem of the missing boundary
values for the intermediate time levels is solved. Again, this strategy is not new: we
have recovered Marchuk’s approach for treating the intermediate time levels [5].
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Marchuk writes his motivation in words that exactly describe the philosophy
presented in this paper. Concluding this section, we can do no better than cite him
[5, p. 410]:

it is much simpler first to put the original problem of mathematical physics into
correspondence with a system of difference equations (with respect to the spatial
variables) and then to eliminate the boundary conditions using the difference analogs
of the boundary conditions, the accuracy of which matches that of the difference
equations. Having done this, we can next proceed by approximating the equations in
time using the splitting-up method or another algorithm. This approach allows us to
sidestep the compatibility problem for the boundary conditions

5. Conclusion. The paper describes a philosophy that can be used when boundary
conditions are "missing." It can be formulated in short as" discretize first, substitute
next, and combine later. The philosophy is not new, and neither are the resulting
methods. But apparently its power is not yet generally appreciated, as the discussions
that pop up now and then in the literature reveal. Four applications of the philosophy
have been presented. It is hoped that these will help to enlarge the acquaintance with
this solution to the problem of the "missing" boundary conditions.

Appendix A. The treatment of the constraint div q 0 requires some care in the
time-integration method. Accumulation of errors is possible. In essence this is due to
the difference that exists numerically between

(A1) div q 0

and

0
(A2) --divq=0

Ot

with a homogeneous initial condition. We will point out this difference using a
formulation in which only a time-discretization is used. It equally applies to the
space-discretized version, but the latter features more complicated formula which only
distract attention from the essential point.

We start with (2.4) and substitute the constraint (in this case (A2)). This results
in

(A3) div grad p -div R.

Next, the equations of motion are solved with a numerical time-integration method.
When (3.1) is used, this gives the following time discretization for (A3)

(A4) div grad p,+l= div R".

Having solved this equation, the velocity at time level n + 1 is obtained from (3.2),
repeated here

(A5) q"+ =q" + t(R -grad p"+).

However, the solution of (A4) cannot be obtained exactly: machine accuracy can be
reached at most, and often this equation is solved iteratively until (only) a few figures
have converged. Suppose we solve it with an error e n+l, i.e.,

div grad p"+= div R" + e"+l.

Substitution in (A5) leads to a q"+ whose divergence satisfies

(A6) div q,+l= div q"-$t e "+.
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This is an approximation of the discrete version of (A2) that for the chosen time-
integration method would read

1
gi- (div q

n+l div q" O.

Hence (A2) is satisfied, in a discrete sense, with an error which approaches zero as 8t - 0.
The same is not true with respect to the original constraint (A1). Error amplification

is possible. Suppose a systematic error e is made each timestep. Then at a fixed time
n 8t we have

(A7) div q" -n t e -te.

Note that it makes no sense letting t 0. Moreover, when oo, e.g., because we are
interested in an equilibrium solution, then we even have div q o.

The situation changes when we start, with the discretization of the equations of
motion. This results in (3.1). A rearrangement of (3.1b) is given in (A5). Only now we
demand that the constraint (3.1a) is satisfied, repeated here

(A8) div q "+ 0.

This is a discrete version of the "original" constraint (A1). Combining this with the
discrete equations of motion leads to

(A9) div grad p"+1=1 div q" + div R’.
8t

This equation has to be compar,ed with (A4). Now when an error e "/1 is made in
solving the equation, after substitution in (A5) it results in

div q’+l= -St e n+l.

In contrast with (A6), here no accumulation of errors is possible. Furthermore, letting
(t -> 0 results in div q" -) O.

Remarks. (1)The possibility of error accumulation in solving differential
equations with algebraic constraints such as (2.1) was noted two decades ago by Hirt
and Harlow [7], and by Gear [8]. The above simple demonstration hereof is not yet
widely known.

(2) The situation described in this Appendix is yet another, generalized, applica-
tion of the philosophy discussed in this paper: the term "boundary condition" has to
be replaced by "constraint." The method that is prone to error accumulation combines
the analytical equations first, leading to (A3); only thereafter is the time-discretization
performed. The other, stable, method first discretizes the equations and combines them
with the constraint later.

Acknowledgments. The author is indebted to Mr. J. J. I. M. van Kan of the Delft
University of Technology for pointing out the application of the described philosophy
to the -o formulation in 4, and to Dr. P. Wilders ofthe Delft University ofTechnology
for pointing out the shallow-water equations application in 4.
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ADAPTIVE DOMAIN EXTENSION AND ADAPTIVE GRIDS
FOR UNBOUNDED SPHERICAL ELLIPTIC PDEs*
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Abstract. The problem of approximating the solution to a class of (PDEs) posed on unbounded domains
using finite domain approximations is considered. A finite-element method is formulated for the approxima-
tion on the finite subregions, and a domain extension strategy that "balances" the finite-element error and
domain-truncation error is developed. It is shown that this scheme yields asymptotically optimal finite-element
approximation properties to the solution on the unbounded domain as the grid is extended. Error estimates
for adaptive refinement and domain truncation are developed.

Key words, domain extension, potential equations, optimal grids, finite elements, error estimates
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1. Introduction. A class of problems of interest in mathematical physics is charac-
terized by elliptic partial differential equations (PDEs) on unbounded domains. Con-
sequently, the far-field boundary conditions are specified in terms of limits or in terms
of concepts such as "bounded at infinity." For example, the irrotational flow of an
incompressible fluid exterior to a body in R is described by Laplace’s equation in the
exterior domain f with no flow through the body boundary 0f and uniform flow at
infinity. Similarly, in acoustics and electromagnetism, Hemholtz’s equation describes
the exterior scattering from a body in 13. In this case, the "boundary" condition
designates the decay far-field rate of the solution at infinity. Elliptic problems on
unbounded domains are not only restricted to exterior regions. For instance, there has
been recent substantial work in numerical cosmology where the region of interest is
all of 3 [18]. There the problem is to find the conformal transformation from an
asymptotically flat Riemann metric into one with prescribed scalar curvature (usually
zero). Hence, the problem is posed in 3 with solution u satisfying limr_.o u(x)= 0 for
the transformation factor u + 1 (e.g., see Kazden and Walker 12]).

Existence and uniqueness of solutions have been obtained by several authors for
the cosmology and the Helmholtz scattering problems using various techniques. For
the elliptic case, several authors have considered various aspects of the Fredholm
alternative (cf. Walker 19] and Lax and Phillips 13]). The most successful techniques
evolved from Nirenberg and Walker’s work, which utilized polynomially weighted
integral estimates (Nirenberg and Walker [14]). Cantor [5] defines weighted Sobolev
spaces that provide a framework for elegant existence and uniqueness results. These
well-posedness arguments are summarized in Cantor [6]. The requirements on the
elliptic operator and data are quite mild; only certain asymptotic (polynomial) decay
rates are needed.

Another approach was taken by Babuka [1], who considered an exponentially
weighted Sobolev space and the additional assumption that the forcing data f in the
differential equation have exponential decay. He showed that the associated bilinear
form for the Helmholtz operator satisfies the inf-sup condition. This implies that the

* Received by the editors August 5, 1985; accepted for publication (in revised form) December 6, 1988.
This research has been supported in part by the National Science Foundation, the Department of Energy,
and Lawrence Livermore National Laboratory, Livermore, California.

" Lawrence Livermore National Laboratory, L-300, P.O. Box 808, Livermore, California 94550.
t University of Texas, Austin, Texas 78712.
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generalized Lax-Milgram theorem holds, giving existence and uniqueness of the
solution in these weighted spaces.

The focus of the present work is the numerical solution of unbounded problems
using finite domain truncation. Babuka analyzed finite-element methods for a Poisson
type problem, with data f having exponential decay. His method employed uniform
finite-element grids of size h on a sequence of finite domains. As the grid spacing, h,
is decreased, the support ofthe approximation grows arbitrarily slowly (i.e., the domain
over which the basis elements are nonzero is of size h for e arbitrarily small). Hence,
the approximating finite-element solution, for fixed h, can be thought of as an approxi-
mation to a truncated problem posed with homogeneous Dirichlet (u 0) boundary
data. Babuka was able to obtain results in the Hi-norm over compact subsets of 3
showing convergence, in terms of h, at a rate arbitrarily close to optimal. An interesting
observation from Babuka’s estimates is that the factor of h by which the finite-element
solution is suboptimal is exactly the factor by which the grid expanded. No numerical
results were given in this paper.

For the exterior scattering problem, several authors have studied numerical
approximations to the solution of the Helmholtz equation Au+ k2u =0 posed on a
truncated domain with radiative boundary condition (cf. Fix and Marin [9], Engquist
and Majda [8], Bayliss, Gunzberger, and Turkel [3], and Goldstein 10]). The first-order
radiative boundary condition (Ou/Or-iku=O) in these works was first justified by
heuristic arguments and later proven by asymptotic expansion methods based on the
wave-like properties of solutions. Bayliss also gave asymptotic forms for higher-order
boundary (radiative-like) conditions and proposed boundary conditions of order
greater than two [4]. The asymptotic estimates for the accuracy of radiative-like
boundary conditions rely heavily on the assumption that k is nonzero. In fact, their
estimates diverge as k vanishes. With the exception of Goldstein’s method, the above
numerical techniques were restricted to uniform grids.

Goldstein’s algorithm for the truncated Helmholtz equation with radiative boun-
dary conditions appears to be the first step toward the use of nonuniform grids with
domain extension for unbounded problems. He extended this work to Laplace’s
equation in 3 with a Robin (convective or mixed) boundary condition. The extension
to Laplace’s equation required different arguments, based on the assumption ofcompact
support for the forcing function, in order to prove convergence of the numerical
algorithm 11 ].

Cantor [6] extended his weighted Sobolev treatment on all of "(n >-3) to a
theoretical approximation scheme based on using truncated domain and boundary
conditions of varying degree at the artificial radius r R. Three types of boundary
conditions were considered: (1) Dirichlet (u=0); (2) Robin (R Ou/Or+u=O); and
(3) the second-order boundary conditions

R2 2R

(n-1)(n-2) u+(n-2)u,,+u =0.

In that study, the error resulting from truncating the domain was studied in an
asymptotic sense. For data with polynomial decay rates at infinity, asymptotic conver-
gence estimates were proven (in terms of the artificial radius) in L2 and H norms
over fixed and expanding regions. Improved rates of convergence were found for both
Robin and second-order boundary conditions. In the sense that higher-order boundary
conditions are used, these ideas are similar to the (radiative-like) boundary conditions
applied to the wave equation.
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The present study is devoted to the development of an adaptive finite-element
approximation scheme using the truncated domain and higher-order boundary condi-
tion approach of Cantor [7]. The basic theme is to adaptively extend a bounded domain
and adaptively refine to balance domain and mesh errors. The grid is adaptively refined,
using the ideas of Babuka and Rheinboldt [2] modified to spherically symmetric
norms. A posteriori energy estimators in these norms are devised and used to guide
the mesh refinement. A robust domain extension algorithm is devised.

2. Weighted Sobolev spaces and domain extension. Let us consider the boundary
value problem posed on an unbounded domain (UBVP):

(1) -V.(AVu)+cu=f onRn,
(2) u(x) 0 as Ilxll- 
and the solution, UR, to the boundary value problem posed on a bounded domain
(BBVP):

(3) -V (AVuR)+ cur =f on fR B(0, R),

(4) fll(UR) UR + (n-2)(OURR A/ 0 on FR 0"R

where Ou/OvA=(A’Vu)’v is the conormal associated with A, and B(a, fl)=
{x Rnl[[x all </3}; A is an n x n matrix function of position x, and c,f are scalar
functions of x. Further restrictions on A, c, and f will be given subsequently.

Although the truncated domain analysis will concentrate on the (first-order)
asymptotic boundary condition fll(UR)--0, the Dirichlet (or zero-order), and second-
order boundary conditions may also be applied and are defined, respectively, by

(5) flo(UR) UR =0 on FR,
2R OUR R2 02uR(6) fl(u) u+-- -t -0 on rn-2 Or (n-1)(n-2) Or2

As noted by Bayliss [3], [4], for the Helmholtz equation, k(UR) annihilates the first
k terms in the asymptotic expansion for u.

The pertinent weighted Sobolev spaces to be used here were first defined by Cantor
(see [6] and the references therein for details). The weight function, cr:R"-->, is
defined pointwise by

or(x) (1 + Ilxll2) 1/2.
For s N, 1 _-<p __<o, and we define the weighted Sobolev spaces-MP,(")

as the completion of C(") with respect to the norm

(7) Ilull,s,= y II+llDullg

where I1" is the standard LP(R") norm and D is the usual multi-index derivative.
The functions in MP, have interesting decay properties, which are used in the sub-
sequent error analysis.

Another norm that will be of interest is the energy norm

(u, v)E, f (ADu. Dv+cuv) dx, Ilull ,.-[(u, U)E,.] 1/2,
da

where A and c are functions defining the boundary value problem and f is some
(measurable) subset of the domain of A and f.
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For the actual implementation of ideas developed in this study, we will need
function spaces based on spherically symmetric norms. These norms and spaces are
defined in the same way as the standard Hilbert spaces, viz.,

D2,2(8) Iloll,o,(.o..) dr I111,.(-o,-)- Y liD 11 =
S,O,(Ro,R)

Ro lalm

where H(Ro, R)(Ho(Ro, R), respectively) is defined to be the completion of
C(Ro, R)(C(Ro, R), respectively) with respect to the norms in (8). In the above,
0 Ro < R and m is a nonnegative integer. It is easily seen that, under appropriate
conditions on the boundary value problem, the standard Sobolev norm on Wp and
(8) are equivalent norms over H(Ro, R) and that the constants in the equivalence
relationships depend on Ro and R. Many propeaies of functions in M, have been
shown by Cantor [6], [7]. We now use these results to derive asymptotic error estimates
in terms of the truncation radius R of the domain.

THEOREM 1. Let e=u-u, p>l, s>n/p+2, 0fl<l, and 8=n/q-2-
(n-#-2)/2 hold. Let A be uniformly elliptic such that (ao-8o) M. Suppose cO
with c M_,_2 andf PM_2,,/q+. en, ifu is the solution to (3), we have

(9) e =,. o(R-) < -(4- n)/2,

(10) IIell=,.=o(R-) Vy<fl +(n-2)/2,

(11) Ilell,..=o(R-) Vy<fl+(n-2)/2.

Proofi For the proof of (9), we follow Cantor [7] and first determine the asymptotic
behavior of OU/OA. TO this end, let r = re be the radial vector. Then OU/OUA--
8U/O ,= (a )r Ou/Ox. By assumption (a 8) e M,. Also, from the
definition of M,, Ou/Ox MP-I,+I, which implies (OU/OA--OU/O)e M-I,t for all
< 28 + 1 + nip. Thus, by Cantor [6, Thm. 5.4]

for all T such that

2n
<28+2n/p+l 2[n/q-2-(n -B -2)/2]+ l +--

P

=n-l+B.
By applying Cantor [7, Lem. 11] and (2), we have

R- ds

[ -+’-(R)ds as Rm
dFR

N C-+n- as R

and, hence,

for

lim

< (2),- n + 2)/2 < [2(n 1)+2/3 n+ 1]/2
n-1
2
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Now that the decay rate of the conormal is established, we turn to the L2(’R) estimate
of eR. From Cantor [7, Lem. 11], we have

(13) CR=llVe,ll =,, / Ile < C=RII(u)II =
2,1q 2,FR

This implies

<- CR1/2 u 4 +
n-2 0v 2,r n-2 0v 0v 2,r

The second term has been analyzed earlier. To obtain the decay rate of the first term,
we note that u + R(Ou/Or) (n 2)]trv(R) - 0 for 3’ < n 2 +/3. An argument similar
to the one above gives

lim u -t
--,oo n 20v 2,r

Now, let a < fl-(4-n)/2 hold. Then

e, =,.R <-_ c u 4 R
n 20v 2,FR 0/A 0/ 2,FR

But a+l/2<fl-(3-n)/2 and a+3/2<fl-(1-n)/2 so that

lim [leRII2,aR =0 Va </3 --(4-- n)/2.
R+oo

For the estimate on IIveR =,
term to obtain

IIV eR ll2,a, < CR-1/2111(1)1122,FR
Next let a<+(n-2)/2 hold. Then

II ROu R,+,/2IlVeRll2ae<-_ Cle-’/2 u +C2n-2 ov 2,r

Using -1/2<+(n-3)/2 and +1/2<+(n-1)/2,

R

we return to inequality (13) and neglect the second

Va < fl + (n-2)/2.

Finally, to obtain (11), consider the energy norm defined by the associated bilinear
form

(14) (AVER VeR + CeR) dx+ (n 2)
R R

To bound the boundary integral on the right-hand side of (14), we use the assumptions
that A be uniformly elliptic and c-> 0. Then

and so

(n-2) Ir e ds<=(n-2)

(n-2) fr e2R ds<(n-2)R R II(u)ll=2,r
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From the proof of (9), we have

(15) lim II(u)ll =2,rRR =0 Ya <2fl+n--3.
R-oo

Hence

(16)
(n-2) f

lira | edsR2=0 /2y<2/3+n-2
R R JIR

To estimate the first-order term in (14), we use (9) and (15) to obtain

(17)

0<-- lim Ira (AVeR’VeR) dxREV+
R-3

(e- 1)(ne -2) ilell,r,,R:V_,]
< lim IIf,(u)ll R2v-1

:,r 0 ’’2y < 2fl + n 2.

We now can estimate the remaining term in the expression for the energy norm.

Thus, we can write

(18) REV Ia ce dx<-_ Cllcll,_,+R-’ f. e:R dX

Vt<n/p+8+2.

tr-’ Vt<(n-2+fl)/2Ic(x)l c c112,-=,+=

or

which, from (9), goes to zero as R-> c for all

2y-t<2fl-(4-n)

2y<2fl-4+n+(n+2+fl)/2

=2/3 +(n-2)+[(n + )/2-1].
This will hold (since n=>3) if we require 2y<2/3+(n-2).

Combining this result with (16) and (17), we see that

lim Rlle,ll...=0 Vy<+(n-2)/2.
R-)oo

As an example, in the case n 3, we have

e II=, o(R-s)

IIve I1:,, o(R-v)

e I1,.-- o(R-v)

Ya < 1/2,

/y <3/2,

Yy<3/2,

a rather slow decay rate. We must keep in mind, however, that dV (in the spherically
symmetric case) increases like RE This is going to amplify any small errors in the
asymptotic region. It is interesting to inquire what would happen if we set RN < R
fixed and examined the errors over the subdomain fRN alone as the problem domain
’R increases. We anticipate that the asymptotic rates will be better than those in
Theorem 1 for OR.

pTo this end, recall c Ms-2,+2. Hence,

IIc’ll, <

From the definition of 8 this is equivalent to
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THEOREM 2. Let eR be defined as in Theorem 1 and RNfixed, with 0 < RN < R; then

(19) Ile,ll, o(R-), Ilelll,, o(R-) va < +(n-2)/2.

Proof See Cantor [7]. l-]

Now that estimates for the domain-truncation error have been derived in several
norms, we turn to approximating UR, the solution of the BBVP. For the following, we
will restrict our attention to the spherically symmetric case n 3 and the scalar operator
A a with a a(x)> 0 in the domain. Writing the weak formulation of the BBVP
(3)-(4) in terms of both the artificial radius R and the (possibly) exterior radius Ro,
we have

IR ( OUR (91) ) r2B(UR, V)= a --+ CURV dr+ Ru’ov(Ro)+ RUR(R)v(R)
Or Or

fvr2 dr f(v).

Note that the above boundary data at r R implies the use of the Robin boundary
condition. Similarly, the boundary data at r Ro implies the use of flux boundary
condition (u(Ro) u, given).

For Ro> 0, we consider a standard C-conforming finite-element approximation.
To this end, let a grid with G + 1 knots {Ro Xo < Xl <" <x R} be given. Define
the local mesh parameter hj=xj-xj_l to be the length of element l-lj=(x_.l,x),
j 1, 2, , G. Let { j}"__1 be the global finite-element basis. (If Ro 0, a finite-element
basis can be constructed that handles the singularity in the spherical Laplacian in a
natural way and has the standard approximation properties 15], 16].) In the following
treatment we take Ro 0 and assume all elements are of degree k. Later, in 3 the
particular case of linear elements is examined to obtain error indicators for adaptive
mesh refinement. Then, for the domain extension we return to the case of degree k >= 1.

The approximation space is Sh =span {j}c Hs(Ro, R). Then the finite-element
approximation uh satisfies

B(Uh,)=f() VCeSh.
The following theorem decomposes the error induced by numerically approximating
the UBVP into its constituent parts.

THEOREM 3. Let the conditions of Theorem 1 hold for all

(20) Ilu- u. O(hk)
for R--> c, h-> 0, where k is the degree of the finite-element basis and II" IIs is the
spherical energy norm. (That is, the energy norm in spherical form based on (8).)

Proof. The proof follows as a straightforward application of the triangle inequality
together with Cea’s lemma, Theorem 1, and the finite-element interpolation
property.

Since two parameters h and R enter the result, this is not satisfactory from a
practical standpoint. To analyze this estimate further, we are led to consider relating
h and R. If R R(h) is known, then given h, we could determine a right-hand endpoint,
a priori. From (20), we see that to keep the domain-truncation error and discretization
error of the same order we seek a relation of the form

or

R h -k/v
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where y < . To interpret this result, let 3’ 1.49 and k 2 (quadratics). Then R h -1"3423

and for h 0.1, 0.01, and 0.001, we obtain R =.21.99, 483.69, and 10,637, respectively.
Note that here h =max (hi, h2,’", h) and in practice is not the asymptotic

parameter of interest; rather, we seek estimates in terms of

H DIM(Sh)-1= N-1

with C1Rh-l<-_ N <-_ C2Rh -1, constants C1, C2, independent of R. Then

C1hk H <_ C2hk,
where p yk/(k + y). Thus, we have the following theorem.

THEOREM 4. Let the conditions of Theorem 1 hold for all fl < 1. For H N-I,
R h-k/’

(21) o(u

For 3’ , this is the same result as in Goldstein 11 ], who notes that this estimate
is suboptimal (optimal being H). In order to obtain an optimal result, we need to
consider a nonuniform mesh in which the knot spacing increases (with polynomial
growth) as R- oo. That is, a more appropriate grid must be constructed. Clearly, this
grid should take advantage of the asymptotic behavior of u. The next two sections give
the preliminaries for defining such a grid and, in the process, determine an accurate
estimator of the finite-element energy error.

3. Spherically symmetric asymptotically optimal grids. We now seek to classify an
asymptotically optimal grid. To this end we consider the error indicators developed
in Seager and Carey 17] and extend them so as to classify an optimal grid. The analysis
of error indicators here is restricted to linear elements. We begin by considering a
projection operator

P" ns(Ro, R)-+{u e ns(Ro, R)lu(xj)=O,j= l,2, G}

with respect to the scalar product defined by B(u, v). Let Uh be the piecewise-linear
(k 1) finite-element solution on (Ro, R), and e u uh. The following analysis uses
the error projection Pe to relate the energy norm ofthe error to a "mesh transformation."

Now, Pe satisfies L(Pe)= Luh-f on fe (Xj-1, X) with Pe(x_l)= Pe(x)=0. Let
Ze denote Pelae. Then the corresponding weak statement is" Find Ze e H(e) such that

(Ze, V)se.ae (L[Uh]--f, V)S,ae, e 1, 2, 3,’’’, G

for all v e g(e). Also, we have

G

(22) IIPell  2 IIZe 2
SE,I-

e=l

The values Ze
2 2
se,ae are related to the error indicators e [17].

We now transform Ze into a quantity more readily useful for characterizing the
optimum grid.

Because Uh is linear on "e,

L[ uh f - rau ’h )’ + CUh f

=-(a+ a’) U’h + CUh f

pe+ 7"e
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where

pe(r)=a(r)u(r), re(r)=-(a+ a’)e’(r)+ ce(r).

Next let e, I]/e E H,s(’e) be such that

(23) (e, ) SE,fie (Pe, ) S,.

(24) I[le, )) SE,’e 7"e, I)) 5;.fie

for all v H,s(e). Thus, Ze is decomposed into be+ e. From the above definitions
of Pe and % and the fact that the weak projection of Pe on e is well defined, )e
should be the dominant contribution to Ze Pe[.e. This is the case, and we begin
by showing that e gives a higher-order contribution to the energy norm of Ze. Recall
that the smallest eigenvalue of L on fe with zero Dirichlet boundary conditions is
bounded below by the smallest eigenvalue amin,e(cr/he)2 of the operator
--amin(1/r2) d/dr(r2(d/dr)) on ’e, where

amin,e-- min [a(r)[,
Xe- r

amin-- min la(r) I.
Ro<=r<--R

Hence, (24) implies

or

Ch-2llell =s,fi Ch-2(e, I[ie)S,fe < cle)S.e
Ae, Ie SE,.e Te, rle S,fle

Therefore,

(5)

On the other hand,

5;E,fie (’l’e, I]Ae 5;.fie
< re s,e e S,"e < Ch= e S,e

S,l’e a + a e’ + ce r2 dr

<= 2 a+a’ (e’)2+c2e r dr

C
< R e =

SE,

which together with (25) yields

C
(26) e SE,fe he e 5;,

Next introduce the quantities

S
1 y []@el] 2
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and

G

(27) 02 F, 2
SE,f

e=l

It can be shown (Seager and Carey [17]) that Pe is equivalent to e up to O(h) in the
spherical energy norm. That is,

IIPells -< Ilel/s --< IIPells(l+ O(h)).

Together with (22), this yields

G

e I1, E ,[1 + O(h)]
e=l

, (+,l,,o+,)s,,[l+O(h)]
e=l

[Q/ 2,QSllell,,o,,)/ sll e ,o,)][1+ O(h)]

-[Q+ Sllells,o,)][1 + O(h)]+(1-)Sllell,o,)[ 1 + O(h)]

where I1 1. By (26) we have S= O(h), and hence

(28) Ilell =s,(o,- (+ Sllel[s,(o,)=[l + O(h)]

which yields

(29) ell s,(o, [+ O(h)].

Now let us characterize the quantity Q.
LeMMh 1. Suppose that u 0 on (Ro, R). Set Pmax,e max {[p(r)l; r Oe}, and

as the element midpoint. en

(30) Q: [1"e=l -2 [1 + O(h)].
pmax,e h eXa(:e)

(33) Icre(X)l <= cPm.ax’e he.
Po

small h,

Recall that on

(34) amin,e min {a(x)I x [-e} a(e)[1 + O(h)].

Since for all v H(l’e) the Sobolev inequality gives

,a a(r)[v’(r)] dr[1 + O(h)]

Proof. Set

(31) ire(r)= p(r)--Pmax,e on

and split t]) into t)le "" I])2e by defining t])le l)2e H(e) such that

(32) ((o /))E,[’
for all v H(le).

By assumption, there exists /90>0 such that Ip(x)l->_po on (Ro, R). Hence, for
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it follows from (31) and (32) and the mean value theorem for integrals that

SE, y2ellqlell,,e----- y2e sup
I(Pmax,e, V)el

r max,e
sup V,)2 [1 + O(h)]

a(e).
dr[l+O(h)]

where e [Xe-1, Xe] and H(e) such that -"= 1. This implies that
2

(35) II = 1 max,e 2
SE, 12 a(e)

Tehe[1 @ O(h)].

To estimate t2 we proceed as follows: The smallest eigenvalue of-d/dx[a(x) d/dx]
on [-e is bounded below by amin,e(Tr/he)2. Hence, by (31) and the mean value theorem
for integrals

SE,. 37ell=ell ,.e Ye(e, 2e).

e
amin,e

-a(
where leE[Xe_l,Xe] and lye-’el--O(h). Combining this with (35) we obtain, for
some I1--< 1,

IIell SE,-e II’,e SE,[’le "Jl- 2a ,e s,ae ae s.,.e / ll,2e =
SE,I

1 p:max,e h3,)/2e[ 1 .+. O(h)].
12 a(,e)

The result (30) then follows from the definition of Q2. [-]

Let us now characterize a class of (possibly nonuniform) partitions. A partition
A is an (sr, G)-partition if there exists a sufficiently smooth piecewise map from
[Ro, R] onto [0, 1] that maps A onto a uniform partition with G+ 1 knots on [0, 1].
More precisely, A is an (, G)-partition if, for some function ::[Ro, R]--> [0, 1],

(x)=j/G, j=0, 1,2,..., G
with

E{veH’(Ro, R)
where

Ivl.:m C=(e*), V’(X) > 0 on each fie*, v(Ro) 0, v(R)= 1}

fi*e ((e-1)(R- + Ro,
e(R- Ro) - RoG

Note that for an (:, G)-partition we have

(3 = ,’(= h,’([ + o(hl].

With this established, we can characterize the spherical energy norm of the error
in terms of the true solution and the (, G)-partition A.

THEOaEM 5. For the (, G)-partition A the error satisfies

(7) Ilell- 1o_ Lf’(r)l
&[1 + O(h)}.
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Proof. Because/9 C (Ro, R) and 1/ :’ is piecewise C (Ro, R), the Riemann sum
(30) for Q2 can be written as an integral for small h. Hence, using (36)

Q2_ 1 IR12G2

p(r)
’(r)

2 r2- dr[l + O(h)].

The theorem now follows from (29). []

Since the error norm (37) depends on :, in order to minimize the error it is
reasonable to minimize the variational functional

,=
(38) J(u)=

’(r)J a--r) dr

with respect to : subject to the conditions

:(Ro) 0, :(R) 1.

The resulting Euler-Lagrange equation is

d { p2(r) rE}d--- [:’(r)] a(r)
=0,

,0
P2(
a(t)

t2 dt.

The actual grid {Xo, Xl, XG} can be calculated using

xj I(j/ G).

Although this analysis has been performed with the fixed region (Ro, R) in mind,
we can also pose it in terms of choosing a grid on an extended region. In any event,
this grid formulation is, of course, of no value unless the true solution is known a
priori. For our situation, a great deal of information is known about the asymptotic
decay rate of u, the solution to the unbounded problem. Hence, we may use this
information to generate the grid. As the domain is extended, the true solution UR to
the BBVP asymptotically converges to u. Hence the farther out we extend, the more
"optimal" the grid extension should become if we use the asymptotic behavior of u
in (39). For this reason we will call this grid generation/extension transformation
spherically symmetric asymptotically optimal (SPAO). The following theorem summar-
izes the SPAO concept.

THEOREM 7. Using the asymptotic far field form of the true solution to the UBVP
(under the hypothesis of Theorem 1), the SPAO grid transformation to a uniform grid
on [0, 1] is given by

R-if"- r-"
(40) :o(r) 0< 7 < 1/3.

Rff’- R-"

where

and is directly solvable. Thus, we have proven the following theorem.
THEOREM 6. For the spherically symmetric form of boundary value problem (1) on

[Ro, Rl, the grid that minimizes the spherical energy norm (given a fixed number of
degrees offreedom) is given by the transformation :o:[Ro, R]- [0, 1 ],

(39) :o(r) Yo
p2(t 1/3

a(t)
t2 dt
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Proof. From the previous section and the assumptions on the UBVP, we have that
a(r)-. 1 and u(r)-, r- (1/2< y<l) as r-o.

Hence

a(t)
t dt -2(2+) t2] 1/3 dt

Ro

C(R-(2v-I)/3 r-(2v-)/3).
By (39), this gives

sCo(r) ( R-_.___" : r-"

asymptotically as Ro, Ro, where r/= (2y-1)/3< 1/3. l-1
The restriction y > 1/2 is imposed so that r/> 0, which is necessary for the grid

spacing to increase with r. The grid may be computed directly using

(4 r(= o( -/, -That is, x r(j/G), for j =0, 1, 2,..., G. See Fig. 1 for an example of the SPAO
transformation.

1.0

0.9-

0.8-

0.7

0.6

0.4

0.

0.2

0.1

0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Radial Distance

FIG. 1. A sample SPAO grid transformation" r/= 1/3 and the truncated domain is [1, 10-1].

The above approach is a plausible grid generation strategy, and will generate a
grid with better approximation properties than the standard quasi-uniform one presen-
ted in 3.2. Before a proof is given, two lemmas are needed.

Any nonuniform grid transformation tailored to the solution of UBVPs must have
the element size he grow as we move farther out in the mesh. We take advantage of
the fact that u (and hence its derivatives) decays fairly rapidly as R increases. The
next lemma gives explicit rates of decay of the derivatives of u.
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LEMMA 2. Let u satisfy the UBVP with s > n/p 4- 4-1. Then if e is the spherical
shell generated by xe_ xe we have

2 3--2r(42) lult,e<= Cllullz,s,aXe Vr</+l

where C is independent of u and lie.
Proof. From the definition of MP,a

P when [a[ t,Du
_
Ms_t,,$+t

and the associated decay rate properties [7]

II(Du)ll -< CilDull,,-,,/, < c u II,,,
for all r<n/p++t=n/p+[n/q-2-(n-[3-2)/2]+t<t+l. Hence,

IDu(x)l <= Cllull,,-(x) v< + 1.

Integrating, we get

lul <Cllull tr-2(r)r2drt, 2,sd$

<Cllu[[ r-:r+2dr2,s,6

The next lemma describes a propey of the grid transformation kernel that is then
used to determine the approximation propeies of the SPAO finite-element grid.

LEMMA 3. Let y > O, 0 < 1 Ro/R < 1 and > 0 hold. en

(43)
= -(l+y)"

Proof. Since y>O,f(z)=(1-6z) is a decreasing function on [0, 1] (see Fig. 2),
the sum in (43) can be considered a lower Riemann sum,

N ( )-Y f0, 1-6 <= (1- 6z V dz
=1

6(y+l)
[(1-- iS)Y+1-- 1]

2

(y+l)

We can now compute the approximation properties of the SPAO finite-element
grid.

THEOREM 8. Let u be the solution to the UBVP under the assumptions of Theorem
1 with s > 7/2 + k, where k is the element degree. Then

(44) inf Ilu-xlls,<o,)--< CN-llull=,s,
xcS

where C is independent of N, R, and u.
Proof By using techniques similar to those in Seager and Carey 17, Lem. 1], it

is easy to show that if X Sh

G

(45) [[u xll < C , h2eklU[ z
SE,(Ro,O) k+’l,e
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Uniform Grid in

FIG. 2. Kernel of the grid transformation.

Next we derive an accurate bound on he. Set

1
he=xe-Xe-l=R (l_e/N)I/,

1 ](l_5(e_l)/N)l/,

Using the bound Ib al =< 1/clb al for a, b, c > 1,

1
he <- rlRo (1-Se/N)

1 ](1-(e-1)/N)

<- 1-8
N

rlRo<__ Xen"N

This bound has the type of behavior we would expect. It decreases linearly with N
and increases (in a way similar to the mesh itself) as we move farther out into the mesh.

Applying Lemma 2 with k + we get

lul <cllull --k+l..ae Xe Vr < k + 22,s,

Hence, we may write (45) as

G

(46) u 2,s,
e=l

The sign of the exponent on x in this expression is significant. In order to determine
it, let z k + 2 and r/ 1/ 3. Then

c 3- 2r+4r/k 3-2k-4+4k/3

-1-2k/3



ADAPTIVE DOMAIN EXTENSION 107

is negative for elements (i.e., k _-> 1). Thus, invoking Lemma 3 with 3’ -a/ we bound
(46) by

Ilu xll 2 <Cllull NSE,( Ro,R 2,s,

This theorem extends the optimal finite-element approximation properties in terms
of the parameter of interest 1/N to the spherically symmetric norms of the SPAO grid.
With this result in hand, we can combine the error estimates due to finite-element
approximation and to domain truncation, writing

O(R-V)+ O(h k)
and then O(h k) O(N-k). Again, this is not a completely satisfying result because
there are two asymptotic parameters in the estimate. If we require the finite-element
discretization error to be of the same "order" as the boundary truncation error, then
R-= N-k and hence, N Rv/k. It is clear from the above analysis that any grid
generation technique that yields the optimal convergence propeies of the finite-
element approximation will lead to a relationship between N and R of this form. This
result differs from that derived in Seager and Carey [17] in that we are now working
with N instead of h max h.

Remark. For y=3/2 this is the same result as in Goldstein [11] except that the
grid structures in the two approaches are quite different.

A summary of the main results is given in the following theorem.
THEOREM 9. Let the conditions ofeorem 1 hold with s > 7/2+ k and the right-hand

endpoint R be given. If a SPAO grid ofN Rv/k degrees offreedom is constructed via
the formula

Xe Ro 1- e 1,..., G

where 1- Ro/R )n, and < 1/3. en the total spherical energy error satisfies
(47) Ilu CN- u

4. Sample numerical results. As a test problem we considered problem (1) with
A=I, c=B2(B+r:)-2, and f=4DB3(B:+r:)-/2. The exact solution on 0r
is u(r)=D(l+(r/B):)-/2. Both the Dirichlet condition u(R)=0 and the Robin
condition

1 Ou

on the truncated domain 0 < r < R are applied. The asymptotic decay rates with R for
the Dirichlet and Robin conditions are O(R-) and O(R-3), respectively. Thus the
solution to this test problem is smooth as R is increased.

In the numerical experiment the problem was solved approximately using finite
elements on the sequence of truncated domains (0, R) with R 1, 5, 10, 20, and 30.
The spherically asymptotically optimal grids were refined for each new R until the
error norms stabilized (which implies that the finite element discretization error is then
negligible). Table 1 and Fig. 3 display the results for this problem with Dirichlet
boundary condition and norms taken on (0, R). These can be compared with the results
in Table 2 and Fig. 4 where the norms are computed on the fixed subregion (0, 1).

Next the numerical experiments were repeated using the Robin boundary condition
and similar results summarized in Tables 3 and 4 and Figs. 5 and 6. The RATE in the
tables is the computed rate of convergence with R, determined by the calculated error
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TABLE
Error norms on (0, R) with U R O.

R N H L

4 3.98E
5 60 1.22E0

10 146 1.77E0
20 472 2.54E0
30 606 3.13E0

RATE (g) +0.61
FIT (0.9970)

6.25E-
1.94E-
9.93E 2
4.99E 2
3.33E-2

-0.86
(0.9966)

O.

-3.

0 1.5 2.0 2.5 3.0
Log Redial Dist.

FIG. 3. Graph of error behavior in Table 1.

H1 Error

Error

TABLE 2
Error norms on (0, 1) with U(R O.

R N H L

4 3.98E- 6.25E-
5 60 7.11E-2 1.51E-1

10 146 4.25E 2 7.30E 2
20 472 2.01E-2 3.60E-2
30 606 1.33E- 2 2.36E 2

RATE (R) -0.99 -0.97
FIT (0.9989) (0.9991)

norms and the FIT quantity in parenthesis below the RATE is the goodness-of-fit
statistic. Here FIT 1 so the data is a consistent representation of the asymptotic
behavior in R. For the Dirichlet case u O(R-1) and, as might be anticipated, Fig. 3
indicates failure to converge in HI(o, R) as R increases. The rates on the fixed
subregions are much better as seen in Fig. 4. The Robin boundary condition produces
exceptionally good rates of convergence with respect to R since there is a fortuitous
cancellation in the analytic boundary condition for this problem using Robin datanthe
boundary condition is O(R-3) rather than O(R-2) as noted previously. This is, of
course, a special case and tests with rougher problems still produce good results but



ADAPTIVE DOMAIN EXTENSION 109

-1.

-3

-4

’5 i’0 1’5 2.0 2.5 3
Log Radial Dist.

FiG. 4. Graph of error behavior in Table 2.

H! Error

Error

TABLE 3
Error norms on (0, R) with Robin boundary condition at R.

R N H L

4 1.76E- 2.68E-
5 60 4.25E- 2 6.80E- 3

10 146 1.65E-2 9.03E-4
20 472 6.15E-3 1.21E-4
30 606 3.40E- 3 3.60E- 5

RATE (R) -1.16 -2.70
FIT (0.9921) (0.9657)

TABLE 4
Error norms on (0, 1) with Robin boundary condition at R.

R N H L

4 1.76E- 2.68E-
5 60 3.58E-3 5.36E-3
10 146 4.42E-4 6.93E-4
20 472 5.04E- 5 8.75E- 5
30 606 4.98E- 5 2.73E- 5

RATE (R) -1.89 -2.71
FIT (0.9922) (0.9986)

not as accurate as in the present instance. Other examples and details are given in
Seager 16].

5. Concluding remarks. Spherically symmetric problems on unbounded domains
arise in certain areas of mathematical physics and are frequently treated by domain
truncation. That is, an approximate problem is solved on a large but finite subdomain.
In the present study, we have developed an analysis of the finite-element discretization
and domain-truncation asymptotic errors for this class of spherical problems. A domain
extension strategy is introduced to balance domain error and mesh error. This leads
to the idea ofspherically asymptotic optimal grids. Properties ofthe grid transformation,
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-.2

-.4

-.8

101
-I .0

0

",.

Log Radial Dist.

FIG. 5. Graph of error behavior in Table 3.

H1 Error

L*" Error

",,

Log Radial Dist.

FIG. 6. Graph of error behavior in Table 4.

HI Error

Error

error indicators for adaptive grid refinement, and related asymptotic estimates are
described. The analysis presented here provides a theoretical framework for domain
extension and gridding that can be utilized in future analysis studies and applied to
guide domain selection and discretization.
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ANALYTIC CONTINUATION BY THE FAST FOURIER TRANSFORM*

JOEL FRANKLIN’

Abstract. The ill-posed problem of analytic continuation is regularized by a prescribed bound. A simple
computer algorithm is given that is based on the fast Fourier transform. The algorithm computes m complex
values and a positive error bound with time complexity O(rn log rn). As a function of the data errors and
the prescribed bound, the numerical error is shown to be consistent with that prescribed by the three-circles
principle of Hadamard.

Key words, analytic continuation, fast Fourier transform, ill posed
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1. Introduction. Analytic continuation is an ill-posed problem because the solution
depends discontinuously on the data.

Example 1. Let f(z) be analytic for 1 -< ]z -< R. Given that If(z) z _-< e for Izl- 1,
the problem is to compute f(z) in the rest of the annulus:

If N-1 <e, two possible solutions are f(z)= z+ N-lz. If e >0 and N is very
large, the two solutions may differ greatly. Miller [11] has observed that analytic
continuation can be regularized by using the three-circles theorem of Hadamard:

THEOREM. Let qb(z) be analytic for 1 < Izl < R and continuous for 1 _--< [z <= R. Let
/z(p) max I(z)l for Iz[- ,. Then log p.(p) is a convex function of log p. Thus, if
1 < r < R and if 0 (log r)/log R, then

(1.1) Ix(r) <= t.(1)l-tx(R).
Hardy proved an analogous theorem for an L norm instead of the maximum

norm/x (p).
Example 2. As before, let f(z) be analytic for 1 -< ]z] _-< R, and let If(z) z <_- e for

[z] 1. Now assume If(z)]-</3 for Iz[ R. The problem is again to compute f(z) for
I<]z]<R.

If f(z) and f2(z) are two possible solutions and d(z)=fl(z)-f2(z), then
Hadamard’s theorem implies, for 0 (log r)/log R,

(1.2) I(z)l < 2e1- .
Therefore, unless z is near the outer boundary, the difference between two possible
solutions must be small.

The annulus is doubly connected. Consider, now, a simply connected region, D.
Suppose f(z) is analytic in D. Let g(z) be given data such that

(1.3) Ig(z)-f(z)l<-_e for zS,

where $ is an arc in D. The problem is to compute f(z) as accurately as possible in
D-S. Note that D-S is doubly connected. By conformal mapping we can reduce
this problem to the problem for the annulus and apply the three-circles theorem.

Example 3. Let R > 1. Let D be the elliptical domain

x2 yZ
(1.4) a--+ b-7 < 1,

* Received by the editors November 2, 1987; accepted for publication (in revised form) January 24, 1989.
? Applied Mathematics 217-50, Firestone Laboratory, California Institute of Technology, Pasadena,

California 91125.

112



ANALYTIC CONTINUATION 113

where

(1.5) a =1/2(R + R-l), b =1/2(R R-l).

Let S be the interior arc -1-<x -< 1, and y =0. For z in S let g(z) be given data. Let
the unknown function f(z) be analytic in D and assume Ig(z)-f(z)l<= e for z in S.
The problem is to compute f(z) in D-S.

In its present form the problem is again ill posed and a bound If(z)l-<-/3 for z on
D is required to obtain a computational solution. If we use the conformal mapping
z=1/2(w+ w-l), then D-S corresponds to the annulus 1 <lwl<R and the segment S
corresponds to the unit circle Iwl- 1. If we set F(w)=f(z), G(w)= g(z), then we have

(1.6) IG(w)- F(w)]-<_ e for [wl 1,

and

(1.7) IF(w)l=</3 for [wl= R.

Now the solution F(w) can be determined as in Example 2, and every two possible
solutions satisfy

(1.8) If (w)- F=(w)l 2e o,
where 0 (log Iwl)/log R.

Miller’s method for solving the regularized analytic-continuation problem depends
on a general principle of least squares for ill-posed problems. His computer algorithm,
SNAC, uses a finite-dimensional least-squares computation. Thus, to produce m sol-
ution values, his algorithm requires O(m3) arithmetic operations.

The present paper uses a different principle, which was motivated by some earlier
work [5]. The computer algorithm uses the fast Fourier transform; see [4] and [8].
Thus, to produce m solution values, the algorithm requires O(m log m) arithmetic
operations.

As Example 3 illustrates, the present method may depend on a preliminary
conformal mapping of a doubly connected region into an annulus. Wegmann 16] has
recently published an efficient computational method for the conformal mapping of
doubly connected regions that can be used to implement the present method for analytic
continuation. The original region D may be replaced by an approximate subregion D’
for the purpose of regularization. Iff(z) is analytic in D, and if ]f(z)l =</3 in D, then
f(z) is analytic and has the same bound in every subregion D’. One may choose D’
to include the given arc S and to include as much of the rest of D as is conveniently
possible.

Other approaches to numerical analytic continuation have been made by Bisshop
[1], Niethammer [12], Stefanescu [14], and Reichel [13]. One may also state the
problem as a Fredholm integral equation of the first kind, to which one may apply
Tikhonov’s method (see Tikhonov and Arsenin 15]). For a discussion of the error in
Tikhonov’s method see the section in [6] on harmonic continuation, which is equivalent
to analytic continuation.

Analytic continuation from an arc is equivalent to the Cauchy problem for
Laplace’s equation, for which there exists a vast amount ofliterature. General references
include the books by Hadamard [7], Tikhonov and Arsenin [15], Lavrentiev [10], and
Carasso and Stone [3]. Logarithmic convexity and ill-posed problems are discussed
by Knops [9].
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Whereas the three-circles theorem proves logarithmic convexity for the maximum
norm, Miller [11] used logarithmic convexity for a quadratic norm on the m-
dimensional complex linear space; we shall do likewise. In the limit as m-, this
norm becomes the continuous L2 norm.

2. The problem for an annulus. We assume that an unknown function f(z) has a
Laurent series

(2.1) f(z)= E Ckzk (l=<lzl =<R)

that is absolutely convergent on the bounding circles ]z[ 1 and ]z R. We are given
numerical values & approximating f(z) on the unit circle. Let rn be a power of 2, and
let to =exp (2,n-i/m). We assume

1 .,-1

(2.2) Y Ig-f(o)lz<- e 2,
m j=o

where e is a known positive bound for the data error. We are also given a positive
bound/3 for a quadratic norm off on the outer boundary:

1 m--1

(2.3) 2 If(o,)l-<-t.
m j=o

Finally, we are given a positive bound r,, for the truncation error of the Laurent series.
We assume

(2.4)
k<-rn/2 krn/2

In summary, we are given the following: the integer m, where rn is a power of 2
greater than 1; the complex numbers go, g, , g,,-; the positive numbers e, , and
r,,; two radii, r and R, where 1 < r < R. As a rule, the numbers e and rm will be small;
the number/3 will be moderate or large.

The problem is to compute the unknown f(z) on the interior circle Izl r. For
Izl r we will compute complex numbers bo," ", b,,_ approximating the unknowns
f( r,o) (j 0, , m ).

In the analysis of the algorithm, we will prove an inequality for the error norm
/x defined by

m--1

12"(2.5) ,= 2 Ib-f(,o)
m j=o

We will show that the error norm/, satisfies

(2.6) /x _-< r,, + 2e -(/3 + e + r=),
where 0 (log r)/log R. (Actually, we shall get a somewhat better result.) Thus, as a
function of the data-error bound, e, the solution-error bound,/x, is of the order e-.
For example, if r is near 1, then/z behaves about like e; if r is near ,/,/z behaves
like v-; but if r is near R, we obtain /,-<_ rm +2(/3 + e + r,,), which is of academic
interest only.

For fixed r, the algorithm produces the positive error bound/, and rn complex
numbers bo,’", b,,_. Using the fast Fourier transform, the algorithm has time
complexity of the order of rn log m.
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3. The algorithm. As described in the last section, we are given the data

(3.1) m; go," ", gm-1; e, fl, "rm; r, R.

The algorithm will compute m complex numbers, bo, , bin-l, and a positive number,

Notation. Let u be any vector with m complex components. By the equation

(3.2) v Fu

we shall mean that v is the finite Fourier transform of u:

m-1

(3.3) vj= Z Uktojk (j=0,...,m-1)
k=O

where to=exp(2cri/m). Equivalently, we may write u= F-iv, the inverse transform
of v"

1 m--1

(3.4) Uk ., Vto -k (k 0,’’’, m 1).
m j=o

The algorithm uses the data (3.1) and the auxiliary variables ill, A, 0, and u to
compute the vector h and the positive number/x. (The components b approximate
f(rto); the number/x is an upper bound for the error norm

Algorithm Analytic Continuation;
Begin

0 := (log r)/log R;
fl := + e + z,,,;

e 0

fll 1-0;
u := F-lg;

m
for k:= 0 to - 1 do

F
k

Uk :=
1 + AR k Uk,

m
for k := - to m 1 do

Uk :-- i,k-muk;
b:= Fu;
/zl :- %, 4- (e 4- Afll)A -end.

{inverse fit}

{fit}

4. Analysis of the algorithm. Let f(z) be an analytic function in the annulus
1 <lz[ < R and r be a fixed radius satisfying 1 < r < R. Given the integer m; positive
numbers r, R, e,/3, ’,,; and complex numbers go,’", gm-, the algorithm computes
complex numbers bo,’", b,,_ to approximate the unknown values f(rto) (j=
0,..., m-l), where to =exp (27ri/m). We assume m is a power of 2 greater than 1.

Time complexity. The algorithm uses the fast Fourier transform twice and O(m)
other operations. Therefore the algorithm has time complexity T(m)= O(m log m).
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Error analysis. We now analyze the numerical error, bj-f(rtoj) (j 0,. ., rn 1).
We will show that the error is bounded in terms of the given numbers e,/3, and
which are defined in the text that follows.

If v is a vector with complex components Vo," , v,,-1, then the L2 norm is

 4ol, ,1 11
j=O

Let x vary in the interval 1 N xNR, and define the vector f(x) with m complex
components f(x) (j O, 1,..., m- 1). Assume

(4.2) Ilf(1) -gl[ e,

where e is a given positive bound for the data error.
Onthe outer circle, [z R, we assume the bound

(4.3) IIF(R)II
which regularizes the ill-posed problem of analytic continuation. For a positive data
error e, the values of the unknown vector f(r) must depend on the outer bound .

We assume that the unknown function f(z) has an absolutely convergent Laurent
series (2.1) and that the truncation error has the bound

(4.4) IclR/=-’ + IclR .
k<-m/2 m/2

This implies

(4.5) f(z) Ckzk
-n<_k<n

e 0
(4.6) 0 (log r)/log R, fll fl + e + 7"., and A

fl l-O’
which implies that 0 < 0 < 1,/31 > 0, A > 0. For k =-n,..., n- 1 define

m-1

(4.7) Gk= m-1 , gjoo -kj.
j=0

For j 0,. ., rn 1 define
(4.8) bj Y’.

-n<=k<O
Gkrktojk + Gkrk(1 + ARk)-ltojk.

O<=k<n

Also define the constant 1 < C <-2 by

(4.9) C=(1-0)-(1-)0-.
Then the numerical error satisfies
(4.10) lib-g(r)ll ’l’m + cEl-[l

This completes the theorem whose proof will require the following elementary
result.

LEMMA. Assume x > O, Pi > O, qi real Then
N

log pkxqk is a convex function of log x.
k=l

Proof Set x e’ and call the sum S(t). To prove log S(t) convex, it suffices to prove

(4.11) S(t)2-< S(t- h)S(t + h)

in the closed annulus 1 <-]z <_-R, where n m/2.
THEOREM. Under the preceding assumptions, define
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for all real and h. We have

S(t) E Pk exp (qkt)

=Epk[exp1/2qk(t--h)] [exp1/2qk(t+ h)].

Since Pk > 0, the inequality (4.11) follows from the Schwarz inequality.
Proof of the Theorem. Define the m complex numbers

m--1

(4.12) Ak m-1 E (1)to-kj (--n <-- k < n),
j=0

where, as usual, n m/2. Similarly, define the numbers

m--1

(4.13) Gk m-’ gflo
-kj (--rI <-- k < n).

j=0

For 1 -<_ x _<- R and j 0, , m 1, define the following functions of x"

(4.14) a(x) E AkxktoJk,
-n<_k<n

(4.15) the(x) E Akxkwk+ Y’. Akxk( 1 +AR)-’wjk,
-nk<O Okn

(4.16) b(x) , Gkxkwk + Y Gkxk(1 + ARk)-ltojk.
-n<_k<O O<=k<n

For the given x r, we get the numbers b(r) b defined in (4.8). We wish to prove
(4.10) for II-(r)ll. First we will express the Fourier coefficients Ak in terms of the
Laurent coefficients cj. From (4.12) we have

(4.17) f(w) =f(1)= E Aktook (j =0, , m- 1).
-n<=k<n

But the Laurent series gives

(4.18) f(to) Y’, cktok (j 0," ", m 1).
-cxz<k<c

Since tom= 1, we may write

(4.19) f(toJ) _n<__k<n (2_oo<s<oo Ck+sm) OJjk (j 0, ", m- 1).

But the Fourier coefficients Ak are defined uniquely by (4.17). Therefore, (4.19) implies

(4.20) ak 2 Ck+s,,, (k= -n, , n- 1).

Now we will determine a bound for ]]a(x)-f(x)ll. From (4.14) and (4.20) we determine

(4.21) a(x)= X_,=k<, ( Z_<s<Ck+s,-)XktOk (j=0,...,m-1).

If we define the unique residue k mod m in the set -n,..., n- 1, then from (4.21)

(4.22) a(x) E Ckx(k mod m)o.)jk (j 0,’’’, m 1).

Subtracting the Laurent series for f(x), we obtain

(4.23) a(x) -(x) 2 Ck[x(kmod m) xk]tojk.
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We have (k mod m) k for -n -<_ k < n, while

and

(kmodm)>k for k < -n,

(4.27) II(x)-a(x)ll2= E Pkx2k,
-n<__k<n

where all Pk are positive.
First set x 1. Then from (4.14) and (4.15),

]]b(1)-a(1)ll-- E
O<=k<n

(4.28) <= E IAAR[
O<=k<n

But (4.25) implies, for x R,

[AkhRk(1 + ARk)-1[2

E IAgARI=--A=IIa(R)II =.
-n<__k<n

(4.29) [la(R)[[ Ilf(R)l[ + z /3 + Zm,

where/3 is the given bound for Ilf(R)[[. Now (4.28) gives

(4.30)

From (4.15) and (4.16),

lib(l)- (1)11: E
-n<_k<O

][b(1)-a(1)[] A(/3 + r).

IG-AI-+ E IG-AI=(I+ARk)-2

O<--_k<n

Thus, if e is the given data-error bound, we have

(4.31) lib(l)-(1)11--< e.

Applying the triangle inequality to (4.30) and (4.31), we deduce

(4.32) lib(l)-a(1)ll--< e / x(/3 / ).

(kmodm)<k for k>=n.

Since 1 <= x _-< R, equation (4.23) implies that

(4.24) [aj(x)-f(x)l_-< Y Ic,lR"- / E Ic[R ’ <= Tm
k<-n k>--n

where the given bound z,, satisfies (4.4). Therefore

(4.25) Ila(x)- f(x)ll _-< ’r,, (l_--<x--< g).

Next we will determine a bound for II(x)-(x)ll at x= r. To do so, we will
determine a bound for lib(x)-a(x)l at x 1 and at x R. We will then use the lemma,
which implies that log lib(x)-a(x)t is a convex function of log x, to show that

(4.26) Ilk(r)- (r)ll-<-IIb(1)-a(1)ll-llb(g)-a(R)ll

where 0- (log r)/log R. The lemma is applicable because, by (4.14) and (4.16),
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get
Now we will determine the bound for Ilb(R)-a(R)ll. From (4.14) and (4.15) we

[I4(R)-a(R)II2= . [AkRk" ARk(l+
Ok<n

From (4.29) we obtain

(4.33)

From (4.15) and (4.16),

Since

we obtain

(4.34)

-< E lAuRel=--Ila(R)ll =.
-n<-k<n

II(R)-a(R)ll +.
E IGk--Akl2R2k + E

-n<--k<O
IGk--AkIEREk(1 + ARk)-2

E G-AI=/A- E G-AI.
-n<--k<O O_k<n

E Gg A[= IIg- f(1)ll = -< =,
-n<=k<n

lib(R)-(R)II e" max (1, A -1) < e(1 + A-l).

Applying the triangle inequality to (4.33) and (4.34), we obtain

(4.35) lib(R)- a(R)ll----< fl + ’,, + e(1 + A-l).

Now we are ready to bring our results together. By (4.32) and (4.35), we have

lib(l)- a(1)ll _-< e / x/, IIb(R)-a(R)l[<-(e+Afll)A-
where/31 fl + e + ’,. From the (4.26) we obtain

(4.36) lib(r)-a( r)[[ =<(e + AI)A -,
where r is the given radius satisfying 1 < r < R. Setting the variable x equal to r, we
deduce from (4.25)

(4.37) Ila(r) f(r)II <-- ,.
The triangle inequality yields

(4.38) lib(r)-f(r)ll

As a function of A, the right-hand side is minimized by the value defined in (4.6). Then
the proved (4.38) is the required inequality (4.10). This completes the proof of the
theorem.

5. Computer testing. It is easy to implement the algorithm described in 3. Using
an available fast Fourier transform (FFT) subroutine, a PASCAL program was written
to test the algorithm for an example of analytic continuation from a line segment. The
function

1
(5.1) F(w)-2_ w
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was used and data G(w) for F(w) were given on the line segment -1 <- w <- 1. A
data-error bound

(5.2) [G(w)- F(w)l-< e 10-4

was assumed. The data G(w) are used to continue the supposedly unknown function
F(w) from the line segment into an ellipse with foci at + 1.

Let ER be the ellipse in the w-plane given by
u2 /32

(5.3 

where w=u+iv, A=1/2(R+R-1), B=1/2(R-R-1). Assume 1<R<3.732 so that the
pole of F(w) at w= 2 lies outside the ellipse. A bound/3 is prescribed for IF(w)l on
the boundary ER.

The conformal mapping w =1/2(z + z-1) maps the annulus 1 < [z[ < R into the region
bounded by the slit -1 _-< w_-< 1 and the ellipse ER. For 1 < r < R the circle Izl r is
mapped into an interior confocal ellipse Er. Values for F(w) on the interior ellipse Er
are computed.

Set F(w)=f(z), G(w)= g(z). Thus f(z) is the supposedly unknown function

1
(5.4) f(z)=2_1/2(z+z_l).
Let m be a large power of 2; typically, m 256. Let co =exp (2,rri/m). The test simulates
data g(z) on the unit circle by computing

(5.5) g(coJ) =f(co J) + eX (j =0, , m- 1),
where e 10-4 and X is a computer-generated random number satisfying -1 =< X; <= 1.
Thus, eX; is a simulated data error bounded by +e.

As described in 3, the algorithm requires an upper bound z, for the Laurent-series
truncation error. The function f(z) defined in (5.4) has the Laurent series

(5.6) ckz
k 7___.2_ + "r___.2

k=-o Z Z Z Z2

where Zl and z are the reciprocal poles 2+x/. Therefore, if n m/2,
(5.7) Y IclR"-+ Y Ic[R- O((2-d)"R")

k<-n k>=n

and Zm O((2-x/)nRn). If m _-->256 and R _<-3, we have z, 0(7.28 x 10-13). Thus,
within the limit of roundott error, we may set z, 0.

Table 1 gives the results of a numerical test. In accordance with (5.5), randomly
perturbed data were given on the unit circle. The following values were fixed"

(5.8) e 10-4, m 256, ,, 0, R 3, /3 0.972.

TABLE
Precise/3 0.972.

A /z

1.25 2.62E 5 1.07E 3 5.81E 5
1.50 6.02E-5 5.72E-3 2.99E-4
1.75 1.07E-4 2.15E-2 1.14E-3
2.00 1.76E-4 6.34E-2 4.28E-3
2.25 2.90E- 4 1.56E- 1.32E- 2
2.50 5.17E-4 3.32E- 3.72E-2
2.75 1.20E- 3 6.20E- 1.02E-
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Thus, the data errors were bounded by 4-10-4. With the outer radius fixed at R 3,
the norm f(R)ll is fixed at 0.972, and this value was used for/3. (This upper bound
may be replaced by a value twice as large without an appreciable change in the
computations.)

The radius was given the seven values 1.25, 1.50,..., 2.75. For each r, the
algorithm was applied to the randomly perturbed data go,"’, g255 and the numbers
A,/Xl, and bo, , b255 were computed. For each r, using an IBM XT, the computation
required approximately 4 seconds.

For each r the algorithm computed an. upper bound/zl for the true solution error

(5.9) /z Ilb-f(r)ll.

In a separate computation, which used the function definition (5.4), the true error
/x was computed. For the different values of r, the values of the true error/z appear
in the last column of Table 1.

The effect of doubling the prescribed bound fl for the norm IIf(R)ll on the outer
circle is given in Table 2. The only surprise came for r 2. For that value the true
error/z decreased: it went from 4.28 x 10-3 in Table 1 to 2.61.x 10-3 in Table 2. For
the other tested values of r the true error increased with the use of the crude upper
bound ft. As a rough check of the computations, a naive analytic continuation by the
FFT was performed with the parameter A equal to zero. For inner radius r 2 the
result was a true error/x 7.8 x 1032.

TABLE 2
Crude fl 1.94.

1.25 1.31E-5 1.11E-3 6.72E-5
2.00 8.8E 5 6.72E 2 2.61E 3
2.75 6.0E-3 6.59E- 1.59E-

The algorithm was tested with other functions. F(w) eW was continued from the
interval -1 =< w-< 1 into the rest of the complex plane. This example has the same form
as the one given above, but it is easier because F(w) has no singularity in the finite
plane. As before, data G(w) are given for -1 <- w<= 1, with IG(w)-eWl<=lO-4. If the
precise bound/3 5.71 is prescribed for the norm IIf(5)ll on the outer ellipse Es, the
algorithm computes values bj approximating the true values of eW on the inner ellipse
E with two-digit accuracy. On E the computed error bound is/Zl 0.33, but the true
error/z is smaller. A typical experiment with random data errors yielded the true error

-IIb-f(3)ll =0.0125.
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Abstract. Efficient methods are presented for solving large sparse triangular systems on multiprocessors.
These methods use heuristics for the aggregation, mapping, and scheduling of relatively fine-grained
computations whose data dependencies are specified by directed acyclic graphs. Results of experiments run
on the Encore Multimax, as well as model problem analysis, measure the performance of the partitioning
strategies on shared-memory architectures with varying synchronization costs.

Key words, sparse triangular systems, shared memory, synchronization, partitioning
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1. Introduction. Techniques are proposed for mapping solutions of very sparse
triangular systems of linear equations onto a range of parallel architectures. In solutions
of such systems, the number of floating point operations that can be performed at any
one time is typically rather limited. Minimization of synchronization and communica-
tion overheads can consequently become particularly important. Methods for solving
very sparse triangular systems are vital for efficiently parallelizing conjugate gradient
type algorithms preconditioned with incomplete LU factorizations.

We focus on sparse triangular systems generated by incomplete factorizations of
matrices arising from discretizations of two-dimensional partial differential equations.
The techniques described here can, however, be used in any computation in which the
data dependencies exhibit the appropriate underlying structure, examples include
sparse incomplete numeric factorizations and sparse codes for solving dynamic pro-
gramming problems.

We assign to a single processor all computations pertaining to a row of the matrix.
All computations pertaining to a given row are performed as soon as possible after
the data required is known to be available. Parallelism is achieved by solving for a
number of rows simultaneously. The dependencies between the rows of the triangular
matrix determine the amount of potential concurrency.

We preprocess the data structure representing the sparse triangular matrix in a
way that identifies inter-row parallelism and allows the problem to be mapped or
scheduled in various different ways. After the preprocessing, parameters are chosen
that allow a variety of tradeoffs in the schedule or mapping specification. The need to
amortize the cost of performing preprocessing does limit the applicability of the types
of methods described here to situations, such as iterative algorithms, where we perform
many computations having the same data dependencies.

In the execution of a fine-grained problem on a shared-memory machine such as
the Encore Multimax, primary impediments to the achievement of ideal multiprocessor
performance are (1) load imbalance, (2) synchronization delays, and (3) programming
techniques that introduce computations intended to coordinate the parallel execution
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of a problem and not found in a corresponding sequential program. Our techniques
provide a reduction in (1) and (2). Since a prescheduled approach is used, it will be
shown that it is possible to keep (3) from becoming a serious problem. The strategies
developed here for dealing with these overheads are to (a) reduce the number of
synchronizations required during the solution of the problem, (b) make synchroniz-
ations less expensive, and (c) improve the load balance in between synchronizations.
Due to rather slow computation and rapid synchronization, the Multimax presents a
rather benign parallel environment. We will consequently make use of this machine
to provide hardware simulations of algorithm performance in architectures with rela-
tively larger synchronization times.

In message-passing environments (such as the Intel iPSC), (1) and (3) remain
crucial impediments to the achievement ofideal multiprocessor performance. In current
message-passing machines, communication startups are quite expensive [13]; tech-
niques that minimize the number of such startups are consequently of crucial import-
ance. The techniques discussed here that reduce the number of synchronizations clearly
also reduce the number of startups required. In message-passing machines the amount
of information communicated also can play an important role in the determination of
performance. As we shall see from the analysis of a model problem below, the
specification of the parameters in the parameterized mapping plays an important role
in determining the amount of information that must be communicated. The mapping
techniques discussed have been implemented on a message-passing machine; the
experimental results are presented in [11].

The problem partitions and work schedules that result from the process described
above may be viewed as a generalization of the work described by Saad and Schultz
[12]. In that report, a wavefront method was proposed for scheduling work involved
in forward and backsolves ofmatrices arising from incomplete factorizations ofmatrices
generated by five-point discretizations of two-dimensional elliptic partial differential
equations. The work described by Saad, as well as the results presented here, assume
a row-oriented matrix storage scheme. Experimental work has been reported on the
NYU Ultracomputer prototype involving the use of a wavefront method, where the
work involved in solving for rows of sparse triangular linear systems was allocated in
a self-scheduled manner [6].

A related body of literature also exists on the solution of triangular systems that
are less sparse than the ones described here; these systems are generally obtained from
matrix factorizations used in direct methods for solving sparse or nonsparse systems
of linear equations [7], [3], [10], [4]. The very sparse triangular systems considered
in this paper differ significantly from those examined in the above references. In the
systems examined here, very few computations are required to solve for a given variable.
Useful parallelism can be obtained because the data dependencies between rows can
allow one to solve for many variables simultaneously. In 11] the performance obtained
by solving for many variables simultaneously is compared with the performance
obtained from performing the row substitutions sequentially and parallelizing each
substitution individually.

The methods to be presented are quite similar in spirit to algorithms used to map
uniform recurrence relations to systolic arrays 1]. While the techniques used by those
algorithms are very different, we can obtain the same mappings using the two sets of
techniques if both are presented with inputs representing two dimensional uniform
recurrence relations.

In 2 we discuss methods for generating a parameterized problem decomposition
that allows considerable flexibility in determining the granularity of parallelism and
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facilitates inexpensive forms of synchronization. This approach defines a kind of
coordinate system that can be used to specify how the problem is to be solved. In 3
we derive expressions using the parameters from the decomposition defined in 2 that
allow us to specify a partitioning of the triangular system that guarantees that all data
dependencies will be respected. The expressions describing the parametrized schedules
depend on, among other things, the type of synchronization used.

In 4, through the analysis of a model problem, we analyze the tradeoffs between
load imbalance and synchronization costs, as well as the tradeoffs between load
imbalance and communication costs. An inexpensive method for explicitly balancing
the load is described in 5. In 6 we report experimental results on the Encore
Multimax multiprocessor that (1) explore the effect of parametric variations on granu-
larity on performance, (2) assess the merit of explicitly balancing load, and (3) compare
the performance obtained using different synchronization techniques.

2. Problem partitioning.
2.1. Automated problem partitioning. Detailed knowledge of an algorithm’s data

dependencies are crucial for employing a variety of optimizations that effect the
efficiency of programs on multiprocessors. In programs that use sparse data structures,
the crucial data dependencies are frequently not determined until program execution.

The C program segment 1 in Fig. 1 solves a lower triangular system of equations.
The lower triangular matrix is represented by a row-oriented sparse data structure.
The column of the jth nonzero element of the ith matrix row is given by
A[ i ]. column[ j ], the jth nonzero element of the ith row by A[ i ]. value j ], and the
number of nonzeros in row is given by A[ +/- ]. ncol. The solution array is represented
by the array y, the right-hand side of the equation by the array rhs, and the number
of equations in the system by N.

for(i=O;i<N;i++)

y[i] rhs[i];
for(j=O’j <A[i].ncol’j++)

y[i] -=A[i].value[j],[A[i].oolumn[j]];

FIG. 1. Lower triangular solve using sparse matrix notation.

We will say that a value of the outer loop index i, has a dependence on another
value of the outer loop index i2 if the computation of y[il] requires y[i2]. The data
dependencies between row substitutions indexed by the variable in 1 are determined
by the values assigned during program execution to the data structure A.

When A arises from the zero fill incomplete factorization of a matrix obtained
from a partial differential equation discretized over a mesh, the dependency graph
between outer loop indices in 1 is related to the undirected graph describing the mesh.

In the directed graph between outer loop indices of (1), a link exists from index
il to i2 when there is a link between il and i2 in the original mesh and when il < i2.
The structure of the directed acyclic graph G produced by the incomplete factorization
depends on the ordering of the points of the original mesh. The structure of the sparse
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data structure A used to represent the DAG depends in turn on the ordering of the
points in G.

In an n-by-n mesh with a five-point template, each nonboundary meshpoint xi,j
is linked to Xi-l,jXi+l,X,-l, and x,+l. If the meshpoints are ordered in the standard
way, i.e., so that the most rapidly varying index is j, the associated DAG G links x,
to X+l,j and xi,j+l. If we again order the points in the standard way, we obtain a sparse
data structure A representing a block lower bidiagonal matrix. The diagonal blocks
are n by n lower bidiagonal matrices, and the lower bidiagonal blocks are n by n
diagonal matrices. With A defined this way, program 1 represents a two-dimensional
recurrence relation that uses only one index to represent both dimensions. All
geometrical information is encoded in the data structure A. Our partitioning strategy
takes advantage of the regularity of the underlying geometry, but in partitioning, uses
only information encoded in A.

The first step in the preprocessing is to partition the indices of the outer loop of
1 into disjoint sets S. All row substitutions in a set S can be carried out independently.
To obtain the sets S, we perform a topological sort of the directed acyclic dependence
graph G that describes the dependencies between the outer loop indices of 1. A stage
of this sort is performed by removing all indices of G not pointed to by graph edges,
then removing all edges that emanated from the removed indices. All indices removed
during stage form the set S mentioned above; the elements of Si are said to belong
to wavefront i. An adaptation of a common topological sort algorithm [9] allows efficient
calculation of the wavefronts of G.

The points of G are then partitioned into a different collection of disjoint sets
called strings, generated through the following sequence of depth first traversals.

We define a start vertex of G as a vertex not pointed to by any edge. The vertices
of S are chosen in the following way. A start vertex V of G is picked, all edges
emanating from V are removed; if a new start vertex V’ is created through the removal
of edges, V’ is included in the string. The process is continued recursively to remove
as many vertices as possible from G, assigning them to $. When the removal of a
vertex exposes multiple start vertices, only one of these start vertices is included in S.
As each vertex V’ is assigned to S, we mark the vertices W remaining in G that had
edges arising from V’. New strings are begun using available start vertices. In picking
vertices to incorporate in all strings after the first, priority is given to vertices previously
marked by other strings.

Strings have the following properties: (1) The points in each string are connected.
(2) There is no more than one point belonging to a given wavefront in a given string.
(3) The graph describing the interstring, dependencies is a directed acyclic graph. The
DAG describing the interstring dependencies will be called the string DAG.

We will present an example to illustrate how we will use a string decomposition.
Figure 2 depicts a DAG that could be obtained from a zero fill incomplete factorization
of a matrix arising from the discretization of an elliptic partial differential equation
using a nine-point star template. If we perform the topological sort described above,
we partition the index set into 16 wavefronts. The work corresponding to each wavefront
can be carried out concurrently. Figure 3 depicts the wavefronts assigned to each
domain index. Figure 4 depicts a string decomposition and illustrates the string DAG
corresponding to this problem. Assume in this running example, we assign two con-
tiguous strings to each of three processors. We allow processor 1 to perform work
associated with two consecutive wavefronts in the first string in between synchroniz-
ations. In between each pair of synchronizations, all processors are allowed to calculate
row substitutions for as many indices as the data dependency relations will allow
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FIG. 2. Example DAG.
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(Fig. 5). The number of synchronizations required in this case is only eight, although,
as we will see, this reduction in synchronizations may have to be purchased at the cost
of a degraded load balance.

On message passing machines, mapping large contiguous sections of the string
DAG onto each processor will tend to minimize communication costs, but will also
tend to lead to poor load distributions. Scattering or wrapping strings that are contiguous
in the string DAG may lead to a much better load distribution at the price of increased
communication costs.

In the above example, we can see that with a string decomposition, no global
synchronization is actually necessary. Processor 1 needs only to notify processor 2
when it has completed its work, and processor 2 need only notify processor 3. Without
some sort of geometrical cues, global synchronizations would clearly be needed.

A problem can generally be partitioned into strings in several different ways. For
instance, for the problem in the running example, Fig. 6 depicts another string partition-
ing. When a DAG originates from the decomposition of a domain, it is possible to
make sure that the strings are chosen in a much more controlled manner. The decompo-
sition can be determined by the way in which the meshpoints are ordered in the
formation of the matrix. It is simple to arrange for the algorithm to give preference to
lower-numbered rows when forming new strings from start vertices D, and to attempt
to incorporate rows into a growing string in order of increasing row number.

3. Construction of work schedules. Once we have mapped the strings comprising
the string DAG onto processors, we still face the task of deciding when data dependen-
cies allow us to solve for any given unknown. We derive expressions denoting when
in a computation we should solve for a row. These expressions take into account only
wavefront number and position in the string DAG.

’1111 I. ’111jl

IIIIIii
.-I’, .lh,. Jh,. !lh,

./’,,1. &l.,Ill’1111111111
’11111111 rlllllllll tllllll,,lllllll:..l II1’
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F. 6. Alternate string, partition of example problem.

We will assume that the strings making up the string DAG have been linearly
ordered and that contiguous blocks of b strings are demarcated and assigned to
consecutively indexed processors in a wrapped manner. In the following, we will say
we have computed wavefront q in some block of strings when we compute values for
all matrix rows with wavefront q. As we saw in the last section from the running
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example, we can either use global synchronizations to coordinate work or we can
employ information provided by the string DAG to use a form of local synchronization.
In local synchronization, processors are logically arranged in a ring; each processor
need only synchronize with two logically neighboring processors. In the following,
computational work that occurs on a processor between two synchronizations will be
referred to as a phase.

We will present expressions that give the largest wavefront that the strings in a
block must compute during a particular phase. The nature of this schedule depends
on (1) the synchronization mechanism used, (2) the data dependency relationships
between the strings of the string DAG, and (3) the dependencies between the blocks
into which the string DAG is partitioned. Proofs of the correctness of these expressions
will be presented in the appendix.

When global synchronization methods are used, all processors must finish phase
p-1 before any processor is allowed to begin phase p.

The expressions below give the maximum wavefront number that can be computed
by a given block during phase p, assuming the first block computes exactly w wave-
fronts per phase; i.e., during phase p the first block computes wavefronts w(p-1)+ 1
to wp.

PROPOSITION 1. Assume that strings making up the string DAG have been linearly
ordered, that contiguous blocks of strings are demarcated, and that these blocks are
assigned to consecutively indexed processors in a wrapped manner. Let W represent the
largest wavefront that can be scheduled during phase p by block under the following
conditions" (1) the first block advances w wavefronts per phase, i.e., Wp wp, and (2)
all required data are computed by each processor before it reaches phase p.

Then, W is given by the expression Wp max (p, w(p + 1) + 1).
When it is known that data dependencies occur only between adjacent strings, a

more aggressive scheduling policy can be used.
PROPOSITION 2. Assume that strings making up the string DAG have been linearly

ordered so that data dependencies occur only between adjacent strings, that contiguous
blocks of strings are demarcated, and that these blocks are assigned to consecutively
indexed processors in a wrapped manner. Let Wp represent the largest wavefront that can
be scheduled during phase p by block under the following conditions: (1) the first block
advances w wavefronts per phase, i.e., Wp wp+ b- 1, and (2) all required data are
computed by each processor before it reaches phase p.

Then, Wp is given by the expression

{w(p-i+l)+ib-1 ifp>-i,
Wp=

bp if O<-p<i.
The method used for local synchronization requires each processor to interact

with only two other processors. Each processor increments an element of a shared
array when it finishes each computational phase. The processor to the right in the
logical ring of processors is able to know the progress of its left neighbor by reading
the left neighbor’s shared-memory array element. A processor can carry out work
scheduled for phases numbered up to p + 1, as long as its left neighbor has completed
phase p.

The schedule to be presented below makes allowance for the weak interprocessor
synchronization by taking into account the data dependencies between blocks of strings
in the string DAG.

When local synchronization is used, Proposition 3 below presents expressions that
give the maximum wavefront number that is to be computed by a given block during
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phase p, assuming that (1) the first block computes exactly w wavefronts per phase,
and (2) block can require data only from blocks j, max (i d, 1) _-<j i. When d 1,
we obtain the situation when block + 1 requires data only from block i. In this case
constraints for scheduling wavefront execution during a given phase p are identical
for local and barrier synchronization mechanisms.

The string DAGs that arise from many problems obtained from incomplete
factorizations of matrices arising from partial differential equations are frequently
characterized by small values of d.

When d P, the expressions below yield the largest wavefront that could be
scheduled by a given block at a particular time; when d >_- P, the expressions still allow
the data dependencies in the problem to be satisfied, but the expressions no longer
necessarily give the largest wavefront that could be scheduled during a given phase.

PROPOSITION 3. Assume that strings making up the string DAG have been linearly
ordered, that contiguous blocks of strings are demarcated, and that these blocks are
assigned to consecutively indexed processors in a wrapped manner. Assume that each
block constitutes a process that executes its computations in phases subject to the constraint
that at any time, if block has finished phase p, block + 1 can complete all phases with
numbers less than or equal to p + 1. Furthermore assume that each block requires data
only from blocks max (i-d, 1) through i-1, and that d P.

Let W represent the largest wavefront that can be scheduled during phase p by block
under the following conditions. (1) Thefirst block advances w wavefronts per phase, i.e.,
Wp- wp. (2) Each processor computes all required data before it reaches phase p.

Then, for i>--_ 2, W is given by the expression

(1) W=max([p/d],w(p-i+l)+[(i-1)/d]).
4. Moel problem analysis. We will examine load balance synchronization cost

tradeoffs in the context of solving a lower triangular system generated by the zero fill
factorization of the matrix arising from a X by Y point rectangular mesh with a
five-point template. We will utilize P processors and partition the domain into n
horizontal strips where each strip is divided into m blocks. We assume for convenience
that m and n are multiples of P, and let S be the time required to perform the sequential
computation. We define T to be the time taken to perform the computation in a block
for a given m, n, and S and assume that T Smn.

In a shared-memory machine, estimated total execution time can be expressed as
the sum of the time that would be required were the computation evenly distributed
between the processors in the absence of any load imbalances, the time wasted due
to load imbalances, and the time. spent synchronizing.

If it were possible to distribute all work evenly between processors, the computation
would require time S/P. The term for the idle time can be derived by noting that
during any phase j _-< min (m, n) 1 when j is not a multiple of P, there are P -j mod P
processors idle. When j is a multiple of P, no processors are idle. Thus the sum of the
processor idle time for j -_<- min (m, n) 1 is

T min (m, n)

__
(l- 1) T min (m, n)(P- 1)

P*P 2P

Through similar reasoning, the sum of the processor idle time for the last
min (m, n)- 1 phases is the same. During the intermediate phases, the load is balanced
with min (m, n) blocks assigned to each processor. Thus the total idle time is

TB min (m, n)(P-1).(2)
P
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If Tsynch is the cost of a single synchronization, the time required to synchronize
is Tynch times the number of synchronizations needed, i.e., Tynch(n + m- 1).

All of the above expressions are symmetric in rn and n, i.e., we would get the
same predicted efficiency by choosing a block size a and a window size b as we would
by choosing a block size b and window size a. We will assume without loss of generality
that rn > n and rewrite (2) substituting S/mn for TB, obtaining S(P-1)IMP.

When rn > n, the value chosen for n only effects synchronization costs. When rn
and n are both multiples of P, the best performance occurs with n P. The window
size can be profitably increased to Y/P.

We derive an expression (3) for estimated speedup by dividing the sequential
execution time $ by an expression for execution time on the multiprocessor obtained
by summing the above time estimates, with n set to P"

1
(3)

P- 1 1 Tsynch(P+m- 1)"
mP P S

For a fixed number of processors, the speedup obtained as we increase S can
depend on how the shape of the problem domain varies as the problem grows, as well
as how we change m and n as the domain size varies. When m and n are kept constant
as S is increased, regardless of how the shape of the domain changes, the relative cost
of load imbalance remains constant, but the relative cost of synchronization decreases.
In this case, for large S we obtain an asymptotic speedup of mP/(P-1 + m).

If the number of domain points X grows while Y is fixed, we can allow m to
grow linearly with X so that the number of points in a window is held constant. In
this case, the relative contribution of the time lost due to load imbalance diminishes
with increasing S, and one obtains an asymptotic speedup of P(1 + PTsynch/So) where
So= S/m.

When X is proportional to Y, an asymptotic speedup equal to the number of
processors P can be obtained if we allow rn to grow linearly with X.

5. Wavefront longest processing time scheduling. Propositions (1) and (2) describe
a parametric method of constructing work schedules when we use global synchroniz-
ation. These propositions may also be regarded as a way of parametrically describing
the wavefronts of a new coarse-grained DAG, each vertex of which represents the
solution of a number of rows. Consequently it is natural to consider balancing the
processor load for the wavefronts of this coarse-grained DAG, i.e., balancing the load
during each phase of computation.

All ofthe clusters ofwork executed during a phase ofcomputation are independent.
The scheduling of independent tasks to obtain a minimum finishing time is known to
be NP-hard. There exist a variety of methods for obtaining approximate solutions to
this problem [5], [8], [2]. One method that has been extensively studied is the Longest
Processing Time or the LPT schedule. A list representing tasks to be scheduled is sorted
in descending order of estimated execution time. Consecutive elements of the list are
assigned to the processor with the smallest cumulative estimated execution time. The
LPT rule requires time r log r to schedule the execution of r tasks. The performance
obtained through the use of the LPT scheduling algorithm is compared with that
obtained through the use of a wrapped assignment of strings in the following section.

6. Experimental results.
6.1. Preliminaries. First we will briefly describe the architecture of the Encore

Multimax. The Multimax is a bus-based shared-memory machine that utilizes 10 MHz
NS32032 processors and NS32081 floating point coprocessors. Processors, shared
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memory, and i/o interfaces communicate using a 12.5 MHz bus with separate 64-bit
data paths and 32-bit address paths.

All tests reported were performed on a machine with 16 processors and 16 Mbytes
memory at times when the only active processes were due to the author and to the
operating system. On the Encore, the user has no direct control over processor
allocation. Tests were performed by spawning a fixed number of processes and keeping
the processes in existence for the length of each computation. The processes spawned
are scheduled by the operating system, and throughout the following discussions we
make the tacit assumption that there is a processor available at all times to execute
each process. To reduce the effect of system overhead on our timings, tests were
performed using no more than 14 processes.

There does not appear to be significant contention-based performance degradation
in programs with the mix of computations and memory references seen here. In a set
of experiments using a variety of sparse lower triangular matrices, multiple identical
sequential forward solves were run on separate processors at the same time. Timings
from these experiments deteriorated by less than 1 percent as the number of processors
used was increased from 1 to 14.

6.2. Effect of window and block size on performance. We investigated the effect of
window size on execution time under conditions of varying global synchronization
cost. The data depicted in Fig. 7 were obtained through a forward solve of the zero
fill factorization of a matrix generated using a 100-by-100 point square mesh, in which
a five-point template was employed. This matrix is extremely sparse; there are no more
than two nonzero off-diagonal elements in any matrix row. Horizontally-oriented strings
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FIG. 7. Effect of window size on execution time. Matrixfrom a 100-by-100 mesh, five-point template. Ten
processors used, timings for 25 consecutive trials averaged.
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were used in all experimental results reported here unless another orientation is
explicitly specified. Ten processors were used to solve this problem, timings were
averaged over 25 consecutive runs, and a block size of 1 was employed.

When timed separately, the global synchronization used was found to require 75
microseconds; this compares to approximately 20 microseconds required for a single
precision floating point multiply and add. Effects of varying global synchronization
costs were simulated by employing either one or ten 75-microsecond global synchroniz-
ations between phases.

An estimate was made of the execution time we would expect in the absence of
synchronization delays. This uses a program written to give an optimistic estimate for
the speedup that could be obtained from a problem given a particular partition of
work. This symbolically estimated speedup assumes that floating point computations
take unit time and that all other computations and synchronizations are instantaneous.

Dividing the execution time of the parallel code running on one processor by the
symbolically estimated speedup gives an estimate of what the execution time should
be on the basis of load imbalance alone. This time estimate will be referred to below
as the symbolically estimated execution time. These results are depicted in Fig. 7.

As predicted by the discussion in 4, the estimate of the execution time in the
absence of synchronization costs are virtually identical for window sizes of one, two,
five, and ten; when these window sizes are chosen, the horizontal axis of the underlying
domain is divided into some multiple of P pieces. The computation times estimated
for windows of other sizes reflect the load imbalance caused by the uneven partition
of the domain. The experimental data in this figure clearly illustrate that using larger
windows becomes more advantageous as synchronization costs increase.

Finally, for the sake of comparison with the experimental results, the time required
to solve the problem using the sequential code was divided by the number of processors
used; this is called the optimal time.

Tradeoffs between load imbalance and synchronization costs were examined in a
different manner by plotting the symbolically estimated speedup against the number
of phases required to complete a problem. The symbolically estimated speedup is a
measure of load balance while the number of phases required to solve a problem is
equal to the number of synchronizations that must be performed.

In Fig. 8 the symbolically estimated speedup was plotted against phases required
for solving a lower triangular system generated by zero fill factorization of a matrix
arising from a 75-by-75 point mesh using a nine-point template.

Estimated speedups are depicted arising from (1) the use of blocks of sizes 1 and
2 where window size varied from 1-8, (2) the use of windows sizes 1 and 2 where the
size of blocks varied from 1-8, and (3) the use of a block size equal to the window
size where both are varied from 1-6.

The tradeott between speedup and number of phases appears to be generally more
advantageous when large windows and small block sizes are used than when the
situation is reversed. The number of phases declines with increasing window and/or
block size while the load balance exhibits substantial fluctuations. The tradeoff between
load imbalance and number of phases required, appears to be much smoother when
the size of the window used is set equal to the size of the block than in the other cases
discussed above. With block size equal to window size, the estimated speedup appears
to be a gradually decreasing function of the block and window size.

The relative performance of four combinations of window and block size in the
face of increasing synchronization costs are depicted in Table 6.1. The execution time
required to solve the lower triangular system derived from the 75-by-75 point mesh
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FIG. 8. Symbolically estimated speedup versus phases required to solve problem on 12 processors. Matrix

from a 75-by-75 point mesh, nine-point template. Horizontal strings used.

TABLE 6.1

Effect of window, block size on execution time. Matrix from a 75-by-75 point mesh,
nine-point template, 12 processors, 25 consecutive trials averaged.

Multiples of
barrier time

4
8
10

Window
block

0.20
0.29
0.39
0.45

Window 4
block

0.23
0.27
0.32
0.35

Window
block 4

0.25
0.32
0.40
0.44

Window 2
block 2

0.21
0.25
0.32
0.35

TABLE 6.2

Effect of window, block size on number ofphases, and symboli-
cally estimated speedup. Matrix from a 75-by-75 point mesh, nine-

point template, 12 processors.

Block size Window Phases

223
112
167
112

Est. speedup

9.43
7.26
6.84
8.14
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described above was measured. The following combinations of window and block size
were employed: (1) window size 1, block size 1; (2) window size =4, block size 1;
(3) window size= 1, block size=4; and (4) window size= 2; block size= 2. Between
phases, we employed from one to ten 75-microsecond barrier synchronizations. As
synchronization costs increase, it becomes more advantageous to reduce the number
of phases required to solve a problem even at the cost of increased load imbalances.

The numbers of phases and the symbolically estimated speedup for each of these
cases are listed in Table 6.2.

As we can observe from Table 6.2, block size =4, window size 1 and block
size 1, window size 4 require at least as many phases as does block size 2, window
size 2, and the later achieves a superior load balance. The use of block size 1, window
size 1 allows us to achieve a load balance that is even better, but at the cost of added
phases of computation. In Table 6.2, for barrier times between 75 and 150 microseconds,
the shortest run times were obtained using block size and window size both equal to
1. When barriers were utilized that required more than 150 microseconds, the use of
block and window sizes both equal to 2 lead to the shortest run times.

6.3. String orientation etfeets. The relative merits of using horizontal versus
diagonal strings in partitioning a mesh with a nine-point template were investigated.
In Fig. 9 is plotted the time required for 12 processors to solve a lower triangular
system generated by a zero fill factorization of a matrix arising from a 75-by-75 point
mesh. The block size was kept constant at 1, and the window size was varied from
1-8. Tests were carried out using both single 75-microsecond barriers between computa-
tional phases and using ten 75-microsecond barriers between phases. For each syn-
chronization cost and window size investigated, the time required for solving the
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FIG. 9. Effect of string orientation on execution time. Matrixfrom a 75-by-75 mesh, nine-point template.
Twelve processors, block size 1, timings for 25 consecutive trials averaged.
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problem using diagonal strings was greater than that required when horizontal strings
were used. A substantial reduction in execution time occurred with increasing window
size when horizontal strips were employed and interphase synchronization was
expensive.

6.4. Comparison between LPT and wrapped scheduling. When barrier synchroniz-
ation is used, the assignment of blocks to processors plays no role in synchronization,
and the work in a computational phase can be freely assigned to processers to optimize
the load balance. Experimental comparisons will now be made between the performance
that can be achieved through the use of Least Processing Time heuristic and that
obtained by assigning the workload to the processors in a wrapped fashion.

The performance difference produced by these scheduling methods is expected
to be noticeable only in problems with some degree of irregularity. If during each
phase a number ofblocks with identical computational requirements had to be executed,
a wrapped assignment should lead to an optimal balance of load during that phase.

Even in problems derived from rectangular meshes in which a uniform template
was utilized, the computational requirement of blocks computed during a phase are
not identical. In such problems, the blocks derived from meshpoints near the boundaries
ofthe domain will generally require smaller amounts of computation than those derived
from points further away from the boundaries. Two sets of experiments were performed
to compare LPT and wrapped scheduling using one matrix generated from an 80-by-80
point mesh with a five-point template and another matrix generated from the same
mesh using a 13-point template. Block and window size were varied and 10 processors
were used. The performance obtained using the two scheduling methods were compared
using both symbolically estimated speedups and measured run times on the Encore
Multimax. The symbolically estimated speedups were not effected by the scheduling
mechanism used, and the Multimax run times measured showed minimal differences
in no consistent direction.

More substantial differences in run times were noted in problems possessing
irregularities that would lead to more substantial differences in the computational
requirements of blocks during each phase. The data depicted in Fig. 10 were obtained
through a forward solve on 10 processors of the zero fill factorization of a matrix
generated using an 80-by-80 point square mesh. Points in mesh rows 1-29 and rows
51-80 employed a five-point template; points in rows 50-80 employed a 13-point
template. The block size was set equal to the window size and both were varied from
1-5. The time required to solve the problem was measured when LPT or wrapped
scheduling was used to balance load in each block wavefront. These measurements
were made when one barrier was used; to simulate the effects of these manipulations
on an architecture requiring more expensive synchronization, measurements were also
made using 10 barriers. For window sizes of 2 and 3, LPT scheduling led to shorter
run times than did wrapped scheduling. When a window of size 1 was used in this
problem, no significant difference between the scheduling mechanisms was measured.

When only one barrier is used, there is no advantage to using a window of size
greater than 1 in any event. Consequently on the Encore, for this problem, there
appears to be nothing to be gained from using either LPT scheduling or from using
methods to increase the granularity of parallelism. On architectures where the costs
of synchronization are larger compared to the costs of computation, both LPT schedul-
ing and the use of these granularity increasing methods will be advantageous.

A set of problems exhibiting more dramatic load imbalances was also examined.
A lower triangular system was produced by the incomplete factorization of a matrix
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EXECUTION TIME FOR TWO WAVEFRONT ASSIGNMENT SCHEMES
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FIG. 10. Run times from wrapped and LPT scheduling. Matrix from 80-by-80 mesh, mesh rows 1-29,
51-80: five-point template; rows 30-50: 13-point template. Ten processors, block size equal window size, timings

for 25 trials averaged.

generated from a 100-by-40 mesh point grid in which the bottom s strips had a 25-point
template, and the 40-s upper strips had a five-point template. Both the block size
and the window size were set equal to 1, and a single barrier was used for synchroniz-
ation. Figure 11 depicts the efficiency with which 12 processors of the Multimax solves
the system as s is varied from 0-12. Efficiency is defined here as the ratio of the time
required to solve the problem using a separate sequential code on one processor to
the product of the measured time to solve the problem and the number of processors
used.

The efficiency obtained through the use of LPT scheduling does not vary much
with s, remaining approximately 0.50. The efficiency exhibited by the wrapped schedul-
ing decreases to a low of 0.36 for s equal to 3, but is comparable to the efficiency
obtained through the use of LPT when s is close to either 0 or 12. The reasons for this
appear to be quite straightforward. When we have, during each phase, a number of
very time-consuming blocks that is small compared to the number of processors used,
we risk a serious load imbalance when a wrapped assignment strategy is used. As the
number oftime consuming blocks encountered during each phase increases to approach
the number of processors, the amount of wasted processor capacity decreases.

Symbolically estimated execution time calculated for the wrapped assignment
added to the synchronization and setup time produce numbers that are quite close to
the measured Multimax time for wrapped scheduling. For instance, using 14 processors,
the synchronization plus setup time measured separately is 0.03 seconds, the symboli-
cally estimated execution time is 0.13 seconds, and the total time is 0.15 seconds. This
correspondence has been noted in the case of the wrapped assignment in a variety of
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EFFICIENCY OF TWO WAVEFRONT EXECUTION SCHEMES

0.8

0.6
Efficiency of LPT scheduling

Efficiency of wrapped scheduling

0.4

0.2

0.0 ........... !, ,, _ ,_
0 5 10

Mesh strips with 25 point template

FIG. 11. Efficiency ofwrapped versus LPT scheduling. From multimax times. Matrixfrom 100-by-40 mesh,
bottom strips have 25-point template, rest have five-point template. Twelve processors, block, window equal 1,
timings for 25 trials averaged.

other problems not presented here and gives confidence in the accuracy of the measure-
ments.

When LPT scheduling is used, the symbolically estimated execution time (SEET)
appears to have less predictive value. For instance, while the efficiencies obtained
through using LPT in Fig. 11 vary little with s, the symbolically estimated execution
times vary with s to a substantial extent. For s equal to 2, the measured time taken to
solve the problem using the LPT algorithm was 112.16 while the SEET was 69.4; for
s equal to 3, the measured time was 118.3 but the SEET was 99.31. The difference in
synchronization time between the two cases was, however, quite minimal.

It should be remembered, however, that the LPT scheduling method uses computa-
tion times estimates to perform its load balancing. These estimates are not completely
accurate. If we measure the SEET obtained after rescheduling computations using a
method that produces a reasonable processor schedule based on operation counts, we
will tend to obtain overly optimistic estimates of the execution time. This observation
points to the obvious importance of accurate run time estimates when performing LPT
scheduling.

6.5. A comparison between barrier and local synchronization. While barrier syn-
chronization is relatively inexpensive on the Encore Multimax, local synchronization
is less expensive still. As described above, it can be implemented in a way that requires,
for each processor, only one shared variable increment followed by a busy wait. Figure
12 depicts a comparison between execution times measured when a barrier was utilized
and execution time measured when local synchronization was employed. Both barrier
and local synchronization-setup time are also measured and depicted. The problem
solved here originates from a 75-by-75 point mesh with a nine-point template; the
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. ’:.Local Snchronization... Setup time
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Processors

FIG. 12. Execution time of barrier and local synchronization. Matrix from 75-by-75 mesh, nine-point
template. Window, block equal 1. Timings from 25 consecutive trials averaged.

window and block size are 1. It is evident from this figure that local synchronization
is less expensive than barrier synchronization.

7. Conclusion. In this paper we present a framework for partitioning very sparse
triangular systems of linear equations that appears to be flexible enough to produce
favorable performance results in a wide variety of parallel architectures. In this paper
we have used the Multimax as a hardware simulator to investigate the performance
effects of using the partitioning techniques presented here in shared-memory architec-
tures with varying relative synchronization costs.

A method for using the triangular matrix to generate a parameterized assignment
of work to processors was described along with simple expressions that describe how
to schedule computational work with varying degrees of granularity. These expressions
are of considerable practical importance because they allow us to determine easily
what computations need to be performed during a given phase to ensure that all data
are computed before they are required. The tradeoffs between load imbalance and
synchronization costs as a function of block and window size were examined in a
variety of contexts. A few comments are in order on which of these techniques we can
recommend for use on the current Multimax. On the Encore Multimax, due to its low
ratio of synchronization costs to costs of floating point operations, there does not
appear to be an advantage in aggregating work to increase the computational granular-
ity. Balancing load within each phase of computation does appear to be advantageous
in this architecture, although further practical experience is required to discover when
the overhead required for this extra stage of scheduling is worthwhile. The use of local
synchronization on the Multimax also appears to be advantageous although its use
precludes that of wavefront LPT balancing. We can limit the problem decomposition
process to the identification of wavefronts if we have no need to increase granularity
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through the use of windows or to use strings to implement local synchronization.
Hence, on the Encore there should be no reason to pay both the overhead for string
decomposition and for LPT balancing.

Appendix.
PROPOSITION 1. Assume that strings making up the string DAG have.been linearly

ordered, that contiguous blocks ofstrings are demarcated, and that the blocksare assigned
to consecutively indexed processors in a wrapped manner. Let Wp represent the largest
wavefront that can be scheduled during phase p by block under the following conditions.
(1) The first block advances w wavefronts per phase, i.e., Wp wp. (2) All required
data are computed before phase p is reached.
W is given by the expression W max (p, w(p / 1) / 1).
In scheduling work for block during phase p, we must take into account the

numbers of the wavefronts corresponding to the latest available results from blocks
1 _-<j < i, since block may require results from any of these blocks. Since no work can
be performed before the first phase, we set W 0 for p 0. The number of the smallest
wavefront corresponding to any result that might be needed by block at the beginning
of phase p may be expressed as

lim W-I.
l<--_-j<i

Consequently,

W- min W_ / 1

for p-> 1.
We now use the above to prove that for all p->l, if Wp-

max (p, w(p + 1) + 1) then W I’. This proof proceeds by induction on block
number i.

’1 ^1For i= 1, by assumption W= wp. Since Wp max (p, wp), Wp= W_.
We will now use the induction hypothesis for j-< to show wi+lp Wp forp=>l

and i-> 2. We are assuming that for j-<i and p => 1,

W], max (p, w(p-j+ 1)+j- 1).

For p >_- 2, j <_- we thus have

W_I max (p-l, w(p-j)+j-1)=max (p-l, w(p-1)-(w-1)(j-1)).

Now

so because

W+’= min W_,+l,
lj<i+l

min W-l=max (p-l, w(p-i)-(w-1)(i-1)),
l=<j<i+l

it follows that

W+1 =max (p, w(p-(i+ 1)+ 1) + (i+ 1)-1).

Thus ff’+ wi/l and the induction is complete for p > 2.
uli/l min W+ 1 1 As it is easily verified thatFor p 1, since W=0, __<j<+l

W,1+1 1, wi+ W+1.
Thus we have shown that for p>= 1, W+ v"i/..p and the proposition is

proved, l-1
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PROPOSITION 2. Assume that strings making up the string DAG have been linearly
ordered so that data dependencies occur only between adjacent strings, that contiguous
blocks of strings are demarcated, and that these blocks are assigned to consecutively
indexed processors in a wrapped manner. Let Wp represent the largest wavefront that can
be scheduled during phase p by block under the following conditions. (1) The first block
advances w wavefronts perphase, i.e., wlp wp + b 1. (2) All required data are computed
before the system reaches phase p.
W is given by the expression

W={w(p-i+l)+ib-1 ifp>-i,
bp f O-<- p < i.

Assume that block B has assigned to it strings v + r, 1 _<-r -< b and that string v
has advanced its calculations up to phase p. Due to the nearest neighbor data depen-
dency relations, string v + r may be advanced to wavefront p + r. Note that were we
not to assume nearest neighbor interstring data dependencies, it is possible that string
v + r could have a direct data dependence on string v. In this general case, string v + r
could not proceed beyond phase p + 1. We are thus able to conclude that when we
use continuous blocks of b strings each,

i--1Wp Wp_ + b.

Using the above relationship, we will show by induction on block number that for
all p >= 1, if

{w(p-i+l)+ib-1 if p>-i,
Wp=

bp if 0<_-p< i,
^ithen W, Wp.,,.,

Fori=l, Wp=wp+b-1 forp_->l so Wp=Wp.
Assume that W=Wp forp >1 We will show that w+ I+1 for q >1. Weq q

first consider the situation that occurs when q _-> + 1. In this case we have

W+I W’p+b=w((p+l)-(i+l)+l)+(i+l)b-1.
li+1Since p+ 1 _-> + 1, the above expression is equal to p/l, and consequently W+l-

li+l for q> i+lq

For O<=p < i,

p+= Wp+ b b(p+ l).
tL’+ b( + 1) and hence Wq Wq for 1 _-< q < + 1.Since p + 1 < + 1, p+l P

i/1 i+1

The expression in Proposition 3 is obtained by mapping a chain of logical processes
in a wrapped manner onto the P processors of the machine. For the sake of tractability,
the expressions are derived under the assumption that the logical processes assigned
to a given processor are assumed to be independent of one another. These processes
are still subject to the synchronization conditions involving logically neighboring
processes, so we always obtain the correct solution to the problem. When d < P, we
obtain from the proposition the largest wavefront that can be scheduled under the
local synchronization assumption; when d >- P the expression presented in Proposition
3 yields a wavefront that only guarantees a correct solution under the local synchroni-
zation assumptions.

PROPOSITION 3. Assume that strings making up the string DAG have been linearly
ordered, that contiguous blocks of strings are demarcated, and that these blocks are
assigned to consecutively indexed processors in a wrapped manner. Assume that each
block constitutes a process that executes its computations in phases subject to the constraint
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that at any time, if block has finished phase p, block + 1 can complete all phases with
numbers less than or equal to p + 1. Furthermore assume that each block requires data
only from blocks max (i d, 1) through 1 and that d < P.

Let Wp represent the largest wavefront that can be scheduled during phase p by block
under the following conditions. (1) The first block advances w wavefronts per phase, i.e.,
Wp wp. (2) All required data are computed before the system reaches phase p.

For >- 2, W is given by the expression

(4) W max ([p/d], w(p-i+ 1)+ [(i-1)/d]).
In scheduling work for block it I during phase p, we must take into account the

numbers of the wavefronts corresponding to the latest available results from blocks
max (1, i-d / 1)-<j < it 1, since block it may require results from any of these
blocks. Since no work can be performed before the first phase, we set W 0 for p =< 0.
The number of the smallest wavefront corresponding to any result that might be needed
by block i+ 1 at the beginning of phase p may be expressed for i-> 1 as

min WJp_i+_
(1,i-d+ 1)--<_j< i+

Consequently,

(5) W+ min J + 1Wp_i+j_l
(1,i-d + )<-j<i+

for p_--> 1, i>_--l.

We now use the above to prove by induction on i_-> 2 that for all p_-> 1, if
^i(6) Wp max ([p/d], w(p-i+ 1)+ [(i-1)/d]),

then Wp Wp.
2We first establish the base of the induction.2 By (5) Wp= Wp_I + 1; as Wwp

by assumption it follows that Wp w(p li / 1. From (6), Wp
max [p/d ], w(p 1) + [1/d ]). For p >_- 1, the above expression is equal to w(p 1) + 1.
Hence Wp2 Wp

Assume that W W for 2 -<j _-< i, p _-> 1, we will show that W+1 W+1. We first
consider the case when

(7) p-/+max (1, i-d+l)- 1_-<0.

From (6), for all 1 _-<j _-< and p _-> 1, W _-> 1. Since W 0 for p <_- 0, from (5) and
(7) it follows that W+1= 1.

We will show that when (7) is satisfied, it is also the case that ff.i+l 1 By (6)
tCro+1 may be expressed as

(8) p =max ([p/d], w(p-i)+ [i/d]).

When i_-<d, from (7) we have p<=i as well as p<=d. Thus we have O<p/d<-l,
i+1 1w(p-i)<-O and 0< i/d < 1 and hence by (8), ,,p

When > d, from (7), p =< d. Thus 0 < p/d <- 1 and p/d 1. > d also implies that

w(p- i)+ [i/d] <- w(d- i)+ [i/d]
and

w(d- i)+ [i/d] <- w(d i)+ i/d + 1.

Now w(d-i)+i/d+l <=l if and onlyif wd(d-i)<--1. Since w>-_l, d>- I and d-i<-_

-1, we ascertain that w(p-i)+ [i/d] <- 1. Thus when (7) is satisfied, I+1= 1, and
hence in this situation we have shown that W
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We shall now prove the induction hypothesis when (7) is not satisfied, i.e., when

(9) p-/+max (1, i-d + 1)- 1 _-> 1.

When i-d + 1 _-> 2 we obtain from (5) and (8)

W+= i-d+<-j<i+min max([p-i+j-1]d w(p-i)+[])+l
and hence

When i- d + 1 -< 1,

wi+l=min[ man max(IP-i+j-1] [-])P 2-------j<i+l d
w(p i) +

max ([-], w(p-i))]+l;
hence

Wp =max w(p i) +1.

By (9), p-i-_> 1 and consequently w(p-i)>= [(p-i)/d], and thus

max ([], w(p- i)) + l w(p- i).

Since 1 -<_ _-< d, [i/d 1 and thus

Wip+l= w(p- i)+ [] w(p-(i+ l)- l)+ [ (i+ l)- l ]d

We have thus shown that wi+l- ,i+1 and the proposition is proved.
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ON THE COMPLEXITY OF SPARSE GAUSSIAN ELIMINATION
VIA BORDERING*

RANDOLPH E. BANKt AND DONALD J. ROSES

Abstract. The complexity of a general sparse Gaussian elimination algorithm based on the
bordering algorithm is analyzed. It has been shown that this procedure requires less integer overheaxi
storage than more traditional general sparse procedures, but the complexity of the nonnumerical
overhead calculations was not clear. Here the nonnumerical complexity of the original procedure is
shown to be comparable to the numerical complexity for an n n grid graph, and an enhancement
of the procedure that can reduce the overhead is presented.

Key words, sparse Gaussian elimination, bordering, m-tree
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1. Introduction. In this paper, we consider the solution of the N N linear
system

(1) Ax b

where A is large, sparse, symmetric, and positive definite. We consider the direct
solution of (1) by means of general sparse Gaussian elimination. In such a procedure,
we find a permutation matrix P, and compute the decomposition

pAp LDL

where L is unit lower triangular and D is diagonal. The system (1) is then solved by

Lw Pb,
Dy w,
Ltz y,

x Ptz.

Several good ordering algorithms (nested dissection and minimum degree) are
available for computing P [5], [9]. Since our interest here does not focus directly on
the ordering, we assume for convenience that P I, or that A has been preordered
to reflect an appropriate choice of P.

Our purpose here is to examine the nonnumerical complexity of the sparse elimi-
nation algorithm given in [3]. As was shown there, a general sparse elimination scheme
based on the bordering algorithm requires less storage for pointers and row/column
indices than more traditional implementations of general sparse elimination. This is
accomplished by exploiting the m-tree, a particular spanning tree for the graph of the
filled-in matrix. To our knowledge, the m-tree previously has not been applied in this
fashion to the numerical factorization, but it has been used, directly or indirectly, in
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several optimal order algorithms for computing the fill-in during the symbolic factor-
ization phase [4]-[8], [10], [12].

In 2, we review the bordering algorithm, and introduce the sorting and inter-
section problems that arise in the sparse formulation of the algorithm. In 3, we
introduce m-trees (or elimination trees) and review their role in sparse Gaussian elim-
ination. We do not attempt to present an overview here, but rather attempt to focus
on those results that are relevant to our particular algorithm. This section assumes
prior knowledge of the role of graph theory in sparse Gaussian elimination; surveys
of this role are available in [9] and [5]. More general discussions of elimination trees
are given in [6]-[8], [12].

In 4, we return to the sorting and intersection problems, and show how m-trees
can be exploited effectively in their solution. The sorting problem is relatively straight-
forward, and its computational complexity is of lower order than the complexity of
the numerical factorization. On the other hand, the complexity of the intersection
problem is potentially of the same order as the numerical factorization; indeed, in
our first formulation of the problem, it becomes clear that the complexity must be at
least as great as the numerical factorization. Later we split the intersection problem
into two parts, with one corresponding exactly to the numerical factorization, and the
second being pure overhead. We then present a new procedure for reducing the com-
plexity of this second part of the intersection problem; this procedure again exploits
the structure of the m-tree.

In 5, we analyze the complexity of the old and new approaches to the intersection
problem for the special case of an n x n grid ordered by nested dissection. The special
structure of this problem allows us to make exact estimates of the complexity. For the
old approach, we show that the complexity of the intersection problem is O(n3), the
same as the complexity of the numerical computations [5], [11]. For the new approach,
the complexity of the second part is reduced to O(n2(log n)2). In 6, we touch briefly
on the issues of data structures and implementation.

We emphasize that in terms of a practical computer code for doing sparse Gaus-
sian elimination, the best we realistically can expect to achieve for a package based
on bordering is an execution time comparable to the better row-oriented general
sparse matrix packages currently available (e.g., Yale Sparse Matrix Package [4] and
Sparspak [5]), at least for sequential computation. Certainly the number of float-
ing point computations in a general sparse code depends only on the ordering of the
equations and the zero-nonzero structure of the original matrix, and this is the same
for all procedures. The differences between algorithms are mainly in the ordering of
the computations, data structures, and nonnumerical overhead. Here the bordering
approach can offer some advantages. It usually requires less integer overhead storage
[3] than row schemes, and since the storage required is not a function of the fill-in,
the amount of integer overhead is known before the computation begins. Also, some
sparse matrix problems present themselves in a way such that a columnwise sparse
storage scheme coupled with the bordering algorithm for Gaussian elimination be-
comes the most convenient and obvious approach to their solution. Indeed, one such
application (to the linear systems arising in the hierarchical basis multigrid method
[1], [2]) motivated our original exploration of such algorithms.

In terms of nonnumerical computations, our new approach to the intersection
problem reduces nonnumerical computations in the numerical factorization phase to
a level approximately equal to that of row-oriented schemes, that is, about one indi-
rect address for each floating point multiplication operation in the inner loop in the
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symmetric case. For nonsymmetric problems with symmetric zero-nonzero patterns,
the nonnumerical costs of our bordering approach remain the same, but the number of
floating point operations approximately doubles. The number of nonnumerical com-
putations in the forward/backward solution phases has always been about the same
for the row- and column-oriented schemes. Thus we need not sacrifice execution time
if it seems desirable to use a column-oriented approach.

2. The bordering algorithm and sparse elimination. Let A be a symmet-
ric, positive definite matrix. We consider the factorization

(2) A LDL

where D is diagonal and L is unit lower triangular. Let Ak denote the k x k upper
left principal submatrix of A, and we assume that we have already computed

Ak-1 Lk-Dk-lLk_

by the bordering algorithm. Then

where

Lk-lDk-l c,
c--ltDk_ll.

Thus, at the kth stage, the bordering algorithm consists of solving the lower triangular
system

(3) Lk_v=c

and setting

(4) D-Iv,
(5) -v.

Elementwise, the algorithm may be written in the following manner"

Procedure Dense Factor.

(D1)
(D2)
(D3)
(D4)
(D5)
(D6)

for k= 1, N
dkk akk
for j= 1, k-1

j--1v a -]=1
v/dz

dkk dkk
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Let Ck denote the index set of nonzeros in column k of L I (row k of L- I ).
Then, for sparse matrices, the factorization algorithm may be written as follows:

Procedure Sparse Factor.

(S1) for k 1, N
($2) dkk akk
($3) for j E Ck
($4) vj ajk ieCnC ljivi
($5) lkj v/djj
($6) dkk dkk lkjV

Because of the implicit nature of line (S4), the indices j on line (S3) must be
sorted such that the right-hand side of line ($4) is always well defined. Sorting Ck
by increasing order is certainly sufficient, but other orderings are possible and will
prove more convenient. In particular, any sorting of the indices that allows (3) to be
backsolved is acceptable. We will refer to this as the sorting problem.

The computation of v in line ($4) requires the computation of Ck gl Cj. We will
refer to this as the intersection problem. Since this is an inner loop computation,
it clearly contributes to the highest order term of the overall complexity; thus it is
important to compute these intersections as efficiently as possible. We will analyze
these problems in 4 and 5.

3. m-trees and sparse elimination. Let G (A’,, c) be the connected, or-
dered graph associated with the irreducible, symmetric, positive definite matrix A
LDL. Here A’ (xi}N=l denotes the vertex set, the edge set (eji e E t, j if
and only if aij 0), and c is the ordering (c(i) xi). Let G’ (X,g" U ’,a) denote
the chordal graph generated by c. " denotes the set of fill-in edges generated by the
elimination process.

For xi X,

e v Y)

denotes the adjacency of xi in G. We denote the monotone adjacency of xi by

and set

madj(xi) (yj e adj(xi)lj > i}

cadj(xi) adj(xi)- madj(xi).

The index set associated with madj(xi) is the set of column indices for row of L I,
while cadj(x) corresponds to Ci. Additionally, recall that madj(x) is a clique in G.

Let G (A’,t U 5, ) be a chordal graph and let m(i), 1 _< _< N- 1 be given
by

(6) m(i) min(jlxj e madj(xi)}.

Then the m-tree T for is the tree with vertex set X and edges (eim(i)}N= 1.
The m-tree is also called the elimination tree by Liu [7] and Schreiber [12]. See Liu
[8] for a recent survey of the role of m-trees in sparse Gaussian elimination. Among
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FIG. 1. A 3 x 3 grid graph with nested dissection ordering.

FIG. 2. Fill-in for the 3 x 3 grid graph.

(T
FIG. 3. An m-tree for the 3 3 grid graph.
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the m-tree’s more important applications is its use in optimal order procedures for
computing the fill-in q U " using the ideas of Rose, Tarjan, and Lueker [10].

As an example, consider the 3 x 3 grid graph with the nested dissection ordering
a, illustrated in Figs. 1 and 2.

For this graph re(i) is defined as follows:

1 2 3 4 5 6 7 8 9
m(i) 5 5 6 6 7 7 8 9

The m-tree is shown in Fig. 3.
LEMMA 3.1. Let (2(, U J, ) be chordal and let eij E U J:, < j. Then

either m(i)
Proof. See Schreiber [12]. We give proofs of this and other lemmas in this section

because of their brevity. If m(i) j, we are done, so we assume that m(i) k < j.
Then, since madj(xi) is a clique and xj,xk

LEMMA 3.2. Let Ti be the subgraph oft induced by the set {xi} Ucadj(xi). Then
Ti is connected (i.e., it is a subtree).

Proof. See Schreiber [12]. We will show the path from xj
contains only vertices in the set {xi} U cadj(xi). This is done by induction on i, the
length of the path. If l 1, then m(j) i, and ei ". We assume the lemma is
true for paths of length - 1, and show it for a path of length/. Let the path from
xj E cadj(xi) to xi in 7" be of length l, and let k m(j) < i. Note that eki U ..
Thus, Xk cadj(xi) and the length of the path from xk to xi in T is/- 1. [:]

The subtrees for the example 3 x 3 grid graph are shown in Fig. 4.
Let i {xj e cadj(xi)lxj is a leaf of T} denote the set of leaves of T/. For

x f, m(j)
to xi xtk in 7". The edge eij is called a backedge. Since xtp E cadj(xi), 2 g p g k- 1,
etpi ’ U ’. Thus the path and the backedge form a cycle in ’; this cycle is chorded
by the edges eti, 2 g p _< k 1. Let B denote the set of backedges and K: the set of
chords. It is easy to see

Following Liu [7], the graph S (X, ’ U B) is called the skeleton of ’. The skeleton
of the 3 x 3 grid graph is shown in Fig. 5.

LEMMA 3.3. Let , ’, U ’, and B be defined as above. Then B C .
Proof. See Liu [7] and Schreiber [12]. Let e{ B, j < i. Then x . Suppose

eij , so eij ’. Define

k max{plxi, xj e madj(xp)}.

Clearly k exists; otherwise, eij would not be in ’. We now observe that m(k) j;
if I m(k) < j, then xt, xi, xj madj(xk). Since madj(xk) is a clique, xi, x
madj(xt), contradicting the definition of k. However, since m(k) j, ekj ’,
contradicting xj i.

Since B C_ , the index sets corresponding to the i are subsets of the row indices
for the upper triangular part of column of the matrix A.

4. The sorting and intersection problems. It is apparent that the generation
of the sets (:k required for the numerical factorization requires only knowledge of the
sets k C Ck and the m-tree for ’. The m-tree T, along with the sets Ck for all k,
can be computed in O(Ig" U ’1) time using the procedures in [3]. The Ck need not be
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FIG. 4. Subtrees ]or the 3 x 3 grid graph.

permanently stored, since they can be regenerated as needed using the :k and the
m-tree.

By Lemma 3.3, the index set for k is a subset of the row indices for the nonzeros
in the strict upper triangular part of column k of A. It is thus convenient to store
the strict upper triangular part of A column by column, since this also facilitates the
use of the bordering algorithm. It is not essential that the index set k be explicitly
determined; indeed, it is convenient to define generalized leaves by

e e e, j < k}.
The index set for : corresponds exactly to the row indices for the nonzeros in the
strict upper triangle of column k of A; clearly

We next partition the index set Ci among the generalized leaves for Ci. Thus we
let

U Dij,

,
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FIG. 5. Skeleton for the 3 3 grid graph.

The sets T)ij are defined as follows: for xj E :,/)ij is the index set of vertices
on the path from xj to xi in T which do not coincide with the path of any higher
ordered vertex in/:. For example, in our 3 3 grid graph, we have for x9,

t:,

{s},

This partitioning of (i results naturally if the vertices in are sorted by index
and C is generated by processing xj E in decreasing order. Since I[ is typically
not large, sorting these sets as an initialization step generally does not contribute to
the highest order complexity terms. Thus we assume that the sorted : are available
as input.

For any x , the set :Dj is generated from j and l [/)1 using the m-
function,

(7) 7) {j, m(j), m(m(j)), me-l(j)}.

We now return to the two problems mentioned at the conclusion of 2. We
consider first the sorting problem for (k in line ($3) of Procedure Sparse Factor. In
light of the analysis of 3, we must sort the vertices in cadj(xk), which together with
xk are the vertices of Tk, such that the predecessors of vertex x cadj(xk) are
ordered before xj itself. If this is done, the right-hand side of line ($4) of Procedure
Sparse Factor always will be well defined. One such sorting can be generated easily
by processing the vertices in : in increasing order, generating the sets/)kj using the
m-function. For example, for vertex x9 of our 3 3 grid graph, this would result in
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the ordering

)92 [,-J 93 [,-J 98.

Another solution to the sorting problem, based on a renumbering of the vertices using
a postorder traversal of the m-tree, is given by Liu [7].

As each element j E Ck is generated, we can mark an integer vector c, initialized
to zero, to mark the set Ck. It is thus easy to test if E Ck for any by checking if
c(i) O. We assume the existence of such an array as we analyze the intersection
problem.

Given Ck, represented by the array c, the problem of computing Ci N Ck can be
done in O(ICil) time by generating

and testing using c. Let tPp=l be the ordered sequence of indices in Dij. Then,
assuming 7)ij N Ck q), there will exist a such that

(8) Iv Ok, 1 g p _< - 1,

This is true since 7 is a connected subtree of 7" and the sequence (lp} corresponds
to a path in T generated using the m-function.

Clearly, the second part of the sequence (9) generates actual floating point com-
putations on line ($4) of Procedure Sparse Factor, and thus the complexity of this
portion is unavoidably of the same order as the floating point work. On the other
hand, generating the first part of the sequence is nonnumerical overhead which does
not correspond to anything useful in terms of the numerical factorization.

Since the computation of intersections must contribute to the highest order com-
plexity term, we are interested in finding a procedure for reducing the wasted com-
putuation in (8). We are thus led to define, for each :Di, k, the index

Z)C : )(i0) qijk 0 ij Ck $

for j < < k. We then recast the intersection problem in terms of computing qijk
as quickly as possible, and then view the complexity of the intersection problem in
terms of the complexity of computing qijk.

(t}=8 such thatLet s _< t < r be integers; we now define the run R R(r, s) r-1

m(t) t + 1 s g t g r- 1

(11) re(r) r + 1 if r N

m(s-1)s ifs 1.
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Note that a run must contain at least one vertex (in which case R(r, s) {s}, m(s)
s/l).

It is well known that sparse Gaussian elimination tends to produce large cliques
in G; most of the vertices in these cliques will have re(k) k + 1. On the other hand,
the formation of a large clique is not a necessary condition for the formation of a large
run; for example, re(k) k + 1 for .all k < N in a tridiagonal matrix.

In any event, because of the restrictions on re(r) and m(s- 1) in (11), a given
integer t can be in at most one run. Thus we are able to define an express vector e(t)
which allows us to examine all the vertices in a run in O(1) work. The express vector
e, of length N is given by

e(t) <_ 0
if t E R(r, s) for some r and s,
otherwise.

Initially, we set e(k) 0 if k is not in a run. In particular, note that if r is at the end
of the run R(r, s) then e(r) O. The use of the express vector results in a particular
type of path compression in the m-tree, which maintains the structure that is crucial
in the solution of the intersection problem.

Suppose a run R(r, s)N Ck . We then (temporarily) set e(r) -min{ E
R(r, s)N (k}; that is, -e(r) points to the lowest numbered vertex in the run that is
also in Ck. This can be determined easily as the marker array c is being computed
(for each Ck, check if e(i) > 0). Given the arrays e, c, and m, and the integer
]T)ijl the following procedure computes qijk.

Procedure Get_qijk.

(G1) q .-- j; count .-- 1
(G2) while c(q) 0 and count <_ 17)ijl do
(G3) if e(q) g 0 then
(G4) q .- re(q)
Gh count ,-- count + 1
(G6) else

q’
(G8) q e(q)
(G9) if e(q) < 0 then q - -e(q)
(G10) count .- count + q q
(Gll) end if
(G12) end while
(G13) if c(q) 0 or count > IT)l then q ,-- 0

This procedure simply generates the sequence (7) for T)ij, looking for qijk. When
it is possible to do so, we use the express vector to process runs in O(1) work.

5. The intersection problem for grid graphs. Let G(k) be the n n grid
graph with n 2k 1, ordered using nested dissection (N n2). G’(k) and T(k)
will denote the triangulation of (k) and its m-tree, respectively. Recall that nested
dissection orders the vertices in a cross-shaped separator , consisting of the 2n- 1
vertices in row (n + 1)/2 and column (n + 1)/2 last. This leaves four grid graphs
G(k- 1) to be recursively ordered. This is shown schematically in Fig. 6.

The recursive nature of the ordering is reflected in the m-tree which has the
recursively defined structure shown in Fig. 7.
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G(k-1)

G(k-1)

G(k-1)

G(k-1)

FIG. 6. Nested dissection ordering.

The nodes labeled T(k- 1) are m-trees for the four subgraphs G’(k- 1). Note
that, with the exceptions of vertices Xp+m and xn, re(j) j + 1 for all xj E S.

LEMMA 5.1. For each xi X in (k), 141 <_ 2.

Proof. Since I1 _< 4, there are at most four possible leaves for any vertex. The
proof is by induction on k; the case k 1 is trivial. Using the induction hypothesis
for the four subgraphs G(k- 1), we are left to consider only xi S. For such an xi,

at most two vertices in : are not also in $. By considering all the special cases, we
straightforwardly surmise that I:il _< 2 for all xi S. B

LEMMA 5.2. The height h(k) ofT(k)is

(12) h(k) 3(2k 2) 2(k 1)

Proof. Evidently

h(k) h(k- 1) + 3.2k-1 2.

with h(1) 0. The solution of the difference equation is given in (12).
Note also from (12) that

h(k) <_ 3n.

Thus we have the following lemma from Lemmas 5.1 and 5.2.
LEMMA 5.3. For any xi (k),

IC l <_ 6n.

THEOREM 5.4. The complexity of the intersection problem without using the
express function is O(n3).

Proof. We estimate the cost F(n) for computing qijk for all the relevant indices
within the context of the numerical factorization. The procedure uses only the m-
function, and thus must generate all entries in (8).

First, consider the cost for a single xi . By Lemmas 5.1-5.3, the cost will be
at most O(n2), since I:[ and I1 are bounded by constants, and ICjl < O(n) for all

xj E A’. Since ISI 2n- 1, the cost for all vertices in S is O(n3). Thus,

(13) F(n) <_ 4F(n/2) + 7n
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p= n2- 2n+2

m= (n- 1)/ 2

n=2k-1

FIG. 7. m-tree .for the nested dissection ordering.

for some constant /. The solution of the majorizing difference equation shows F(n) <
O(n3). This is the same complexity as the numerical factorization. Thus, although
the intersection problem contributes to the highest order complexity term, it does not
increase the overall order of complexity.

We now consider solving the intersection problem using the express vector and the
m-function, as in Procedure Get_qjk. We let Q(k) be the cost of Procedure Get_qjk
for T(k). Then, for any j, the cost of processing the portion of the first sequence in
(8) that lies in is O(1), since all but two vertices in are in runs. Thus

Q(k) <_ Q(k-1) +’7

for some constant ". The solution of this difference equation shows

Q(k) g /k + O(1) O(logn).

Using Lemmas 5.1-5.3, we have

F(n) <_ 4F(n/2) + 7n log n

instead of (13). The solution of the majorizing difference equation shows

F(n) g O(n2(logn)2).

Thus we have shown the following theorem.
THEOREM 5.5. The complexity of the intersection problem using the express

function is O(n2(log n)2).
In this case the intersection problem does not contribute to the highest order

complexity terms.



SPARSE GAUSSIAN ELIMINATION 157

TABLE 1
Nonnumerical overhead for grid graphs.

k 3 4 5 6 7 8
N 49 225 961 3,969 16,129 65,025
f 580 11,496 153,668 1,664,596 15,963,924 142,335,428
m 448 6,684 66,392 524,564 3,585,936 22,215,844
e 72 2,256 35,460 332,716 2,519,844 16,693,084
s 66 3,814 95,094 1,510,526 18,581,430 195,752,462

In Table 1, we compare the actual nonnumerical overhead for the two procedures
for n x n grid graphs with n 2k 1, 3 <_ k _< 8, using the nested dissection
ordering. The row labeled f lists the number of floating point operations used on line
($4) of Procedure Sparse Factor; this also counts the number of unavoidable indirect
addresses corresponding to indices in the intersection (:i (:j. The row labeled m
counts the number of times line (G4) of Procedure Get_qijk is executed, while the
row labeled e counts the number of times line (GS) is executed. Thus the sum m + e
reflects the nonnumerical overhead associated with solving the intersection problem
using the express vector. Finally, the row labeled s gives the number of saved indirect
addresses; m + e / s reflects the nonnumerical overhead in solving the intersection
problem without the express vector. This can be modeled using Procedure Get_qijk
with e(i) 0 for all i.

In Table 1, both land s grow as O(na) complexity; m+e is growing as O(n2(log n)2).
The behavior illustrated here seems to be typical of general grid problems arising from
finite element or finite difference discretizations of partial differential equations. We
have had the most experience with problems posed on irregular and nonuniform trian-
gular meshes; there we have noticed that without the express vector, in large problems,
50- 60 percent of the indirect addresses (generated as k re(k)) used in solving the
problem do not have corresponding floating point operations. On the other hand, with
the express vector, the ratio of indirect addresses to floating point operations is close
to one (or one half for nonsymmetric problems retaining a symmetric zero-nonzero
structure). Thus, a general sparse matrix code based on the bordering algorithm
should have execution times comparable to the current generation of general sparse
matrix packages based on rowwise Cholesky factorization (e.g., Yale Sparse Matrix
Package [4] and Sparspak [5]).

6. A note on data structures and implementation. Although it is possible
to implement the sparse bordering algorithm using only O(N) integer storage for the
factored matrix (all temporary work space), we favor the data structure described
in [3], which requires an integer array of length NZ + 1, where NZ is the number
of nonzeros in the upper triangle of A. This allows for a relatively simple and more
time-efficient code. At the same time, NZ O(N) for many sparse matrix problems,
for example, systems arising from discretizations of partial differential equations. We
briefly summarize the data structures proposed in [3], restricted here to the case
of symmetric matrices, and discuss the practical implementation of our procedures
within this framework.

Nonzeros in the upper triangle of the sparse matrix A are stored in an array a

A prototype package for carrying out general sparse Gaussian elimination using the bordering
approach (essentially identical to that presented in [3] except for the inclusion of an express vector
in the numerical factorization routine) is available from Argonne National Laboratory via Netlib.
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of length NZ / 1; elements are referenced through an integer array ja, also of length
NZ/ 1. Nonzeros in the Cholesky factor L U and the diagonal matrix D are stored
in an array u of length NZ’ / 1, where NZ’ is the number of nonzeros in D / U.
Entries in u are referenced through ja and an integer array jl of length NZ + 1, the
same length as ja.

The entries of a and ja are defined as follows: a(i), 1 <_ <_ N contain the ith
diagonal entry of A (ai). Entries a(ja(i)) to a(ja(i / 1) 1), 1 _< _< N contain the
nonzeros in the strict upper triangular part of the ith column of A, stored in order of
decreasing row index; corresponding entries of the ja array contain the row indices.
The entry a(N / 1) is arbitrary and is included because N / 1 pointers are required
at the beginning of ja. This scheme, although different in detail, was motivated by
the data structures of the Yale Sparse Matrix Package [4], except that the roles of
rows and columns have been interchanged.

The array u is somewhat similar in structure to a. The first N locations of
u contain the reciprocals of the diagonal entries of D; u(N 4- 1) is arbitrary. The
following entries in u contain the nonzeros in the strict upper triangular part of U,
stored column by column; the entries are ordered corresponding to the sorting of the
indices generated by our solution of the sorting problem. The diagonal entries of U
are unity and are not stored.

The array jl is used in conjunction with ja to access the data in u. Recall
that each row index stored in ja corresponds to one of the generalized leaves in the
sets ; this is really the key observation in reducing the overhead storage. Entries
jl(i), 1 <_ <_ N- 1 contain m(i), yielding the N- 1 edges in the m-tree. Entry jl(N)
is arbitrary. Entries jl(i- 1) (and jl(i) 1), N 4- 2 <_ <_ NZ 4- 1 point at the first
(and last) entries in u where the nonzeros of U generated by the leaf index ja(i) are
stored. These nonzeros correspond to one of the ordered index sets Tjk defined in
this work. The row index for the first entry is of course given by ja(i); subsequent
indices are generated in the proper order using the m-tree.

The complete set of data structures as they appear for our simple 3 3 grid graph
is shown in Table 2.

The following looping structure accesses the nonzeros in column k of U in sorted
order:

(A1)
(A2)
(i3)
(A4)
(A5)
(A6)
(A7)

for leaf ja(k 4- 1) 1,ja(k), step -1
j ja(leaf)
for jloc jl(leaf- 1),jl(leaf) 1, step 1

(u(jloc) contains matrix entry ujk)
j jl(j)

end for
end for

Statement (A1) loops over the generalized leaves for 7. The loop (A3)-(A6)
generates the ordered index set 7)kj associated with that leaf; the m-tree is used in
(A5). By the definition of jl, the parameter jloc always points to the entry in the
Cholesky factor Ujk

Variations on the looping structure (A1)-(AT) suffice for the forward and backward
solution procedures using this data structure; for these procedures, the leaves can be
processed in either forward or reverse order. This also suffices for the middle loop,
line ($3) in Procedure Sparse Factor. The inner loop on line ($4) is of this form,
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TABLE 2
Data structure entries for 3 x 3 grid graph.

ja(i) a(i) jl(i) u(i)
1 11 all 5
2 11 a22 5
3 11 a33 6
4 11 a44 6
5 11 a55 7
6 13 a66 7
7 15 a77 8
8 17 a8s 9
9 20 a99
10 23 11
11 2 a25 12
12 1 a15 13
13 4 a46 14
14 3 a36 15
15 4 a47 17
16 1 a7 19
17 7 aTs 20
18 6 a68 21
19 5 a58 22
20 8 a89 23
21 3 a39 26
22 2 a29 28
23
24
25
26
27

U25
U15
U46

U36
U47

U67
U17
U57
U78
U68
U58
U89
U39
U69
U79
U29

U59

except that the starting value for the line corresponding to (A3) (i.e., jl(leaf- 1))
is replaced by a value determined by Procedure Get-qijk. For this data structure,
a simple modification of parameter count in Procedure Get_qijk will allow count to
return the starting index for line (A3), a value jl(leaf- 1) _< count <_ jl(leaf)- 1,
provided that the intersection is not empty.
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AN O(N2) METHOD FOR COMPUTING THE EIGENSYSTEM
OF N N SYMMETRIC TRIDIAGONAL MATRICES
BY THE DIVIDE AND CONQUER APPROACH*

DORON GILL AND EITAN TADMOR$

To Eugene Isaacson on his 70th birthday

Abstract. An efficient method to solve the eigenproblem of N x N symmetric tridiagonal matrices is
proposed. Unlike the standard eigensolvers that necessitate O(N3) operations to compute the eigenvectors
of such matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N2)
operations. The method is based on serial implementation of the recently introduced Divide and Conquer
algorithm [3], [1], [4]. It exploits the fact that by O(N2) Divide and Conquer operations one can compute
the eigenvalues of an N x N symmetric tridiagonal matrix and a small number of pairs of successive rows
of its eigenvector matrix. The rest of the eigenvectors (either all together or one at a time) are computed
by linear three-term recurrence relations. The paper is concluded with numerical examples that demonstrate
the superiority of the proposed method for a special class of symmetric tridiagonal matrices, by saving an
order of magnitude in execution time at the expense of sacrificing a few orders of accuracy, although for
symmetric tridiagonal matrices in general, the method appears to be unstable.

Key words, symmetric eigenvalue problem, divide and conquer, updating problem

AMS(MOS) subject classification. 65F15

1. Introduction. The QR algorithm computes the eigenvalues of an N N Sym-
metric Tridiagonal (ST) matrix with O(N2) operations, while the corresponding eigen-
vector matrix is accumulated during the algorithm at the expense of O(N3) operations.
The additional order of magnitude required to compute the eigenvectors is typical of
serial algorithms. A complete O(N2) eigensolver can be obtained by appending such
serial algorithms with the Inverse Iteration (INVIT) method. Indeed, O(N) operations
of only one INVIT will suffice to accurately compute each eigenvector corresponding
to an isolated eigenvalue [8, Chap. 4]. In case of clustered eigenvalues, however, the
INVIT requires a more carefully chosen initialization, to avoid the loss of mutual
orthogonality between the corresponding, closely "related" eigenvectors.

Recently, a parallel Divide and Conquer (DC) algorithm was introduced for
computing the spectral decomposition of ST matrices [3], 1 ], [4]. A serial implementa-
tion ofthis algorithm, described in 2, requires the same number ofoperations. Namely,
the eigenvalues, which coincide with the roots of the so-called secular equation [6],
are computed at the expense of no more than O(N2) sequential operations, while the
associated eigenvectors necessitate O(N3) sequential operations. As before, the INVIT,
taken with the necessary precautions, is available here as an O(N2) method to compute
these eigenvectors. In 3-4, we propose an alternative efficient method, derived from
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(and therefore better suited to) the DC algorithm, which computes the eigensystem of
N x N ST matrices with only O(N2) sequential operations. The method employs linear
three-term recurrence relations that successively compute the rows of the eigenvector
matrix (or the components of each of the desired eigenvectors). The coefficients of
these relations depend on the already computed eigenvalues, and the method hinges
on the fact that the initial first two rows (or components) for the recurrence relations
emerge naturally from the DC computation of these eigenvalues. Thus, the input data
for the recurrence relations depends solely on the O(N2) operations for the DC
calculation of the eigenvalues. Together with the additional O(N2) operations required
to carry out these relations, we end up with an efficient O(N2) method to compute
the whole eigensystem of ST matrices. It should be emphasized that the advantages
of the DC algorithm are retained in our case. That is, we have a method which on the
one hand is well suited to exploit parallelism; on the other h/nd, even when run in
serial mode on large problems, the method is faster than the previously best sequential
algorithms, e.g., [3], [4].

The main limitation of the proposed method lies in the possible instability of the
three term recurrence relations mentioned above. In 4, we identify a useful class of
ST matrices for which the corresponding recurrence relations are stable. In such stable
cases, the numerical results of our method are almost as accurate as the standard DC
algorithm. In the general case, however, the accuracy of our method may deteriorate
for large N, N> 100, due to the instability of the corresponding recurrence relations.
To overcome the unstable error accumulation in such cases, one may restart the
recurrence relations at any stage of the recursive iterations with two new successive
rows of the eigenvector matrix. In 4, we show how to obtain two such successive
rows for restarting, at the expense of O(N2) DC operations.

Due to the sensitivity of the three-term recurrence relations, their input data should
be provided with high accuracy. To achieve this, we employ in 5 an improved root
finderminteresting for its own sakenin order to solve the secular equation mentioned
above. Numerical examples that demonstrate the efficiency as well as the limitations
of the proposed method are presented in 6.

2. The Divide and Conquer algorithm--An overview. Let DN be an N x N diagonal
matrix and let DN + trznzt be a Rank One Modification (ROM) of this matrix by a
unit N-vector ZN. The spectral decomposition of such ROM matrices is the heart of
the Divide and Conquer (DC) algorithm. Here we note that the problem of finding
the spectral decomposition of an N-dimensional ROM matrix, the so-called updating
problem, can be solved at the expense of no more than Const. N2 operations [1], [3],
[4]. Details of this solution are discussed in 4.

With this in mind we now turn to consider the eigenproblem of general N x N
Symmetric Tridiagonal (ST) matrices

tl t12
t21 I22

tmm tmm+l

tm+ l,m tm+l,m+
tN_I,N

tN,N-1 tNN

o tji.

Throughout the paper, vectors and matrices will be used with a subscript index denoting their
dimension.
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We can assume without restriction that N is even, N 2m, and that TN is already
given in its unreduced form, i.e., ti, i+l 0, 1 _-< i_-< N- 1; otherwise, Tv is decoupled
into smaller unreduced ST matrices. Then, we can split TN into the sum of

tl t2
t22

tmm fl 0

0 t,,,+,m+ fl

tN,N.

,-,-,(1),
(2 1) TN N/2 +flbNb bN=eNm)+e(m+)N, N

where the blocks T2 and T are N/2 x N/2 ST matrices and t,m+l 0 is the
coupling term of these two blocks

The DC algorithm [3], [1], [4] is based on the fact that in order to solve the
eigenproblem of N-dimensional ST matrices, it is sucient to solve this problem for
(N/2)-dimensional ST matrices. Specifically, if

(1), D(1) A(1) O(1) P(,),D(1)t IN
(2.2)

/ --N/2ZXN/E’N/2,

N/2 N/2XN/2N/2 N/2N/2

are the spectral decompositions of the N/2 x N/2 ST matrices -s/2 and T2,
respectively, then we can compute the spectral decomposition of the N x N ST matrix
TN by the following procedure"

I. First, we evaluate the unit N-vector

1 --N/2(2.3a) ZN= P(2

so that by (2.1), (2.2), and (2.3a), TN is unitarily similar to the ROM matrix

Try [p2Al)o)tN/21N/2

P/2AN2<2)’-N/Ea +bsbN

N/ A/ -/, +2flzszP}2 A/
P/2

,-,2)... (DN
’N/z

DN (

--(1).,. ]

II. Second, we solve the updating problem by finding the spectral decomposition
of the ROM matrix

(2.3b) DN+trZNZN=QNANQ, QNQ’N =IN, o’=2/3.



164 DORON GILL AND EITAN TADMOR

III. Finally, we compute the unitary matrix

(2.3c) p= [P%2 ] QP()/2
and obtain, by (2.3b) and (2.3c), the spectral decomposition of TN as

P()/2
QANO P%2

(N2 19(2) PNANPtT p
/

PP I.

This process can be applied recursively: the N-dimensional eigenproblem of TN is
solved in terms of two independent (N/2)-dimensional eigenproblems of T%2 and

N/2, which in turn are solved in terms of four independent (N/4)-dimensional
eigenproblems of T(4, ,-.-,(2),. T(3) (4)

1N/, --N/n, TN/4, etc. Thus, the DC algorithm for an
N 2"-dimensional ST matrix TN is organized as follows. After n- 1 splitting steps
we are left with 2 "-2 pairs of 2 x 2 ST matrices. In the first iteration they are used to
construct, with the help of (2.3a)-(2.3c), the eigensystem of 2 "-3 pairs of 4 x 4 ST
matrices; in the second iteration, one constructs the eigensystem of 2 "-4 pairs of 8 x 8
ST matrices, etc.; after n-2 such iterations we end up with the eigensystems of the
pair T(NI2 T(2)

N/2, and the last n 1 iteration solves the eigenproblem of TN. A sequential
implementation of a typical kth iteration consists of 2 n-k-1 times, evaluating the
2k+l-dimensional unit vectors z in the first stage (2.3a), solving 2k+l-dimensional ROM
eigenproblems in the second stage (2.3b), and computing 2k+l-dimensional products
of unitary matrices in the third stage (2.3c).

The total amount of work spent on the first two stages, (2.3a) and (2.3b), of all
iterations, does not exceed 2 Const. N2; the total work required for computing the

.--1 n-k-1 Thus, the total operations cost ofeigenvectors in (2.3c) is Yk=I 2 4(2k) N
the DC algorithm for finding the eigensystem (both the eigenvalues and eigenvectors)
of an N x N ST matrix is N3+ 2 Const. N2.

If only the eigenvalues are required, then we can do better by saving the O(N3)
operations required to compute the eigenvectors in the third stage (2.3c). Instead, the
first stage of a typical kth iteration, which requires 2 n-k-1 different evaluations of
2k/l-dimensional unit vectors of the form

b2k+Z2+l p22)

can be efficiently implemented as follows: According to (2.3c), P) is represented by
a successive product of

2J
"o. .(2k-J) j k, k- 1," ", 1,

2

where Q) were found by spectral decompositions of ROM matrices in previous
-(;iterations; similarly, P is represented by a successive product of

(2k-j+l)

(2-+) j=k,k-1,’",l.

(k)Hence, we can evaluate each of the 2 "-k- different vectors, z2*, as z2* z2* where

.. 2+
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at the expense of k= 2k_j+l 22J <4k+ operations The total work spent on the first
n--1 2n-k-1 k+lstages in all iterations is therefore k--1 4 < 2N2. This is complemented with

the solution of 2 n-k-1 different updating problems (see (2.3b))

(2.4b) D2k+’ + CrZ2k+’Zk+’ Q2k+’A2k+’Q2TM

The total work spent on the second stage in all iterations amounts to 2 Const. N2.
Consequently, the total operations cost of the DC algorithm, (2.4a), (2.4b), for finding
the eigenvalues of an N x N ST matrix is (2 Const. + 2)N2.

3. An O(N2) method for the eigensystem of N x N ST matrix. Given an N x N
ST matrix TN, we can compute its eigenvalues by the DC algorithm (2.4a), (2.4b) at
the expense of no more than O(N2) operations.2 Thus, it remains to compute efficiently,
i.e., with O(N2) operations, the eigenvectors of this matrix. To this end we may proceed
as follows.

We seek the unitary matrix PN, PNPt- IN, which diagonalizes TN,

(3 1) TN PNANPN
Let pi)__ p) denote the ith row vector of PN. Equating the ith rows of

TP PAu

we obtain, in view of the reduced tridiagonal structure of

p%+l) p%)A ti, i+ # O.(3.2) t, i_,p-l) + ti,iP%) + ti i+1 N,

Equation (3.2) is a linear three-term recurrence relation between the rows, p), of PN,
whose coefficients are determined by the entries of TN. The input data required to
solve these relations uniquely consists of

(1) The eigenvalues AN =diag (A), A2), AN)) of TN, which determine the
terms p%)AN =- (A()pi, A<2)p2, , A<N)pN) on the right of (3.2). The eigenvalues are
computed by the DC algorithm (2.4a), (2.4b) with (2 Const.+2)N operations.

(2) Two successive rows of PN that will serve as initial data for the recursive
three-term relations (3.2). The proposed method hinges on the observation that two
such rows emerge naturally from that part of the DC algorithm (2.4a), (2.4b) which
computes the eigenvalues of TN. Indeed, from the last n- 1 iteration of (2.4a) we have
at our disposal the unit N-vector zN, which according to (2.3a) satisfies

0

../... .] 1 N/2l(3.3) Z(N2}2J ."--19(2)N/2..I| 1 ’*(2)N/2.1|-%/"
,0

Hence Z(NI2 and (2) o()t
N/2 are in fact the last and first column vectors of -N/2 and

respectively. Put differently, (2()/2 ON and (ON/2 2 ,
N/2 are row numbers m N/2

and m + 1 of

In fact, as observed by Cuppen [3], this number of operations can be substantially reduced by up to
O(N log N) operations, in practical cases which employ sufficiently many deflations.
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Consequently, equating the m and m/ 1 rows of (2.3c), we obtain the two initial
successive rows as

p(m)= (Z2, Os/2)tQN,
(3.4)

P(Nm+l) (ON/E, Z(2)N/E)tQN;"
the remaining rows of Ps are computed recursively by (3.2)

(3.5a) p(+,) 1__ p()(As t,.ils)- t,,i_,p(-l)], i= m + 1, , N- 1,
ti, i+l

,(i-1) 1
(3.5b) vs =[P((As-tiIs)-ti.i+lP(;v+’], i=m,m-1,. ,2.

ti, i-1

The operation cost of (3.4)-(3.5) does not exceed 3N2. Thus (2.4a), (2.4b) together
with (3.4), (3.5) provide us with an O(N2) method for computing the whole eigensystem
of N x N ST matrices.

The error analysis of the proposed method depends on two ingredients:
(1) The accuracy of the input data for (3.5a), (3.5b), namely, the errors

accumulated in computing the eigenvalues As =diag (,(1), A(2), ", A(N)) and the two
successive rows pm), p,+l) of Ps. The size of these errors is determined by the stability
properties of the DC algorithm (2.4a), (2.4b). In this context, we recall that stable
behavior of the DC algorithm hinges on an accurate solution of the ROM problem
(2.4b) (see [1], [3], [4]). In 5, we borrow from [1], [3], and [4], discussing a root
finder for an accurate computation of the eigenvalues A2k+l which are obtained as the
roots of the characteristic equation associated with the ROM matrix in (2.4b).

(2) The second source of error is due to accumulation of rounding errors in the
recurrence relations (3.5a), (3.5b). In order to examine this error accumulation, we
rewrite (3.5) as a one-step iteration

(3.6a) [p(+’>, p()]- [p(), p(-’)][ I/ ,,.,+,[As -’,,,Is] Is ] i= m + 1,""", N-1,
-(t,.,_,/ti.,+i)Is Os

(3.6b) [p-’,p)]=[p),p+l)][ 1/ti’i-’[As-ti’ils] IN] i=m,m-1,...,2.
--( ti,i+l/ ti, i-1)IN ON

An indication of the stability properties of (3.6a), (3.6b) is provided by the eigenvalues
K=K 0 of the two 2N2N matrices on the right-hand sides, i.e., for i=
re+l, m/2, , N-1 we have

2(3.7a) t,.i+l(Kij) -(Aj-ti.,)ui+ti.i-l=O, j=l,2,...,N

and for i= m, m-1,..., 2 we have

2(3.7b) ti, i_l K ij -(hj- ti, i) K ij / ti,i+l- 0, j 1, 2," ", N.

Hence the error in the ith iteration of (3.5) is amplified by a factor of at least

g<i)=_ max
Ij<N

Thus, the method is expected to be stable if

N--1 N-1

(3.8) H g(i)= max (I K+
i=2 i= l<--J<=N

ijl, ]K i1) -< Const.
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As a canonical example for such stable behavior, let us consider ST matrices
whose entries are "slowly varying" along their diagonals, i.e., tij ti+l.j+. Now, if the
superdiagonal entries are properly scaled so that also t.+- t.-l, then by Gershgorin
estimate we have for any 1 <-j <= N,

Ix t,.,[ < (I t,.,-l + t.,+[)= 41t,.,_[" Iti.i+ll,
and hence the product of the characteristic roots r is of order unity, for

2
ti,il2 (A- t,,i)4(A- ti,i)2-4ti,i+lti,i_

1.I,1
2 ti,i ti,i

If, on the other hand, (3.8) fails, we have an unstable error growth at the amount- g( >> 1 as confirmed by the numerical examples demonstrated in 6. Typically,i=2

such an instability shows up by the loss of ohogonality between the computed rows
p of P. Hence, one approach to solve the stability problem would be to use
reohogonalization, once the instability was detected by the loss of ohogonality;
consult [3, 3]. An alternative approach to overcome the instability problem, which
better suits the proposed method, is to restart the recurrence relations (3.5) at the
current iteration with two new successive rows of P. How should we obtain two such
successive rows for restaing? Consider, for example, the N 4m-dimensional prob-
lem. The iteration before the last of (2.4a) provides us with two (N/2)-dimensional
unit vectors, say z/ and w/, where

0

1N/41 Z41(3.9a) Lz4J NI4J’(2) I Zul,

0

(3.9b)
WNI4I i.l.. .1 w
= L P4J /w/.
N/4 N/4

As before, we obtain the m and m + 1 rows of N/z as
t()

/4 N/2
(3.10a)

p) (zg) Ou/4)
(2)

u/ Ou/4, u/a) u/:

and the m and m+l rows of N/z as

N/4 N/4] N/2
(3.0b)

P) (w()
pv+ (0/4 w4)’(N/2"

Consequently, we can compute with O(N2) operations row numbers m, m+ 1, 3m,
and 3m + 1 of Pu, for by (2.3c) we have

%=(pv,
.(1.+) Ou/:)Qup%+l=(e/

(3.) p o/,p7’O
(2,m+))pm+)=(Ou/:,pu/:

In a similar manner, one can resta the recurrence relations (3.5) at any desired
iteration.
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4. The eigenvectors of TN---One at a time. In the previous section we discussed
an O(N2) method for computing the.whole eigensystem--eigenvalues and eigenvectors
of an N x N ST matrix. In several applications one is interested in only a few of the
eigenvectors of TN. We now present a variant of this method that enables us to compute
each one of the desired eigenvectors with O(N) operations.

As before, we first prepare, with the help of the DC algorithm (2.4a), (2.4b), (3.4),
the eigenvalues {A(J)}fv_- and the two middle successive rows, pN") and p(Nre+l) of P.
This can be done at the expense of O(N2) operations, and in many practical cases
with even less. Equipped with this we can compute the eigenvector xN=
(x(1), x(2), x()) corresponding to the eigenvalue, say, h

(4.1) TNXN A(J)XN

Equation (4.1) gives us the linear three-term recurrence relations between the
components of x

X
(i-1) q. ti, X(i) X

(i+1) A(J)x(i)(4.2) ti, i_ -- ti, i+

Since x coincides with the jth column of P, we have its two middle entries x") and
x<"+ from the jth entries of p") and ps"+1). The rest of the entries are computed
recursively with 3N operations by

(4.3a) x(i+l)=1 [(Aj t,,,)x<- ti, i_ x(i-1)], i= m + 1,. ., N- 1,
ti, i+l

(4.3b) xi_l 1__ [(Aj ti,i)x<i)- ti, i+l x<i+], i= m, m 1,. ., 2.
ti, i-1

The computation is stable or unstable depending on whether

N-1

(4.4) I-I max (l-[
i=2

is bounded or >>1.

5. Solution of the updating problem. In this section we follow [1] and [3] in a
discussion of the promised O(N) method for solving the updating problem (2.3b),
i.e., computing the eigensystem of DN +zz. Without loss of generality we may
assume that cr > 0 and that the problem has been deflated, so that the components of
zN=(z<1)... z<N)) t, as well as the difference between any two diagonal entries of
D =diag (dll < d22 <" <s dNN), are different from zero (in practice we take a neigh-
bourhood of zero with a preassigned tolerance, say e); consult [1], [3], and [4, 4].
In this case, it follows that the eigenvalues of the updating problem A <i), 1, 2, , N,
strictly interlace with those of Dv [1, Thm. 1], [3, Thin. 2.1]

(5.1) dl < A (1) < d: < A < < A<N <d+ cr =- dN+,N+I

With this in mind we now turn to compute the required eigenvalues A A<i
the roots of the so-called secular equation [6]

(5.2) f(A -= + crjZ,-: d./- A
O.

as

The function f(A) is the rational representation of the characteristic polynomial
associated with DN + crzuzt, and the interlacing property ensures thatf has N simple
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roots h (i) lying in the open intervals (d., d+l,+l), i= 1,2,..., N. We shall mention
two zero-finders that have been advocated to find these roots:

(1) The zero-finder proposed by Bunch et al. [1], which is based on rational
interpolation, employs the values off(A) and its first derivative, f’(h). The advantage
of this zero-finder (which will be referred to as "zeroinder") is that it produces a
monotonic sequence of approximations in (d., d+l,+l) that converges quadratically to
h (). However, it is very sensitive near the ends of the intervals (d,, di+l,+l), where the
derivative involved, f’(h), becomes singular.

(2) Cuppen [3] advocated the "zeroinrat" zero-finder of Bus and Dekker [2],
which is based on rational interpolation of three f-values in the interval (d,, d+l,+).
This algorithm is more robust than the "zeroinder," for it does not involve f’(h);
consequently, it avoids the previous diculty of singular derivatives near d. and,
moreover, it saves half the operations per iteration. Yet, the current "zeroinrat"
algorithm lacks the monotonicity propey we had before, and, therefore, it requires
safeguarding to ensure that we remain within the desired interval (this decreases the
convergence rate to 1.839).

Assuming that either one of these zero-finders requires no more than a constant
number of iterations to compute (with some preassigned tolerable accuracy) each root
of (5.2), then the required eigenvalues h (), i= 1,2,..., N, are obtained by O(N2)
operations. Equipped with these eigenvalues, we now may use the Sherman-Morrison
formula to compute the associated normalized eigenvectors, q), which form the
column vectors of QN in (2.3b), as [1, 4).

(5.3) q%= (Du-A(’)Iu)-’ZN
i[(Du_h(,)iu)_iz, i= 1,’’’, N,

and the total operations cost does not exceed O(N), as asseed.
To enhance the stability propeies of the whole DC algorithm, the updating

problem should be solved with maximum accuracy. To achieve this, we now present
an efficient implementation for the solution of this problem, based on the ingredients
described above.

As a first step we reformulate (5.2) in a manner suggested in 1 ]. By the interlacing
propey (5.1) we have

N

(5.4) h (i) dii + (i), 0 < () < 1, () 1.
i=1

For 1, 2,..., N we make the change of variables, h d, +, so that instead of
ff(h), we now obtain N different rational functions, (),

(z()
(5.5) ()= 1 + 4 d,

i= 1, 2,... N,

each of which has a simple root () in the open interval (6ii O, 6+,). Computing
the root of () in this intervalrather than the root off(h) in the (d,, d+,+)
intervalhas the advantage that W() is uniformly bounded from below (by 1) rather
than having f’(h)l/g, as in [3, Thm. 3.1]. The computation of the desired root
proceeds by carefully monitoring a mixture of the two zero-finders mentioned above.
Namely, the "zeroinder" algorithm will be used when we are well inside the interval
of interest, (0, 6+,), while we switch to the "zeroinrat" algorithm when we approach
either end of this inteal. To decide upon the switching policy, we first quote the
following.
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LEMMA 5.1 [4, Lem. 4.6]. Assume that the deflation test Iz(i)l > e is satisfied. Then
either we have

2

(5.6a) o’(2 + 8i+,.,)
a’+l"--</x {’) _-<

or alternatively

1
(5,+1., < /x

{ < 1 o.2(2_7_},+,,,)(5.6b)
2

The bounds on the left- and right-hand sides of (5.6) yield a closed subinterval
[L{, H{i], which encloses/x{. (Experiments have shown that these bounds actually
may be achieved.)

A more practical indication to the location of {} is obtained from the following
considerations. The rational function

(z(’+’)) (z))
(5.7a) ()=Const,+(z(’))2+ Const, E g,-- i+l,i- j#i,i+l 1,i

has a simple root, 1(), in the interval (0, +,). Since () dominates () in that
interval and they are both monotonically increasing, we can use this root (that is found
by solving a simple quadratic equation) as a lower bound for (). Similarly, the function

(5.7b) U()=Const+
(z())2 (z(+))2+ Const

z)2

has a simple root h () in the interval (0, 6+,), which may serve as an upper bound
for ().

Returning to our problem of finding the roots of () in (5.5), we use the
"zeroinder" algorithm when inside the (0, +1,) interval. This requires us to compute
W(), and Lemma 5.1 indicates that as we approach either end of the interval, the
computation of W’() involves factors of e -4 that will lead to an underflow problem.
To avoid this situation, we use a switching policy, which in each step tests if either
one of the following inequalities is satisfied"

(5.8) (i) L( h( > H( h( <

as an indication that we are in the neighborhood of the singular ends, in which case
we use the "zeroinrat" algorithm instead. This "switching" policy enabled us to achieve,
with the usual 64-bit arithmetic, more than satisfactory results that otherwise would
have required the less attractive extended precision arithmetic.

Concerning the computation of the eigenvectors in (5.3), we note that it is possible
to have severe round-off when h () is close to d, or d+,+ [3, } 2]. The reformulation
ofthe eigenvalue problem in (5.5) enables one to avoid half ofthese round-off problems,
namely, when h () is close to d,. Indeed, the normalized eigenvectors, q%), are now
given by

(5.9) q%= [D%)]-zu D%)=diag (6 au.)-()I.

Usin (.9) instead o (5.3) aoids cancellation that arises when A () is too dose to
i.e., when () is too close to zero, or 8.0 in this case. We are still left with the
other half of the cancellation problem when X () is too dose to +,+. 1thi is indeed
the cse (s we can oresee by computing the practical bounds for () rom
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(5.7b)), then we propose to perform yet another reformulation of our eigenvalue
problem, using

(5.10) A (i) di+l,i+ o"rl
(i)

instead of (5.4). In this case the role of the rational functions W() in (5.5) is played
by

(5.11) /(/) 1 +J=IZ j-/; 2", tji+’--, djj-di+l,i+lo. i= 1, 2, n,

each ofwhich has a simple root (i) in the open interval (0, --ti,i+l). The correspond-
ing normalized eigenvectors are given by

(5.12) q%)= /)%)=diag(61,+l’"

and cancellation that arises when Ai) is too close to di+l,i+l, i.e., when t
) is too close

to zero is avoided for 6+1,+1 -= O.

6. Numerical experiments. The main object of our experiments was a comparison
between the standard O(N3) DC algorithm for computing the eigensystems of N x N
ST matrices (2.3a)-(2.3c), and the proposed O(N2) method in (2.4a), (2.4b), and (3.4),
which makes use of the three-term recurrence relations (3.5a), (3.5b). The input data
for these relations, the eigenvalues A ti) and the two initial successive row vectors p%"),
pN’+1) were supplied with maximum accuracy, with the help of the updating solver
described in 5 that avoids extended precision. Indeed all our calculations, including
the pathologically ill-conditioned W+N- Wilkinson’s matrices, were carried out with
a 64-bit arithmetic.

The first set of results includes "well-behaved" matrices taken from [7, (7.4)-(7.9)].
The entries along the diagonals of these matrices are "slowly varying" and their
eigenvalues are equally distributed. The stability analysis in 3 indicates bounded
amplification factors in these cases, and the numerical results confirmed the expected
stable behavior of our method. Table 1 summarizes the results for the prototype ST
matrix of this group where T

Since the rows of P were constructed by equating to zero rows 2, 3, , N- 1 of
TP-PA, the quantities on the left columns, TP-PAII stand for

p(2)_ (1)Amax (llt,xp()+ t,2 P [[tN,N- 4-tN,N p ).

They may serve us as a quantitive indication of the accumulation of rounding errors
in the three-term recursion relations (3.5), which is responsible for the loss of (no more
than) two orders of magnitude relative to the standard algorithm. The advantage of
the proposed method lies upon the fact that the results on the right columns are

TABLE
Results for T[ 1, 2, matrix of order N.

Standard DC algorithm The proposed method

N TP PA ptp III TP PA PiP 111
101 2.5E- 15 6.2E- 16 9.5E- 15 7.2E- 15
201 2.6E- 15 2.5E- 15 2.2E- 14 1.5E- 14
301 3.0E- 15 2.8E- 15 2.9E- 14 8.8E- 14
401 4.0E- 15 6.9E- 15 2.5E- 13 1.2E- 13
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obtained by saving order of magnitude in execution time relative to the results on the
left columns.

Next, we turn to the second group of matrices that consists of Wilkinson’s matrices,
W+v. The superdiagonals of these matrices are properly scaled to begin withmthey
all equal one; the entries along the main diagonal, however, diag((N-1)/2, (N-
3)/2,..., 1, 0, 1,..., (N-1)/2) are far from being "slowly varying." This leads to
amplification factors of the recurrence relations (3.5) of order ---(N-1)/2!, which
indicates loss of all (64-bit precision) significant figures in computing the eigenproblem
of W+ of order N > 40. Moreover, the largest eigenvalues of Wv are clustered in
pairs, which may be inseparable up to the 14th decimal digit. This then leads to
additional inaccuracies in the updating solution (while seeking two extremely close
roots of the secular equation) as well as in the deflation process. As a result, the initial
input data for the recurrence relation will also suffer from loss of accuracy. These
arguments are well reflected in Table 2.

In order to be competitive with the standard algorithm that gave excellent results
for W+v up to order N 201, an attempt was made to improve the results of our
method. To this end we have appended our method with the restarting procedure
described in 3. Thus, by computing the row vectors (here rn (N+ 1)/4) p"), p(Nm+l),
p(3Nm) and p+) as additional input data to restart the three-term recurrence relations,
we were able to get decent results for the W+s-matrices up to order N-- 200. Repeating
such restarting procedures would enable us to deal with even larger W+c-matrices,
still within the O(N) operations limit.

Finally, the last group of matrices that were tested consists of randomly generated
entries in [-1, 1]. The results obtained are summarized in Table 3.

We observe that excellent results are obtained by our method for such randomly
generated matrices of order up to N---100. If additional restarting procedures were
employed every 100-200 iterations, it would enable us to achieve highly accurate results
for matrices of almost any practical size.

TABLE 2
Results for the W+rv matrices.

Standard DC algorithm The proposed method

N TP- PAII IIP’P- Ill TP- PAII P’P-
21 4.5E- 16 2.5E- 16 1.2E- 12 9.8E- 10
41 1.3E- 15 9.4E- 16 3.7E- 8 7.4E- 7
47 2.0E- 15 9.1E- 16 5.3E- 3 1.0E- 3
49 2.0E- 15 9.8E- 16 0.12 0.23

TABLE 3
Results for random matrices of order N.

Standard DC algorithm The proposed method

100 8.4E- 15 9.8E- 16 9.5E- 15 7.6E- 15
200 5.9E- 15 3.4E- 15 6.2E-9 9.8E- 8
300 6.3E- 15 5.6E- 15 4.2E- 4 3.1E-2
400 7.2E- 15 6.8E- 15 O(1) O(1)
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In summary, we conclude that the proposed method for solving the eigenproblem
of ST matrices provides a competitive alternative to the standard eigensolvers for a
certain class of such matrices; by sacrificing a few orders of accuracy, the method
enables one to save order of magnitude in the total execution time. This conclusion
was confirmed by further extensive numerical experiments reported in [5].

Acknowledgment. We thank Professor Beresford Parlett for an enlightening dis-
cussion on the Inverse Iteration method.
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RELATIVE SIZES OF THE HESSIAN TERMS IN
NONLINEAR PARAMETER ESTIMATION*

J. M. VARAH

Abstract. The computational estimation of parameters in nonlinear models leads to nonlinear least
squares problems with Hessians having a particular structure: H jTj + B, with J the Jacobian matrix and
B arising from second derivative terms. In practice, it has been noticed that B is very often considerably
smaller than jTj, particularly near a local minimum, so that H can often be well approximated by the first
derivative term. In this paper an attempt is made to give some explanation for this behaviour and to indicate
how to check for it during the computational process.

Key words, parameter estimation, nonlinear least squares

AMS(MOS) subject classification. 65F20

1. Introduction. The least squares fitting of parameters p (Pl,"" ", Pro) to non-
linear models, either using a functional model

(1.1) y=f(t;p)

or a differential equation model

(1.2) y’ =f(t; p),

with values specified at certain points y(ti)= Yi, 1,. ., n, leads to the minimization
of a discrete nonlinear least squares function

(1.3) b(p) (y(t,; p)_y,)2_= d2.
i=l

Suppose p* is a local minimum for b(p). Then in a neighbourhood of p*, we have

w(i)p)/O(ll,pll 3)y(t p*+t$p) y(t; p*)+(Jtp)+1/2(p
where J is the n x m Jacobian matrix

0
Ji =-p [y( ti; p*)]

and { W<i)}’ are the tn x m second derivative matrices

02y( ti; p*).
OpOpk

Since the gradient of 4(p*), g(p*) Jrd O, the behaviour of b(p) near p* is as follows"

(1.4) b(p* + ,)= b(p*)+ T,H, + o(ll , 3)
where the Hessian matrix H has two parts:

(1.5) H=jTj+
i=1

The nature of the (positive definite) matrix H(p*) is crucial to the understanding
of the parameter estimation problem at hand. In particular,

* Received by the editors September 26, 1988; accepted for publication (in revised form) April 14, 1989.

" Computer Science Department, University of British Columbia, Vancouver, British Columbia
V6T 1W5, Canada.
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(i) The convergence of numerical schemes for minimizing b(p) depends on the
nature of H and on approximating it accurately (see Dennis and Schnabel (1983)).

(ii) The sensitivity of the parameter values p* depends on the near-singularity
of H, and hence on accurate determination of its condition number (see Varah (1987)).

(iii) In a statistical context, after making appropriate assumptions about the nature
of the errors involved, the resulting confidence regions for the parameters will depend
on H (see Draper and Smith (1981)). Moreover, decisions on the viability of linearized
confidence regions can be made on the basis of H and its constituent parts (see Bates
and Watts (1980) or Ratkowsky (1983)).

In practice, when actually computing parameter values, it has been noticed that
at or near the local minimum p*, H is often well approximated by jrj. Of course,
from (1.5), the B matrix will be small when either the residuals d or when the second
derivative matrices W are small. However, the phenomenon appears to occur more
generally; for example, Donaldson and Schnabel (1987), in an extensive study of linear
versus nonlinear confidence region for algebraic problems (1.1), found very little
difference in the regions generated using H or JrJ in a wide variety of examples. This
has also been the present author’s experience in dealing with differential equation
models (1.2).

From a computational point of view, it is much easier to monitor and approximate
the Jacobian matrix J than the second derivative matrices Wi. Thus if it were known
that H was well approximated by JrJ, there would be a large saving in computational
effort.

It is the purpose of this note to provide some explanation for this behaviour. In
2, we cast the problem into the more convenient continuous least squares setting and

identify one attribute of a given model that will lead to the above behaviour. In 3,
we investigate the relationship with the recent statistical work involving curvature
measures of nonlinearity. Finally, in 4 we present some numerical examples illustrat-
ing the behaviour.

2. Projecting the second derivative matrix. Although we could continue our dis-
cussion using the discrete nonlinear least squares problem given above, we feel it is
more convenient (and more transparent) first to use the corresponding continuous
problem: given a model y =f(t; p) and a data function 33(t) in some interval, find p*
to (locally) minimize

(2.1) O(p) I (y(t; p) 33(t))2 dt.

If we let z)(t)=oy/apj and Wk(t)=aZy/op opk, then the gradient of O,

a_o= fOp
gj(p) (y(t; p)-(t))zO)(t) dt (=0 for p=p*)

and the Hessian

(2.2) H,
020

Op Opk -I zO)(t)z<k)(t) dt+I (y(t;p)-(t))Wkdt=-Ajk+Bt,.

Typically, a given discrete problem (1.3) will be not unlike its continuous analogue,
particularly with a fairly large number of discrete data points. Note that the A-matrix
is the Gram matrix of the functions {zJ)(t)}’.
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The natural function space for this continuous least squares problem is the space
of square integrable functions over the given interval, with Iif1122 f(t)2 dt. We assume
for the given problem that all the first and second derivative functions appearing above
are smooth and square integrable.

Now let S be the subspace spanned by (z(J)(t)), and for each j, k, let k(t) be
the projection of Wjk(t into S. If{q (1), , q’)) forms an orthonormal basis for S, then

Wjk( t) .(i),(i)
Ujkl (t),

i=1
[ Wk(t)q(’)

jk (t) at,

and

I1 . :,

The crucial observation is the following" in the evaluation of the B-matrix in (2.2), at
a local minimum p= p*, the term involving the projection jk(t) is zero. In fact, we
have the following"

THEOREM 2.1. Consider the Hessian matrix H evaluated at p= p* as in (2.2). For
each j, k 1,..., m, let Wk( be decomposed as above. Then

Proofi We have

Bjk f (y-) Wk dt

=0+ I y Wk IV.k dt.

Thus

(y-) dt. (Wk-- Wk) dt

O(p*)ll

Hence not only will the elements of B be small when the residual is small or when
the second derivative terms are small, but at a local minimum, they will be small if
the second derivative terms "look like" the first derivatives. In practice, this seems to
be a common occurrence, which we illustrate in the examples.

In the discrete setting of 1, with data points (t), the procedure is basically the
same, except that the norm is now the 1 vector norm. For the set of second derivative
matrices { W()} we form for each j, k the projection vector W in the space S spanned
by the columns ofthe Jacobian matrix. If J QR is the QR decomposition ofJ(p*), then

b(],)q
i--1
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where the matrices

B(i) q!i) w(l)
i=l

As in the continuous case, we have

K(i)$2(2.3) I1 -
i=l

And similarly we obtain the following theorem.
THEOREM 2.2. Consider the discrete Hessian matrix H JrJ + Bfrom (1.5), evalu-

ated at p p*. For each j, k 1,..., m, let k be decomposed as above. en
(2.4) IBI

In the discrete case, it may also be of interest to compare the relative sizes of the
two Hessian components. Using J QR, we can write

H T(I+-TB- )R,
where consists of the (nonzero) first m rows of R. The marix -TB-T is
sometimes called the curvature matrix (see Bjbrck (1988)). When the Jacobian is ill
conditioned, this matrix may be much larger than B. One effect of this is that H may
"look like" JTj in absolute terms, but its small eigenvalues may be significantly different
from the small eigenvalues of jTj in relative terms.

Computationally, it is woh mentioning that - ] can be evaluated using
(2.) without storing all the columns of Q. After computing the { W} matrices, one
merely needs to compute B, S and as above.

Thus one can bound the size of the B matrix in a practical situation by using
Theorem 2.2. In the examples given in 4, the actual bounds computed give quite
accurate estimates of the size of B.. Relatio to statistical atres. There has been a great deal of discussion in
the statistical literature concerning the effects of nonlinearity in parameter models like
(1.1). For example, the question of validity of linearized confidence regions in a
nonlinear model is very impoant. The first classic paper in this area is Beale (1960),
where the author attempts to quantify the effect of the nonlinearity in the model. More
recently, Bates and Watts (1980) introduced the idea of relative curvatures and related
them to Beale’s work. This paper has spawned a great deal of fuher investigation
(see, for example, Ratkowsky (198) and Cook and Goldberg (1986)).

These relative curvatures can be described using the procedure of the previous
section, applied in the discrete setting. The projection vectors are computed for
each j, k, producing "tangential" and "normal" component vectors

and =-.
These vectors are then recast in matrix form as {} and {}, and the relative
curvatures defined as

=s. max
()

(parameter-effects curvature),

=s. max ()[ (intrinsic curvature)

THere s= (p*)/(n-m) and ,()=
Note that although {} will be small when the second derivatives look like the

first, this may not be reflected in F being small if J is ill conditioned.
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4. Numerical examples. Here we present four fairly representative models, each
of which has been used in the numerical or statistical literature. For the purposes of
this paper, we generate data for each example by making random perturbations to an
exact model (where p Pe) at a prescribed noise level e. The results given are representa-
tive for the models generally; in all cases we use 10 data points and 0=< =< 3 as the
range of the independent variable, but the results do not change significantly for other
choices. Since the models are nonlinear, the results do vary with the choice ofparameters
p, and where appropriate we have included two values for Pe. The more interesting
results are for relatively high noise levels, and we include results for e 10-2 and 10-1.

For each example and each data set we minimize b(p), obtaining p*, and then
compute matrices, J, B, H, and { W<i)}. We then compute/ and the size ofthe projection
W. We indicate the sizes of matrices B,/, and ]/- WII2 by their maximum elements,
and the conditioning of J and H by the minimum eigenvalues AI(JTJ) and AI(H).
The maximum elements of J, H, and W are of order unity. We also give Cmax max Co,
our bound for B computed from (2.4).

Example 1 (Michaelis-Menten model), y(t; p)=plt/(p2+ t).
This is a common example in the statistical literature; see, for example, Bates and
Watts (1980) or Cook and Goldberg (1986). Refer to Table 1.

The first choice of Pe is typical for the example: the problem is reasonably well
conditioned, and B is three or four orders of magnitude smaller than H or J. The
second choice is included because it is comparable to the data used by Bates and
Watts. This case is much more poorly conditioned, which is (at least partly) due to
poor scaling of J for these parameter values. The poor conditioning is reflected in the
large difference between Pe and p*.

Example 2 (Two exponential model), y(t; p) Plep2t + p3ep4t.
This is a well-known, ill-conditioned model from the numerical literature (see,

for example, Varah (1985)). The results are similar to those of Example 1, except that
this example is more uniformly ill conditioned. Notice also that here B is of order
unity, but B is of order 10-3 or 10-4. Refer to Table 2.

Example 3 (Asymptotic regression model), y(t; p) p +p2ep3t.
This well-conditioned model is standard in the statistical literature (see Ratkowsky

(1983), p. 101 or Donaldson and Schnabel (1987)). Even in this example, although

TABLE

Pe e p* /b(p*) IBlmax A,(JTJ) AI(H I/lmax [l- Wllmax Cmax

1.0, 1.0 10-2 1.007, 1.02 0.016 1.2x 10-4 0.032 0.032 3.0x 10-3 0.056 9.0x 10-4

1.0, 1.0 10-1 1.09, 1.09 0.107 2.3 10-3 0.031 0.029 0.06 0.052 5.6 10-3

0.1,1.7 10-2 0.097, 1.61 0.019 1.6x10-5 8.510-5 1.010-4 0.19 1.610-3 3.0x10-5

0.1,1.7 10- 0.018, 2.26 0.131 6.3x10-6 9.0x10-7 7.2x10-6 7.0 1.0xl0-4 1.3x10-5

TABLE 2

Pe e p* x/b’(p*) IBlmax II(JTJ) /l(n) I/lmax - Wllmax Cmax

1,-1, 1,-2 10-2 0.97, -0.98 0.013 2.7 10-4 1.3 x 10-4 1.6 10-4 0.19
1.03, -2.03

1, -1, 1, -2 10-1 0.84, -0.85 0.130 4.1x 10-3 6.4x 10-4 1.3 10-3 1.10
1.24, -2.31

0.024 3.1 10-4

0.045 5.9 10-3
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TABLE 3

P P* IBlmax At(JJ) At(H) I/lmax I1-- Wllma Cmax

1, 1, -1 10 1.007, 0.995, -1.01 0.010 5.4 10 0.088 0.089 5.6 10-3 0.15 1.5 10
1, 1, -1 10 0.997, 1.02, -1.008 0.19 1.7 10 0.093 0.078 0.16 0.16 3.0 10-2

1, -1, -1 10-2 1.0, -0.998, -1.004 0.016 1.2 x 10-3 0.089 0.090 0.012 0.16 2.6 10-3

1, -1, -1 10 0.94, -0.95, -1.03 0.13 8.3 10-3 0.082 0.089 0.094 0.15 2.0 10-2

TABLE 4

p p* IBImax A,(JJ) A,(H) I/lmax I1’- Wllmax Cmax

1, 1, 1, 1, 10-2 1.01, 1.02, 0.013
0.996, 1.02
1.04

1, 1, 1, 1, 10 0.22, 0.77 0.12

1.22, 0.68,
1.56

0.6, -0.7 10 0.588,-0.695, 0.010
-0.4, 1.5, -0.388, 1.49,
0.1 0.068

2.7 x 10 6.9 10 6.7 10 0.026

1.0x 10 1.8 10 5.4 10 1.9

0.024 3.1 10

0.014 1.7 10-3

2.9 10 0.038 0.040 0.052 0.89 8.9 10

111’-WII is not overly small, the actual size of B is still two orders of magnitude
smaller than J or H. Refer to Table 3.

Example 4 (Bent-hyperbola model), y(t; p)=Pl +p2(t-p4)+P3[(t-p4)2+Ps] /2.
This model appears in Ratkowsky (1983), p. 122, and is used by Donaldson and

Schnabel (1987). For this example, the conditioning depends significantly on the
location of the parameters p, but again the elements of B are uniformly small. Note"
for the last choice of Pe, we were unable to obtain convergence for noise level e 10-1

as the last parameter P5 insisted on straying into the negative region during the search.
Refer to Table 4.
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COMPUTING A TRUST REGION STEP FOR A PENALTY FUNCTION*

THOMAS F. COLEMAN’ AND CHRISTIAN HEMPEL"

Abstract. The problem of minimizing a quadratic function subject to an ellipsoidal constraint when
the matrix involved is the Hessian of a quadratic penalty function (i.e., a function of the form p(x) =f(x) +
(1/21)c(x)7"c(x)) is considered. Most applications of penalty functions require p(x) to be minimized for
values of/. decreasing to zero. In general, as/ tends to zero the nature of finite precision arithmetic causes
a considerable loss of information about the null space of the constraint gradients when VEp(x) is formed.
This loss of information renders ordinary trust region Newton’s methods unstable and degrades the accuracy
of the solution to the trust region problem. The algorithm of Mor6 and Sorensen [SIAM J. Sci. Statist.
Comput., 4 (1983), pp. 553-572] is modified so as to be more stable and less sensitive tothe nature of finite
precision arithmetic in this situation. Numerical experiments clearly demonstrate the stability ofthe proposed
algorithm.

Key words, equality constrained optimization, trust region, penalty function, extended system
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1. Introduction. The generic trust region problem is

(1.1) minimize b(s)=1/2sTHs+gTs,
subject to IIs <-

where A is a positive number, g R n, and H Rnn is a symmetric matrix. We will
concern ourselves with the case where H is the Hessian of an L2 penalty function.
That is, H is the Hessian of a function of the form

1
(1.2) p(x) =f(x) +-- c(x)rc(x)

where f" R" --> R, c" R --> R for -< n, and/z > 0. For such functions the quadratic ,(s)
is meant to serve as a local model at a current point xc. Evaluating the first and second
derivatives of p(x) at xc gives

1
(1.3) g Vp(Xc) Vf(xc) +-- V C(Xc)C(Xc)

and

(1.4)
1

H= V2p(Xc) V2f(xc)+1 V2Ci(Xc)Ci(Xc)’--- V(c)VC(Xc) T.

If we define A Vc(x) and

1
(1.5) B Vf(xc)+-- V2c,(x)c,(x),

then

1
(1.6) H= B+--AAr.

* Received by the editors August 5, 1987; accepted for publication (in revised form) November 18,
1988. This research was supported by the Applied Mathematical Sciences Research Program (KC-04-02) of
the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000.

t Center for Applied Mathematics, Cornell University, Ithaca, New York 14853.
Department of Computer Science, Cornell University, Ithaca, New York 14853.
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Matrices of the form (1.6) become ill conditioned as/x tends to zero. Also, when
/x is small many of the digits of B will, in general, be lost when H is formed. This
loss of information and ill-conditioning can have disastrous effects on methods that
rely on having H. There is, as we shall see, a way to solve (1.1) that sidesteps these
difficulties.

Our method is an adaptation of the method of Mor6 and Sorensen [1983] and
retains their method’s convergence properties. That is, our algorithm will compute a
nearly optimal solution in finitely many iterations. More precisely, for trl (0, 1) the
approximate solution s satisfies

(1.7) p(s)- p(s*) Crl(2-o’,)lp(s*)l and

where s* is a solution to (1.1).
The paper is organized as follows. The next section briefly reviews the theoretical

background needed to develop a suitable algorithm. Readers wishing a more thorough
treatment should see Mor6 and Sorensen [1983]. The algorithm is constructed in 3.
Last, in 4 we give a detailed report of numerical tests comparing TRSQPF with
GQTPAR on trust region problems.

2. Structure of the problem. In this section we will show that the trust region
problem usually reduces to a zero finding problem of a rational function with second-
order poles. This perspective will enable us to construct an effective algorithm with
good convergence properties. The next two lemmas provide necessary and sufficient
conditions for a point s R to be a solution to (1.1).

LEMMA 2.1. Ifs is a solution to (1.1), then s is a solution to an equation of theform
(2.2) (H + AI)s -g

with H + AI positive semidefinite, A >- O, and A (A s II) o.
LEMMA 2.3. Let s R satisfy (2.2) with H + AI positive semidefinite.
(i) If A 0 and s < A, then s solves (1.1);
(ii) s solves O(s) min {(w): w s II};
(iii) If A >= 0 and s II- a, then s solves (1.1).
For proofs of these lemmas see Sorensen [1982]. Mor6 and Sorensen [1983] also

show that (1.1) has no solutions s with Ilsll- A if and only if H is positive definite
and IlH-gl[ <a. The important consequence of Lemma 2.3 is that when (1.1) has a
solution on the boundary of {w: Ilwll--< A}, then that solution can be found by solving

(2.4) IIs =- A=- 0, where sx -(H + AI)-lg.

Thus, except for a special case, (1.1) has been reduced to a zero-finding problem in
one variable, A. The next crucial observation, due to Reinsch 1967], 1971] and Hebden
[1973], is that (2.4) is a rational function in A with second-order poles on a subset of
the negatives ofthe eigenvalues ofthe matrix H. This follows easily from the Real-Schur
decomposition:

H= QAQr whereA=diag(al,h2,...,an) andQrQ=L

Moreover, we assume that the eigenvalues are ordered so that ,1 ’’" A We now
have

(2.6)
2

IIs =--- IIQ(A/AI)-IQrgII2- ,--,Z (A,/A)2
where yi is the ith component of Qrg. Let S1 denote the eigenspace corresponding to
the smallest eigenvalue A1 of H. If g has a component in $1, then (2.4) has a solution
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in (-A1, ), and this is called the "general case." If, however, g is perpendicular to
$1, then (2.4) may not have a solution in (-A, c), and this leads to numerical
difficulties. This situation is called the "hard case." As Mor6 and Sorensen point out,
the characteristic difficulty of the hard case is that IIs < whenever H + XI is positive
definite. In the hard case, a solution to (1.1) can be obtained by solving

(2.7) (H-AI)s= -g

for s with Ilsll < A and by determining an eigenvector z S Then

(2.8) (H-AlI)(s+zz)=-g

and Ils +  zll for some z. Lemma 2.3 now shows that s + zz solves (1.1).
It is now easier to see how the ill-conditioning in matrices of the form (1.6) causes

problems. Specifically, the solution to (2.2) becomes unstable as/x tends to zero. Gould
[1986] offers a numerically stable way to solve such systems. Essentially the idea is to
avoid using the true Hessian and instead compute the trust region steps with an
extended matrix whose condition number is normally much better. If H + hi
B+(1/Iz)AAr +h/, as in (1.6), we then set

(2.9)

and if

B+AI A )X AT -tzI

for some sx R" and re R’, then (H+hI)s=-Vf(x)-(1/tz)Ac(x)=-g. This way of
solving (2.2) will play an instrumental role in the algorithm for solving (1.1). It is
important to note that X does become ill conditioned as - 0 if A is nearly singular.
While there is a way to cope with that situation we shall reserve the discussion for
another paper. For now we assume that A has full column rank in a neighborhood of
the minimum of p(x). Every iteration of our algorithm will need to know if H + hi is
positive definite. Therefore, the following definition and lemma are in order.

DEFINITION 2.11. The inertia of an n x n symmetric matrix H is the triple In (H)
(a, b, c) where a, b, c are, respectively, the number of positive, negative, and zero
eigenvalues of H, respectively.

LEMMA 2.12. In(H + AI) (a, b, c) if and only if In(X) (a, b + t, c).
Proof See Gould [1986] for the proof.
Note that Lemma 2.12 implies that the extended matrix X has at least negative

eigenvalues and so cannot be positive definite. Thus we simply cannot use the Cholesky
factorization to solve (2.10). Fortunately, the symmetric indefinite factorization of
Bunch and Kaufman [1977] is ideally suited to this situation. The Bunch-Kaufman
factorization factors the extended system as X US-SDSS- U where U is a product
of unit upper triangular and permutation matrices. That is,

U Pn+t U-ln+t P1U- and U"1 0 I 0

0 0 I,+,-k

(with 1 or 2) and D is a block diagonal matrix with blocks of order one or two,
and $ is an optional diagonal scaling matrix chosen so that the entries of US- are
bounded. Moreover, it turns out that the inertia of X can be determined easily from
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D. This property along with Lemma 2.12 will be very useful to our algorithm. For
more details on the Bunch-Kaufman factorization, see the Linpack Users’ Guide
(Dongarra et al. [1979] and Bunch and Kaufman [1977]).

3. The algorithm. As in 2 the development here will be much the same as that
of Mor6 and Sorensen [1983] but will include those modifications necessary to make
the algorithm perform well on penalty functions. The algorithmic development begins
with a search for a good way to solve

(3.1) (A)= IIsll=-a==0 wheresx=-(H+AI)-lgandA>-Al(H).

It is well known that (A) is convex and decreasing on (-A1, o). When Newton’s
method is applied to such functions, A+ (the updated value of A) is always less than
A*, and if A > A* then A+ may be much less than ,*. Dennis and Schnabel [1983]
have attempted to overcome the problem of excessively short or long steps by modeling
(3.1) with a single term rational function and have derived the following update:

(3.2) A+ A +(11s,12)[A sx(H+AI)-lsa
Mor6 and Sorensen [1983] obtain the same update by applying Newton’s method to
the function

1 1
(3.3) b(A) 0.

A

It follows from (2.6) that b(A) is convex and twice continuously ditterentiable on the
interval (-A, ). In practice we have observed that (3.1) works well when -AI < A < A*
but it still generally overcorrects when A > A*. This is not surprising since a one-term
approximation to (3.1) is valid only near -A1. The following example typifies the
difficulties encountered when trying to compute trust region steps for the L2 penalty
function. Let/z 10-, A 1, c 1, and

(-5 1.5) A=(.5) andhence H=(24"5 51.5(3.4) B=
1.5 -.5 1 \51.5 99.5/"

Moreover, if we let Vf=[-3,2] T, then g=[47, 102] T. Then eigenvalues of H are
,1 -1.7064 and A, 125.7064 and the value of A* for the trust region problem defined
by these quantities is 9.5377. It follows that for A > 21 equation (3.2) will return a
value of A+ < -A1 1.7064. When that happens, A must be updated in some other way.
While the interval (1.706, 21) may appear to provide a relatively large radius of
convergence for Newton’s method it should also be noted that a commonly used
starting value

Ilgll
(3.5) A- -112.3076

is much larger than 21. Therefore, to construct an efficient algorithm for solving trust
region problems in this setting we must derive a better starting value for A and devise
a more robust way to update A.

If a method is to produce a good update for A when A > A* it must in some way
pay attention to the curvature of b. With this goal in mind we will try to construct a
meaningful quadratic model of b and then let A+ be the left root of the model. For
the same reason Newton’s method failed when A > A*, the usual quadratic model (i.e.,
the first three terms of a Taylor series) also often produces a poor update in this setting.
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That is, 4,"(h) tends to zero as h goes to infinity (actually, b"(h) O(1/h) as h -)
so that any quadratic model built on local information at h will not have enough
curvature and will therefore greatly underestimate h*. A more successful approach is
to construct a quadratic model with information acquired at points left and right of
h*. As we shall see, when h > h* the algorithm has on hand a lower bound As for
-hi(H) and an approximate unit eigenvector corresponding to hi(H). Moreover,
t(-A1)-- 1/A and b’(-h-)=-1/[vglc’(-h-) denotes the derivative from the right,
where Vl is the exact eigenvector corresponding to hi. Thus it seems reasonable to use
As and in scheme for updating h. We are now poised to state the basic algorithm.

ALGORa’HM 3.6. Let h _--> 0 with H+ hi, as in (1.6), positive definite, and A > 0 be
given.

(1) Form X and compute its Bunch-Kaufman factorization.
(2) Solve X(s) -(LVcY), as in (2.9).
(3) Solve X(w) (,).
(4) If s > A then

Update h via (3.2)
Elseif b (A) > / A then

Determine the quadratic, X(A), which interpolates the points (As, I/A),
(A, b(A)) and satisfies X’(X) b’(A).
Let AI+ be the left root of X(A).
Let A2+ be the left root of the best local quadratic approximation to b at
A (i.e., the first three terms of a Taylor series).
If A2+ > As then

Let A+ min {h 1+, A2+}.
Else

Else
Determine the quadratic, X(A), which interpolates the points (As, l/A),
(h, b(h)) and satisfies X’(hs)=-1/]Tg[.
Let A+ be the left root of X(h).

Note that where possible we have used the best local model of b. This has been
done to ensure quadratic convergence near h*. In practice we have seen that Algorithm
3.6 is usually robust enough to converge from almost any reasonable starting value.
However, to ensure convergence Algorithm 3.6 must, especially in the hard case, be
safeguarded. Also, trust region methods usually require only an approximate solution.
Thus, it remains to develop good convergence criteria. We shall postpone these matters
until we have dealt effectively with the hard case.

In 2 we have indicated that an eigenvector corresponding to h is required to solve
the hard case. Mor6 and Sorensen [1983] show that a good approximate eigenvector
can provide an acceptable inexact solution.

LEMMA 3.7. Let 0 < cr < 1 be given and suppose that for A _-> 0, H + AI is positive
definite and (H + A1)sx -g. Let z R" satisfy

(3.8) IIs/zll -a and zT(H+AI)z<-tr[s(H+AI)sx+AA2)];
then

(3.9) -d/(sx +z)>-1/2(1-tr)[sr(H+hI)sx + h A’]->_ (1 r)lq,(s*)[

where (s*) is the optimal value of (1.1).
Proof See Mor6 and Sorensen [1983] for the proof.
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It follows from Lemma 3.7 that 10(s and so sx +z is a
nearly optimal solution to (1.1). As Mor6 and Sorensen suggest, anytime we have
IIs < A we try to satisfy (3.8) with z z where Ilsx + z[I A and is an approximate
eigenvector of unit norm corresponding to -h. Furthermore, our complete algorithm
(to be given later) will require that satisfy r(H+ hI)-* 0 as h --h-. Such a vector
with II ll 1 can be obtained with the following algorithm.

ALGORITHM 3.10. Given H+ AI positive definite, the extended system X, and its
US-SDSS-1Ur factorization, the following algorithm computes a vector such that

1 and r(H+ AI) is as small as possible.
(1) If U P,U P1U-1, let P P1P2" P, and let - PU. Note that /] is

upper triangular.
(2) Compute the QR factorization of UDS. We hasten to point out that since D

is tridiagonal, the product UDS is upper Hessenberg and so its QR factoriz-
ation can be computed in O(n + t) flops.

(3) Solve Rw e where e is a vector ofthe form (+ 1, , + 1) r using the following
procedure
0i=0fori=l,’",n+t
For k= n+ t,. ., 1

If u+ => u-
+then Wk Wk

else Wk W-

+ (l+Ok)/rkkWk--.

w (-1 + Ok)/rkk
k-1

’/ wl + 22 Io, + r,w-21
i=1

k-1- ---Iwl + E 10, + r,w-1
i=1

0 0 "JI- rikWk for 1,. , k- 1
(4) Solve S - rx- w.
(5) Solve Py x.
(6) If y (Zl, ZE)r with Zl R" and z2 g we then set = Zl/llZlll.

As we said before the only property of required by the complete algorithm is that
r(H/ AI) approach zero as A approaches -A. The following lemma confirms this.

LEMMA 3.11. IfA ->-A +l, then for the from Algorithm 3.10, r(H+ AI)-> 0.
Proof See Appendix A for the proof.
Last, given from Algorithm 3.10 the proof of Lemma 3.7 shows that the correct

choice of r is

(3.12) r s+sgn (sATe)[(SATe)2 / (A2- IlSx 112)] 1/2"

Algorithm 3.10 will not, in general, be used at every iteration where [Is < A, but
rather to generate starting values for inverse iteration. If at some iteration we have
IIs < A and we have an approximate eigenvector of unit norm from a previous
iteration (where Ap _-> -A1),we then solve (H + AI)y and if

fir(H + XI)33 < er(H +XI) where )3 y/llyll
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and e (0, 1) is some fixed constant, we then take to be our new approximate
eigenvector. Otherwise we resort to Algorithm 3.10. In practice Algorithm 3.10 is seldom
used more than twice within each instance of (1.1).

As it stands it is possible, although unlikely, for Algorithm 3.6 to return a value
of A+ that is less than -A1. To prevent this and to guarantee that a solution will be
found in finitely many iterations, the algorithm must be safeguaraded. Mor6 and
Sorensen’s safeguarding scheme is perfectly adequate for this setting and so we use
it. An interval containing A*, [AL, Au], and a lower bound As, for --A are maintained
at all times. At the beginning of each iteration the value of A+ inherited from the
previous iteration is checked against these parameters by the following procedure.

Safeguard A:
(1) A =max (h, AL),
(2)
(3) If h <= As then h max {.001hu, (h,/u)l/2}.

As Mor6 and Sorensen point out, the third step is probably the most important. Without
it, we could not prove that the algorithm will yield an approximate solution in finitely
many iterations. The procedure for updating A, Ate, and As is straightforward (for
details see Mot6 and Sorensen [1983]).

Update At, Ate, and As:
(1) If H + AI is nonsingular then

Compute as described above
If H / AI is positive definite then

As max {As, A r(H+ AI)}
Else

As max {As, A, A "T(H + AI)’}
(2) If A (-A1, oo) and $(A)<0 then

Av min (Ate, A)
Else

AL max (AL, A
(3) Let AL max (AL, As).

Initial values for the safeguarding parameters are:

As max {-h,, for i= 1, , n, -Ilnll, (if < n)},

Ac max 0, As, B 111 A II, A

I cr min + B II1 +-- Ila II1 IIA I1 , + (if < n)

where h, is the ith diagonal element of H B + (1/)AAr.
Since each iteration of the algorithm will require O(n + t)3, it is imperative that

we try to minimize the number of iterations needed to find a solution. As we saw
earlier in the example, a poor initial value for I will certainly hinder progress toward
a solution. It has been our experience that it is generally worthwhile expending some
effort to compute a better starting value for A. In other words, we were unable to find
a starting value for A that was both inexpensive and guaranteed to be close to the
solution. The initial value described below proved itself computationally cost effective
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when compared to less expensive initial values. To begin the derivation we observe
that (2.5) implies

(3.13) I111= ,=+ -i= (A d- A i=n-t+ A n--t+

and if reasonable estimates for yn-t 2 2
i=1 ’)/i, 2 ’)/i, A and An can be found, theni=n--t+l 1, --t+l

we may be able to use (3.13) to compute a suitable initial value for A. The estimates
should, if possible, improve as/ tends to zero since the accuracy of the initial values
becomes increasingly critical as /z becomes small. To secure such estimates we let
A QR where Q is orthogonal and R is upper-triangular. Note that since Q is
orthogonal the last n-t columns [qt+l,’’’, qn] form an orthonormal basis for the
null space of Ar (computing a QR factorization of A is even more useful when A is
nearly rank deficient in a neighborhood of the solution but this is the topic of another
paper). We now make the following approximations:

y. y,2. (q g)2=6
i=1 j=t+l

and

2,llgll=-ff,
i=n--t+l

Unfortunately, we could not find estimates for h and An_t+ that improve as/z
tends to zero. However, it is easy to see that if AI(H)<0, then AI(B)<AI(H). To
compute hi(B) we reduce B to tridiagonal form with Householder transformations.
The characteristic polynomial is then easily formed, and its smallest root can be readily
found via bisection. For details see Golub and Van Loan [1983]. If A has full rank it
can be shoWn that as /z tends to zero, An-t+l(H) converges to (1/tZ)hn_t+(AAr).
Furthermore,

1
(3.14) An-t+l(AAr) <__ min {-2 aii}rii P

where ii is the element of smallest absolute value along the diagonal of R, and ii is
the smallest diagonal entry of AAT. And so we use (3.14) as our approximation for
An-t+l. Substituting 6, ’, AI(B), and t9 for their respective quantities in (3.13) and
solving for A gives

(3.15) A A2 _2/pe +IAI(B)I.

It is certainly possible for the denominator in (3.15) to be negative and in that
case we recommend using Ilnll or Ilgll/a for a starting value. Formula (3.15)is most
likely to fail when A is small or when p is small, but in these situations A* (the value
of A corresponding to s*) is generally larger. In other words, A* is usually inversely
proportional to A and p. The final ingredient of the iteration is the convergence criteria.
Here again we invoke, without modification, Mor6 and Sorensen’s work. For the
convergence parameter tr (0, 1), and a A _->0 such that H + AI is positive definite,
the candidate step sx, computed by Algorithm 3.6, is checked for near optimality with
the following scheme.
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Convergence Criteria:
(1) If IA -Ilsx II1<_- or Ilsx <- A, A 0 then

Terminate with s sx as the approximate solution.
(2) If s < A then

Use Algorithm 3.10 to compute and z
If sx, z, and r satisfy (3.8) then

Terminate with s sx + - as the approximate solution.

Mor6 and Sorensen [1983] show that these criteria guarantee that if the algorithm
terminates, then the approximate solution s satisfies

,(s)-,(s*)<=rl(2-r)l,(s*)l and IIs[[_-< (I/)A,
and thus s is a nearly optimal solution of (1.1). It should be noted that (3.8) provides
termination criteria that is applicable to both the general and the hard cases. In our
tests we observe that when a very inexact solution (i.e., trl .02) is sought, termination
usually occurs on (3.8) even in the general case. We have now discussed all the
ingredients of the iterative scheme for solving problem (1.1). The following algorithm
summarizes these ingredients and defines a typical iteration.

ALGORITHM 3.16.
(1) Safeguard A.
(2) Form X and compute its US-1SDSS-1U7" factorization. If H+AI is not

positive definite then go to (5).
(3) Solve (H + AI)sx -g as in Algorithm 3.6.
(4) If Ilsx < A use Algorithm 3.10 to compute z and z.
(5) Update AL, Au, and As.
(6) Check the convergence criteria.
(7) If H+AI is positive definite and g 0 then update A via Algorithm 3.6,

otherwise set A As.
Last, we must now show that the above algorithm will produce a nearly optimal

solution in a finite number of steps.
TIEOREM 3.17. For b(h) as in (3.3) and any e > 0 Algorithm 3.16 will, in finitely

many iteration, return a value of h in I-A l, oo) such that one of the following hold:
(i) h (h*-e,h*+e), where h*(-hl,O) and b(h*)=0, in the event of the

general case.
(ii) h I-Al,-hi+ e) in the event of the hard case.
(iii) h [0, e) in the event of the positive definite case.

Proof (i) General Case. The proof is by contradiction. Suppose that the length
of the interval of uncertainty is bounded away from zero. Then the bisection step of
the safeguarding scheme can only be invoked finitely many times. If during some
iteration a value of A is found such that b(A)> 0 and A >--A1, then the convexity of
b implies that Newton’s method will proceed monotonically to A* and a nearly optimal
solution will be found in finitely many more iterations.

Now suppose that the length of the interval of uncertainty does not go to zero
and the algorithm never finds a value of A for which b(A)>0 and A >-A. This
implies that after a finite number of iterations we have a sequence {Ak}t that satisfies
Ak> Ak+l> A*>-A1 and b(Ak) <0. To show that the sequence {Ak}% converges, we
will compare our method to one that we know converges: the secant method. In
particular, we will show that Ak- Ak+ is larger for our method than for a suitable and
obviously convergent secant method. This result, under all of the assumptions we have
already made, will prove the convergence.
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Suppose that the exact value of-hi is known Then since ((--‘kl) 1/A we could
update hk by the secant method applied to the points (-hi, l/A) and (hk, 4(hk)) and
thereby obtain

A+_ Akd-A1
m‘kl

1 At(Ak)

Since 4 is convex on (-A, c), it is easy to see that updating Ak by this formula will
generate a sequence converging to A*. Now consider the update

+ Ak+AS
1 Ab(hk)

which was obtained by applying the secant formula to the points (As, l/A), (hk, (hk)).
Since As<_---A1 it easily follows that h < h+. Let X be any convex quadratic that
interpolates the points (As, l/A), (hk, (hk)). Since l/A>0 and (hk)<0, it easily
follows that the leftmost root rl satisfies As < rl < h < h+. If, on the other hand, X is
concave, then rl clearly satisfies rl < As < h < h+. In either case we have rl < h- < h:,
and taking hk+l =rl it immediately follows that Ak--Ak+ > Ak-A+, as required. This
proves convergence for the general case.

(ii) Hard Case. In this case we have (-h)_-<0 and again we assume that the
interval of uncertainty remains bounded away from zero and so after finitely many
iterations, we have a sequence {hk} that satisfies hk > hk+ >--hi and ck(hk)<0. As
in the general case we will show that our method converges by comparing it to an
obviously convergent variant of the secant method. Suppose that the exact values of
-hi and 4(-h + 3), where 3 (0, e), are known. Updating hk by applying the secant
method to the points (-hi, l/A) and (hk, 4(-A1+ 3)) yields

A+_ Ak d" hl

Even though the points (-A, l/A) and (Ak, (--‘kl -+- 3)) do not lie on the function b,
it is easy to see that the above formula will generate a sequence that converges
monotonically to -‘kl. Consider the following update"

(3 18) h- hk+hs
--,ks.

1 A4(Ak)

Since ‘ks =< -A1 and b (‘kk) < b(-A1 + 3), for ‘kk > -A1 + 3, we clearly have A- < ‘k+. Thus
for any sequence {‘kk} obtained from updating ‘kk by (3.18) it follows that for some
finite K _-> N we have AK =<-‘kl + 3. But since 3 was arbitrary, the sequence
generated by (3.18) converges to

(iii) Positive-Definite Case. The proof for this case is identical to the proof of
the hard case except that -‘k should be replaced with zero.

4. Computational results. In this section we report the results of some tests in
which we compare the performance of TRSQPF (our algorithm) with that of GQTPAR
(Mot6 and Sorensen’s algorithm) on individual trust region problems where g and H
are of the form (1.3) and (1.6), respectively. The tests covered a wide range of values
of n, t, and/ and for each triple (n, t,/) Tables 1-12 below summarize the outcome
of 10 different trust region problems. Individual problems were created by specifying
an n x n diagonal matrix for DB, an n x diagonal matrix for DA, an n vector for g,
and a vector for c. By appropriately choosing the entries in each of these quantities
we can construct any of the four main types of trust region problems: general case,
hard case, positive definite case, and the saddle-point case.
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TABLE

General case

GQTPAR

crash

TRSQPF

min max mean min max mean
adjst.
mean

20 5

10

15

10-2 0 5 9 6.4 5 2.9 3.8
10-5 0 5 10 7.4 2 4 2.7 3.6
10-9 0 4 11 8.8 2 4 2.8 3.7
10-12 0 4 13 9.0 2 4 2.7 3.6
10-16 8 5 6 5.5 2 5 3.4 4.3
10-2 0 3 9 5.7 7 3.9 4.5
10-5 0 4 10 7.2 4 2.5 3.1
10-9 0 5 14 9.2 2 4 2.9 3.5
10-12 0 3 11 6.7 2 5 3.0 3.6
10-16 9 8 8 8.0 2 4 3.1 3.7
10-2 0 3 8 5.3 5 3.4 4.0
10-5 0 6 11 7.4 7 3.8 4.4
10-9 0 5 13 9.4 2 4 2.6 3.2
10-12 0 2 9 6.1 4 2.7 3.3
10-16 9 7 7 7.0 4 3.0 3.6

TABLE 2

General case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

40 10

20

3O

10-2

10-s
10-9

10-12

10-16

10-2

10-5
10-9

10-12
10-16

10-2

10-5
10-9

10-12

10-6

0
0
0
0
7
0
0
0
0
7
0
0
0
0
10

9
10
10
12
9
7
9
12
12
10
9
10
13
12

6.7
7.3
7.9
7.6
6.0
5.6
7.2
8.9
6.9
8.7
5.2
7.5
9.4
8.5

3.3
3.2
3.2
3.3
3.2
3.3
3.3
2.8
3.6
2.6
3.2
4.2
2.8
3.2
2.8

4.5
4.4
4.4
4.5
4.4
4.2
4.2
3.7
4.5
3.5
3.6
4.6
3.2
3.6
3.2



TRUST REGION PENALTY FUNCTION METHOD 191

TABLE 3

General case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

80 20

40

60

10-2 0 4 9 6.4 6 3.9 5.5
10-5 0 5 10 7.0 5 3.7 5.3
10-9 0 4 12 7.6 2 4 3.3 4.9
10-12 0 3 10 7.6 2 5 3.6 5.2
10-16 5 8 13 6.3 2 5 3.8 5.4
10-2 0 3 9 5.5 5 3.5 4.7
10-5 0 4 11 7.5 4 7 5.3 6.5
10-9 0 5 13 9.0 3 4 3.3 4.5
10-12 0 2 12 7.0 2 5 3.5 4.7
10-16 6 5 8 6.8 2 5 3.2 4.4
10-2 0 3 6 4.6 6 3.6 4.5
10-5 0 3 10 8.1 3 6 5.2 6.1
10-9 0 5 11 8.7 2 6 3.2 4.1
10-12 0 3 11 7.5 2 6 3.2 4.1
10-16 7 2 7 5.3 2 4 2.5 3.4

TABLE 4

Hard case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

20 5 10-2

10-5
10-9

10-12
10-16

10 10-2

10-5
10-9

10-12
10-16

15 10-2

10-5
10-9

10-12
10-16

0 4 6 5.4 2 4 2.8 3.8
0 4 11 7.8 3 5 3.3 4.2
0 5 11 8.9 2 6 3.5 4.4
0 3 12 8.1 2 5 3.5 4.4
9 2 2 2.0 2 5 3.6 4.5
0 3 9 5.9 2 5 3.9 4.5
0 4 11 7.5 2 4 2.9 3.5
0 5 13 9.3 2 5 3.3 3.9
0 3 12 7.8 3 6 4.2 4.8
8 6 7 6.5 3 5 3.8 4.4
0 3 8 5.7 4 2.3 2.9
0 4 10 7.7 6 3.8 4.4
0 6 10 8.5 2 7 4.6 5.2
0 4 12 8.9 2 6 4.4 5.0
9 7 7 7.0 2 7 4.1 4.7
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TABLE

Hard case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

40 10

20

30

10-2

10-5
10-9

10-12
10-16

10-2
10-5
10-9

10-12

10-16

10-2

10-5
10-9

10-12

10-16

9
10
12
12
11
8
9
14
13
11
8
10
12
11
11

5.5
7.3
8.1
7.3
8.8
5.0
6.5
8.8
8.0
9.7
5.4
7.5
9.4
7.9
8.0

3.6
3.0
3.5
3.3
3.7
3.3
3.9
3.0
3.5
3.7
3.6
5.0
3.9
4.0
4.5

4.8
4.2
4.7
4.5
4.9
4.2
4.8
3.9
4.4
4.6
4.0
5.4
4.3
4.4
4.9

TABLE 6

Hard case

crash

GQTPAR TRSQPF

min max mean min max mean
adjst.
mean

80 20

40

60

10-2 0 3 7 5.1 6 3.5 5.1
10-5 0 4 11 7.5 2 5 3.3 4.9
10-9 0 5 12 8.5 2 4 3.5 5.1
10-12 0 3 11 7.3 2 4 3.4 5.0
10-16 5 2 9 8.8 2 4 3.0 4.6
10-2 0 3 7 5.5 4 3.7 4.9
10-5 0 4 11 7.2 2 7 4.4 5.6
10-9 0 5 13 9.4 2 4 3.3 4.5
10-1- 0 3 11 7.3 2 4 3.4 4.6
10-16 8 4 8 6.0 2 4 3.3 4.5
10-2 0 3 7 4.4 6 2.9 3.8
10-5 0 4 10 7.6 2 7 4.8 5.7
10-9 0 5 11 8.2 2 5 3.7 4.6
10-12 0 3 11 8.3 2 4 3.3 4.2
10-16 3 6 9 7.8 2 5 3.5 4.4
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TABLE 7

Positive-definite case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

20 5

10

15

10-2 0 2 5 4.0 3 2.0 2.9
10-5 0 4 5 4.3 2 1.9 2.8
10-9 0 3 5 4.2 4 2.2 3.1
10-12 0 2 4 3.4 2 3 2.5 3.4
10-16 10 2 4 2.4 3.3
10-2 0 2 7 4.3 2 5 3.5 4.1
10-5 0 2 5 4.2 2 4 2.4 3.0
10-9 0 4 5 4.3 2 5 2.5 3.1
10-12 0 2 4 3.0 3 2.9 3.5
10-16 8 7 17 12.0 2 3 2.2 2.8
10-2 0 2 6 4.0 2 5 2.8 3.4
10-5 0 2 5 3.4 4 2.6 3.2
10-9 0 2 4 3.1 2 2 2.0 2.6
10-12 0 2 5 2.7 2 3 2.1 2.7
10-16 8 6 6 6.0 2 3 2.2 2.8

TABLE 8

Positive-definite case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

40 10

20

30

10-2 0 4 5 4.9 5 3.5 4.7
10-5 0 4 5 4.4 2 3 2.1 3.3
10-9 0 4 5 4.8 2 3 2.4 3.6
10-12 0 2 5 3.6 2 4 2.3 3.5
10-16 4 2 11 6.5 2 1.9 3.1
10-2 0 3 6 4.7 5 3.1 4.0
10-5 0 4 5 4.8 2 3 2.4 3.3
10-9 0 4 5 4.6 3 2.0 2.9
10-12 0 2 5 3.8 2 6 2.6 3.5
10-16 7 2 7 4.0 3 2.2 3.1
10-2 0 2 6 3.9 3 2.1 2.5
10-5 0 3 5 3.9 2 4 3.3 3.7
10-9 0 2 5 3.5 2 5 2.4 2.8
10-12 0 2 4 3.4 2 3 2.4 2.8
10-16 10 2 3 2.4 2.8
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TABLE 9

Positive-definite case

GQTPAR

crash

TRSQPF

min max mean min max mean
adjst.
mean

80 20

40

60

10-2 0 3 6 5.0 5 2.8 4.4
10-5 0 5 5 5.0 2 3 2.1 3.7
10-9 0 4 5 4.9 2 2 2.0 3.6
10-12 0 2 5 3.5 3 2.0 3.6
10-16 5 3 9 7.8 2 3 2.2 3.8
10-2 0 2 6 4.9 5 3.7 4.9
10-5 0 4 5 4.7 5 3.2 4.4
10-9 0 4 5 4.7 2 3 2.1 3.3
10-12 0 2 5 3.4 3 2.1 3.3
10-16 9 5 5 5.0 2 3 2.4 3.6
10-2 0 2 8 4.2 5 3.1 4.0
10-5 0 2 6 4.9 2 5 3.7 4.6
10-9 0 2 5 4.2 2 4 2.3 3.2
10-12 0 2 5 3.5 3 2.1 3.0
10-16 6 8 11 9.5 2 3 2.1 3.0

TABLE 10

Saddle-point case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

20 5

10

15

10-2 0 4 12 7.4 4 1.3 2.1
10-5 0 8 17 10.2 5 1.7 2
10-9 0 9 18 12.4 3 1.4 2.3
10-12 0 8 19 13.9 2 1.1 2.0
10-16 10 4 1.9 2.8
10-2 0 8 14 10.6 6 2.9 3.5
10-5 0 6 13 9.7 11 2.5 3.1
10-9 0 10 17 13.3 7 2.1 2.7
10-12 11 16 13.1 7 2.7 3.3
10-16 9 12 12 12.0 6 2.8 3.4
10-2 0 6 12 9.7 8 5.3 5.9
10-5 0 2 15 11.8 3 10 5.4 6.0
10-9 0 2 17 11.0 6 4.1 4.7
10-12 0 12 18 15.3 6 3.7 4.3
10-16 10 6 3.4 4.0
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TABLE 11

Saddle-point case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

40 10

20

3O

10-2 0 6 16 9.5 2 1.3 2.5
10-5 0 6 15 11.0 2 1.1 2.3
10-9 0 8 15 12.2 5 1.4 2.6
10-12 0 9 17 11.4 4 1.3 2.5
10-16 9 13 13 13.0 5 2.3 3.5
10-2 0 7 10 7.8 5 1.9 2.8
10-5 0 7 19 11.1 4 2.0 2.9
10-9 0 7 18 13.1 6 2.1 3.0
10-12 0 10 16 13.4 5 2.5 3.4
10-16 9 14 14 14.0 9 2.8 3.7
10-2 0 7 15 11.5 6 4.5 4.9
10-5 0 7 14 11.4 6 4.1 4.5
10-9 0 10 15 12.8 7 3.6 4.0
10-12 0 8 16 13.3 6 3.7 4.1
10-16 9 16 16 16.0 6 3.0 3.4

TABLE 12

Saddle-point case

GQTPAR

crash min max mean min

TRSQPF

max mean
adjst.
mean

80 20

40

60

10-2 0 7 14 10.1 3 1.4 3.0
10-5 0 8 13 10.9 3 1.5 3.1
10-9 0 8 14 11.6 4 1.6 3.2
10-2 0 10 16 13.5 2 1.1 2.7
10-16 8 10 12 11.0 1.0 2.6
10-2 0 9 16 11.2 4 2.1 3.3
10-5 0 7 15 11.9 4 1.8 3.0
10-9 0 11 17 13.3 3 1.5 2.7
10-12 0 9 18 13.3 4 1.6 2.8
10-i6 8 12 16 13.3 5 1.9 3.1
10-2 0 6 13 9.1 5 3.2 4.1
10-5 0 6 15 10.2 5 2.9 3.8
10-9 0 11 18 13.7 6 3.4 4.3
10-12 0 11 18 14.9 7 3.0 3.9
10-16 10 5 2.4 3.3
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An instance of the general case is formed by choosing the entries of DB and DA
as uniformly distributed random numbers in (-1, 1)\0 and (-1,-.2)w (.2, 1), respec-
tively. The entries of OA were so chosen to avoid the case where A is nearly rank
deficient. The entries of g were chosen as uniformly distributed random numbers in
(-1, 1). However, the entries of the constraint vector c were restricted to the interval
(--/-prev, /-*prev) where prv is the next largest value of/ used in the testing. For example,
if the current value of/z is 10-12, then/Zprv is 10-9. We feel this scaling of c provides
a more realistic test because when TRSQPF is used in the context equality constrained
minimization, the magnitudes of the constraints are, at any given iteration, usually of
the order of the previous value of/.

To form an instance ofthe hard case we set to zero the component of g correspond-
ing to the smallest element of {DBt+l,t+l,’’" DBn,,}. If none of those entries of Ds
are negative, then Dsn, is chosen from the interval (-1, 0), and gn is set to zero. We
need only consider the last n- elements of D because for the values of/x that we
use {10-2, 10-5, 10-9, 10-2, 10-6} and our choice for the entries of DA ensure that the
first eigenvalues D, + (1/tX)DADf4 are positive. An instance of the positive-definite
case was formed by choosing [Dm+l,t+l,’’" ,DBn,n] from the interval (0, 1). The
saddle-point case is somewhat more involved and will be described a little later.

The next step in constructing a trust region problem is to scramble the structure
of D and DA. We set B QDsQ" and A QDAZ where Q and Z are, respectively,
n x n and x orthogonal matrices. Both Q and Z are of the form QIQ2Q3 or glg2g
where

vvf WW(4.1) Q,=I-2vV.v and Z=I-2w[w,, i=1,2,3.

The entries of vi and wi are random numbers uniformly distributed in (-1, 1). We are
now better able to describe the saddle-point case. Quite simply, an instance of the
saddle-point case can be created by setting g =-(1//x)Ac. Last, the values of A were
random numbers chosen from the interval (0, 10).

For the purposes of the testing we did not use the initial values for the safeguarding
parameters described in 3. Instead we used the following cruder bounds:

As max {-hii i= 1,’"", n, },

{ 1 }max 0, As, B I]1 A I1 AI1

A + B Ill +-- A II, A

These initial values were used to make for a more stringent test of the rest of the
algorithm.

The charts also deserve some explanation. For loth GQTPAR and TRSQPF we
report the minimum, maximum, and average number of iterations used to solve 10
distinct trust region problems for each triple (n, t,/x). For GQTPAR we also note the
number of problems (out of 10) on which it ran for 20 iterations. Mor6 and Sorensen
interpret this as a failure to solve the problem and so we report it under the #crash
column. The subsequent entries in the min, max, and mean columns were computed
from the results of those problems on which GQTPAR halted in less than 20 iterations.
Furthermore, to account for the work done by TRSQPF to compute the initial value
for a, we add an appropriate amount to the average number of iterations. For specific
values of n and t, the number of floating point operations (flops) required to compute
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the initial a is

(4.2) -n+233 t2( n-)
while the work count per iteration of TRSQPF is given by the formula

(4.3) t’--+(n+
7(n + t)2.

6

The adjustment is made by evaluating the above formulas and dividing (4.3) into (4.2).
For example, for n =40 and 20, the ratio of (4.2) to (4.3) is .9 and this is the amount
we add to the average number of iterations. Thus, the average number flops per problem
can be obtained by multiplying the adjusted mean number of iterations times the
number of operations per iteration (i.e., equation (4.3)). In all problems 0-1 =0.01 and
0-2 =0.0.

To conclude this section we would like to offer explanations for some of the results
presented in the Tables 1-12. When comparing average numbers of iterations we can
see that TRSQPF compares quite favorably with GQTPAR in the general and hard
cases. On the basis of some informal experimentation we believe that both the new
starting value for h (i.e., equation (3.21)) and the more complicated way of updating
h (i.e., Algorithm 3.6) are responsible. In the hard case TRSQPF is aided further by
the condition estimator put forth in Algorithm 3.10. By contrast, the average numbers
of iterations in the positive-definite case are nearly the same except when/x 10-16.
In the positive-definite case both algorithms proceed until a candidate value of , is
found that is greater than - and less than zero. When that happens, the safeguarding
scheme resets , to zero, and the problem is solved. Since neither algorithm is especially
well tailored to the positive-definite case, neither is especially adept at it, and so the
results are unsurprisingly similar. The saddle-point case is where TRSQPF registers
the sharpest improvement over GQTPAR. The saddle-point case is, essentially, a search
for the direction of most negative curvature. It stands to reason then that the new
initial value for , and the condition estimator in Algorithm 3.10 are the primary factors
contributing to TRSQPF’s good performance in the saddle-point case.

In all of the testing presented here, we set o-1 0.01 and 0-2 0.0 that essentially
require both algorithms to return a solution in which the first two significant digits of
the trust region step are correct. We feel this represents a realistic test because within
the context of a global algorithm to minimize penalty functions and ultimately solve
equality Constrained minimization problems, the accuracy requested of a trust region
solver is typically kept fixed. Despite this, however, some informal tests were conducted
in which a much more accurate solution was requested of both TRSQPF and GQTPAR.
The results indicated that for a given trust region problem of the type considered in
this paper, the maximum number of correct significant digits in the trust region step
GQTPAR could return was for the most part determined by the value of/z and the
machine precision. For example, if/x is 10-9 and the machine precision is on the order
of 10-17, then in general at most the first 17-9 8 digits of the trust region step would
be correct. TRSQPF, however, would in general return a solution correct to nearly full
precision.

5. Concluding remarks. Our objective in this work has been to develop a technique
for the solution of the model trust region problem (1.1) under the assumption that the
objective function is the L2 penalty function. In particular, we have tailored the Mor6
and Sorensen [1983] algorithm with this specific structure in mind. Our numerical
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experiments indicate that it can be beneficial to use this modified algorithm. This is
particularly true when increased accuracy is demanded, the penalty parameter is quite
small, or the current quadratic exhibits a saddle point. It should be noted that in this
context algorithm GQTPAR requires additional preprocessing since the product AAT
must be explicitly determined. On the other hand, TRSQPF requires computation of
the Bunch-Parlett factorization of the extended system that is more expensive than
the Cholesky factorization of the Hessian matrix.

With respect to the method presented in this paper there are several avenues of
research we intend to pursue. Among the most obvious possible things we could do
is to extend the existing method to the sparse case. At first glance it might seem that
the technology used to exploit sparsity in the Cholesky factorization could be adapted
to the Bunch-Kaufman factorization. The latter, however, utilizes a complicated
pivoting scheme that is required to guarantee stability. It is not clear that we can exploit
spartsity and maintain stability in the Bunch-Kaufman factorization. Another possible
endeavor would be to develop an implementation of the Bunch-Kaufman factorization
on a parallel architecture. Here again the pivoting scheme would no doubt hinder our
efforts. Throughout this paper we have assumed that the matrix A is of full column
rank. The case where A is rank deficient (or nearly rank deficient) will be the focus
of some future work.

The most important remaining project, and the one we plan to dispatch first, is
to effectively use the algorithm proposed in this paper in a global method for solving
equality constrained optimization problems. Existing methods suffer from often having
to decrease/x slowly and consequently can be inefficient. Our goal is to overcome such
problems.

Appendix A. We shall now restate and prove Lemma 3.11.
LEMMA 3.11. IfA --A +1, then for the from Algorithm 3.10, T(H/AI)- 0.
Proof. The proof is basically a suitable generalization of the proof given by Mor6

and Sorensen [1983]. Unfortunately, our use of the extended system and the Bunch-
Kaufman factorization complicates matters. Therefore, to facilitate understanding the
proof we begin by outlining the proof strategy.

(I) Show that as A -A+ and H+AI becomes singular, then the extended
system X (equation (2.9)) also becomes singular.

(II) For the vector fi-y/l[y]] (where y is computed by Algorithm 3.10), prove
that 33TX "-)’ 0 as h -h +

1"

(III) If yT=(z(, Zf) where z R" and z R’ and = z/[[Zll[, show that T(H+
hI)-0 as h -h.

Let Vl be an eigenvector of H corresponding to hi. The (H + hI)Vl (hi + h)Vl and
so II(H+hI)vlll-O as A -A+

1. We now observe

(A1) \ AT -tzI (1/tz)ATvl 0

This shows that some singular value of X tends to zero as A -A. Since IIxil is
bounded in a neighborhood of--A1 we may conclude that the determinant of X goes
to zero, and hence X becomes singular, as h --hi.

The proof in this section relies heavily on the results of Bunch and Kaufman
[1977]. They show that if/17/= S- then 1/(1-.6404), and if/= SDS then
[/] --< (2.57) "+t-1 maxl__</_<_,+, [Xo[. Again, since the entries of X are bounded in a
neighborhood of-h, it follows that the entries of UDS are also bounded. The
orthogonality of Q further implies that the entries of R remain bounded as h --h/

1-
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Let p > 0 satisfy

n+t

(A2)
j=l i=1

It follows from the way we compute w and w in Algorithm 3.10 that

1
(h3) max (IwZI,

and for our choice of Wk we now have

(A4)
1 k-1

-< Iwl + ,E 10, + r,kWkl.

This together with equation (A2) implies

1 1
(1 + )11 wll or wll(m5)

Iraqi (1 + )1 rl’
which holds for all k and so

1 1
<min(Irkl’k=l n+t)(l+p) or Ilwll(A6)

[Iw[I- min(Irkkl)(1 +p)

Now since the entries of S-1 r are bounded there exists a > 0 such that S-1/r 112
8. This along with equation (A6) and the orthogonality of P now imply

If )3 y/llyll then

1 1
Ily x w

8(1 +p) min (Irkk[)

.. ye
y Ay:ll<=fire[8(1 +p) min (11)3

and by the Cauchy-Schwaz inequality

rX(n+ t)/28(1 +p) min (Iraqi),

It remains to show that min (Irl)0 as . To do so we must investigate, in
some detail, the pivoting strategy and the choice of entries for S used by Bunch and
Kaufman 1977]. For n + t, , 1, letA denote the ijth entry in the x unfactored
matrix remaining at the/th iteration of the Bunch-Kaufman factorization. At this point
Su is chosen according to the following rule"

> (I) (I)1 if(Ia)l=Xh )or([a.lx(l))or(h(l)>(k)),
(i) (1) (1)Sll min(i-i, /A otherwise

where A .6404 and A (l) is the absolute value of the largest off-diagonal element in
the last column of A(l). That is,

h (l) max
li<!

and if r is the least integer such that ()l
t =A then is the largest off-diagonal

element in the rth column of A(),
(!)(’) max I.-1.

lml
mr
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It should be noted that Su 1 only when a 2 x 2 pivot is used or when O’(1)> A (1), in
which case a 1 x 1 pivot is used but no permutation is applied to A(!). We now observe
that since U is a product Gauss transformations, it has determinant one. It follows
that Idet X[ [det D[ and [det R[ [det DS[ and hence if the determinant of X is small
then so is the determinant of D. More specifically, either one of the 1 x 1 blocks of D
must be small, or one of the 2 x 2 blocks must have a small determinant. For the case

A(I)where Sll 1 and o’(l) > A (I) then a 1 x 1 pivot is used and Dll- Z-Ill Fuhermore,

DS)ll =< JX(’l"(’’’
and since (1) and h are bounded, this shows that if a 1 x 1 block in D has small
magnitude then so must the corresponding entry in DS. The case where SII 1 and a
2 x 2 block is used is more complicated. When this happens

Dt l_ Dl l" ) l)]

and the conditions of the pivoting scheme imply

--h (1)2 h 1.. A(1)a(1) (/)2 1)2(; +1 =<-,_.- =<-(1-bh =<0

where the center term is the determinant of the 2 x 2 pivot above. The impoant
implication of equation (A18) is that if the center term is small then so is h (i). Moreover,
if the last column of the 2 x 2 pivot is scaled by Su then the determinant of the new
2 x 2 block satisfies

S,lla(l)a(,)_ (l) (l)[ Al?!1 ,, x I+ (/)]"
Taken together, these observations imply that ldet DSI 0 as ldet D[ 0 and by viue
of equation (A15) we now know that rain (r)0 as A-. This completes the
proof of the second pa.

To prove the last paa we recall that Xy PQe and if we let PQe (u, ua) then

AT -I Z2 U2

from which it follows that

S(H+ hI)= Tu +-- TAu2 Ilzlll.

It is asy to s that the numerator of th second term is bounded and hence all w
nO to show is that I1,11 must gow s IlYll booms lg. uitipiyin/out quation
(A7) gives

(B + hI)z + Az: u
and since has fuii column rang and I1,11 is bounded, w Oduo tht I1,11+ s
IIzll + . This completes the proof, m
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SOLVING THE SYMMETRIC TRIDIAGONAL EIGENVALUE PROBLEM ON
THE HYPERCUBE*

ILSE C. F. IPSEN" AND ELIZABETH R. JESSUWf

Abstract. This paper describes implementations of Cuppen’s method, bisection, and multisection for
the computation of all eigenvalues and eigenvectors of a real symmetric tridiagonal matrix on a distributed-
memory hypercube multiprocessor. Numerical results and timings for Intel’s iPSC-1 are presented. Cuppen’s
method is found to be the numerically most accurate of three methods, while bisection with inverse iteration
is observed experimentally to be the fastest method.

Key words, hypercube, symmetric tridiagonal eigenvalue problem, Cuppen’s method, bisection, multisec-
tion, inverse iteration

AMS(MOS) subject classifications. 65F15, 65W05

1. Introduction. Several algorithms have been conceived specifically for determin-
ing eigenvalues and eigenvectors of real, symmetric, tridiagonal matrices on conven-
tional uniprocessors. These include the shifted QR algorithm [5], divide-and-conquer
strategies [7], [16], and bisection based on Sturrn sequence evaluations coupled with
inverse iteration [23]. QR and Cuppen’s divide-and-conquer method are often used
to compute all eigenvalues and eigenvectors of the matrix, while bisection with inverse
iteration is normally used when only a few of the eigenvalues and corresponding
eigenvectors are required. Of these schemes, the shifted QR algorithm alone does not
seem to have an efficient parallel implementation: the shift computation and the
application of rotations cannot be overlapped. In contrast, Cuppen’s method and the
generalization of bisection known as multisection have been implemented with sig-
nificant speedups on shared-memory multiprocessor architectures and their simulators
[4], [8], [17] and on the grid-based, bit-sliced ICL DAP [1], [2]. In this paper, we
investigate the suitability of the distributed-memory hypercube architecture as
represented by Intel’s iPSC-1 for the parallel solution of the symmetric tridiagonal
eigenvalue problem.

Three methods for solving the symmetric tridiagonal eigenproblem on a hypercube
muitiprocessor are presented. The first is a parallel version of Cuppen’s method; the
second is bisection together with inverse iteration, and the third is multisection with
inverse iteration. Unlike most previous parallel eigensolvers, the present implementa-
tions operate on a multiprocessor architecture in which each processor has direct access
to its own local memory only. Without common memory, exchange of data between
processors is accomplished through message passing. An algorithm is implemented in
parallel, in general, by dividing the work required into parts or tasks, some or all of
which can be executed simultaneously. On a shared-memory machine, tasks can be
maintained in a queue and the task at the head of the queue is allotted to the first avail-
able processor. In a message-passing environment, the assignment of one processor
as a queue-manager represents a potential bottleneck. Instead, processors pass messages

* Received by the editors September 14, 1987; accepted for publication (in revised form) March 8,
1989. This work was partially supported by Office of Naval Research contracts N00014-82-K-0184 and
N00014-85-K-0461 and by Army Research Office contract DAAL03-86-K-0158. Part of this work was
performed while the authors were in residence at the Computer Science and Systems Division of AERE
Harwell, United Kingdom, and while the second author was in residence at the Mathematics and Computer
Science Division of Argonne National Laboratory, Argonne, Illinois 60810.

" Department of Computer Science, Yale University, P.O. Box 2158, New Haven, Connecticut 06520.
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to inform one another about the progress of their tasks and, thereby, coordinate further
task allocation.

In the implementations to be discussed, tasks are assigned statically to the pro-
cessors, that is, the processor assigned to each task is known in advance. This strategy
permits simplicity ofprogramming and reduction ofscheduling overhead. Nevertheless,
the cost of communication between processors is often nonnegligible. For this reason,
tasks must be apportioned so that communication does not occupy a significant portion
of the total computation time. Solution of this scheduling problem (i.e., the partitioning
of the algorithm into tasks and assigning of the tasks to processors) is the basis for
development of an efficient hypercube program.

This paper’s presentation of the three eigensolvers is organized as follows. Section
2 is an introduction to the hypercube multiprocessor employed for numerical experi-
ments and to the notation employed in analysis. Algorithms for data transmission and
distributed matrix computation are described in 3. Cuppen’s method, bisection, and
multisection are outlined in 4, 5, and 6, respectively; timings for the methods on
the Intel iPSC-1 are presented in the respective sections. The paper concludes with a
comparison of the three methods in 7.

2. Some preliminaries. The eigenvalue codes were implemented on an Intel iPSC-
1/d5M hypercube multiprocessor with scalar processors. This machine consists of 32
identical node processors each capable of communicating directly with five neighboring
processors. A node can communicate with only one of its neighbors at a time and does
so by issuing a send communication primitive to initiate a message transfer or a receive
primitive to intercept one. Messages arriving at a node are held in a queue until selected
via a receive command. Each processor has 4.5 Mbytes of local memory. For these
implementations, the additional, separate host processor is used only for downloading
code onto, passing initial data to, and accumulating final results from the node
processors.

For purposes of estimating computation times on the hypercube, it is assumed
throughout this paper that time fl + k- is required to send a vector of length k from
one processor to a neighbor, where/3 is the communication startup time and - is the
time to transfer one vector element. As in 12], the time required to perform a floating
point operation (flop) of the form

cj cO + akbkj

is denoted by to, it includes the time for a floating point multiplication and addition
as well as for some pointer manipulation. If the array elements are real double precision
floating point numbers, then/3/to 10 and/3/- 125 on the iPSC-1 running operating
system release R3.0.

In our implementations, matrices are often stored by assigning an entire column
or an entire row to one processor. For simplicity of presentation, it is assumed that
the number of processors p divides the order N of the matrix. In the actual implementa-
tion, the rows or columns are assigned to processors in such a way that no processor
contains more than [N/p] of them.

3. Three basic algorithms. For all three eigensolvers, communication between
processors occurs only as a part of global data exchange, matrix multiplication, or
orthogonalization by means of the modified Gram-Schmidt method. These three
procedures are described below. Their efficient implementation appeals to topological
properties of the hypercube interconnection described in detail in [20], [24].
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3.1. Data transmission on the hypercube. In the Alternate Direction Exchange
Algorithm (ADE) [19] each processor in an /-cube sends a vector of length k to all
other processors in that cube. The total time to complete the exchange is

TkDe 2[ i/3 + (2’-- 1)kr].

The 2a- subcubes of dimension in a d-cube can simultaneously perform such an
exchange without interference.

3.2. Matrix multiplication on the hypercube. Our implementations take advantage
of the fact that physically interconnected processors in a hypercube form a ring and
that subcubes correspond to contiguous sequences within this ring. In a d-cube, the
processor identifiers are generated according to a binary reflected Gray code sequence
11 ], 18], and processor j constitutes the jth member in this sequence, 0 <-j -< 2a 1.
Because a Gray code sequence is cyclic, it defines a ring of physically interconnected
processors within the hypercube. Within the ring, processor j communicates with its
neighboring processors j- 1 and j + 1, where the processor identifiers in a d-cube are
taken modulo p 2a.

When using an embedded ring, a matrix may be stored in the hypercube by
situating blocks of adjacent columns in neighboring processors. The algorithm Ring
Matrix Multiplication (RMM) performs the multiplication C =AB of two N N
matrices A and B both distributed by block columns among the processors of a d-cube,
where N k2a.

Initially, processor j, 0 -<j _-< 2a 1, contains columns jk, , (j + 1) k 1 of A and
of B and, upon completion, columns jk, , (j + 1)k- 1 of A, B, and C. During the
formation of C, the columns of B remain in their original places while the columns
of A are passed along the ring from processor to processor, overwriting the previously
held columns of A in each processor. Let Bij denote the k x k block-matrix in position
(i, j) of B, 0 _-< i, j <_- 2d 1, and the vectors

be the k columns jk,. , (j + 1)k- 1 of/. In Algorithm RMM below, indices should
be taken modulo 2d.

ALGORITHM RMM.
In parallel, do on all processors j, 0_-<j _-< 2d- 1"

For =0, , 2d- 1:
(1) compute Cj + A_iBj_i.
(2) send A to processor j+ 1
(3) receive A_i_ from processor j-1

The arithmetic time at each iteration is 2dk3to, and the communication time is
+ 2dk2", giving a total time of

d 22dk3t0 2d 2dk2TRMM q- (fl -]- 7").

See also [10].

3.3. Modified Gram-Sehmidt orthogonalization. The Modified Gram-Schmidt
(MGS) procedure transforms a set of linearly independent vectors into a set of
orthonormal vectors. This is necessary, for example, when inverse iteration applied to
poorly separated eigenvalues produces eigenvectors that, while linearly independent,
are not orthogonal [23].
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Algorithm MGS overwrites a set of m linearly independent vectors {Vo, ,/)m-l}
of length N with an orthonormal set spanning the same space. First consider the case
rn _< p, where vj resides in processor j. The kth orthonormalized vector is computed
during the kth step of MGS. The orthonormalized vectors are passed from processor
to processor to effect the orthonormalization of the remaining vectors.

ALGORITHM MGS (m _-<p).
In parallel, do on all processors j, 0_-<j_-< m- 1"

(1) fork=0,-..,j-1
(1.1) ifj> k, receive kth vector Vk (Vk, ", VNk) r from processorj-1
(1.2) if j < rn 1, send /)k to processor j + 1

N(1.3) compute rkj ,
i= VikVo

(1.4) for i= 1,..., N, vi vo -Vikrk:i
(2) normalize jth vector: (Vl,’’ ", vNj)r= (Vl,’’ ", ",

(3) if j < m 1, send v to processor j + 1

Processor j requires access to the orthonormalized vectors Vo,’’ ", /)j--1 in order
to orthogonalize v. Processorj must therefore remain idle until Vo has been normalized
and forwarded from processor 0. Passing Vo along the j communication links requires
time j(fl + Nz). Once it has used Vo for the orthonormalization of v, processor j must
wait an additional 2Nto steps for v to arrive. This additional idle time is equal to the
time needed to normalize Vl. Thus, processor j waits a total time of 2Nto for each of
the vectors Vo,’", /)j--l" When fl+Nr<2Nto, the data transfer from processors
1, ,j- 1 to ptocessorj overlaps this additional idle time and need not be considered
further. For the iPSC-1,/3 + Nr <2Nto for N > 5. The total time for Algorithm MGS
is equal to the time needed by the processor holding the last column, so

TMos 2(2m 1) Nto + (m 1)(/3 + Nr) for m _-< p.

In the case m > p, processor j contains vj, V+p, , v+p where j + t,p =< rn 1,
and processors are connected in a ring. Communication takes place in a manner similar
to that of Algorithm MGS so that no processor encounters any column more than
once. Hence, no processor waits for Vo for more than (p-1)(/3 + Nz) steps. Upon
receipt of/)k, processor j performs steps (1.3) and (1.4) for vectors v,..., v+p with
index greater than k. As soon as step (1) has been completed for vj, that vector is
normalized and sent out so that one normalized vector begins the circuit every 4Nto.

The time to complete MGS is again equal to the total time required by the processor
holding /)m--l" A lower bound for the case m kp, k-> 1, and fl + Nz < 2Nto is given
by the time required for processor p- 1 to receive Vo and to orthogonalize all its vectors

TMs>=((m 1)
m )--+m+l 2Nto+(p-1)(fl+N-)
P

4. Cuppen’s method. The first scheme to be discussed is a divide-and-conquer
method described by Cuppen to find all the eigenvalues and corresponding eigenvectors
of any symmetric tridiagonal matrix [7].

4.1. Sequential algorithm. The method is based on the fact that a symmetric
tridiagonal matrix T ofeven order N can be divided into a pair of equal-sized symmetric
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tridiagonal submatrices as follows"

T1 O_lel] (e/2 O-’e)

where a is the off-diagonal element of T at position N/2; ei is the ith unit vector of
length N/2, and To and T1 are of order N/2. The sign and magnitude of 0 are selected
to ensure that subdivision of the matrix can be performed at this position without
cancellation [8]. The original problem has now been split into two eigenproblems of
half its order.

If the solutions to the two smaller eigensystems are To=XoDoX and TI=
XD1X, then

where

Q=(Xo X1)’ D=(D D1)"
Tl eN/_Xo is the last row of Xo, and fr eX is the first row of X1. To solve the

eigenproblem for T, it is necessary to find the eigenvalues and eigenvectors of the
diagonal matrix D plus a rank-one correction, D+pzzr=QrTQ, where zr=
x/aO/p(l o-if T1), and p is selected so that Ilzl12- 1. For the remainder of the paper,
it is assumed that T is unreduced (i.e., its off-diagonal elements are nonzero). If not,
T would consist of a direct product of disjoint, lower-order matrices whose eigen-
solutions could be determined independently.

The eigenvalues Ao, , AN- ofD+ pzzr are found using a root-finding technique
developed in [6]. The corresponding eigenvectors are computed from

(D-AiI)-z
(4.2) u,

II(D- A,I)-lzllu
If U is the matrix with columns Uo, Ul,’", ur_ and A=diag (Ao,’’ ", Av_l), the
eigendecomposition of the original matrix may now be expressed as the matrix product

T=QUAUrQr.
If the elements of D are not sorted in descending order as is required for the

root-finding procedure mentioned above, it is necessary to consider instead the matrix
JrDJ, where J is an appropriate permutation matrix. Distinctness of the elements {d}
is also requisite. Although an unreduced tridiagonal matrix of order N does itself have
N distinct eigenvalues, the intermediate matrix D may not. For example, if

2 1 0 0

T=
1 3 1 0

0

0
1 3 1

0 1 2

then a 1,

To=(21 ;)and TI=( 12).
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Both To and T1 have eigenvalues 1 and 3, so

3 0 0 0

D=
0 1

0 0

and do dl, d2 d3.
In the case of exact arithmetic, the deflation rules may be described as follows.

When multiple values dt= dt/l dt/k occur, the eigenvector basis is first rotated
to zero out the elements Zl+," ", Zl/k corresponding to the multiple elements dl+l

d+k" a product of plane rotations Gl is applied so that

G(z,, z,+, z,+,,) (z, 0,..., O) .
The eigenvalue corresponding to a zero element z of the rotated vector remains
unchanged (hi dj), and the corresponding eigenvector may be chosen as the appropri-
ate unit vector of order N (uj e) [6]. Therefore, multiple values along the diagonal
of D result in a significant reduction in the work required to compute the eigensystem
of D + pzzr. Zero elements of z corresponding to distinct elements of D lead to similar
savings. Deflation rules have been developed for finite precision in [8]" rotations are
applied when close elements of D occur, and deflation occurs when elements of z are
small. The same rules are employed for the hypercube implementation. Numerical
experiments have confirmed that the increase in speed due to this deflation is substantial
[8]. Representing the product of all rotations by the matrix G, the matrix T is expressed
as

(4.3) T= QJGT-UA UTGJT-Q 7- XAX7-

where UAUT- is the eigendecomposition of GJT-(D+,ozz7-)JG r. The eigenvalues of
T are the diagonal elements of A while the eigenvectors of T are the columns of
X QJG7-U.

4.2. Parallel algorithm. The parallel implementation of Cuppen’s method recur-
sively continues the divide-and-conquer strategy. The matrix T is written as

r "r’0
(4.4) T= To

0 o
+ aloblobo 0

+ a2obob2.
0 r- +ab,b

0 To3
This subdivision or "tearing" process is repeated and rank-one updating procedures
applied recursively. At the ith subdivision, a submatrix T is split into

( t 7-T T 2 + aibob O <=j <- 1.
T/-1,2j+l/

It is this recursive nature of Cuppen’s method that suggests its suitability to parallel
implementation on the hypercube architecture. A high-level description of a parallel
implementation of Cuppen’s method on the hypercube is given as Algorithm C1.

ALGORITHM C1. Solution of eigenproblem of order N-k2d on a d-cube.
Recursively divide the matrix T =- Tdo d times so that processor j contains sub-

matrix To of order k, 0-<j_<-2d- 1.
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(1) Step O. Each processor (0-cube) independently computes the eigensystem of
its order-k submatrix.

(2) Step i, 1 -i - d. Each (i-1)-cube pairs with another (i-1)-cube to form an
/-cube by exchanging information about the eigensystems of the matrices
T/_l,Ej and T/_l,Ej+l of order k2i-1 computed in Step i- 1. Each/-cube indepen-
dently computes the eigensystem for its matrix To of order k2i. The 2d-i

/-cubes at Step are enumerated by the index j, 0j-2d-i- 1.

The number of updating steps in Algorithm C1 is equal to the dimension of the
hypercube. At Step i, 2d-i/-cubes independently solve eigensystems of order k2. Upon
completion of Step d, each processor contains k of the N-k2d eigenvalues of the
original matrix T as well as the k corresponding eigenvectors (of length N). Algorithm
C1 can now be refined to explain in greater detail the assignment of computational
tasks to processors.

Each processor starts with the solution of an eigensystem of order k and during
subsequent steps is responsible for updating k eigenvalues and k eigenvectors, thereby
doubling the length of the vectors during each step. Thus, the jth processor in a subcube
contains eigenvalues ’jk, ’jk+l," ’(j+l)k-1 of the matrix T as well as the correspond-
ing eigenvectors. Figure 1 depicts the communication pattern at each step of the
algorithm on a hypercube of dimension 3. The labeled squares denote individual
processors (the 0-cubes of Step 0). A box containing 2 processors indicates that, at
Step i, subcubes of dimension independently compute the needed eigensystems. All
processors belonging to the same /-cube must communicate with one another during
the solution Step i.

The allocation of submatrices to processors for a 3-cube is given in Table 1. The
matrix T-= T3o of order N k2 is recursively divided into eight tridiagonal matrices
Too, Tol," ", To7 of order k, and matrix Toj is assigned to processor j, 0j 7. In
general, the entries To are those matrices whose eigensystems are computed in Step
by subcube j. The brackets distinguish the subcubes occupied by each eigensystem.

FIG. 1. Formation of subcubes for data transmission during Cuppen’s method.

TABLE
Assignment of submatrices to the processors of a 3-cube during Cuppen’s method.

Po P, P2 P3 P4 Ps P6 P7

Step 0:

Step 1:

Step 2:

Step 3:

roo] ro,] To2] To3] To4] ros] Too] roT]

[r,o] [r,,] IT,2] [r,3]

T2o T,]

T3o T]
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More precisely, during Step 0 processor j (a 0-cube) computes the eigensystem
(Aoj, Xoj) of the matrix Toj. Because each rank-one updating step requires the eigensys-
tems of two smaller matrices, processors must pair up in Step 1 and exchange informa-
tion within 1-cubes to compute the eigensystems of the four order-2k matrices
Tlo," ", T13. After exchanging information about the eigensystems of matrices Too
and To1, processors 0 and 1 can together compute the eigensystem (Alo, Xlo) of To
(see Table 1). Processor 0 is left with the leading k eigenvalues and eigenvectors of
Tlo, while processor 1 holds the trailing k. The remaining steps proceed in a similar
fashion until, at the end of Step 3, each of the eight processors contains k eigenvalues
and k eigenvectors of length 8k of the original matrix T T3o. For 0-<j _-< 7, processor
j holds eigenvectors indexed jk,..., (j + 1)k- 1.

To begin the solution of the eigenvalue problem by Cuppen’s method, each node
requires a sequence of diagonal and off-diagonal elements of the matrix T. Finding
the eigensystem of T2o in equation (4.4) on a 2-cube, for instance, requires the submatrix
Too as well as the off-diagonal elements a lO and O20 to be available in processor 0.
Under the assumption that each node contains the needed matrix elements, Algorithm
C2 details the steps in the determination of all eigenvalues and eigenvectors of a matrix
T of order N k2d on a d-cube. Italics distinguish comments from instructions. Note
that only parts (i.1) and (i.4) of Step i, 1 _-<i_-< d, require data communication.

ALGORITHM C2. Solution of eigenproblem of order N-k2d on a d-cube.
Recursively divide the matrix T =- Tdo d times and allocate submatrix Toj and the
d appropriate off-diagonal elements to processor j, 0_-<j_-< 2d- 1.

Step O. Processor j (0-cube) computes the eigensystem (Aoj, Xoj) of the matrix
Toj of order k, the diagonal of Aoj contains the eigenvalues of Toj in descending order,
and the columns of Xoj are the corresponding eigenvectors, 0_-<j_-< 2d- 1.

Step 1 <- <= d. {2 d-i /-cubes independently compute the eigensystems (A/j, Xo) of
the matrices To of order k2 using the eigensystems from Step i-1:

To=( T-’:zj ) + aob,jb
T/- 1,2j+

T -1,2j-1,2j Ai-l,2j _.
Pijzijzij

Xi-l,2j+1Xi- ,2j+ Ai-I,2j+I/

Denote by S a subcube of dimension and index j which consists of processors
j2 through (j + 1)2- 1. For simplicity, denote these processors by Po, P1," ", P’-I
and replace subscripts of the form (i-1, 2j) with 0 and (i-1, 2j + 1) with 1. With the
new notation, processors Po, P1,"" ", P’-I compute the eigensystem (A, X) of

X
from (Ao, Xo) and (A, X). From Step i-1, processor P for 0<_-l <_-2-- 1 contains
eigenvalues of To indexed Ik, , (l + 1) k 1 and columns lk, , (l + 1) k 1 of
These processors form a subcube of dimension i-1 called So. Similarly, processor P
for 2-1 <- <_- 2 1 contains eigenvalues of T indexed lk, , (l + 1) k 1 and columns
Ik,..., (l+ 1)k-1 of X1. These processors form a subcube of dimension i-1
called S .}

(i.1) By means of Algorithm ADE, processors in So and S1 exchange their k
elements of Ao and A, respectively, and their k elements of the last row of
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Xo or the first row of X1, respectively, so that each processor in S contains
Ao, A1, the last row of Xo and the first row of X1.

(i.2) Each processor in $"

(i.2.a) computes z and p from the last row of Xo, the first row of X, and a.

(i.2.b) determines a permutation matrix J by merging the sorted sequences
diag (Ao) and diag (A) so that the diagonal elements of

)=JrDJ=jr(A )JAi

are sorted in descending order.
(i.2.c) permutes the elements of z accordingly: = Jrz.
(i.2.d) applies the product of plane rotations G to zero out the elements in

z that correspond to close elements in/.
(i.2.e) identifies small elements of z and deflates.

(i.3) Each processor P in S
(i.3.a) computes elementsjk, ., (j+ 1)k- 1 ofA (eigenvalues of/+pr)

and the corresponding eigenvectors Ugk," ", U<g+l)k-1 by root finding
and formula (4.2). The eigenpair is (Ag, eg), where eg is the jth unit
vector, when is small.

(i.3.b) updates the eigenvectors: (l)jk,’’" /)(j+l)k-1)-- GT(tljk, U(j+I)k-1)"
(i.4) By means of Algorithm RMM, processors in So and S1 send their columns

of Xo and X1, respectively, to all other processors in S so that processor j
can determine its k columns of X via

(X,jk, ,X(j+l)k-1)=[(XO )J](1.)jk, l.)(j+l)k-1), 0--<j<--2d-’-- 1.
XI

4.3. Analytical and experimental results. As shown in [8], deflation plays an
important role in the serial behavior of Cuppen’s method. However, its contribution
to the time complexity of the algorithm is difficult to assess analytically. In [15], we
derive a first-order approximation to an upper bound on the time needed to determine
all the eigenvalues and eigenvectors ofa symmetric, tridiagonal matrix on the hypercube
in the case of no deflation. For a matrix of order N k2d= kp, the resulting upper
bound on the total arithmetic time T is given by

TA N tO o +-+2r+4N
P P

The first cubic term ro(N/p) is the time required to solve the subproblems in Step 0
of Algorithm C2. The second cubic term -Na/p comes from matrix multiplication
during eigenvector updates in Step (i.4). The quadratic term 2rNE/p arises from the
computation of intermediate eigenvalues and eigenvectors during Step (i.3.a). Com-
munication in each step consists of a pair of alternate direction exchanges plus the
modified Algorithm RMM in Step (i.4). Thus the total communication time Tc is
bounded above by

Tc-fl(2d+d+2p)+ - +8N--4d -.
P

In 15], it is also shown that assigning columns of the eigenvector matrix to processors
as in Algorithm C2 results in a lower time complexity than does an assignment of rows
to processors. Although deflation occurs for most matrices, its effects are greatly
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reduced in the hypereube implementation. This result is evident in speedups measured
for two matrices having different amounts of deflation. The speedup of Cuppen’s
method is defined as the time required to solve a problem using the fastest sequential
method on one node divided by the time required to solve the same problem by
Cuppen’s method using p _-> 2 nodes. In this paper, we compute speedups with respect
to the fastest sequential method having accuracy comparable to the parallel method
in question. (The accuracies of Cuppen’s method, bisection, multisection, and inverse
iteration are compared in 7, and Cuppen’s method is seen to be more accurate than
the other combinations.) Dongarra and Sorensen’s implementation ofCuppen’s method
SESUPD is the fastest available sequential method for finding to high accuracy all
eigenvalues and orthogonal eigenveetors of a real symmetric, tridiagonal matrix of
order larger than 50 [8] and so is employed for speedup computation. For instance,
on one processor of the iPSC-1, SESUPD requires 8809.9 seconds, and EISPACK’s
TQL2 takes 28,341.9 seconds for matrix [1, 2, 1] of order 512.

The first symmetric, tridiagonal test matrix, [1,/, 1], has the value 1.0 in each
off-diagonal position and the value/ x 10-6 in the/th diagonal position. The intermedi-
ate eigenvalues of 1,/, 1 (i.e., the diagonal elements of D) are distinct at each step,
and the small ratios of the diagonal elements/ to the off-diagonal elements ensure
nonnegligible elements of z. Thus, little or no deflation occurs at each step in the
solution process. The second matrix, 1, 2, 1 ], has all off-diagonal elements equal to 1
and all diagonal elements equal to 2. Henceforth, this matrix is denoted 1, 2, 1]. The
structure of [1, 2, 1] leads to significant deflation in the root-finding Step (i.3) of
Algorithm C2. SESUPD [8] computes the eigensystem of [1, 2, 1] in approximately
half the time it needs for 1,/, 1 with exact times dependent on matrix order.

Figure 2 shows speedup for 32 processors as a function of matrix order for 1, 2, 1 ]
and [1,/., 1]. Although near maximal speedup occurs in the case of little deflation,
speedup of only about 50 percent is seen when deflation is prevalent. This difference

.o
I0

0 ZOO 00 600 800 1000 200

Fla. 2. Cuppen’s method on a S-cube" speedupfor 1, 2, 1] (squares) and 1, I, 1] (circles) versus matrix
order. Pointsfor matrix orders that are multiples of 32 are connected with solid lines. Otherpoints are connected
with dotted lines.
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does not indicate that the eigensystem of [1,/z, 1] is found in less time than that of
[1, 2, 1] on the hypercube, but rather that Cuppen’s method on the hypercube does
not exhibit the large time savings from deflation shown by SESUPD. On more than
one processor, SESUPD requires approximately the same time for [1, 2, 1] as for
1,/z, 1], but on one processor, SESUPD runs considerably faster for 1, 2, 1] than for
1,/z, 1]. Speedup for 1,/x, 1] is thus greater.

The loss of the deflation advantage is due in part to the static scheduling of
processors and in part to additional overhead incurred in the hypercube implementa-
tion. Static scheduling affects the performance because the processors no longer solve
identical problems at each step when the cube dimension is larger than one. Neverthe-
less, the data exchange requirements of Algorithm C2 synchronize the processors.
Thus, although a single processor may encounter significant savings when deflation
occurs, the gain may not be shared by the cube as a whole. Unless the effects of
deflation are evenly distributed over the processors of the cube, any time gained during
root-finding by a single processor will be lost as it waits for the slower processors
during the data exchange routines. The improvement due to deflation measured for
sequential or for shared memory machines, on which root-finding tasks are scheduled
dynamically by a queue manager, is not expected for the statically scheduled hypercube.
A dynamic scheduler would incur additional overhead and would be difficult to
implement without potentially expensive communication of eigenvectors.

The remaining loss of performance is due to communication requirements. At
some points in the algorithm, it is more efficient to allow all processors in the cube to
perform the same computation than it is to communicate the data required for parallel
computation. (Step (i.2.d) of Algorithm C2 is an example.) These redundant computa-
tions cause root finding to occupy a smaller fraction of the total computation time on
the hypercube than on a sequential machine. Introduction of the communication
required for the hypercube similarly reduces the time savings of deflation. Figure 3

O,

08

go,

200 400 600 800 1000
motr order

FO. 3. Cuppen’s method on a 5-cube: fraction of total time spent in communication ersus matrix order

for matrix I, 2, 1].
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shows the fraction of time spent in communication by the processors of a 5-cube while
determining the eigenvalues and eigenvectors of matrices of various orders for matrix
1, 2, 1 ]. Computation time is shown to be greater than communication time for matrix

orders as small as 64. For eight or more eigenvectors per processor, the communication
cost levels off at about 16 percent of the total time.

5. Bisection and inverse iteration. The method described in this section determines
all eigenvalues of a symmetric, tridiagonal matrix from Sturm sequence evaluations at
interval endpoints obtained through bisection, and subsequently computes the eigen-
vectors via inverse iteration.

The bisection procedure recursively halves an initial interval containing all eigen-
values (such as the union of Gerschgorin disks) into two smaller intervals. Division
of the interval continues until one of the following three conditions is satisfied: the
interval contains no eigenvalue, the interval contains exactly one eigenvalue, or the
interval size is smaller than a given tolerance. In the latter case, the interval contains
a group of computationally coincident eigenvalues.

In this study, all eigenvalues are determined to full accuracy by bisection using
a nonlinear recurrence for the Sturm sequence. Use of a nonlinear recurrence would
permit computation of the eigenvalues by such faster methods as the ZEROIN root
finder [9] and interpolation [3] but is prone to underflow and overflow. While the use
of one of these techniques could improve the performance of the bisection algorithm,
the gain in speed would not alter the comparisons presented in the concluding section
of this paper. The EISPACK routine TRIDIB [22] was employed for the experiments
described below.

The convergence rate of inverse iteration to an eigenvector is inversely proportional
to the separation of the associated eigenvalue from the nearest neighboring eigenvalue.
Hence, for well-separated eigenvalues, inverse iteration produces orthogonal eigenvec-
tors [23]. In case of close eigenvalues, eigenvalues are first perturbed to a sufficient
distance [22], [23] and then the eigenvectors are computed and orthogonalized.

The term cluster is used henceforth to denote a group ofcomputationally coincident
eigenvalues. If the computed eigenvalues A and Ai+ are computationally coincident,
Ai/ is replaced by the value Ai+ nu e where e is the small multiple of machine epsilon
defined in EISPACK’s TINVIT [22]. This perturbation of eigenvalues is intended to
permit computation of linearly independent eigenvectors by inverse iteration. Because
the eigenvalues computed by bisection (or multisection) are highly accurate, the
accuracy of the solution is determined by the accuracy of the computed eigenvectors.

5.1. Parallel algorithm. In our implementation of bisection and inverse iteration,
each processor in a d-dimensional hypercube computes k eigenvalues and k eigenvec-
tors of a matrix of order N- k2d= kp. During bisection, processor computes eigen-
values indexed ik, , (i + 1)k- 1 by means of the EISPACK routine TRIDIB [22].
Because orthogonalization may be necessary, the computation of eigenvectors requires
attention to load balancing. The following three approaches to the distribution of
eigenvectors to processors are examined in [15]"

(1) Assigning a block of adjacent eigenvectors to each processor. In this case,
effective pipelining in the orthogonalization Algorithm MGS is not possible
meaning that processor load imbalance can be severe.

(2) Using a scheduling heuristic to distribute tasks to processors according to a
specified cost function. Here, significant overhead is involved, and the resulting
assignment of work to processors is not necessarily well balanced.
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(3) Assigning eigenvectors to processors in a cyclic (or wrapped) fashion. For
this arrangement, processor utilization is well balanced, and the implementa-
tion is simple.

We implemented the third, cyclic distribution strategy, where processorj computes
eigenvectors indexed j, j + p, j + 2p, , j + vp <- N. As opposed to the second, heuristic
scheduling approach, the assignment of eigenvectors to processors is predetermined,
and no processor computes more than one eigenvector more than any other processor.
Unless a cluster of eigenvalues comprises more than p eigenvalues, no processor
handles more than one vector associated with any cluster. Except in the event of a
particular distribution of small clusters, the burden of orthogonalization is spread
across processors.

The biggest drawback to cyclic distribution is the extent of communication
required. Although each cluster requires communication for the orthogonalization of
its eigenvectors, the number of messages sent by a processor is essentially independent
of the cluster size because the eigenvectors are distributed over as many processors as
possible. Moreover, communication and computation are overlapped by Algorithm
MGS and by the simultaneous orthogonalization of vectors associated with different
clusters.

Because eigenvalues are computed according to a block distribution and eigenvec-
tors according to a cyclic distribution, an intermediate redistribution of eigenvalues
(via Algorithm ADE) is necessary to make all eigenvalues available to each processor.
Alternatively, the computation of eigenvalues could be assigned to processors in a
cyclic fashion so as to obviate the intermediate exchange stage. If that approach were
employed, a processor would have to compute eigenvalues in nonadjacent intervals
so that either the number of Sturm sequence evaluations would increase or else more
messages would have to be sent.

ALGORITHM B" Solution of eigenproblem of order N-kp on a p-processor
hypercube. Each processor contains all diagonal and off-diagonal elements of the
matrix.
In parallel, all processors perform the following steps.
Step O. Determination of initial interval. Processor computes all Gerschgorin

disks to find the interval containing all N eigenvalues and then uses
bisection to determine the interval containing the N/p eigenvalues indexed
ik, (i+ 1)k- 1.

Step 1. Computation of eigenvalues. Processor determines eigenvalues indexed
ik,. , (i + 1) k 1 via bisection.

Step 2. Exchange of eigenvalues. All processors exchange their eigenvalues by
means of Algorithm ADE.

Step 3. Perturbation of eigenvalues. Each processor sorts all N eigenvalues and
perturbs eigenvalues belonging to clusters.

Step 4. Computation of eigenvectors. Processor computes the Nip eigenvectors
corresponding to eigenvalues indexed i, / p, , / vp <-_ N by inverse
iteration.

Step 5. Orthogonalization of eigenvectors. Each processor orthogonalizes those of
its eigenvectors that are associated with a cluster by Algorithm MGS.

5.2. Experimental results. The efficiency of our implementation is reflected in Fig.
4 where speedup is plotted against matrix order for matrix [1, 2, 1] and for random
matrices. (Because different random matrices were generated for each order, there is
no relation between them.) The speedup is calculated as the time for a single processor
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FIG. 4. Bisection on a 5-cube" speedupfor 1, 2, 1] (circles) and random matrices (squares) versus matrix

order. For matrix 1, 2, data points measured at matrix orders equal to multiples of 32 are connected with
a solid line; others are joined with a dashed line.

run of EISPACK’s BISECT and TINVIT divided by the time for the parallel
implementation on the slowest of the 32 processors. BISECT with TINVIT is the fastest
method for finding all eigenvalues and eigenvectors of a symmetric, tridiagonal matrix
of large order on one iPSC-1 processor, but the accuracy is not as high as that of
Cuppen’s method or TQL2. The eigensystem of the matrix [1, 2, 1] of order 512, for
example, is computed in 2,340 seconds.

The speedup for 1, 2, 1] increases smoothly for matrix orders that are multiples
of the number of processors. Efficiencies ranging from 77 percent to 89 percent are
achieved for matrix orders greater than 100. Under the operating system in place on
the iPSC-1 at the time of these experiments, a problem of order 3,520 is the largest
that could be solved considering only orders that are multiples of 32. Comparable
speedups found for random matrices of all orders show that the results are not strongly
dependent on properties particular to matrix [1, 2, 1].

Efficient for other matrix orders fall to as much as 12 percent below the smooth
line of those for multiples of 32. This reduction of speedup results from the fact that
some processors compute one more eigenvalue and eigenvector than do others. The
alternate direction exchange following the computation of eigenvalues (Step 2 of
Algorithm B) synchronizes the processors so that those processors with a lesser
workload are idle until the processors with a greater workload enter the exchange.
Similarly, the eigenvector orthogonalization can be delayed by the uneven distribution
of inverse iteration tasks. Hence, the completion time is determined by the processor
with the largest work assignment. For example, for a matrix of order 65, one processor
computes three eigenvalues while all others compute two. Because all processors wait
for the processor computing three eigenvalues, the order 65 problem takes as long as
if all processors were computing three eigenvalues (as would be the case for a matrix
of order 96). The sequential solution of an order 65 problem, however, takes little
more time than the solution of an order 64 problem but considerably less than an
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order 96 problem. Thus, the speedup for order 65 is appreciably less than that for
order 64. In contrast, the speedup of an order 127 problem, for which both sequential
and parallel times are close to those for order 128, is approximately equal to that of
order 128.

Despite the extent of independent parallelism inherent in the bisection and inverse
iteration procedures, maximal speedup is not achieved. The reduction in speedup can
be attributed to nonarithmetic overhead as well as to some redundant (nonparallel)
computations discussed below. Because the amount of communication in Algorithm
B is dependent on the number and size of clusters in a matrix, the exact communication
time cannot be measured by executing the algorithm without the arithmetic steps.
Measurements ofthe nonarithmetic time thus contain time spent in waiting for messages
as well as time spent in communication by a single processor. Figure 5 shows the
average fraction of the total time spent idle or in communication by one processor.
Again, the points for matrix 1, 2, 1 measured at orders divisible by 32 define a smooth
curve falling from 20 percent of the total time at matrix order 32 to about 2 percent
of the total for matrix orders larger than 320. An increase in nonarithmetic activity,
due to the load imbalance discussed above, occurs for most orders not equal to multiples
of 32. As expected, this increase is significant for order 65 but barely discernible for
order 127.
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FIG. 5. Bisection on a 5-cube: communication overhead as a fraction of the total time versus matrix order
for matrix 1, 2, ].

The total time for Algorithm B is broken down into the times for the various steps
as follows. The eigenvalue computation begins with each processor independently
computing all Gerschgorin disks and subsequently carrying out an initial bisection to
determine the interval containing its share of the eigenvalues. While this process could
be altered to result in less redundancy, its present contribution to the total time is
small. For a variety of matrices including 1, 2, 1], the initial bisection time decreases
smoothly for all matrix orders from a maximum of about 15 percent of the eigenvalue
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computation time at order 32 to about 3 percent at order 512 and 1 percent at order
1,024. The grouping of close eigenvalues done in parallel by all processors occupies
less than 5 percent of computation time for all matrix orders. The time needed for
starting the pipeline of communication for Algorithm MGS represents an additional
loss of efficiency amounting to less than 2 percent of the total time for all orders of
matrix [1, 2, 1]. Thus, at order 32, about 42 percent of the total time is spent in
communication and redundant arithmetic. (From the previous remarks on nonarith-
metic overhead, 22 percent of the time can thus be attributed to redundant arithmetic.)
The 42 percent overhead time completely accounts for the observed efficiency of 58
percent. Similarly, the 10 percent of the total time spent in overhead for order 1,024
approximates the observed lowering of the speedup curve below optimal.

Figure 6 shows the average fraction of the total time spent in computing, exchanging,
and grouping eigenvalues, in determining eigenvectors, and in orthogonalizing eigen-
vectors corresponding to clusters for several orders of matrix [1, 2, 1]. Finding and
distributing the eigenvalues to all processors occupies more than 80 percent of the
total time, while computing the eigenvectors occupies most of the remaining time. The
low contribution of the orthogonalization step confirms the effectiveness of the cyclic
distribution approach for the modified Gram-Schmidt procedure. In contrast, modified
Gram-Schmidt occupies 2.6 percent of the total time for order 500 and 10.2 percent
of the total for order 1,000 for a similar algorithm executed on an Alliant FX/8 [17].
These time distributions are particular to the matrix [1, 2, 1]. When eigenvalues are
more strongly clustered, bisection generally occupies a smaller fraction of the time
while reorthogonalization requires more.
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FiG. 6. Bisection on a 5-cube: fraction of total time spent in eigenvalue computation (B), eigenvector
computation (I), and orthogonalization (0) versus matrix order.

As for the speedup and communication curves, data points in Fig. 6 for matrix
orders that are multiples of 32 lie on a smooth curve, and points for other orders do
not. The increase in eigenvalue computation time for the deviant points corresponds
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to the increase in nonarithmetic time (see Fig. 5). Again, the results are problem
dependent. The distribution of eigenvalues of matrix [1, 2, 1] leads to a fairly even
distribution of work among processors. Certain spectra could lead to load imbalance
especially during bisection or reorthogonalization but were not observed in a variety
of random and other test matrices.

5.3. Analysis of a model problem. While the exact time contribution of each
computing task is problem dependent, analytic examination of a simple model problem
can shed light on the arithmetic requirements of the bisection method. Consider
the symmetric, tridiagonal matrix T,,ode of order N kp having eigenvalues
O, a/N,..., (N-1)a/N. Suppose that the eigenvalues are known a priori to be
confined to the interval [0, ce), then the spectrum of T,odet approximates that of 1, 2, 1 ],
which has N eigenvalues initially confined within an interval of length four for all
values of N.

During the initial bisection of Algorithm B, each processor finds an interval of
length a/p containing k eigenvalues. This step takes 1_-> log2 p iterations for a total of
l/ 1 Sturm sequence evaluations. In subsequent steps, each processor extracts its k
eigenvalues. Finding its largest eigenvalue first, each processor reduces an interval of
width alp to one of width in l _->log2 a/p bisections. After this computation, the
portion of the interval following the first eigenvalue computed is discarded, leaving a
new search interval of length a/p-a/N. The second eigenvalue is then extracted in
12 => log2 (a/p a/N)/ bisections. In general, the ith eigenvalue is found in an interval
of width a/p-(i-1)a/N in l>-lOgE(a/p-(i-1)a/N)/8 bisections, a process
requiring l + 1 Sturm sequence evaluations. If the time to complete one Sturm sequence
evaluation is 2Nto, the total time for the eigenvalue computation is

T_-> (1+1)+ 2 log2--+l 2Nto
i=1

log p + 1 + k log-+ k 2No.

The eigenvectors are computed using inverse iteration. For a tridiagonal matrix,
each iteration requires time of about 5Nw. Assuming that convergence is achieved in
an average of two iterations, computing k eigenvectors takes time T 10Nko. The
spacing of the eigenvalues is assumed wide enough that additional orthogonalization
of eigenvectors is not required.

The attainable tolerance is related to both machine precision and the largest
eigenvalue magnitude [22]. For the model problem in double precision, 10-15a
2-5a, and Tn/TI decreases from 12 to about 11 when the matrix order increases from
32 to 1,024 on a 5-cube. Thus, the eigenvalue computation dominates the total arithmetic
time for the model problem. The eigenvalues of matrix 1, 2, 1 are more closely spaced
than those of Tmodel and so require fewer bisections to extract. For this reason, the
eigenvalue computation for 1, 2, 1 occupies about four times the time of its eigenvector
computation. (As indicated by Fig. 5, nonarithmetic operations contribute minimally
to the experimental result.) The predicted reduction in eigenvalue computation time
with respect to eigenvector time for increasing matrix order of Tmoaet is also reflected
in Fig. 6. For 1, 2, 1], Tn/TI falls from 7.1 at order 32 to 4.3 at order 1,024.

The model problem further follows the experimental results by having a communi-
cation complexity significantly smaller than its arithmetic complexity and decreasing
with matrix order. A single alternate direction exchange of Nip eigenvalues per
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processor comprises the total communication requirement of Algorithm B. Assuming
/3 10w and 7. 10to/125, the communication time comes to

Tc =2(fllog2p+(p- 1)
N)7"

P

=20(1og2p+p-1 N)to.125p

For the model problem on a 5-cube, the ratio of communication time to computation
time Tc/(TB+ TI) falls from .02 at order 32 to 3x10-5 at 1,024. The percentage of
communication time for [1, 2, 1] in Fig. 5 is greater than that of Tmodel because the
eigenvalue computation in T,,ode takes longer. As shown in Fig. 6, orthogonalization
does not greatly affect the run time for matrix [1, 2, 1 ].

6. Multisection and inverse iteration. Bisection involves repeated halving of a
search interval. The generalization of bisection known as multisection is the division
of an interval into p-_> 2 equal-size subintervals; Sturm sequence evaluations are used
to find the number of eigenvalues in each of the p subintervals. Subintervals found to
contain more than one eigenvalue are in turn multisected in order to locate individual
or clustered eigenvalues. As in bisection, empty subintervals are immediately discarded.
Once an interval contains a single eigenvalue, multisectioning is discontinued regardless
of the interval width. In the terminology of [17], an eigenvalue confined alone in this
way has been isolated. Single eigenvalues determined to within a given tolerance
have been extracted. Several eigenvalues contained in an interval of width less than
are not further isolated but rather form an extracted cluster. In the implementation
described below, is taken to be the small multiple of machine epsilon used in
EISPACK’s BISECT as the criterion for accepting computed eigenvalues.

As shown in 17], it is faster on one processor to extract a single, isolated eigenvalue
by bisection rather than multisection. Even faster interpolation methods are not
considered for extraction due to the possibility of under- and overflow mentioned in

5. Moreover, using interpolation in the parallel implementations of bisection and
multisection is not likely to affect their speeds with respect to each other and would
not affect the conclusions drawn in 7.

The procedure for finding all eigenvalues of a symmetric, tridiagonal matrix using
multisection and the corresponding eigenvectors with inverse iteration is summarized
in Algorithm M1.

ALGORITHM M1. Multisection and inverse iteration.
Step O. Determination ofinitial interval. Compute all Gerschgorin disks to provide

an interval containing all eigenvalues.
Step 1. Isolation of eigenvalues. Use multisection recursively to divide intervals

until each interval holds either one eigenvalue or an extracted cluster of
eigenvalues.

Step 2. Extraction of eigenvalues. Recursively use bisection to divide intervals
containing one eigenvalue until the eigenvalue has been extracted to a
specified tolerance 6.

Step 3. Computation of eigenvectors. Perturb clustered eigenvalues, and compute
all eigenvectors by inverse iteration.

Step 4. Orthogonalization ofeigenvectors. Orthogonalize eigenvectors correspond-
ing to clusters.
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6.1. Parallel algorithm. In Algorithm B, bisection of an interval is carried out by
a single processor. Parallel multisection on a cube of p 2 d processors provides a
means of using all p processors to find the eigenvalues in one interval. The parallel
implementation of multisection is based on Algorithm M1. Computation of eigenvalues
begins with each processor finding the initial interval containing all eigenvalues (e.g.,
by computing the Gerschgorin disks). The computing tasks for isolation and extraction
of eigenvalues are shared by all processors; eigenvector determination proceeds as in
Algorithm B. The approaches to load balancing taken during eigenvalue computation
are as follows.

(1) Isolation ofeigenvalues. To begin, the initial interval is divided into p equal-size
subintervals, and processor determines the number of eigenvalues located in the ith
subinterval. All processors then employ Algorithm ADE to exchange their eigenvalue
counts. Using the collected numbers of eigenvalues in the p intervals, each processor
then discards empty intervals and retains in the extraction list intervals containing a
single, isolated eigenvalue. Each processor places in the isolation queue all intervals
requiring further parallel multisectioning. In lock step, the processors perform multisec-
tion on the interval currently at the head of the isolation queue; processor counts
the eigenvalues in the resulting ith subinterval.

An interval containing more than one eigenvalue is not further subjected to
multisection when it is too small to be divided into p subintervals, i.e., when its width
is less than p& Because its width is not necessarily less than t, the interval is entered
into the extraction list for further processing. Thus, every processor creates and
maintains an identical queue of remaining .multisection tasks and a list of extraction
tasks.

Multisectioning continues until the isolation queue is empty, that is, until all single
eigenvalues have been isolated and the intervals with several eigenvalues are too small
to be divided into p subintervals.

(2) Extraction of eigenvalues. The sets of intervals stored in the extraction list
during the isolation phase define two distinct sets of tasks, where each such task is to
be executed on one processor. A task is either the extracting of an isolated single
eigenvalue from an interval of arbitrary length via bisection or the multisecting of an
interval of length less than p containing several eigenvalues into subintervals of
size

The simple synchronization scheme from the isolation phase is no longer appli-
cable. An alternative approach to load balancing must be considered. A dynamic queue
management scheme can be inefficient on the hypercube. Moreover, the problem of
statically scheduling a set of nonidentical tasks so as to minimize completion time is
NP-complete [21]. However, among standard weighted scheduling algorithms, the
Longest Job First (LJF) schedule provides near optimal performance [13]. In this
heuristic, the most time consuming remaining job is given to the processor with the
lightest total workload.

As it maintains the extraction list, each processor in the hypercube can estimate
the time required to extract the eigenvalues from each interval. Extraction of an isolated
eigenvalue in an interval of size I by bisection requires [log2 I/ iterations for a total
of [log_ I/ + 1 Sturm sequence evaluations. Multisectioning an interval of size I <p
with several eigenvalues into I! < p subintervals can be completed in a single iteration
with no more than I! 8 + 1 Sturm sequence evaluations. A rough estimate of the time
required to extract the eigenvalues from an interval can be based solely on the size of
the interval: every extraction task is assigned a cost of [log2 I/,]+ if it requires
bisection, and I!8 + 1 if it requires multisection. The LJF implementation makes use
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of a heap to record task assignments for all processors. As straightforward manipulation
of a heap constitutes a sequential process, the scheduling procedure is performed by
every processor. After all eigenvalues and clusters of eigenvalues have been extracted,
an alternate direction exchange ensures that all processors have all eigenvalues.

Multisection on the hypercube is summarized as Algorithm M2.

ALGORITHM M2. Solution of eigenproblem of order N= kp on a p-processor
hypercube. Each processor contains all diagonal and off-diagonal elements of the
matrix. In parallel, all p processors perform the following steps.
Step O. Determination of initial interval. All processors compute all Gerschgorin

disks to provide an initial interval containing all eigenvalues. Isolated
disks are added to the extraction list and unions of overlapping disks to
the isolation queue.

Step 1. Isolation of eigenvalues. Each processor divides the first interval in the
isolation queue into p equal-size subintervals, and processor determines
the number of eigenvalues in the ith subinterval. All p processors use
Algorithm ADE to exchange their eigenvalue counts. Each processor
discards empty subintervals and adds to the extraction list subintervals
with one eigenvalue and subintervals of size less than p8 with several
eigenvalues. It appends the remaining subintervals (of size p8 or larger)
with several eigenvalues to the isolation queue. Step (1) is repeated until
the isolation queue is empty.

Step 2. Extraction of eigenvalues. Each processor determines its share of eigen-
values from the extraction list according to a LJF scheduling heuristic.
Each processor bisects intervals with single eigenvalues, and multisects
intervals with several eigenvalues.

Step 3. Exchange of eigenvalues. All processors exchange their eigenvalues by
means of Algorithm ADE.

Step 4. Perturbation ofeigenvalues. Each processor perturbs clustered eigenvalues.
Step 5. Computation ofeigenvectors. Processor computes N/p eigenvectors corre-

sponding to eigenvalues indexed i, + p, ., / vp <- N with inverse iter-
ation.

Step 6. Orthogonalization of eigenvectors. Each processor orthogonalizes those of
its eigenvectors associated with a cluster via Algorithm MGS.

6.2. Experimental results. As in bisection, the speedup for multisection is calcu-
lated as the time for EISPACK’s BISECT and TINVIT combination run on a single
processor divided by the time for the parallel implementation on the slowest of the
iPSC-1/d5M processors. The results are given in Fig. 7.

The speedup for matrix [1, 2, 1] increases monotonically from 8.5 at order 64 to
19.4 at order 1,024. The slight increase in speedup at order 32 over that at order 64 is
an artifact of the problem size equaling the number of processors. Between orders 64
and 1,024, the efficiency ranges between 26 percent and 60 percent as compared to 74
percent to 89 percent for bisection applied to the same set of problems (see Fig. 4).
The lower efficiency of multisection is due, in part, to increased overhead. Figure 8
shows that the average communication and idle time account for over 40 percent of
the total time at low orders and for 5 percent of the total time at order 1,024. In
contrast, overhead for bisection applied to the same set of problems varies from 20
percent to 2 percent of the total time (see Fig. 5). Our implementation of multisection
exhibits redundant arithmetic in the perturbation of clustered eigenvalues by all
processors, in the pipeline startup time for orthogonalization, and in the load balancing
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FIG. 7. Multisection on a 5-cube: speedup on the iPSC-1 for [1,2, 1] (circles) and random matrices

(squares) versus matrix order.

1,0

0.8

200 400 600
maLrlx order

[] []

800 1000 1200

FIG. 8. Multisection on a 5-cube" communication overhead as a fraction of the total time versus matrix order.

routines. This accounts for a combined total of less than 12 percent of the computation
time for all matrix orders. The remaining loss of speedup can be attributed to inefficiency
in the actual isolation and extraction processes.

The average fractions of the total time spent in computation and perturbation of
eigenvalues, in computation of eigenvectors, and in orthogonalization of eigenvectors
are given in Fig. 9. Eigenvalue computations take more than 90 percent of the total
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FIG. 9. Multisection on a 5-cube: fraction of total time spent in eigenvalue computation (M), eigenvector
computation (I), and orthogonalization (0) versus matrix order The fractions of time spent in isolation (i)
and extraction (e) sum to the fraction in eigenvalue computation.

time for all matrix orders; eigenvector computations grow from 7.5 percent to 11.6
percent of the total for orders increasing from 32 to 1,024, while orthogonalization
occupies up to 1.4 percent of the total. The steps of Algorithms M2 and B pertaining
to eigenvector computation and orthogonalization are identical and therefore take
equal time. As these computations represent 1.9 percent-18.6 percent of the total time
for bisection but only 1.4 percent- 11.6 percent of the time for multisection, multisection
contains a larger contribution of eigenvalue computations and exhibits a greater elapsed
time. Some sample times for bisection and multisection given in 7 confirm that
bisection is indeed the faster of the two.

6.3. The model problem revisited. A return to the model problem of 5.3 helps to
explain Fig. 9. Recall that the tridiagonal matrix T,,,oaet of order N kp has eigenvalues
0, a/N, , (N- 1)a/N, and the initial interval is known to be [0, a).

Algorithm M2 begins by isolating the eigenvalues with multisection. The initial
interval of length ce is divided into p intervals of length a/p, each containing k
eigenvalues. Each of the p intervals is in turn multisected to create a total ofp2 intervals,
each containing k/p eigenvalues. In general, the ith multisection step produces p
intervals containing N/p eigenvalues apiece. For the model problem, multisectioning
stops once each interval contains at most one eigenvalue, that is, after j steps, where
pJ=< N < pJ+. Since an interval contains no more than one eigenvalue, its length is at
most a/ N.

During a multisection step, a processor must evaluate Sturm sequences for both
endpoints of each of its intervals. The total number of Sturm sequence evaluations for
the isolation phase is then

J N-1
Siot 2 pi>= 2

i=o p-1
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Each Sturm sequence evaluation takes time 2Nto so that

N-1
Tisol 4 No.

p-1

Isolation leaves in every processor a total of pJ<_-N intervals of length at most
aN containing one eigenvalue. Extracting a single eigenvalue to tolerance from
an interval requires bisections, where 21=> ce/Nt$. The number of Sturm sequence
evaluations performed by one processor during extraction is then

/ )Se,,,. k( + 1) >- k log2 -+ 1

as pJ>-N/p k. The total time for extraction is

Textr -> k log2-+ 1 2No.

For all orders N, the union of Gerschgorin disks comprising the initial interval
of matrix 1, 2, 1] covers the interval [0, 4). Thus, with increasing order, an increasing
number of eigenvalues is determined from an interval of constant length. Because its
eigenvalues are confined to an interval of size a, the matrix Tmode can thus be used
to approximate the multisection time for matrix 1, 2, 1].

Because the eigenvectors are distributed cyclically, each processor in Algorithm
B determines k eigenvectors of Tmode by inverse iteration. This computation takes time
T 10 Nkto. The distance a/N between adjacent eigenvalues is assumed large enough
that none of the eigenvectors need be orthogonalized, so the ratio of eigenvalue to
eigenvector computation times for Tmode is about

TM Tisol-I- Textr 1 ( N-1

TI TI 5-- 2 +p l
k log2-q-k

TM/TI falls from about 10 at matrix order 32 to about 9 at order 1,024; these values
are in close agreement with those obtained experimentally for matrix 1, 2, ].

For matrix orders below 200 in Fig. 9, extraction and isolation take approximately
equal portions of the total time. As the order increases, extraction dominates. For the
model problem, the number of Sturm sequence evaluations in isolation differs from
that in extraction by

a ) N-1
D Sextr- Siol- k log2-+ 1 2

p-1

D is positive whenever c/N_-> 3, meaning that more Sturm sequence evaluations are
performed in extracting the eigenvalues of Tmode than in isolating them. The derivative
of D with respect to k is

dD o ot

dk-lg2+l-lg2e-2 P log2
p 1 N

This quantity is greater than zero when c/N > and decreases in magnitude with
increasing N. Hence, D for the model problem has the same qualitative behavior as
recorded for matrix [ 1, 2, 1 ].

While the model problem helps to explain some of the experimental results for
1, 2, 1], it does not account for the fact that the observed speedup of multisection is

less than that of bisection for all orders of matrix 1, 2, 1 ]. For Tmodel, T > T for all
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matrix orders, meaning that the predicted speedup is in fact greater for multisection
than for bisection. This discrepancy stems from the differences in the spectra of the
two matrices. While the eigenvalues of Tmode are uniformly spaced, the eigenvalues
of the Toeplitz matrix 1, 2, 1] of order N are given by Ai 2(1 + cos (i-/(N + 1))) for

0, 1, , N 1 14] and so are more tightly spaced at the extremes of the spectrum
than near the center. Isolating a set of close eigenvalues takes longer than isolating
an equally large set of well-separated eigenvalues, and the former eigenvalues are
confined to smaller intervals than the latter. Thus, once isolated, close eigenvalues are
extracted faster than well separated ones.

An extreme example shows that the relative numbers ofSturm sequence evaluations
for multisection and bisection are strongly dependent not only on the number of
eigenvalues in the initial search area but also on their distribution within that interval.
Let Tmodel be a matrix of order N having N kp eigenvalues of multiplicity 2 uniformly
distributed at spacing 2(a/N) in the interval [0, ). Consider the case N-2p. The
number of Sturm sequence evaluations needed to determine all eigenvalues to a
tolerance 6 via Algorithm B on a p-processor hypercube is

S log2
6
/ 2.

The number needed to find the eigenvalues using Algorithm M2 is

1 a

Sw=210gEplogE-/p-3 if pk(p --1)6 <-- a <--pk/16 for some k_->l.

Hence, S > S if k p/log2 k, and the speedup of bisection is greater than that of
multisection.

It is evident from Fig. 9 that the speedup worsens when isolation dominates. For
matrix order N =32, Tsol/Textr 1.3, and the speedup of multisection is 35 percent
that of bisection; while for N 1,024, Tsol/Txtr .27, and the speedup for multisection
is 67 percent that of bisection. The times and speedups for random matrices of order
N--64 are the same as for 1, 2, 1], and for N 1,024, Tot/Tx .46 and the ratio
of speedups is .54. For intermediate orders of 1, 2, 1] and random matrices, increased
isolation also leads to decreased speedup.

Matrices 1 2, 1] T,odel, and Tmode all indicate the slowdown of multisection as
eigenvalues become increasingly clustered. Attempts to generalize this information by
classifying matrices according to size and number of eigenvalue clusters were unsuccess-
ful, as other problem dependent factors conceal any structure.

7. Comparison and conclusions. Tables 2 and 3 show the total time, the residual,
and the deviation from orthogonality for several orders of matrix [1, 2, 1] and of
random matrices for all three eigensolvers. Data communication on the hypercube
does not alter the numerical properties of the methods. Hence Cuppen’s method gives
the most accurate results, consistently yielding smaller residuals and deviations from
orthogonality than both bisection and multisection for all tested matrices.

Bisection is the fastest method for finding all the eigenvalues and eigenvectors at
all orders. Although for at least one problem multisection is theoretically faster than
bisection, in practice, multisection is slower due to arithmetic inefficiency in the isolation
phase. This implementation of multisection and Cuppen’s method are of comparable
speed at low orders, while for larger orders multisection is the faster of the two. The
speedups of Cuppen’s method, bisection, and multisection over the fastest sequential
method are problem dependent. The figures for the tested matrices suggest that maximal
speedup cannot be expected for any ofthe three methods. Speedup of Cuppen’s method
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TABLE 2
Comparison of methods for matrix 1, 2, on a 5-cube.

Time Residual Orthogonality
Method Order (seconds) IITX-AXII IIXX I

Cuppen’s 32 1.3 9.2e- 16 7.0e- 16
Bisection 0.6 9.4e 15 3.3e 14
Multisection 1.2 7.4e- 15 3.2e- 14

Cuppen’s 100 10.5 1.9e- 15 1.9e- 15
Bisection 4.5 3.3e- 14 3.1e- 14
Multisection 9.7 1.3e- 14 2.8e- 14

Cuppen’s 512 611.8 8.4e- 15 1.8e- 14
Bisection 88.7 8.8e- 13 6.0e- 13
Multisection 141.5 6.1e- 13 3.9e- 13

TABLE 3
Comparison of methods for random matrices on a 5-cube.

Time Residual Orthogonality
Method Order (seconds) Tx AXII xx III

Cuppen’s 32 1.1 2.7e- 15 2.7e- 15
Bisection 0.5 2.9e 15 3.0e 14
Multisection 1.6 5.9e 15 1.2e 13

Cuppen’s 100 10.4 7.4e- 15 8.9e- 15
Bisection 4.6 3.6e- 14 6.5e- 14
Multisection 10.7 4.7e- 14 7.1e- 14

Cuppen’s 512 623.9 7.9e- 15 1.3e- 14
Bisection 88.3 5.3e- 13 2.1e- 13
Multisection 160.3 6.5e- 13 7.1e- 12

is especially reduced when significant deflation occurs in some but not all subproblems.
Note that all experimental results are problem dependent, although the conclusions
drawn here hold for a large number of tested matrices. A closer examination of the
effects of eigenvalue clustering on speed and accuracy will be included in a future paper.

Although not discussed in this paper, the sectioning algorithms are readily modified
to permit computation of a subset of eigenvalues and eigenvectors. Cuppen’s method
can only be recommended when the entire eigensystem is needed. In that event,
Cuppen’s method, which requires sufficient storage for parallel matrix multiplication
by Algorithm RMM, can be used for problems only as large as order 2,080 on the
iPSC-1/d5M. Bisection and multisection, which require no matrix multiplication, can
both be used for problems through order 3,520.

Comparison with shared-memory implementations. The efficiency of solving the
symmetric, tridiagonal eigenproblem on the local-memory hypercube as opposed to a
shared-memory multiprocessor is dependent on the method used. In [17], timings are
presented for SESUPD (a shared-memory implementation of Cuppen’s method [8]),
BISECT with TINVIT, and TREPS1 (multisection using bisection during the extraction
phase) on eight processors of an Alliant FX/8. In particular, speedups of these
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algorithms with respect to the time to find all eigenvalues and eigenvectors of matrix
[-1, 2, -1] of order 500 via EISPACK’s TQL2 on one processor are given. The efficiency
of algorithm compared to TQL2 can be defined by

time for TQL2 on 1 processor
Ei

p (time for algorithm on p processors)"
The shared-memory implementations then have ESESt,D=3.4, EaISECT--0.5 and
ETREPS1 4.0. In contrast, the equivalent algorithms for the 5-cube have values EC2 1.4,
E- 10.0, and EM2 6.2 for matrix [1, 2, 1] of order 512. These relative efficiencies are
greater than unity because TQL2 is slower on one processor than either SESUPD or
BISECT. The greatest values of Ei occur for the algorithms that are most effectively
implemented in parallel. The independent tasks of the bisection and multisection
algorithms are especially adaptable to a local-memory architecture. Cuppen’s method,
on the other hand, is seen to be more efficient on the shared-memory machine, where
a dynamic scheduler is supplied.

The extensive communication requirements of a dynamic scheduler on a local-
memory machine and the potential loss of computing power from processors dedicated
to scheduling tasks recommend the use of static scheduling schemes. The resulting
loss of parallelism at the root finding level for Cuppen’s method and the simultaneous
execution of an explicit scheduler on all processors for multisection, however, prevent
full speedup.

Ackaowlelgments. The authors thank Stan Eisenstat, Bill Gropp, Cleve Moler,
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COMPUTATION OF GEODESIC TRAJECTORIES ON TUBULAR SURFACES*
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Abstract. This paper describes a method for computing geodesics on an arbitrary tubular surface. Such
a surface is defined by specifying a centreline curve and a radius function. The equations of a geodesic are
formulated in terms of these given data, and the resulting system of ordinary differential equations is solved
by a second-order Runge-Kutta method. Computed results reveal the phenomenon of geodesic confinement
in a region containing a bulge of the tube. Numerical evidence of convergence is presented, and possible
applications to the study of blood flow in fibre-reinforced vessels and in the developing heart are briefly
discussed.
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1. Introduction. This paper is concerned with the computation of geodesic paths
on a class of surfaces that we call tubular. The motivation for this work is the need to
model elastic blood vessel walls for computations involving blood flow in such a vessel.
Blood vessel walls are fibre-reinforced, and it is a reasonable hypothesis that the fibres
follow geodesic paths. Therefore, to construct a model of a blood vessel, we need a
method for wrapping computational fibres around surfaces that lie in the interior of
the vessel walls.

For purposes of this paper, a tubular surface S is defined by specifying a centreline
curve qg in parametric form, X Xo(t) as well as a radius function R(t). Although it
is not necessary for qg to be parameterised by arclength, this assumption will simplify
the following discussion; therefore we assume that is arclength along cC For fixed t,
consider the circle M(t) given by

dXo(t)
IX-Xo(t)l-R(t), (X-Xo(t)). d--0.

Note that dXo(t)/dt is the unit tangent to c at Xo(t). The tubular surface Ae is defined
as the surface swept out by the circle M as varies; to simplify the problem, we insist
that e does not intersect itself and that it has no folds. Note that Ae can also be defined
as the set of all points X that satisfy

1
f(X, t)= {IX-Xo(t)l=- R(t)2} 0,

dXo(t)
g(X, t)=(X-Xo(t)) "=0

dt

for any t. We are therefore led to consider the general problem of finding geodesics
on surfaces defined by equations of the form f(X, t)= 0, g(X, t)= 0.

An important feature of the method that we develop is that we do not use as
the independent variable along the geodesic path. Rather, we solve for as well as X
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This work was supported by the National Institutes of Health under grant HL17859 and by the National
Science Foundation under grant DMS8701895. Computation was performed at the Courant Institute of
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of Energy contract DEAC0276ER03077.
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as functions of arclength s on the geodesic. This allows for the case in which the
geodesic "turns around," i.e., in which dt!ds changes sign. This sometimes happens
to geodesics on tapering surfaces. In fact, as we shall see, the geodesic may become
"trapped" in a region where the tube has a bulge; in such a case it will cycle back
and forth between two extreme values of t.

2. Determination of geodesic equations for a general surface. Given a surface
F(X) 0 embedded in three-space we can define a geodesic on the surface as a curve
whose principal normal is parallel to VF(X). The equations for such a geodesic curve
can be found in any standard text on differential geometry (e.g., [6]), but for our
purposes we need to develop a slightly different (although equivalent) formulation of
the equations, as our surface is defined implicitly.

Let us consider the problem of finding geodesics on the surface defined by

(1) f(X, t) 0, g(X, t) 0.

Arbitrary perturbations on the surface satisfy

(2) Vf. dX+fdt=O, Vg. dX+gtdt=O

where dX is in the tangential plane to the surface, and thus

(3) (g,Vf-f,Vg). dX=0.

Since dX is arbitrary in the tangential plane, it follows that &Vf-ftVg points normal
to the surface.

Now suppose we have a curve X(s) on the surface, and let t(s) be the associated
value of t. If

(4)
dX
ds2 A(&Vf-ftVg),

then combining equations (3) and (4) we see that

2 d2X dX
Oo

ds2 ds

Since the length of dX/ds is a constant, it follows that s is proportional to arclength
and hence that d2X/ds2 is the principal normal to the curve X(s) (see [6, p. 55]). From
the definition of a geodesic given above, it now follows that X(s) is a geodesic on the
surface. To determine A we replace dX by dX!ds in (3), differentiate with respect to
s, and use (4) to get

(5)

From equations (2) we see that we have two possible equations for dt/ds. It turns out
that for our particular choice of g(X, t) we can guarantee that g, 0, and thus we use
the equation

dt dX/ ds
(6) ds- Vg.

gt
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Substituting this expression into (5), expanding the derivatives and rewriting, then gives

{ "r*’(gtHf-ftHg+ (Vgt)(vf)T--(Vft)(Vg)T)’r*
+(dt/ds)[gtt(Vf" "r*)-ft(Vg. "r*)+ gt(Vf" "r*)-f(Vgt" "r*)]

A=
-[gtVf-ftVgl2

where

dX oEf 02g
’r*- nf(i,j)=, ng(i,j)=.

ds ax,ox ax,ax
Using (6), we note that (-,r* Vf)(Vg. ,r*)= (Vf. "t*)gt(dt/ds); substituting this into
the formula for A we obtain the following first-order system for a geodesic on the
surface defined by equations (1).

dX dt -Vg ,r*

ds
’r*,

g

{d’r*
’r*" Q’r* + Lss

as -IgtVf-fVgl2 (g,Vf-fVg)

where

Q= g, Hf-ftHg+Vg,(Vf),
and

L g,t(Vf" ’r*) -ftt(Vg" ’r*) + 2gt(Vft ,r*) -ft(Vg," "r*).

Note that we have not eliminated the auxiliary variable t. Instead we treat it as a
dependent variable on the same footing with X.

In the above analysis we used the constraint that the curve remain on the
surface to eliminate A in (4). Thus our method is equivalent to the formulation of the
problem as

d2X
A (s)n(X(s), t(s))

ds

with the constraints

f(X(s),t(s))=O, g(X(s),t(s))=O

where n gVf-fVg. Direct solution of this implicit system is an alternative approach
that would merit further investigation.

3. The special case of a tubular surface. Let rf given by Xo(t) be a space curve
parameterised by arclength, and let R(t) be a corresponding radius function. If

1
f(X, t): {IX- Xo(t)[- R(t)2},

g(X, t) (X-Xo(t))
dXo(t)

dt
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then the surface f(X, t)=0, g(X, t)=0 will be a tube centred on the curve r with
cross-sectional radius R(t) for every t. Suppose that cg and R (t) are such that the tube
does not intersect itself, and suppose further that the radius of curvature of r is greater
than R(t) for every t, i.e., there are no folds in the tube. Then we have

=R <1 where.r-
dXo(t)

and thus

g, (X-Xo).

d,r
(X-Xo) -;7-1

at
since is arclength along

0 (cf. (6)).

Substitution into the geodesic equations then gives the following first-order system for
geodesics on the tube defined by Xo(t) and R(t)"

(7)

dX dt i

ds ds 1-q’

ds iiT-’YT/ J q 1
x + (X- Xo)

where

dx d2,r
q (X- Xo) dt’

r (X- Xo)"
dt2

t
2 +R rR/ q 1 q + 1.

4. Initial conditions. In order to solve system (7) we need an initial vector Xo, an
initial time to, and an initial starting direction "to* (which must be perpendicular to the
normal to the surface at to). Clearly to can be chosen arbitrarily, and then Xo can be
found by calculating a vector V perpendicular to .r(to) and setting

X Xo(to) + R to)V.

We can then calculate "to* by solving

(8) ’to*" Vf(Xo(to), to) 0, a’o*" ,r(to) , I o*l 1

where : is a given parameter, controlling how tight the initial wind of the geodesic is.
Note that : cannot be given arbitrarily. For, let

a’(to)" Vf(Xo(to), to)
Ivf(Xo(to),

COS O, "r*o" ,r(to) cos b.

Then, since b has a minimum value when "to*, "r(to) and Vf(Xo(to), to) are coplanar,
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and since in this case we must have cos b =cos (0-(7r/2))=sin 0, we see that

I,,< fl-(w(t) vf(X(t)’ t)

5. Determination of rg and R(t). Given a set of data points (0i, bi, ti), i= 1, n, we
can construct a curve Xo(t) parameterised by arclength as follows. First, we do a cubic
spline fit on 0i and b as functions of to give us O(t) and b(t). If we now define
Xo(t) by

dXo(t)
---(cos 0 cos b, cos 0 sin b, sin 0)

dt

we see that IdXo(t)/dtl- 1 and thus is guaranteed to be arclength along the curve.
Note that (0, b) are spherical polar coordinates of the unit tangent vector to Xo(t).
Xo(t) itself is obtained by integration"

dXo(t’) dt’Xo(t) Xo(0) +
dt’

Xo(0) + (cos 0(t’) cos 4(’), cos O(t’) sin 4(t’), sin 0(t’))

where Xo(0) can be specified arbitrarily.
However, instead of using 0 and 4 as data points, it is often easier to specify

points in space through which the curve should pass (approximately). Given such a
set of data points (x, y, z) and corresponding radii r, 1, n, we estimate the arclength
by straight lines and then do a cubic spline fit on each of x, y, z, and ri as functions
of the estimated arclength. This will give a space curve 1o(t) and a corresponding
radius function R(t). Note however, that will not be arclength along the curve.

We now use 1o(t) to generate a new set of data points (0i, 4), 1, m, by solving
the equations

dXo(t)/dt
(cos 0 cos b, cos 0 sin b, sin 0)Ido(t)/dtl

for 0 and b at m specified points along the curve o(t). A cubic spline fit is now done
on 0, and b as functions of to give us 0(t) and b(t), thus reducing this problem to
the previous case. Although Xo(t) does not now pass through the original data
points (x, y, z), it will pass close to them and therefore we can effectively control the
shape of the final tube.

6. Results. We computed geodesics on two different tubes" tube A, with centreline
rCa and radius function Ra(t) generated by the data

i-1
ni ----- 7r

x, 5 cos (n,)

Yi 5 sin (hi) for 1, 20,

zi 3 ni

ri 1 + sin (n)
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and tube B, with a and Ra(t) generated by the arbitrarily chosen points

(x, Yl, Zl, r) (5.0, 0.0, 0.0, 1.0),

(x2, Y2, z2, r2) (4.0, 1.0, -0.5, 1.0),

(X3, Y3, z3, r3) (3.0, 2.0, 1.0, 0.8),

(x4, Y4, z4, r4) (2.0, 3.0, -0.5, 1.3),

(x, y, zs, r) (0.0, 4.0, 0.0, 1.7),

(X6, Y6, Z6, r6) (--1.0, 3.0, 1.0, 2.0),

(x7, Y7, z7, r7)= (-3.0, 1.5, 1.7, 1.9),

(x8, y8, z8, r8) (-4.0, 0.0, 2.1, 1.7),

(x9, Y9, z9, r9) (-5.0, -1.0, 2.3, 1.5).

The associated tubes can be plotted by solving

1
f(X, t)= ([X-Xo(t)l2- R(t)2} 0,

dXo(t)
g(X, t)= (X-Xo(t)).=0

dt

for fixed values of and then plotting the resultant rings (Figs. 1 and 2). Equations
(7) were solved using a second-order Runge-Kutta method, and particular geodesics
are shown in Figs. 3-7. (The choice of second-order Runge-Kutta is arbitrary; the
reader may substitute his favourite method or package.) Figures 4 and 5 show how
the geodesic can become trapped in a region around the bulge as we mentioned before;
how large a region depends on the initial angle of attack.

FIG. 1. Perspective view of tube A.



236 J. SNEYD AND C. S. PESKIN

FIG. 2. Perspective view of tube B.

FIG. 3. Computed geodesic (heavy line) on the surface of tube A. Xo=(3.52,1.44,0.51), a-o*=
(0.18, 0.64,-0.74), := 0.1, to 0.0. (See text for definition of these parameters.)
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FIG. 4. Computed geodesic on the surface of tube A. Xo (-0.95, 3.83, 3.39), "to* (0.14,-0.80, 0.58),
0.2, 7.5.

FIG. 5. Computed geodesic on the surface of tube A. Xo (-0.95, 3.83, 3.39), "to* (-0.15, -0.71, 0.68),
=0.5, to 7.5.
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FIG. 6. Computed geodesic on the surface of tube B. X= (-0.31, 2.69,-1.05), "to* =(0.50, 0.68,-0.54),
-0.7, to 5.0.

FIG. 7. Computed geodesic on the surface of tube B. X (-2.60, 1.69,-0.31), "to* (-0.25, 0.95,-0.20),
-0.6, to 8.0.
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7. Convergence properties of the numerical method. From our method of generating
c and R(t) from a set of data points, we see that R(t) and dXo(t)/dt are piecewise
cubic, and hence that the functions r and a of equation (7) are not analytic, having
a derivative with discontinuities at each knot of the spline. Therefore we would not
necessarily expect a second-order method to exhibit second-order convergence, as the
discontinuities of the derivative could introduce extra numerical error. Although we
have done no theoretical analysis of the convergence properties of our method,
computations suggest that convergence is approximately second order for both the
tubes under consideration (see Appendix A). Part of the explanation for this is that
discontinuities of the derivative only affect the numerical error at a finite number of
points, whereas between knots the convergence will be second order.

$. More general tubes. So far we have only computed geodesics on tubular surfaces
with a circular cross section. However, by appropriate choice of f and g our theory
is easily extended to deal with more general cases" in particular,

f(X, t)=(X-Xo(t))T[,1B(t)B(t) T +I](X-Xo(t))-R(t)2=O,

g(X, t)=(X-Xo(t))
dXo(t)

dt
=0

where r/- 1/y2__ 1 for 3’ constant, B is the binormal to c, and I is the identity matrix,
would give us a tube with elliptical cross section perpendicular to ,r, with axes of length
R and yR. When y 1, this of course just reduces to the previous case.

More generally, at each point Xo(t) of c we could specify an orthogonal set of
vectors U(t), V(t), and W(t), and then compute geodesics using

f(X, t)=(X-Xo(t))r[rlW(t)W(t) T +l](X-Xo(t))-R(t)2=O,
g(X, t)=(X-Xo(t))" U=0,

which would give us a tube with elliptical cross section perpendicular to U.

9. Conclusions and future work. We now have a method for computing geodesics
on an arbitrary non-selfintersecting tube with no folds and a circular cross section
perpendicular to the centre curve. The radius of the tube can vary with position, there
being no restriction on how rapidly it may vary, and the method is easily extended to
tubes with elliptical cross sections perpendicular to a given vector not necessarily the
tangent to the centre line.

Our work was motivated by two applications in particular: first, the need to
construct the great vessels of the heart out of geodesic fibres and second, the desire
to construct a foetal heart at an early stage of development in order to study blood
flow in developing hearts. The first application is part of an ongoing effort to model
an entire human heart and associated vessels in three dimensions using elastic fibres
that follow geodesic or asymptotically geodesic paths [4], [5].

The arrangement of muscle fibres in the adult heart wall has been described by
Thomas [7] and by Streeter et al. [8]. A notable feature of the fibre architecture as
described by these investigators is a nested family of surfaces on which the fibres
follow geodesic curves. A mechanical explanation of this observation appears in the
work of Peskin [4]. If we consider the developmental process by which this elaborate
fibre architecture is created as the heart changes shape from a simple tube to a
thick-walled structure, we may imagine that the phenomenon of geodesic confinement
illustrated in this paper plays an important role. This would happen as a tube that is
initially cylindrical and reinforced by helical fibres begins to develop a bulge. In the
region of the bulge, fibres must (in order to remain geodesics) break off and form a
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cuff of fibres that are confined to that region. The excess of fibres in the bulge would
then reinforce the wall there, the confined fibres constituting the bulk of the ventricular
wall.

Unlike the adult heart, the early foetal heart does not consist of muscle fibres
arranged in set patterns. However, the outer layer of the early foetal heart, the
myocardium, contains large numbers of contractile fibres called myofibrils, and
although not much is known about their orientation there are a number of reasons to
suppose that they are locally geodesics and can therefore be reasonably modelled by
our method. The early foetal heart is a hydrostatically supported tube with internal
pressure from both the blood and the cardiac jelly [1], [3] and thus any contractile
elements in the myocardium will tend to orient themselves so as to minimise stress
(and strain), i.e., along geodesic paths. Such geodesic paths (for instance, the paths
given in Figs. 4 and 5) then agree with the experimental evidence that suggests that
many of the myofibrils are oriented in a circumferential manner [1], [3] and that the
structure of the myofibrils is responsible for the formation of the heart loop. Manasek
et al. [2] have postulated that loop formation is governed by the response of anisotropic
helical arrangements of myofibrils to internal pressure forces, and such arrangements,
reinforcing the inner bend of the tube, are exactly what we have computed (Figs. 3, 6,
and 7). We may speculate that this process is self-reinforcing: as the initial anisotropic
arrangement of the myofibrils causes the heart to bend in response to internal pressure,
the myofibrils will tend to form geodesics on surfaces inside the heart wall, which
could then cause further bending.

Appendix A. All the following convergence results were evaluated at s 10.0000,
using the initial data:

Tube A Tube B

/o=0
Xo= (3.5229, 1.4376, 0.5144)

"to* (-0.0202, 0.8898, -0.4557)
=0.5

to=0
Xo (3.5644, 0.2483, -0.9952)
"to* (-0.8602, 0.4104, 0.3025)

:= 0.7

The rate of convergence of (x(10), y(10), z(10)) and t(10) is shown in Table 1,
where Axi means x(s= 10, As=O.1/2i)--x(s= 10, As =0.1/2-). The ratios in Table
1 are close to four, which indicates that the method is approximately second order.

TABLE

Tube A Tube B Tube A Tube B

Ax2/Ax1--3.9824 4.1461
A3c3/Ax 3.9908 3.9896
Ax4/Ax3=4.0034 3.7419
AyE/Ay =3.4793 4.1874
Aya/Ay 3.7073 4.0847
Ay4/Ay =3.9193 3.8130

Az2/Az =2.1021 3.9351
Az3/Az 3.2001 3.9063
Az4/Ag =3.6985 3.9891
AtE/At 4.1237 4.0379
At3/AtE-- 4.0643 3.9363
At4/At 4.0366 3.8534

Tables 2 and 3 show the convergence properties of f and g, again evaluated at
s 10. We see from Table 3 that f and g are converging to zero at a rate very similar
to the convergence rate of the numerical method. Thus we may conclude that our
trajectory is indeed converging to a point on the surface.
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TABLE 2

Tube A

As f g

0.1 --0.2565 10-2 -0.4144 10-3

0.05 -0.7103 10-3 --0.1041 10-3

0.025 --0.1871 10-3 -0.2626 10-4

0.0125 --0.4817 10-4 -0.6758 x 10-5

0.00625 -0.1268 10-4 -0.1881 x 10-5

Tube B

As f g

0.1 -0.4482 10-2 0.9250 10-3

0.05 -0.1040 x 10-2 0.2358 x 10-3

0.025 -0.2613 x 10-3 0.5994 x 10-4

0.0125 -0.7322 x 10-4 0.1518 x 10-4

0.00625 -0.1576 x 10-4 0.3937 x 10 -‘5

TABLE 3

Tube A Tube B Tube A Tube B

f2/fl =3.6118 4.3180
f3/f2 3.7962 3.9791

fa/f3 3.8845 3.5685

Af2/Af 3.5459 4.4317
Af3/Af2= 3.7655 4.1390
Afa/Af3 3.9158 3.2732

g2/g 3.9780 3.9224
g3/g2 3.9674 3.9342
g4/g3 3.8855 3.9486

AgE/Ag =3.9815 3.9184
Ag3/Ag 3.9958 3.9293
Ag4/Ag3=3.9985 3.9811
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COMPUTATION OF EXPONENTIAL SPLINES*
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Abstract. Pruess’s investigations [J. Approx. Theory, 17 (1976), pp. 86-96], [Math. Comp., 33 (1979),
pp. 1273-1281] revealed the shape preservation properties,of expbnential splines and provided the impetus
for further theoretical study of exponential splines [J. Approx. Theory, to appear]. Together, these theoretical
results form the backdrop for the detailed analysis of issues in the computation of exponential splines
contained herewith. Specifically, first and foremost the construction oftension parameter selection algorithms
is considered. The conditioning and iterative solution of the spline equations, as well as the derivation and
accuracy of end conditions, are discussed. This inquiry concludes with a potpourri ofnumerical considerations
and the presentation of a variety of numerical examples.

Key words, exponential splines, tension spi:ines, shape preserving interpolation, comonotone interpola-
tion, coconvex interpolation
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1. Introduction. There is a widespread need for smooth interpolants in the applica-
tions [8]. This need was generally satisfied by polynomial interpolation prior to the
introduction of polynomial spline functions by Schoenberg [13] in the 1940s. His idea
can be condensed as follows. Given N+ 1 data points, locally, i.e., between two
consecutive data points, the interpolant is to be a polynomial of degree n while the
global interpolant is only required to belong to Cn-. This results in N(n + 1)- (n 1)
conditions for the determination of N(n + 1) polynomial coefficients. That is to say,
we have an (n- 1)-dimensional space of polynomial spline interpolants to the data.
Additional constraints are typically provided in the form of end conditions. Note that
for n 1 we obtain the classical linear splines.

A popular choice is n 3, i.e., cubic spline interpolation. The use of such low
degree polynomials reduces the risk of wiggles, while second derivative continuity is
sufficient in many applications. An additional attraction of the cubic spline is that it
possesses a direct analogue in beam theory. This is the draftsman’s spline, whence
comes the name of this mode of approximation.

Since their introduction, splines have been studied intensively. Convergence of
interpolator3’ splines has been established, as well as convergence of high derivatives
provided the function being approximated is sufficiently smooth. In general, the rate
of convergence depends on the degree of smoothness of this underlying function.

The practical utility of cubic splines is evidenced by their widespread use as
finite-element basis functions, in collocation approximations to differential equations,
and in geometric and data-fitting applications. At first glance, it would seem that many
issues in practical problems of interpolation and approximation have been resolved
by their introduction.

This is true to a limited extent. However, cubic splines can and do produce spurious
oscillations in the interpolant. In some cases, this is merely a nuisance but in others
it can prove to be detrimental. For example, in combustion calculations it could produce

* Received by the editors December 3, 1984; accepted for publication (in final revised form) February
9, 1989. This work was partially supported by the U.S. Department of Energy, Division of Basic Energy
Sciences, Applied Mathematical Sciences Program, under contract DE-AC02-76ERO-3077 and by the
National Aeronautics and Space Administration under grants NGT-33-016-800 and NGT-33-016-201.

" Department of Computer and Information Science, The Hartford Graduate Center, Hartford,
Connecticut 06120.
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an unrealistic detonation, or in computational aerodynamics it could result in the
generation of a nonphysical shock wave.

Schweikert 14] first proposed the hyperbolic spline as a remedy to these difficulties.
We arrive at the hyperbolic spline by a recourse to beam theory. We add a tensile
force that has the effect of pulling the beam taut between the support points. The
resulting interpolant includes hyperbolic functions in place of higher-order monomials
as basis functions. Sp/ith [16] later considered the general case of a variable tensile
force, i.e., the exponential spline. Pruess 10], 11 has rigorously established that for
sufficiently great tensile forces the exponential spline so produced mimics both con-
vexity and monotonicity properties present in the data. The theory of exponential
splines has been extensively developed and many results are available in the literature
[9]-[11].

In the present study, we concern ourselves with matters related to the computation
of exponential splines. Our primary goal is to develop new tension parameter selection
algorithms that produce co-convex and/or co-monotone interpolants. This comple-
ments the nonconstructive existence proofs previously noted. It must be emphasized
that the lack heretofore of viable tension parameter selection schemes has greatly
diminished the practical utility of exponential splines.

With this crucial issue resolved, we then proceed to an extensive treatment of
numerical issues in the computation of exponential splines. We begin this discussion
with the derivation of bounds for the condition number of the spline tridiagonal
matrices. For the second derivative formulation this was supplied by Pruess [10],
whereas for the first derivative formulation this is new (see 2 for these formulations).
There follows an analysis of the iterative solution of the spline equations including a
discussion of the optimum relaxation factor. Next is a treatment of spline end condi-
tions. Both the techniques used and the results obtained are unavailable elsewhere.

A variety of numerical topics is then considered. This discussion includes the
parametric exponential spline and the periodic exponential spline. An alternative power
series representation, as suggested by Pruess 10], is presented that avoids the possible
loss of significance in the evaluation of the matrix elements for small arguments of
the hyperbolic functions. Also, the need for scaling is considered. We conclude with
a sequence of examples that clearly demonstrates both the inherent superiority of
exponential splines to cubic splines and the efficacy of our tension parameter selection
algorithms.

2. Review of theory. In this section we review the theoretical results on exponential
splines [9] that will be of service to us in the remaining pages. We begin with some
notation.

N number of spline intervals,
a x < < xrv+ b spline nodes,

hi (i= 1,. ., N)= length of ith spline interval,
Pi (i 1, , N) tension parameter on ith spline interval,

f data,
s cubic spline interpolant,
z exponential spline interpolant,
b=(f2-f)/h-f’(a),

b, (i= 2, , N)= (f+ -f)/h,-(f -f_)/h,_,
b+, =f’(b) (fN+l --f)/h

si (i= 1,..., N)=sinh (pihi)
c, (i= 1,’’ ", N) cosh (pih,),
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e, (i= 1,’’ ", N)=(1/h,-p,/s,)/p2
d, (i= 1,.’., N)=(p,c,/s,- 1)hi)/p2i,

m, (i= 1,..., N)=(f+,-f)/h,,
mv+, =f’(b).

We then have the second derivative formulation on [x, X+l](i 1,..., N):

1
7-(x) i {r’ sinh p,(x,+- x) + 7-,"+ sinh p,(x x,)}

ps

"+ fi--
Xi+ X

h, +f’+’--U,} h,’

where r,’.’ (i-- 1,. ., N+ 1) is the solution of the tridiagonal system

"=hidl 7-1 + el 7-2

" at’(di- +di)7-i + --hiei-17-i-1 ei7-i+l

eNT-’ + dNT-N+I bN+l.

(i=2,’’ ",N),

In the above, we have used specified first derivative end conditions.
We also have the first derivative formulation on [xi, xi/l] (i 1,..., N):

X X
(x) =f/. x,+_x+f,+.

1 f+lhi-f" [sinh pi(x-xi)-sinh2 pi(x,+l-x) Xi+ 2x + xi]
phi

{ e2
di [sinh p, x,+ X Xi+ X]+ r d2 2 ---T--

PiSi pihi
ei [sinh pi(x xi)

2 2 2
ei -di pisi

{ e, [sinhp,(x,+,-x) Xi+l-X] d, [sinhpi(x-x,)- 7-i+1 e/E_ d2 2 - 2 2 2
pisi pihi ei-di pisi

x_ -_xi]
pihi J}’

where 7-i (i 1,..., N+ 1) is the solution to the tridiagonal system

d2_e 7"1+ d2_e r= -"
1- e I_ hi 7"1’

_e!:. + + r{ +2 2 7-i-1[di_l ei-1
2 2 d2 e 2di-l- ei-1 i- ei

1 ][fi--fi-1]+[1] [fi+hTfi]el- hi- di ei
i=2,’’ ",N,

d-e 7- + dN e2N
"/’q+l 7-N+l - dN

1 ] rf+l_f]

In the above, we have used specified second derivative end conditions.

3. The parameter selection algorithm for co-convex interpolation. In this section
and in 4 we take up the task of tension parameter selection. This is the key problem
that needs to be solved if exponential splines are to be useful in practice. A satisfactory
treatment is not available in the literature.
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Pruess’ results [10], 11] assure us that, for large enough tension parameters, the
exponential spline interpolant is free from extraneous inflection points. An inflection
point is said to be extraneous on [xi, Xi/l] if bibi/l > 0. The question now arises as to
how to choose p (i 1,. ., N) that are sufficiently but not excessively large. Excess-
ively large estimates will produce an interpolant that is kinky in appearance since r’,
r+l-->oo as pk-->oo(k=i--l,i,i+l). In this section we present a tension parameter
selection scheme that answers this question in both a theoretical and practical sense.
(Note. Assume that b # 0; 1, , N+ 1.)

Assume r,’.’ 0 (i= 1,. , N+ 1); we then have that -,’.’b > 0 (i= 1, , N+ 1) is
a necessary and sufficient condition for no extraneous inflection points [14]. Hence,
we will iteratively alter p (i= 1,. ., N) so as to enforce r,’.’b > 0 (i 1,..., N+ 1).
Before proceeding we need the following easily established facts:

(a) pi > 0=,d > 0;
(b) ab > 0 iff la bl < max (lal, Ibl).
For purposes in illustration, assume that for some choice p" (i= 1,..., N), we

have "r’bk < 0 for some k between two and N (a similar analysis will subsequently be
given for the end intervals). We then have

le-,Z-1 / ek"+,[ Ib-(d,-, + d)rZl.
Now

since
bkr’>O iff Ibk--(dk_,+d,)r’l<max (Ibl, (d_,/d)lzZl)

d>0 forp>0(i=l,...,N).
We therefore define/k-1,/k SO that gk-, gk produce

Ik-Z- / e\Z/l < max (Ibl, (d,_, / d)lZl);
i.e., after freezing the r"’s, we vary the p’s so that all these inequalities are satisfied.

Letting
max (Ibl, (d_ + d)ll)

e <
2 max (Ir_,l, I/ll)

we have the desired result.
Define

Now, since

i=k-l,k,

max (Ibl, (d_, + d)lZl)
2 max (Ir-11 Ig+ll)

ei
sinh (pihi)

p2i’

we seek to satisfy the inequality

gi(x)<O

where
(i=k-l,k),

sinh (hx)
x2 "

These considerations lead directly to

(i=k-l,k).

This is certainly the case if

1 Pi2hi_p, < sinh (p,hi)

pi=(.hi) -’/2.
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Consequently, we define

i (hi) -1/2 (or perhaps/i max ((hi) -1/2, pln))) k- 1, k

(i.e., we always increase the p’s).
However, the new tension parameters (/’s) will alter the "s, thus requiring an

iterative procedure. The suggested procedure is

pen+l) p)+(-p).

It was previously assumed that 70 (i= 1,..., N+I). It can be shown [14]
> 0 is necessary and sucient for the priorthat if 0 for any 2 N then -1i+1

analysis to hold. Now we have

bi ei_(di-1 + di)Ti ri_ eii+,

and, since we still assume bk O, for all k, we cannot have -1 + =0 (i.e., either
e_ or e is actually present in the equation). So to make # 0 when _+ 0, we
peurb e_ and e by incrementing p_ and p by some small amount e.

It remains to remove the assumption b # 0, for all k. If b 0, then the points
(x_, y_), (x, y), and (xg+, y+) should be joined by a straight line (with a similar
statement true in the end intervals). The two remaining potions should then be fitted
separately using slope end conditions at x and X+l derived from the slope of the
straight line segment. This may be accomplished implicitly by the following alteration
of the coecient matrix A. Set as many of the set {A_,, A,+, A+,, A,_} as exist
equal to zero and then proceed as usual. This produces the desired (k 1,. ., i-

1, i+ 1,..., N+ 1). The interval [x_,x+] is then fitted separately with a linear
function. The points (x_, y_) and (x+, y+) are now to be treated as the right- and
left-hand endpoints, respectively, of two distinct exponential splines.

In summary, we note that the tension parameter selection problem is inherently
nonlinear (by viue of the nonlinear occurrence of p in the interpolant). It is then
hardly surprising that an iterative procedure should suggest itself.

We now return to the problem of parameter selection for the end intervals. The
relevant equations are

b, eN+d+ b+
i’b,0. ie,=lb,-d,i’. Now b,’>0 if and only if

max (Ibl, d,[i’l). Therefore define produces l[ max (Ib, d’l). Letting
max(Ibl,dIi’)/l, we obtain the desired result. Hence, define
max (Ib,I,

+bN+ O. leNtil IbN+,- dN%+,l. NOW bN+,%+, 0 ir and only if Ib+l-
dN+llmax (IbN+,l, dNl+,l). Therefore define fin N produces [1
max (ib+i, dN+). Letting max (]b+l[, dNl+,l)/l%l, w obtain the desired
result. Hence, define =max (IbN+l[,

These considerations are codified in Algorithm COCONVEX in the Appendix.

4. The parameter selection algorithm for co-monotone interpolation. In this section
we develop a tension parameter selection algorithm that preserves any monotonicity
present in the data [6]. Specifically, if the polygonal interpolant has slope of constant
sign in three successive intervals, then we select the tension parameters in these intervals
so that ’(x) has this same sign in the middle interval. Similar considerations apply at
the end intervals. The existence of such tension parameters is guaranteed by results
of Pruess [10], [11].
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We begin by rewriting the exponential spline as r(x) Ai + Bix + Ci e p’x + Die-p’x

on [xi, Xi+l]. Assume that zz’i+l->0 with both having the "correct" sign. Therefore,
any extremum of z’(x) interior to [xi, x+l] is characterized by r"(x*)=O=>e2p’x*=
-Di/Ci. Now if Di/Ci >-0 there is no interior extremum and this spline segment
is monotonicity preserving. If Di/Ci < 0 then ep,x* x/-D/Ci=>z’(x*)
Bi-2 sgn (Di)pix/-CiDi. Also, r’"(x*) -2 sgn (Di)paix/-CiDi. Therefore,

(i) Ci > 0, Di < 0==>z’"(x*) > 0z’(x*) is a (local) minimum;
(ii) Ci < 0, Di > O=:>r’"(x*) < 0z’(x*) is a (local) maximum.
If z’(x*) has the correct sign then r(x) is locally monotonicity preserving. If z’(x*)

is of the "wrong" sign then we must do something about it if x* [xi, X+l]. Since

1 "/’i+ Ti epihi
x* xi +WS-_ In -37-,

"/’i+1 "l’i e-Pihi

we thus have two cases:
(a) If z’ < e p,h, 7+1 then x* [xi, Xi+l] if and only if r’+l -> 0;

then x* [xi, xi+(b) If zi > e p’hi
7"i+1 1] if and only if ri+l

We now come to the case in which r’(x*) has the wron.g sign. In this event we
iteratively modify the tension parameter Pi, so as to enforce the requirement that r’(x*)
should have the correct sign.

Consequently, consider once again our special cases, with 8>0, and y=
Bi + p," 2 sgn (C). x/- CiD,

(i) Ci >0, Di <0==>z’(x*) is a minimum
(a) if m _-< 0 then do not alter p
(b) if mi > 0 then, since we want 3’ > 0, set

p,+l) -Bi/2x/-CiDi + 8.

(ii) C < 0, D > 0==>z’(x*) is a maximum
(a) if mi->_ 0 then do not alter Pi
(b) if m < 0 then, since we want 3’ < 0, set

pl "+1) Bi/2x/-CiDi + 8.

The only remaining issue is if the computed z should be of the wrong sign, i.e.,
’imi_l 0 and zm < 0.

We observe that

"r’ 1/2{[" ei_ ,z,_1 + (di-I di)z’ + mi]}eiT.i+ l] at- mi_l

and enforce

ei_ [i"_,l / (d,_, / d,). I’1 + ei" I,’,1 <[m,_, / m,[.
Now,

ei-l" ’i"-ll + (di-1 + di)" Iz’l + ei" zi"+ll (ei-1 -1 di-1 if" ei ’1- d,) max

We need the following lemma.
LEMMA. (a) e--<_ 1/p,2h (b) di--< 1/p.
We are thus led to enforcing

-T--;---,++W+ max (I z,"-ll, 171, Ii"+,l) < Im,-, + mi[
Pi-lhi-1 Pi-1 pihi

or, alternatively

1 1 Imi-1 + mi[
2Pi-lhi-1 Pi-1 2 max
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together with

This ultimately leads to

pl.+l 1 + p,h,. 2 max (Ir,-,I, Ir 1, "
p,hi m,_, + mi

and

+8

r(n+l 1 +pi_lhi_1 2 max (l
Fi--1

These considerations are codifiedin Algorithm COMONOTONE in the Appendix.

5. Direct solution of the spline equations. As we have seen, the formulation of the
spline equations in terms of either first or second derivatives leads to a (symmetric)
tridiagonal system. These equations share the property with their cubic spline counter-
parts that they can be solved in O(N) arithmetic operations, e.g., by the Thomas
algorithm [2].

A quantity of interest in the present context is the condition number of the spline
matrix A 10]. Let us first take the first derivative formulation. Gerschgorin’s theorem
reveals that

p sihi 1 ci 1
Ilall= -< 2 max 11A-1[12 < maxpihici 2si + pihi =- pisi

For the second derivative formulation the same line of reasoning yields

ci 1IIAII=-<- 2 max,
pisi

Power series expansions establish

hiCi--1

pis 2

We thus have the following:

(i) First derivative formulation

12

hmin
(ii) Second derivative formulation

1
m/ax

P2is,hiIIA-1112< pihii_2siq_pihi"

ph,s, <6
pihici 2S "- pihi hi

hmax

3IIAII< hmax IIA-’II= < hmin
Hence in both cases we have the matrix condition number

K(A) IIAII2IIA-II2 <3hmaxhmin

Pruess [10] supplied this result for the second derivative formulation while that for
the first derivative formulation is new.
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6. Iterative solution of the spline equations. The spline equations in terms of second
derivatives with slope end conditions are A-"= b with the obvious definitions. Let
A D + O where D is diagonal and O, 0, for all i. Then (D + O) ’" b, which implies
that ’" -D-10’"+ D-1 b. Define R D-10 and r D-1 b. Therefore, ’" -R-"+ r.
In any iterative scheme [5] derived from this relation, due consideration must be given
to the eigenvalues of R. Note that, although R is not symmetric, we do have

D1/2RD-1/2 D-l

which is symmetric. Hence, R is similar to a symmetric matrix thus implying that its
eigenvalues are real. Moreover, Rx AxR=-)7 where ) is obtained from x by
altering the sign of every other element.

Gerschgorin’s theorem then allows us to conclude that all of R’s eigenvalues satisfy

max 2+ di 2"

Young’s theory then allows us to use simultaneous overrelaxa.tion

[’r"]("+l) to[r- R[’r"](")] (to 1)[7""] (")

and the optimum relaxation factor will be given by

2

1 +/l_A2

As an estimate of Amax we use/z. To see that this is a reasonable choice, consider
the case of uniform mesh width and tension. In this case/x e/d and Rx- txx with
x=[1, ,1] r. That is, /z =Am,x and this produces an exact value of to*. In this
instance, the special case of the cubic spline yields/z 1/2 and to*= 4(2-v/).

A possible starting point for the iterative process would be

[7.,,]o) 2b__.2.__.
hi- + hi

The spline equations in terms of first derivatives with second derivative end
conditions are A-’= b with the obvious definitions.

The iterative treatment of this system proceeds along precisely the same lines as
before. However, now

{e_ll e,-l(d2 e2i)+e,(d2i-l :2 _}ei_l) ev 1- _-5--, =-Ix <=I’1 < max di-l( dE e2i)+di(di-l-ei-1) 2

Once again,/x is used as our estimate of Arnax with the familiar justification. The above
iteration requires only a constant amount of storage in addition to that required for
the input data.

7. End conditions. In our previous discussions we have always assigned one
boundary condition at each end of the interval of interpolation, i.e., a boundary value
problem. It occurs to us however that we could rightfully assign both end conditions
at one end, i.e., an initial value problem. This would allow us to concatenate sequentially
defined splines in a C2 fashion. To facilitate clarity we will restrict ourselves to uniform
mesh and tension.
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If we choose to specify r 4 and "/’1-- then defining

we have

1
al 0, a2 ---, A1 1,

ea_2 + 2da_l + eai 0,

Thus we consider the difference equation

d

eAi_2 + 2dA_l + eAi O.

Zk_ + 2lgk + Zk+ 0, Z0, Z given,

with /. d/e. Assuming a soluti_o_n of the form Zk aqk :: 1 + 21q + q2 0:: ql

-/ x//2- 1 <-1, q2 --k +x/2- 1 < 1. We introduce the basis sequences defined by

Xk_ - 21Xk + Xk+ O, X0 1, X O,

Yk-1 + 21Yk + Yk+l 0, Y0 0, Yl 1,

yielding

q2 ql 1 1
x, q’-q, y, q’+q.

qE--ql qE--ql q2--ql qE--ql

Hence, z, Zo" x, + Zl y and therefore a, -(1/e)y,_l, A, X_l-(d/e)y,_l. We
now see why such a specification is not suitable. As [q] 1, we have the effect of a
perturbation in the initial conditions increasing exponentially. In this sense, these end
conditions are ill-conditioned.

Let us use this technique to study the specification of second derivatives at the
two ends. Letting a-- Or’/ap", A =- OrT/Og/", we have

al=l, a+l=0, AI=0, As+l=1, and

ai-1 + 21ai + ai+l 0, Ai-1 + 2tzAi + Ai+l O.
n--1 n--1 + k2q,-i yieldingTherefore, a, clql + cq- A, klql

ql-,,+l q-,,+l ,,-1

a, A,
q q’-

ql_q q_q
which are clearly well behaved.

Now consider the specification of first derivatives at both ends.
Letting a =- O"/O4,’, Ai - OT"/ad/’, we have

1
tzal + a2 --, as + tZaN+l 0, /zA1 + A2 0, As +/.As+l

e e
n-1and a-i + 2tzai + a+l 0, A_I + 2tzAi + Ai+l O. Once again, a clql + c2q’- A,

klq’; -1 + k2q-1 Where now

q-l+lq
e [(/. + ql)(q-l+/q2N) + (/ + q)(ql-I + pql)]

1 qlN-l+iql
e [(/+ql)(q-l+l.q2)+(t+q2)(q-l+t.ql)]
1 /+q2

e [(k + ql)(qv-l+/q)-(/ + q2)(q-1+/q2)]
1 /+ql
e [(/ + q2)(q-I + I-q)-(t- + q2)(qlN-l+/q)]"
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These formulae are of great utility in the following application. Suppose that we
spline fit a collection of data and then decide that the end conditions that we used
were inappropriate. Rather than computing a new spline, we may use the above to
update {z’} i----!

For example, consider the case of second derivatives specified at both ends. The
old spline equations are

At" b

and the new spline equations are

A(r"+ 8z") b +
where 8b [8b" 0. 0 84,"] r. So we may solve A. 8r" 8b and add the result to r".
Here 8r" is simply a linear combination ofthe previously derived quantities. Specifically,
(Sr")i 8qb". ai + 8q,". A so that the spline equations need not be re-solved and no
additional storage is required.

Similar comments apply to the case of first derivatives specified. Moreover, all
the preceding analysis may be extended in a straightforward fashion to the case of
mixed end conditions.

It is interesting to note that if we are confronted with a spline code that only
r+ 0 as end conditions we can use the followingz+=Oor rlaccepts either z

auxiliary functions [3]:

1 [(x-a) (b-x)2 ]f’(a)a(x)=f(x) - b-a
f’(b)-

b-a

1[(x-a)3f,,(b) + (b-x)__.____3f,,(a) ].A2(x) f(x)-- b- a b- a

We then calculate A at the knots, spline fit these values using the appropriate end
conditions, and then set

f(x) z(x) +- b a b a

or

1 (x a)f,,(b)+f,,(a)f(----x-’r-x-+6 b-a b-a

depending on which end conditions were used.
We conclude this section with a treatment of the important practical problem of

supplying end conditions when only data points themselves are available.
Letf C4[x,xN+] with M--sup If(4)l. A theorem of Pruess [10] states that

26_2 h4-i[ID’(s-z)ll<-3-Pmax max Isj’l, i=0, 1,2.

A result of Kershaw [7] states that

IID’(f-s)ll<-c, h-’[hzM+gmaxlf’-sf/I], i=0, 1,2.

Hence, we may conclude that
26_2 4--iIlD(z-f)ll <= -pmaxh max Is l+ ch"- M + ch2- 8 max If’ -s l, i=0, 1,2.
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Thus, in order to maintain uniform O(h4-i) accuracy, we need only ensure that
maxj If:’j--Sj I’-O(hE) This is well known to be the case when exact slope end
conditions are specified. We now investigate the effect of using approximate rather
than exact slope end conditions thus extending known results 15] for the cubic spline
to the exponential spline.

Defining As"= 6b and Ag"= 6b, where b is obtained from b by replacing f and
fv/l by their estimated values f and fv/l, results in

[[s,,_ g,,[] <6 max {]fgfl
If we have

+O(h3),fl fI+O(h3) and fIv+,--fs+l

then

max If:’, *-j’l < max. Ifj’ sjl+ max. Is sl O(h2),

as desired.
So we see that we need only supply a third-order accurate approximation to f’(a)

and f’(b) in order to retain the interior error bounds. This can be achieved by using
the slope predicted by the four-point one-sided difference formula derived from
Lagrange interpolation.

This gives us the following end conditions:

f[ clfl + c2f2 + C3A + C4A with C --(C2 -- C -- C4) where

(hi + h2)(hl + h2+ h3)
C2 (hl)(h2)(h2 + h3)

(h)(hl+h2+h3)
Ca (hi + hE)(hE)(ha)’

(h,)(hl+h)
c4 (hi + h2 + h3)(h2 + h3)(h3)"

fN+l=--d4fN_2--d3fN_l--d2fN--dlfN+ with dl=-(d2+ d3+ d4), where

(hrq + h_)(hr + hrv- + h_2)
d d

(hrq)(hrv-1)(hrq-1 + hs-)
hN)(hN + hN-1 + hN-2)

(hrv + hN-l)(hN-1)(hv-2)

hs )( hrv + hrv-1)
hN + hN-1 + hV-2)( hN-1 + hs_:,)( h,_2)"

We have the following error estimates"

f(4)(s)f;-f;=-(hl)(h,+h:)(hl+hz+h3), 7 Ix1, x4],
4!

-!f4+l fN+l
f(4)(:)
4

hN)(h + hN-1)(h + hN_ + h,-2), E[XN-2, XN+I],

which are easily established by application of Peano’s theorem.
On a uniform mesh with constant tension, there is an increase in the order of

approximation. Hence, in this instance we should provide higher-order estimates of



COMPUTATION OF EXPONENTIAL SPLINES 253

the end conditions. We simply use

[-50fl + 96f2- 72f3 + 32f4- 6f5],

1fv+, 24--- [6fN-2 32fN-2 + 72fN_, 96f + 50fN+1],

which derive from a quartic Lagrange interpolation [1]. The error estimates are

f-f h4f(5)(:), : E [x,, xs]

and

f’+, +f+, h4f(5)(), e [x,,,_, x+,].

The above considerations for first derivative end conditions with second derivatives
as unknowns are easily extendable to second derivative end conditions. Furthermore,
both of these cases may also be applied to the equations with first derivatives as
unknowns with similar results.

8. Numerical considerations. In this section, we detail the necessary modifications
and extensions to the above analysis that practical implementation mandates [4], 12].

8.1. Alternative power series representation. The first problem to be treated is the
loss of significance when evaluating di, ei, and r(x) for small values of pihi (where
small is machine dependent). We proceed as follows:

hi( 6_ 2h2 31 44) 67
ei = 1- Pi +2520Pihi 4- O(pihi),

pihi)di 1 -zpEhi+..pihi +0(

We have the following expansion for r(x):

7"(X) --’f X(’+" ’I--’X 4-f+l
X hi

hi hi -- Xi+ X )’r[

31 4 4 1 )2 )2ph+ 2

2520 -pi(x,+,-x i (Xi+l--X

7
195

4 2 )2 P X)44-
p/4 )-pihi(Xi+l-X -26h (x,+,- -(Xi+l-X)4

( 6- 31 4 4 1 )__ 1 )2--h--i 1-- ph+22oPih, +-p(x-x -i (X--Xi

7
195

4 2 )2 P P (x_xi)4)-pihi(x-xi -20h2 (X--Xi)44-
A convenient choice for initial tension parameter values is pi 0, for all i, since

the above then reduces to the cubic spline.

8.2. Scaling. The next problem to be treated is that of the inherent number range
restriction. This results in the restriction that the magnitude of exponential arguments
be less than tr, which is a machine dependent constant. Since the exponential spline
definition requires the computation of quantities such as a sinh (pih), the data must
be scaled so that maxl__<i__< {pih} < or. It is easily shown that a scaling of the abscissae
leaves the sign of z,’.’ (i 1,..., N+ 1) invariant. This is required since the necessary
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(a) Cubic spline, iteration 0.
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(b) Exponential spline, iteration 1.
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(d) Exponential spline, iteration 3.

FIG. 1. Spiith test case.
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(a) Cubic spline.
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(b) Exponential spline.

FIG. 2. Outlier test case.

and sufficient condition for no extraneous inflection points that is the basis for our
algorithm is a function of the algebraic signs of these quantities.

We may thus freely scale x by an arbitrary positive factor. We proceed as follows.
Define/z maxl__<i__<v {pihi}; then

xi
i with a _-> =:>

a

and we consequently remain within the desired number range. Whenever the p’s are
updated, a scaling should be done if/x > tr. Note that when scaling is done then f’(a)
and f’(b) should be multiplied by a.

8.3. Invariance under linear transformations. As presently proposed, the exponen-
tial spline interpolant is not invariant under change of physical units. To ensure such
invariance some sort of normalization must be performed on the input data. Let

Therefore ?(x) kl z(x) + k2 and scal-f klf + k2, then bi kbi, which =:>’ klZi.
ing of the ordinates is unnecessary. Let kx + k_; then k2 is innocuous. However,
kl has a nonlinear effect on the interpolant. Hence, scaling of the abscissae is required.
We follow Cline [4] and set kl N/

8.4. Periodic exponential spline. If we wish to parametrically fit a closed body in
a smooth fashion, then periodic end conditions must be imposed. The necessary
modifications to the preceding analysis are presented herein.
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(a) Cubic spline.
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(b) Exponential spline.

FIO. 3. Slope discontinuity test case.

The equation for strictly interior points remains unchanged:

=bi (i=2,-.. N-l).ei_ 1,7"i_ --( di_ -t- di)’l" q- ei,ri+

While the equations for i= 1 and N become

fE-fl fN+, fdN + dl)’’ + e,’r + eNr’ ,
hi hN

r’ + (dv+ + dN)" brv.’N’I’I -- eN-1 -1

Note that the spline matrix will no longer be tridiagonal since the upper right-hand
and lower left-hand corners now have nonzero entries. The Thomas algorithm is easily
modified to accommodate a system of this form [2].

We treat tension parameter selection in the periodic case as follows: (1) All points
((xi,f)} are treated as interior points. (2) When ’’b < O, we modify p and PN. The
previous scheme is otherwise unaltered.

8.5. Parametric exponential spline. In many applications f is not a single-valued
function of x for the entire range of the data. Hence, it becomes desirable to fit both
x andfversus some parameter, e.g., chordal length or arclength. Fitting versus arclength
requires an additional nonlinear iteration.
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(a) Cubic spline.
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(b) Exponential spline.

FIG. 4. Curvature discontinuity test case.

9. Examples. We now present a sequence of examples chosen to illustrate both
the efficiency of the new parameter selection algorithm and the inherent superiority
to cubic spline interpolation.

The first test case is taken from Sp/ith’s original paper [16]. The cubic spline
interpolant (Fig. l(a)) exhibits extraneous inflection points in the first, third, fourth,
and eighth intervals. The converged exponential spline interpolant (Fig. l(d)) is seen
to be free of such aberrations. The general behavior of our parameter selection scheme
is amply portrayed in this example: The first iteration (Fig. l(b)) captures the gross
features while subsequent iterations (Figs. l(c)-l(d)) essentially "fine-tune" the first.
We note that the scheme proposed by Sp5th required 12 iterations as opposed to our
three iterations with no visible difference in final interpolants.

The second test case is a unit impulse function. Note the "wiggles" present in the
cubic spline interpolant (Fig. 2(a)). This example demonstrates the insensitivity to
"outliers" that the exponential spline interpolant (Fig. 2(b)) possesses.

The third test case is a semicircle joined to two straight line segments in such a

way as to produce discontinuities in the first derivative. This example begins to implicate
the cubic spline interpolant (Fig. 3(a)) as being deficient as a means of geometric
representation. The exponential spline (Fig. 3(b)), on the other hand, performs ideally
in this instance.
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(b) Exponential spline.

FIG. 5. Vertical tangent test case.

The fourth test case is a quarter circle joined by a straight line segment with a
discontinuous second derivative at their junction. Once again, the cubic spline inter-
polant, (Fig. 4(a)) falls far short of geometric requirements while the exponential spline
(Fig. 4(b)) does not falter.

The fifth test case displays the critical sensitivity of the cubic spline interpolant,
(Fig. 5(a)) to the end conditions imposed. It is an additional advantage of the
exponential spline interpolant (Fig. 5(b)) that it automatically compensates for poor
end conditions, thus restricting them to local influence.

10. Conclusion. In this study, we have focused on those facets of exponential
splines that pertain to their numerical computation. Spurred on by Pruess’ results on
the shape preservation capabilities of exponential splines [10], [11], we have devised
practical tension parameter selection algorithms for co-convex and co-monotone inter-
polation. The end result is that the principal impediment to the widespread use of the
exponential spline has been eliminated. The way is now paved for the exponential
spline to supersede the cubic spline. This is natural since the cubic spline is the zeroth
iterate in our procedure. Thus, if the cubic spline provides a faithful representation
of the data, then the procedure will halt, whereas if the cubic spline violates the
convexity and/or the monotonicity of the data then sufficient tension will automatically
be employed to rectify the situation.
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A broad spectrum of geometric applications in computational fluid dynamics has
been described in [8]. Additionally, the use of exponential splines to approximate the
solutions of systems of nonlinear hyperbolic conservation laws will be described in a
forthcoming paper co-authored with A. Jameson.

Appendix A. Algorithm COCONVEX(e,

do i I(1)N
15t Pi

end do

if t"bl<0 then

max(Ibl, dlrl’ I)

end if

do i-- 2(1)N
if ti --0 then

i-
end if

if r’bi < 0

m(lbil, (di-1 + di)lrl’l)

g m((gZ-)-/, pi-);

ff
end if

end do
if :s+l bs+l<O then

maxC(,.hl)-1/2, p); 151 maxC, 151)

ll_l ’- max(if, li-1)

max(lbN,1l, dNIrN’ I)

end if

do i*-- I(1)N

p pi / to(15- P0
end do

Appendix B. Algorithm COMONOTONE(, to).

do i 1(1)N

i pi

end do

do i 2(1)N-

if ml_mi 0 and mi" mi+ 0 then

if ri’ m < 0 then

ff *- max((’hrq)-1/2, PN); 15N "- max(if, 15s)
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if Pl- 0 then

else

pt-lhi-1

end if

if

else

p 0 then

/ pihi 2 max(Ir?’ I’ I, I’ I)
plhl Im- + ml

+6

151 max(’, 15i)
end if

end if

if Z’l.l mi+l < 0 then

if p 0 then

else
+ ph
pihi Im + m+l

+6

- max(, 151)

end if

if Pi,1 0 then

else
pi+hi+ 2 max(Irl’ I, l’t’i.’l,

hi+: ml + ml+

max(g, 15i/)
end if

end if
if t[ "mta 0 and ttlmi+l a 0 then

if Ci > 0 and DI < 0 then

if ms 0 then

15i max(pi, li)
else

g- Bi/(2 /- CiDi) + 6

i - max(’, Pi)

+
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end if
end if

end do

do i- 1(1)N

Pi - Pt + to(15t- Pt)
end do

end if
end if

if C<O and Dt>O then

if m> 0 then

li "-- max(pi, Pi)
else

i5" *-" Bt/(2 /CiDi) + t

lt max(if,
end if

end if
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A MATRIX PROBLEM WITH APPLICATION TO RAPID
SOLUTION OF INTEGRAL EQUATIONS*

LOTHAR REICHEL"

Abstract. Let {zj}j’j be a set of distinct points in the complex plane C, and introduce the n x n matrix

A. "- =(Zj--Zk) -,"-[ajk]j,k=O, ajk j k and ajj-O. Recently Golub and Trummer raised the question of
whether or not, for an arbitrary vector x C n, Ax can be computed in fewer than O(n2) arithmetic operations
by using the structure of An. In this paper it is assumed that there is a smooth 27r-periodic bijective function
z(t) such that zy z(2r(j- )/n ), j (1)n, and shown that when n increases, there is a sequence of matrices
of low rank .., n 1, 2, 3,. such that ,. A. as n- and ,.x can be computed in O(n log n) arithmetic
operations. The method to construct the matrices ,. is then used in a fast solution scheme for Fredholm
integral equations of the second kind with smooth periodic kernels. The integral equations are discretized
by the trapezoidal rule using the nodes z=z(2rj/n), O<-j<n, and it is shown that arbitrarily accurate
approximate solutions can be computed in O(n log n) arithmetic operations for large n, provided that z(t)
is sufficiently smooth. When the asymptotic analysis is not applicable, fast iterative O(n2) solution methods
are obtained. The scheme is applied to the solution of a Fredholm integral equation of the second kind of
plane potential theory and Cauchy singular integral equations.

Key words, integral equation, fast solution of linear systems, matrix vector multiplication

AMS(MOS) subject classifications. 65R20, 65F05, 65F10, 65F30

"fZ .n-11. Introduction. Let t Jj=o be a set of n distinct points in the complex plane C,
a n-1and consider the complex skew-symmetric matrix A, =t kJj,k=O defined by

(1 1) ak :=
f z zk l’ k,
tO, j=k.

Golub and Trummer [GT] recently raised the question of whether or not, for an
arbitrary vector x C", A.x can be computed in less than than O(n2) arithmetic
operations by using the structure of the matrix. We note that if the z are equidistant
points on a circle and D. := diag (Zo, Zl, , Z._l), then A.D. is a Hermitian circulant
matrix, and A.x can be determined in O(n log n) arithmetic operations. To see this,
we introduce the unitary Fourier matrix W. [Wk]:

w2,k:=n-1/2exp(-2ijk/n), O<--j<--n, O<-k<n,
(1.2)

w2j_l,k := n-1/2 exp (2ijk/ n), l j <-- n2, O- k < n,

where := -i, n is the integer part of (n-1)/2, and n2 is the integer part of n/2.
The fast Fourier transform (FFT) method allows us to compute W,y and W,ny in
O(n log n) arithmetic operations for any y C" and for any n [He, Thm. 13.7e].
Moreover, for any n x n circulant matrix C, W,CWn, is a diagonal matrix whose
elements can be computed in O(n log n) arithmetic operations IDa, Thm. 3.2.2]. For
future reference, we note that the elements of the matrix

(1.3) DT: diag (do2), d2, d(2_l):= W,A,D,W

Received by the editors May 13, 1987’ accepted for publication (in revised form) January 18, 1989.
f University of Kentucky, Department of Mathematics, University of Lexington, Kentucky 40506.

Bergen Scientific Centre, All6gaten 36, N-5007 Bergen, Norway.
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can be determined explicitly. For n even, we obtain

n-1 n
0<j<_2j --j

2 2’
(1.4)

n/l n
__j, 1-<j_-<2j-1- 2

(see Appendix for details). From (1.3) and WW, I we get

(1.5) A,x Wn, D W,D-x.
The right-hand side of (1.5) can be computed in O(n log n) arithmetic operations.

We next indicate how approximations ofA,x can be determined for a more general
choice of zj. Let F be a smooth Jordan curve with parametric representation z(t), 0 _-< <
2r, and define z(27r):= z(0). Assume that there is a constant 8 with

(1.6) Iz’(t)l_-> > 0, 0<-- t--<Er.

Let D, henceforth be the diagonal matrix

(1.7) D, := diag (z’(0), z’(27r/n), z’(47r/n),..., z’(2r(n 1)/n)).

Assume that z:=z(2rj/n) for O<=j<n. We show in 2 that if z(t) is sufficiently
smooth and n is sufficiently large, then the matrix A,D, can be split according to

A,D,, B,, B- C,,,

where C, is a circulant matrix, B(,) is a diagonal matrix, and the matrix B. can be
approximated well by a matrix B of low rank.

We determine a representation ofB by the FFT-method in O(n log n) arithmetic
operations and define A( := (B)-B)- C,,)D-’. The representation of B is such
that A)x can be computed in O(n log n) arithmetic operations by the FFT method
as n oo. Moreover,A A, as n oo, where we show convergence in the least squares
norm and in the uniform norm for sufficiently smooth z(t).

A different solution of the Golub-Trummer problem has been presented by
Gerasoulis, Grigoriadis, and Sun [GGS] who show that Ax can be computed in

"fz n-1O(n log2 n) arithmetic operations as n increases for any point set t jJ=O of n distinct
points if exact arithmetic is used. For general point sets the determination of Ax by
the method of [GGS] involves computations that are unstable.

In 3 the approximation of A.D. by B(.2- B(.- C,, is applied to devise rapid
schemes for solving Fredholm integral equations of the second kind with smooth
periodic kernels. We illustrate the schemes by considering the integral equation

lo’(z)+Re(2-/Ir 1
tr() d) =f(z), zr(1.8)

’-z
for tr. We discretize (1.8) by the Nystrdm method based on the trapezoidal rule, and
the matrix obtained is closely related to A,. Approximating the matrix obtained from
(1.8) by a low rank approximation, similarly as A, is approximated by A in 2,
yields a linear system of equations that can be computed and solved in only O(n log n)
arithmetic operations for n large. This modified system has a solution that converges
to the solution of the linear system of equations obtained by discretizing (1.8) as n 0%
provided that F is sufficiently smooth.

Fredholm integral equations of the first kind with a logarithmic kernel behave
essentially as Fredholm integral equations of the second kind (see [LSW], [Be], [Re]).
Our O(n log n) solution method can also be used to solve boundary value problems
for the Laplace equation formulated with these integral equations.
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If n is not large enough so that the matrix obtained from (1.8) can be replaced
by a low-rank approximation, then we use the low-rank approximation to obtain O(n2)
iterative schemes, whose rate of convergence increases with n, a behavior that had
been established previously for multigrid methods [Ha], [Sch]. The iterative methods
considered are a block Jacobi method and a preconditioned conjugate gradient method.
Other iterative methods for Fredholm integral equations of the second kind have
recently been discussed in [At], [DF], [Ha], [HS], [Ro], and [GR]. Section 4 contains
computed examples of our solution method applied to (1.8).

We remark that the solution method by Gerasoulis of the Golub-Trummer matrix
problem also can be applied to the solution of integral equations, more precisely to
the rapid solution of Cauchy singular integral equations on an interval [Ge].

2. The matrix problem. The analysis of this section is carried out under the
assumption that z(t) C"/2’[0, 2r], i.e., d"/2z/dt"/2 exists and satisfies a Hflder
condition with H6lder constant c, 0< a < 1. Requirements on m and a are specified
below. We also assume z(t) satisfies (1.6). Let A, be defined by (1.1) with z := z(27rj/n),
0=<j < n, and let D, be defined by (1.7). We introduce the function

(2.1)

e i’ z’(t)
b(s, t):= is it -Fi S t,

e -e z(s)-z(t)’

1( z"(t))b(t,t):=- l+iz,(t)
and the matrices B, [bsk],

(2.2) bjk:= b(2zrjn 2k)_ 0=<j, k< n,

Bn) := diag (boo, bll ," "’, bn-l,n-1),
(2.3)

C. := B. B)- A.D..
C, is the Hermitian circulant matrix with W,C,W D(,), where D is defined by
(1.3). We now derive a low-rank approximation B(,z) of B,. This requires estimates for
certain Fourier coefficients. By Taylor’s theorem with integral remainder, it follows
that s - b(s, t) cm’"[0, 2r] uniformly for 0=< =<27r, and + b(s, t) C""[0, 27r] uni-
formly for 0 =< s =< 2r. Therefore the Fourier coefficients

(2.4) gjk’--4rr2 b(s, t) e* e ikt ds dt

satisfy for some constant c depending on z(t) but independent of j, k,

(2.5) Ig,l--< c(max {IJl/ 1, Ikl+ 1}) /j, k

(see [Ka, Chap. 1]). If z(t) is analytic, then there are constants c and p, such that
0<_-p<1 and Ig)kl<-_cpJ+k for all j and k (see [He, Chap. 13]). Define the matrix
G(2) (2)][gjk by

r(2) --1 H(2.6) n W,,B,,W,,.

0.(2The gJ) are discrete Fourier coefficients of b(s, t). In order to bound the oS, we
introduce

g5/) :--L nl n (27rp2q) e2ripj/ne2riqk/n
n2 b

p=O q=O n
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g(s) :=- b s,
1 q=0

1 Io:gk(S) := b(s, t) e ’kt dt.

Since -> b(s, t) cm+’[0, 2,r], uniformly for -1 s 1, there is a constant c’ indepen-
dent of k and s, such that

(2.7) [g(s)]c’([kl+l)-m-, -lsl forall
Assume that m + a > 1, and substitute (2.7) into

g)<s)-g(s)= E g+,s)+g_,(s)),
p=l

in order to obtain

ig)<s)-g<s)lc’ E pn+k)-m-+pn-k)--).
p=l

Hence, there is a constant c", independent of s and k, such that

Ig)<s)- gs)l < c"n--, -1 =< s =< 1, -n/2 =< k =< n/2.
Therefore

-gl 1 (kl)(-) e2’j/n gjk
11 p=O

11 (gk)(-)- gk(}--))enp=o
gk e2*rip/n gjk

<-c"n-m-+ . (gj+p,,k’t’gj-p,,k) <c’"n
p=l

where c’" is a constant independent of-n/2 <-j, k-< n/2. In particular, we have shown
that

Ig)l < t(max {Ikl/ 1, IJl/ 1})-m-, ---<J’ k=<-2
for some constant independent of j and k. Finally, for 0_-<j, k < n/2,

g(2) _(1)k, ,.(2) (1)
2j,Ek gj,- 2j,2k+l g),k+l,

,..(2),..(2) g)-l,-k2j+l,2k 2j+l,2k+l

shows that

(2.8) Ig,)l <= cl(max {j + l, k + l}) -m-, O<-_j, k < n,
provided that m+ a > 1. This is assumed henceforth. From (2.8) it follows that G
can be approximated well by a matrix of low rank. From this low-rank matrix we will
obtain B), a computationally suitable low-rank approximant of B,.

A low-rank approximant of G is introduced in two steps. First we define for
some integer 1> 0, to be specified below, the matrix G [g) .-i]j,k=O defined by

,..(2)

(2.9) ..ca) ;k 0_--<j, k < l,
jk :--

0, l<-j<n or l<=k<n.

For -> 1 and m + cz > 1/2 the inequality

1 flO /--2(m+a)+l
(2.10) (j + 1)-2(m+’) _< xE(m+,)

j=! 2(m+a)-I
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holds. From (2.10) and similar inequalities, we obtain

(2.1 la) IIG)-G(,3)II<=IIG)-G)II <-cl-m-"+

(2.1 lb) G(n2)- G(n3) IIoo -< Cl-m-a+
where ]]2 denotes the L2-norm, II the Frobenius norm, [] the uniform norm,
and c is a constant depending on m and a but independent of and n.

Let B be the matrix obtained by tabulating b(s, t) at 12 points (see (2.2)), and let
Wt be defined by (1.2). Analogously to (2.6) the elements of Ljk Jj,k=O,

(2.12) G4) := 1-1
are discrete Fourier coefficients of b(s, t). By (2.5) and (2.7) there is a constant c’
independent of j, k, 1, n such that

(2.13) [g)- g!)l <,=

provided that m + a > 1.
Let tg:k a,k--O be defined by

(_(4)

(2.14) Ijk’(5)__ Ijk
By (2.13),

(2.15a)

(2.15b)

O<-j,k<l,

O<-j,k<l,
l<-j<n or l<-k<n.

G)-GV)II < G(:)- GV)II < c’ -m-+l,
IIG)-G)llo<c’l-m-+.

We are now in a position to describe the computation of an approximation of
A,x. We introduce the low-rank approximation

(2.16) B(,,2)
of B, and approximate A by

A)= (B(,,2)- B(,,)- Cn)D- Wnn (nG(,,s)- D(,,2)) W,, B(n))D;1.(2.17)

Then

(2.18)
A. A(,,2) B. B(,,2))D- nWH G(,,2)- G(,,3)) W’nD-

H/’ ’,(3) O(n5)) W.D-I+n,. i,.rn

By (2.18) we obtain using WnW =/, (1.5), (2.11), and (2.15), that for some constant
c independent of and n,

nwn G(,,2)- (3(,3)) W,D- [12 --< n G)- G)llllD:111 < cnl-m-"+1,
(2.19a)

n Wn.(G)-G)) W,,D: if2 <-- n G)- G)ll2[I D: II --< cnl-"-’+1.
Since w II :- w"II-,/-, we obtain

(2.19b)
W G G)) WnD111oo Ctl21-m-a+l,

IInW(G) G)) WD:llloo < Ctl21-m-a+1.

dill
For some arbitrary but fixed constants 0< dl < d2 < oo, let l(n) be such that

1/<__ <-dn/. By (2.19) we obtain

(2.20a) IIA. A)II2 O(M(3-m-t)/2),
i.e., m + a > 3 is sufficient for convergence. Similarly,

(2.20b) [Ia. a)llo O(n<-m-’)/2),
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and m + a > 5 suffices for convergence. For any y C", G5)y can be computed in
O(/2) O(n) arithmetic operations. Therefore A)x can be computed in O(n log n)
arithmetic operations using the right-hand side of (2.17); see also Example 2.1 below.
We note that convergence in (2.20) can also be shown for different choices of increasing
functions l(n). Hence, arbitrarily good approximations of A,x can be computed in
O(n log n) operations as n provided that the zj lie on a sufficiently smooth curve.

Example 2.1. We compare the number of complex multiplications required
for evaluating A,x and Ax for x C ". Let/xc denote complex multiplication. For
n=2 p with p>-0 an integer, the vectors n/2Wx and n/2W,x can be computed by
1/2n log2 n/Xc (see [He, Thm. 13.1b]). We compute Ax from the following formula,
very similar to (2.18)"
(2.19) a2)x=((nl/2Wff)(G)-n-lD))(n/2W,,)-B))D-lx.
Table 2.1 yields the operation count for computing A)x by the right-hand side of
(2.19). A complex division is counted as 1.5/Zc, and a real multiplication counts as
0.25 c. If n or were not a power of two the count of/Xc in Table 2.1 would increase.
An upper bound for the number of/Zc required for any n _-> 0 and 0 -< l_-< n can be
determined by using that n/2W,x and nl/ZWnnx can be computed in at most 6n log2 n +
14n/Zc for any n > 0 (see [He, Thm. 13.7e]). The evaluation of A(z)IK is seen to require
fewer /Zc than the evaluation of A,x already for fairly small values of n; see Table
2.2. The convergence ofAx to A,x as n increases is illustrated in numerical examples
of4.

3. Solution of integral equations. Let f be a bounded simply connected plane
region with a smooth boundary F, oriented so that 12 lies to the left when traversing
F. Let f(z) be a given real-valued, continuous, piecewise, smooth function on F. We

TABLE 2.1
Number ofcomplex multiplications tzc for n and apower

of two.

]lbC

Multiplication by D 1.5n
Multiplication by B n
Multiplication by n/2W,, 0.5n log2 n
Multiplication by D,2) n
Multiplication by n -1 0.25n
Forming G 0.5/2 log2
Multiplication by G
Multiplication by n /2 Wn, 0.5n log2 n

Total number of/zc for 2n /2 2n log2 n +9.75n

TABLE 2.2
Comparison of n tze for the evaluation of A.x and

2n log n +9.75n/Zc for the evaluation ofA(E)x.

n n 2n log n +9.75n

16 8 2.6 10 2.8 10
64 16 4.1.103 1.4" 103

256 32 6.6" 104 6.6" 103
1024 64 1.0" 106 3.0" 104
4096 128 1.7" 107 1.4.105
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first consider solution methods for (1.8), a Fredholm integral equation of the second
kind. The integral equation yields a solution to the Dirichlet problem

(3.1) Au=0 inf,, u=f onF.

In later subsections we discuss generalizations to solutions of exterior Dirichlet prob-
lems and to the solution of Cauchy singular integral equations. It is hoped that these
examples indicate how the solution method can be used for solving other integral
equations as well. We wish to stress that our solution schemes are applicable to any
Fredholm integral equations of the second kind with a smooth periodic kernel.

3.1. Interior Diriehlet problems. Let z(t) be a parametric representation of F
satisfying (1.6), and assume that z(t) cm+2"a[O, 27r] for re+a> 1. Introduce f(t) :=
2f(z(t)), t( t) := tr(z( t)), 0<= t<27r. Then (1.8) becomes

(3.2) (s) -llm (t) dt =f(s) 0_-<s-<2r.
z(s)-z(t)

Analogously to 2 we split the kernel"

t(s) ---1 Im , it (t) dt
r e e

(3.3)
+--Re , ,,+i (t) dt =f(s), 0_-<s-<27r.

zr e -e z(s)-z(t)

By Im (ie"/eiS-e")=-1/2 and (2.1), we can write (3.3) as

(3.4) t(s)+- (t) dt+--r Re(b(s, t))t(t) dt=f(s), 0_-<s-<2zr.

We discretize (3.4) by the Nystr6m method based on the trapezoidal rule with nodes
t=27rj/n, O<-_j<n, and introduce r:=(t(to), (t),...,t(t_)) r and f:=(f(to),
](t),... ,](t_))r. We obtain the algebraic linear system of equations,

(3.5) (I+ C("3)+2n Re (B,)) tr f

where C is the n x n circulant matrix with all entries 1/n, and where B, is defined
by (2.2). For future reference we define

(3.6) D := W,C W diag (1, 0, , 0).

We define a low-rank approximation of Re (B,) similar to the way we defined a
low-rank approximation of B, in 2. Let

H’:= W,( Re(B,)) W(3.7)

and let H be the n x n matrix with the same x principal submatrix as H>, and
all other elements zero. Since Re (b(s, t)) is at least as smooth as b(s, t), we obtain
similarly to (2.11)

(3.8) Iln>- n>ll= < el-m-a+1,
for some constants c, independent of and n. We introduce

H14’: W/( Re (B/) W,(3.9)
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and H(,5), the n x n matrix with H4) as leading principal submatrix and all other
elements zero. H4) can be computed in 0(12 log I) arithmetic operations (see [He])
where also a recursive scheme for the computation of multivariate Fourier transforms
is presented. Similarly to (2.15), we obtain

(3.10)

for some constant c’ independent of and n. The low-rank approximation of
(2/n) Re (B,) to be used is

(3.11)

We also introduce

2 B),(3.12) B) :=- Re (Bn)

and obtain from (3.8), (3.10), and

(3.13) B)= Wn (H)-H)) Wn + Wn (H)-’H)) W,,

that for some constant c independent of n and

IIB)ll2 <_cl-m-’+’.(3.14)

We write (3.5) in the form

(3.15) (I + C)+ B(.3))r -B)tr + f.

LEMMA 3.1. There are constants lo and c, depending on F, such that for each >- lo
and n >- the matrix (I + C(.3)+ B(.3))- exists and

(3.16) I1(I +c+)-’I1-<- c.

Proof. Let lr, be the unitary n x n matrix

0 }n-I

and introduce the block diagonal matrix

(I+C3)+(2/I)Re(B) 0i)}Ai :=
0 }n-l"

Then

(3.17) I +C+ B(.3 Wn.(I + D(.3+ H(.)) W. Wn. ITV.., WnW.." n
The integral operator of (3.2) is a compact perturbation of the identity, and (3.2) is
uniquely solvable. (I+ C3)+(2/1) Re (B)) is a discretization of this integral operator
such that by [At, Thm. 4, p. 97] there are constants lo and c’ with the property that for
l--> Io the inverse (I + C3)+(2/1) Re (Bt))- exists and II(I + c3)+(2/1) Re (n,))-’ll_-<
c’. Let c:= max {c’, 1}. Then II,i;ll,_-< c, and (3.16) follows by (3.17).

THEOREM 3.2. For some constants 0< d < d2 < o, let l(n) be an integer such
that dn 1/3 <_ <- d2n 1/3. Assume >= l for a constant l defined in the proof Let tr* solve
(3.5) and let r satisfy

(3.18) (I + C)+ B(,,3))6 f.
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Then fr can be computed in O(n log n) arithmetic operations as n --> , where the coefficient
for n log n is independent ofd and d2. Let n be a sufficiently large constant. Then there
is a constant c, independent of >-l and n >-_ n, such that

(3.19a)
I1( I + C)+B)+B))@- fll =< c’llfll2n<-m-)/3,

provided m + c > 1. Further,

(3.19b)
II(I +c)+B)+ B))-fll= -<- c’llfll=n/-cm+)/

I1,- *11=__< c’llfll=n/-<+>/.

Proof. We solve (3.18) by solving

(3.20) (I + D(,3) + H(,5))@ W,f, =Who’.

The elements of H(,5) are determined in O(1210gl)=O(n2/310gn) arithmetic
operations, and the LU-decomposition is determined in O(/3) O(n) arithmetic
operations. The asymptotic operation count of O(n log n) stems from the computation

Hof Wf and W tr. We turn to (3.19a). By (3.14) and (3.16a) there is a constant c,
independent of and of n sufficiently large, such that

I1(I / C)/B)/ B))6-fll= IIB)II=IIII=
(3.21 B)ll=ll (I +c +B>) - II=llfll=

c,,llfll=/--+"

Let l > max {/o, c"/m+-l)}. Then for n l l (I + C)+ B))- exists and

II(I +c)+ n))-’)ll= < c"l-m-a+ < 1.

Therefore

Ila- *11= II(I + c)+ B))-’f-(+ C)+)+B))-’fll

(3.22)
--II X (--1)k((I +C + B?))-lB(n4))k(I / C(n3)/ B))-lfll2

k=l

< X (c"l-m-+’)cllfll_

where the constant c is independent of l>=l and n>-n, c is the bound in (3.16).
Formula (3.19a) now follows from (3.21), (3.22), and - <= d-n-/3. Condition m + a >
1 was sufficient when deriving (3.14) and (3.16). Formula (3.19b) is obtained from
(3.19a) by noting that for any vector vC",

< I1"11,- < "’/(3.23) II,lloo= I),ll. a
Let f(s) cm’+’[0, 27r] with 0 -< m’+ a’ < m + a. Then K(s), the solution of (3.4),

satisfies (s) cm’+"’[0, 2r] but, generally, K(s) C"[0, 2r] for/z > m’+ a’. Let (s)
be the trigonometric polynomial of degree at most n of best approximation of K(s)
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with respect to the uniform norm on [0, 2r]. Then (see [Me, Satz 41]),

max
O<s=<2-

and the exponent can generally not be improved [Me, Satz 48]. We therefore say that
(r converges optimally to o* if By (3.19b) a sufficient condition
for optimal convergence is

m+a>=3(m’+a’)+.

Hence, optimal convergence of 6 is achieved if the kernel is sufficiently much smoother
than the right-hand side function f(s).

If n is not large enough so that the matrix B(,4) can be dropped from (3.15) without
yielding poor accuracy, we solve (3.15) by the block Jacobi method

W(I+D)+H))W.(r(+I)=-B)tr()+r, k=0,1,"’,
(3.24)

W, (I + D(.3) + H?)) W.(r()= f.

Each iteration requires O(n:) arithmetic operations including two fast Fourier trans-
forms. Let 1= l(n)<= d2n2/3 for some constant d:>0. Then I+ D(3)+ H( and its
LU-decomposition can be computed in O(n:) arithmetic operations. By not forming
B explicitly, but by instead using the right-hand side of

B(.4 =2 Re (B.)- wH. (I + D(.3) +H)) W.,
n

we can determine the linear system (3.24) in O(n2) arithmetic operations.
COROLLARY 3.3. The rate of convergence of the iterations (3.24) increases with n

provided that rn + a > 1.

Proof. By (3.14) and (3.16) there is a constant c" such that for >- din 1/3 and for
n sufficiently large

(3.25) II[I+C)+n)]-’B)ll:<-c"dl,-m-’n(’-m-’)/3.
The condition m + a > 1 stems from the derivation of (3.14) and (3.16).

Remark. Let c > 0 and y > 0 be arbitrary constants, and let try* be as in Theorem
3.2. Assume for the moment that the rk) can be computed without roundott errors.
Then it follows from (3.25) that there is an integer p >-0, depending on l, c, and y, but
independent of n, such that

Iltrk)-tr*,ll2<=cn-, k>=p.

Hence, if the discretization error is of the form O(n-V), then the error in tr(k is of
the same order of magnitude as the discretization error after a number of iterations,
which is independent of n. Similar results hold for the multigrid method [Ha],
[US]. 1-I

Numerical experiments with a preconditioned conjugate gradient method show
even faster convergence than iterations (3.24), despite the fact that the matrix I +C +
B)+B generally is nonsymmetric. The conjugate gradient method has been imple-
mented as described in [GVL, (10.3-3)] with preconditioning matrix I+C)+B).
Computed examples are presented in 4.

3.2. Exterior Diriehlet lroblems. Let 12 in (3.1) be the region exterior to F. Now
the positive direction of F is clockwise. Equation (1.8) with f(z)= 0 has solution cr-= 1,
but no other linearly independent solution. Let z’(t) be the same as in (3.2). It is easy
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tO see that the following system of equations for the exterior Dirichlet problem has a
unique solution {q*, tr*} R x L2(F):

(3.26)

q+t(s)+
1
Im (t) dt =f(s) 0-<_s-<_27r,

z(s)-z(t)

Discretize (3.26) by the trapezoidal rule in the same way as (3.4) was discretized. Let
e:= (1, 1,. ., 1)r. Similarly as (3.15), we obtain

(3.27)
qe+(I-C)-B))o B)tr + f,

eTo’ O.

Let & (6o, 1,""", n--1)T be the scaled Fourier coefficients := W,r. Regard 6 as
the unknown to be determined. Let el := (1, 0,..., 0)r. From (3.27), we obtain

(3.28a) qe,v/-+ (I D(,,3)- H(,,s))d W,,B(.4) Wn. r +’Wof,

(3.28b) (o O.

Introduce the matrix P Pjk] Rnx(n-1) with

0, j#k+l, O<=j<n,
Pjk :=

1, j=k+l, 0_-<k<n-1.

From (3.28), Pel =0, and pTDO)P=O, it follows that

(3.29) (I pTH(S)P pT Wnn.-(4) W.
O’n O’n

0-<k<n-1,

+ pTwnf.

From (3.29) we compute (,..., t,_l) r in the same way as (3.15) was solved.
Knowing 6, we can determine q from the first row of (3.28a).

Also for Dirichlet problems on multiply connected regions the matrix has a
structure that enables the use of the solution methods described. This structure has
been used previously in [Re] to obtain a different iterative scheme. We omit the details.

3.3. Cauchy singular integral equations. We consider the integral equations that
may be the most closely related to the matrix problem of 2. Let F be smooth and
regard the integral equation for complex-valued or"

1
r(z)+

1 PVIr tr()
27r---- z-

d" =f(z),

Introducing a parametric representation and using the same notation as in (3.3), we
obtain

e it 1 fo(3.30) t(s)+
1
PV ,s ei (t) dt b(s, t)t(t) dt=f(s), 0_-<s-<27r.

We discretize (3.30) by a collocation method with collocation points sj 2rj/n, O<=j < n.
Let t := sj. The integral with kernel b(s, t) we discretize by the trapezoidal rule with
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nodes b, 0<-J < n. The principal value integral we integrate by a rule obtained from
[He, (14.2-35o)], which for n even and 0-<j < n reads

(3.31)
IO’ e it1

PV
ei971" e

2 n-1 eit,,
i, ( t) dt pj :=

itj it O’k
nk=oe -e
kj

(-1)J ,1 ei5 + ei,k
(-1) e5 ei, r

-,
n k=0 n

kj

where crk := d’(tk). This rule is derived by interpolating t(t) by a trigonometric poly-
nomial that is integrated exactly [He, Chap. 14.2.V]. Let p:= (po, pl,"" ", p,-1)T and
let C,4) be the circulant matrix implicitly defined by (3.31), such that p= C)tr. Then

--,(4) HD.4 :- W.L. W, is a diagonal matrix whose elements can be determined explicitly
using the formulas of the Appendix. The discretization of (3.30) yields

I+ C)+ 2 B,,)o" f

or equivalently with @ W,,tr,

I -i- D(4) -b
2
WnB.wnH) Wnf.

n

Splitting (2/n) W,,B,, Wn, as in 3.1, we obtain solution methods similar to those already
discussed.

4. Numerical examples. The computations were carried out on an Alliant FX/8
computer in double precision arithmetic, i.e., with 15 significant digits. We first illustrate
the approximation of matrices A, C"n by matrices A C"" of rank l(n) << n.
The notation of 2 is used, and hence, we must bound G<2)-G). From (2.18) we

,(2)then can compute a bound for A,- t,
Example 4.1. Let F be the ellipse with parametric representation z(t)=

2 cos (t)+ sin (t), 0=< t_-< 2r. Choose l=2n ’/2. The difference G{,2- G,s is shown in
Table 4.1. Table 4.2 illustrates the use of a larger 1. We choose =4n 1/2. l-]

TABLE 4.1

36 12 7.4(--2) 9.9(--2)
64 16 1.5 (--2) 2.0 (--2)
100 20 2.5 (--3) 3.4 (--3)

TABLE 4.2

36 24 1.0 (--4) 1.4 (--4)
64 32 2.2 (--6) 3.0 (--6)
100 40 4.3 (--8) 5.7 (--8)
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Example 4.2. Let F be the curve shown in Fig. 1 with parametric representation
z( t) x( t) + iy( t), 0_-<t<_-2-, where

x(t) := 1.225(0.5 cos (t) + cos (2t) 1),

y(t) := 1.7510.1225(5 sin (t -0.2) + 2 sin (2t) -sin (4t)) +0.4 sin (t) -0.185].

For this curve a fairly large constant c in /:= cn 1/2 is required in order to make
G)-G small for moderate n. We choose c 8, and show G(,2)-G so obtained
in Table 4.3.

Example 4.3. Let F be the race-track-shaped curve that is the boundary of a region
obtained by placing a 0.2 x 2 rectangle between two unit disk halves (see Fig. 2). The
parametric representation z(t), 0<= t<=2r, of F is defined by letting be proportional
to the arclength from z(0) when F is traversed in the positive direction, z(0) is chosen
as the midpoint of one of the circular arcs. z(t) does not satisfy the smoothness
requirements of 2; z"(t) has jump discontinuities. We choose := 2n 1/2, which is the
same choice as for Table 4.1, and obtain Table 4.4. The difference G)- G,5) is seen
to be large, and appears to grow with n.

The remaining examples illustrate application ofthe matrix splitting to the solution
of the integral equation of 3.1. We use the notation of 3 and also introduce for any

FIG.

TABLE 4.3

100 80 4.6 (--2) 5.2 (--2)
144 96 1.5 (--2) 1.7 (--2)
196 112 4.9 (--3) 5.2 (--3)
256 128 1.5 (--3) 1.6 (--3)
314 144 4.5 (--4) 4.6 (--4)
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FIG. 2

TABLE 4.4

36 12 1.6 2.2
64 16 2.3 3.5
100 20 2.4 3.7
144 24 2.7 4.7

{1"= (O’0, O’1, O’._I)TIR" and 0=<s-<2rr,

(4.1) (K,,tr)(s) :=- +- Re e e" + ,
n =o n =o z(s) z(t)

(1 ())/(1 (__ ,j))(4.2) (s) := (-1)% cot (-1) cot
xj=o /x=o 2

where t := 2j/n. Formula (4.2) is a barycentric formula for trigonometric polynomial
interpolation [He, Chap. 13.6]. (s) is a trigonometric polynomial of degree n/2
such that (t) , 0 j < n.

Let * solve (3.5) and let & satisfy (3.18). Then

(4.3a) e*(s) := *(s) + (K,*)(s) 2f(s)

is the residual due to discretization errors and

(4.3b) (s) := &(s) + (K,&)(s) 2f(s)

is the residual due to discretization and the approximation of (2/n) Re (B,) by B3.
We would like (s)= e*(s). The size of e*(s) is measured by the discrete uniform norm

I1*11 := max le*(j/(2n))l,
0j<4n

and the same norm is used for ,(s). In Examples 4.4-4.6 we let

f(t) := Isin (2t)l /2,
a fairly smooth but nonanalytic function.

We note that since all matrices and vectors are real-valued, we can use real Fs.
The unitary Fourier matrix (1.2) can be replaced by the ohonormal Fourier matrix
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W --[Wjk that for n even is defined by

Wo,k := n -1/2, 0 <= k < n,

W2j-l,k := sin

n
1-<j<, O<-k<n.

W2j,k :-- COS

For n odd, an analogous orthonormal matrix W. can be used.
Example 4.4. Let F be the ellipse with parametric representation z(t):=

2 cos (t)+ sin (t). Let be the even integer closest to 2n /3. We obtain Table 4.5,
which shows that (2/n)Re(B.) can be replaced by B with almost no loss of
accuracy. D

Example 4.5. Let F and z(t) be the same as in Example 4.2, and choose as the
even integer closest to 8n 1/3. We obtain Table 4.6, which shows that (2/n) Re (B.) can
be replaced by B with almost no loss of accuracy. [3

Example 4.6. Let F be the race-track-shaped boundary of a region obtained by
placing a 2x2 square between two unit disk halves (see Fig. 3). z(t) is obtained
similarly as in Example 4.3 and is chosen as in Example 4.5. We obtain Table 4.7.
While the theory does not cover this example, we nevertheless obtain an acceptable
approximation B of (2/n) Re (B,), i.e., replacing (2/n) Re (B,) by B yields e*(s)
(s). D

In all the above integral equation examples we have been able to replace
(2/n) Re (B.) by B and obtain (s) e*(s). In the next example this is not the case,

TABLE 4.5

,’, e* I1, I1’* a I1o I1’* -all a I1,

64 1.2 (-2) 8 1.1 (-2) 6.4 (-2) 1.6 (-2)
128 4.1 (-3) 10 1.3 (-3) 1.0 (-2) 3.7 (-3)
256 1.5 (-3) 12 1.6 (-4) 1.6 (-3) 1.3 (-3)

TABLE 4.6

64 1.2 (-2) 32 1.3 (-2) 2.7 (-2) 1.6 (-2)
128 4.1 (-3) 40 3.4 (-3) 8.2 (-3) 4.4 (-3)
256 1.5 (-3) 50 4.4 (-4) 1.7 (-3) 1.6 (-3)

FIG. 3
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TABLE 4.7

64 1.2 (-2) 32 1.7 (-2) 5.3 (-2) 1.9 (-2)
128 4.1 (-3) 40 1.6 (-2) 5.8 (-2) 1.7 (-2)
256 1.5 (-3) 50 4.9 (-3) 2.8 (-2) 5.3 (-3)

and we use I + C)+ B<3) as a preconditioning matrix in block Jacobi and conjugate
gradient iterations.

Example 4.7. Let F and z(t) be the same as in Example 4.6, but let f(t) now be
the smooth function

f(t) := Isin (2t)] 9/2.

Let (r
() be defined by the block Jacobi iterations (3.25) or by the preconditioned

conjugate gradient method described in [GVL, (10.3-3)] with preconditioner I + C,3) +
B(,3), which is LU factorized. (r

() for the conjugate gradient (cg) method is given by
(3.25). Despite the fact that the matrix I + C(3) + (2/n) Re (Bn) as well as the precon-
ditioner are nonsymmetric, the cg iterations converge slightly faster than the Jacobi
iterations. This observation has been made in many computed examples. If nonsym-
metry would cause slow or no convergence of the cg iterations, the method described
in lEES] could be used. Let

e<)(s) := o’<)(s) + (Kno’))(s) 2f(s).

Choose n 64, := 8n 1/3 32. Table 4.8 shows the convergence of the Jacobi iterations
(3.25). For comparison, Ile*ll - 7,0(-5).

After two iterations Ile(J)ll lle*ll. Letting n:= 128, l:=40-8n 1/3, we obtain
Table 4.9.

For n= 128, we have I1*11-1.6(-6)lle()lla-Table 4.10 and 4.11 show cg
iterations and correspond to Tables 4.8 and 4.9, respectively. D

TABLE 4.8
n 64, 32, Jacobi iterations.

0 2.0 (-2) 3.4 (-2) 1.7 (-2)
5.4 (-4) 1.2 (-3) 4.1 (-4)

2 1.4(-5) 2.2(-5) 7.4(-5)

TABLE 4.9
n 128, 40, Jacobi iterations.

0 3.5 (-3) 9.5 (-3) 3.0 (-3)
5.8 (-5) 1.4 (-4) 4.2 (-5)

2 5.5 (-7) 1.4 (-6) 1.7 (-6)



RAPID SOLUTION OF INTEGRAL EQUATIONS 279

TABLE 4.10
n 64, 32, cg iterations.

0 2.0 (-2) 3.4 (-2) 1.7 (-2)
4.8 (-4) 1.1 (-3) 3.7 (-4)

2 4.3 (-6) 8.6 (-6) 7.1 (-5)

TABLE 4.11
n 128, 40, cg iterations.

0 3.5 (-3) 9.5 (-3) 3.0 (-3)
3.9(-5) 9.6(-5) 2.8(-5)

2 1.7 (-7) 4.4 (-7) 1.6 (-6)

Appendix. Proof of (1.4).
By IDa, 3.2.2] the elements of D)= W,,A,,D,,Wn. can be written as follows:

rl--ID diag (p(1), p(zl ),p(zl),p(z-2), p(z2), ,p(z’/2-1),p(z’/2)),
r--Iwhere p(z)=Yk=oaOkZkZk, and Zk=e2ik/’. (Note that matrix W defined by (1.2) is

obtained by reordering the rows of the Fourier matrix used in IDa].) The diagonal
elements can be computed explicitly. For 0-<j < n,

p(zl)=
k=l l--Zk k=ll--Zk k=l 1--Zk k=ll--Zk

Now

lz+1_1___ l=z+1 1
E E z

k=l 1 Zk k=l Zk 1 k=l 1=0

k=O i--0
+1=- Ztk +j+l=--n+j+l

=o k=0

where the last equality follows by the orthogonality of z to 1 for 1-< < n. From

n--1 1 n/2--1 [ 1

=1 1 zk k=l 1 Zk

1 ) 1 n/-ll--k+l--Zk 1
+ -b--

1--$k k=l 1--Zk--k+I 2

n 1 n-1
=--1+
2 2 2

we obtain p(z) =j-(n 1)/2, 0<-j < n, and (1.4) follows.
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A BRANCH AND BOUND ALGORITHM FOR THE
BILEVEL PROGRAMMING PROBLEM*

JONATHAN F. BARD" AND JAMES T. MOORE$

Abstract. The bilevel programming problem is a static Stackelberg game in which two players try to
maximize their individual objective functions. Play is sequential and uncooperative in nature. This paper
presents an algorithm for solving the linear/quadratic case. In order to make the problem more manageable,
it is reformulated as a standard mathematical program by exploiting the follower’s Kuhn-Tucker conditions.
A branch and bound scheme suggested by Fortuny-Amat and McCarl is used to enforce the underlying
complementary slackness conditions. An example is presented to illustrate the computations, and results
are reported for a wide range of problems containing up to 60 leader variables, 40 follower variables, and
40 constraints. The main contributions of the paper are in the step-by-step details of the implementation,
and in the scope of the testing.

Key words, bilevel programming, Stackelberg games, branch and bound, complementarity sequential
game, linear programming

AMS(MOS) subject classifications. 65-03, 90D05, 90C05

1. Introduction. Hierarchical decision problems involving conflict among the
different subunits can often be modeled as a multilevel game. Examples include
government regulation, management of a decentralized firm, and the standard max-min
problem. In each of these situations, the leader attempts to maximize his objective
function by selecting a strategy that anticipates the reactions of the followers. In so
doing, if he is limited to influencing rather than controlling subunit outcomes, a
Stackelberg game results (see Basar and Selbuz (1979), or Simaan and Cruz (1973)).
The bilevel programming problem (BLPP) is a static version of this game where the
leader has control over the decision variables x X R",, while the follower separately
controls the decision variables y Y_ R"2 (Aiyoshi and Shimizu (1981), Bard and
Falk (1982), Bialas and Karwan (1984)).

In our formulation, it will be assumed that the leader goes first and chooses an
x to maximize his objective function F(x, y). The follower then reacts by selecting a
y to maximize his individual objective function f(x, y) without regard to the external
consequences of his actions. Here, F" X x Y-> R and f" X x Y--> R 1. The problem
addressed in this paper is the "linear/quadratic" case given by

(la) max F(x, y) clx + c2y,

1b) subject to

(lc)

x X {x" Dx >- d},

maxf(x, y c y + xrQy + 1/2y 7- Q2y,
Y

1 d) subject to g(x, y) Ax + By >- b,

(le) y Y={y" Ey>=e}
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where A is mix nl, B is m n2, D is mE nl, E is m3 n2, Q is nn2, Q2 is n2n2
symmetric, negative semidefinite, and c, c2, ca, b, d, and e are vectors of conformal
dimension. Note that it is always possible to drop components separable in x from
the follower’s objective function without altering the results. Hence, (lc) does not
contain linear and quadratic terms in x.

A significant amount of effort has been devoted to solving (la)-(le), which
Jeroslow (1985) has shown to be NP-hard. A survey can be found in Bialas and Karwan
(1984) where they outline both their "high point" algorithm and complementary pivot
approach. Also see Candler and Townsley (1982) and Fortuny-Amat and McCad
(1981); for a generalization of (la)-(le) to many players see Bard (1983a) and Gardner
and Cruz (1978).

The intent of this paper is to describe the implementation and testing of a branch
and bound scheme for solving (la)-(le) initially suggested by Fortuny-Amat and
McCarl. The approach is similar to that developed by Bard (1988) for dealing with
the case where F(x, y) is strictly concave, but is more robust as discussed in 3. In
the next section, terminology and assumptions are presented. This is followed in 3
by the development of the algorithm and an example to highlight its operations; 4
contains our computational experience and some insights gained from testing. We
conclude in 5 with a discussion of the results.

2. Terminology and assumptions. Two of the basic assumptions underlying bilevel
programming are that full information is available to the players, and that cooperation
is prohibited. This precludes the use of correlated strategies and side payments.

The following notation is used in the development.
Follower’s Rational Reaction Set:

M(x) {y: y argmax [f(x, y): y Y, g(x, y) >= b]}.

Inducible Region:

R {(x, y): x s X, y M(x)}.

In order to ensure that (la)-(le) is well posed, we make the additional assumption
that the feasible region (lb), (ld), and (le) is nonempty and compact, and that for
each decision taken by the leader, the follower has some room to respond. The rational
reaction set M(x) defines this response while the inducible region R represents the set
over which the leader may optimize when given control of all the variables.

Even with the above assumptions, the BLPP may not have a solution. In particular,
if M(x) is not single-valued for all permissible x, the leader may not achieve his
maximum payoff over . In order to avoid this situation, it will be assumed that M(x)
is a point-to-point map. Because a simple check is available to see if the solution to
(la)-(le) is unique (see Bard and Falk 1982), we do not feel that this assumption is
unduly restrictive. The problem actually solved by our algorithm is
max {F(x, y): (x, y)} without the requirement that M(x) be single-valued.

3. Methodology. Rather than working with (la)-(le) in its hierarchical form, we
begin by converting it into a standard mathematical program. This is achieved by
replacing the follower’s problem (lc)-(le) with his Kuhn-Tucker conditions, and
giving control of all the variables to the leader (see Simaan and Cruz (1973)). For
X {x: x _>- 0}, Y {y: y => 0}, and m -= m, we get

(2a) max F(x, y) cx + c2y,
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(2b) subject to

(2c)

(2d)

(2e)

xTQ1 + YTQ2+ uIB + U2I --C3,

ul(Ax+ By-b)+u2y=O,

Ax + By >-_ b,

x, y, U 1, 1/2>0,---

where u and //2 are m- and n2-dimensional Kuhn-Tucker multipliers, and I is an
n2 n2 identity matrix. Constraints (2b), (2c), and (2e) can be interpreted as an explicit
representation ofthe inducible region. Thus, even for the linear/quadratic case, problem
(la)-(le) is nonconvex and cannot necessarily be solved with a standard nonlinear
programming code such as GRG2 (Lasdon et al. (1978)).

As suggested by Fortuny-Amat and McCarl, the basic idea of our algorithm is to
suppress the complementarity term (2c) and solve the resulting linear program. At
each iteration, a check is made to see if (2c) is satisfied. If so, the corresponding point
is in the inducible region, and hence, is a potential solution to (la)-(le); if not, a
branch and bound scheme is used to implicitly examine all combinations ofcomplemen-
tary slackness. It should be mentioned that Fortuny-Amat and McCarl did not imple-
ment this scheme but took the more direct approach of replacing (2c) with the following
set of inequalities" ui <- Mzi, g <- M(1 z), where z {0, 1} for 1, , m + hE, and
M is a sufficiently large constant. They then solved the resultant problem with a
standard zero-one mixed integer code.

Before presenting the algorithm, we introduce some additional notation. Define
U (U 1, U2), let W= {1, m +/12) be the index set for the terms in (2c), and let F_
be the incumbent lower bound on the leader’s objective function. At the kth level of
the branch and bound tree we define a subset of indices Wk W, and a path vector

Pk (with Wkl nonzero components) corresponding to an assignment of either u 0
or g 0 for Wk. Now let

S { i" Wk and u 0},

S- { i" Wk and g, 0},

Sk= { Wk}.

For S, the variables ui and g are free to assume any nonnegative values in the
solution of (2a)-(2e) with (2c) omitted, so (2c) will not necessarily be satisfied.

ALGORITHM.
Step O. (Initialization). Put k=O, S=, S-=, S={1,..., m q-n2}, and

/7-- _o

Step 1. (Iteration k). Set ui 0 for S and g 0 for S. Attempt to solve
(2a)-(2e) without (2c). If the resultant subproblem is infeasible, go to
Step 5; otherwise, put k <-- k + 1 and label the solution (xk, yk, uk).

Step 2. (Fathoming). If F(xk, yk)<= _F, go to Step 5.
Step 3. (Branching). If uk g(xk, yk)= O, i= 1,’’’, m + n2, go to Step 4; other-

wise, select for which uki g(xk, yk) is largest and label it il. Put
S <--S k.J {i}, Sk <-Sk\{i}, S- <--S-, append il to Pk, and go to Step 1.

Step 4. (Updating). _F F(xk, yk).
Step 5. (Backtracking). If no live node exists, go to Step 6. Otherwise branch to

the newest live vertex and update S, S, S, and Pk as discussed below.
Go to Step 1.
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Step 6. (Termination). If _F=-, there is no feasible solution to (la)-(le).
Otherwise, declare the feasible point associated with _F the optimal sol-
ution.

Step 1 is designed to find a new point that is potentially bilevel feasible. If no
solution exists, or the solution does not offer an improvement over the incumbent
(Step 2), the algorithm goes to Step 5 and backtracks. At Step 3, a check is made to
determine if the complementary slackness conditions are satisfied. In practice, if

lui gi] < 10-6, it is considered to be zero. Confirmation indicates that a feasible solution
of the bilevel program has been found, and at Step 4, the lower bound on the leader’s
objective function is updated. Alternatively, if the complementary slackness conditions
are not satisfied, the term with the largest product is used at Step 3 to provide the
branching variable. Branching is always done on the Kuhn-Tucker multiplier.

At Step 5, the backtracking operation is performed. Note that a live node is one
associated with a subproblem that has not yet been fathomed at either Step 1 due to
infeasibility or at Step 2 due to bounding, and whose solution violates at least one
complementary slackness condition. To facilitate bookkeeping, the path Pk in the
branch and bound tree is represented by an/-dimensional vector, where is the current
depth of the tree. The order of the components of Pk is determined by their "level"
in the tree. Indices only appear in Pk if they are in either S or S with the entries
underlined if they are in S. Because the algorithm always branches on a Kuhn-Tucker
multiplier first, backtracking is accomplished by finding the rightmost nonunderlined
component of Pk, underlining it, and erasing all entries to the right. The newly
underlined entry is deleted from S and added to S; the erased entries are deleted
from S and added to S.

If we arrive at Step 6 and _/7 =-c, then we conclude that the original constraint
region (lb), (ld), (le) is empty. This will only be the case if the first subproblem at
Step 1 is infeasible. Alternatively, the algorithm terminates with the incumbent whose
optimality is now established.

PROPOSITION. Under the uniqueness assumption associated with the rational reaction
set M(x), the algorithm terminates with the global optimum of the BLPP (la)-(le).

Proof. The algorithm forces satisfaction of the complementary slackness condi-
tions in problem (2a)-(2e), which is an equivalent representation of (la)-(le). By
implicitly considering all combinations of u. g(x, y)= 0 at Steps 3 and 5, the optimal
solution cannot be overlooked. [3

Example.

maxF(x,y)=8xl+4x2-4yl+4Oy2+4y3 where y solves

maxf(x, y) -xl 2x2 Yl Y2 2y3,
y

subject to Yl Y2- Y3 -> --1,

--2Xl + y 2y2 + 0.5y3 -> 1,

--2X2 2yl + Y2 q- 0.5y3 -> 1,

x_>0, y->0.

This example was taken from Candler and Townsley (1982). When it is rewritten
in its equivalent form (2a)-(2e), six Kuhn-Tucker multipliers appear, implying that it
may be necessary to solve as many as 27-1 127 subproblems before terminating. In
fact, the optimal solution was uncovered on the fourth iteration but was not confirmed
until 10 subproblems were examined.
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More specifically, after initializing the data, the algorithm finds a feasible solution
to the Kuhn-Tucker representation with the complementary slackness conditions
omitted, and proceeds to Step 3. The current point, x=(0,0), y=(1.5, 1.5, 1),
u (0, 0, 0, 1, 1, 2), with F(x, yl) 58 does not satisfy complementarity so a branching
variable is selected (u6) and the index sets are updated, giving S-= {6}, S-=,
S {1, 2, 3, 4, 5}, and P1 (6). In the next two iterations, the algorithm branches on
us and u4, respectively. Now, three levels down in the tree, the current subproblem
at Step 1 turns out to be infeasible, so the algorithm goes to Step 5 and backtracks.
The index sets are S- {5, 6}, S- {4}, and S { 1, 2, 3}, and P3 (6, 5, _4). Going to
Step 1, a feasible solution is found that passes the test at Step 2 and satisfies the
complementary slackness conditions at Step 3. Continuing at Step 4, _F 29.2. Back-
tracking at Step 5 yields S- {6}, $ {5}, and S4 { 1, 2, 3, 4}, and P4 (6, 5_). Return-
ing to Step 1, another feasible solution is found, but at Step 2, the value of the leader’s
objective function is less than the incumbent lower bound, so the algorithm goes to
Step 5 and backtracks, giving S-=, S {6}, $5= {1, 2, 3, 4, 5}, and P5 (_6). The
calculations continue until no live vertices exist. The optimal solution is x* (0, 0.9),
y*= (0, 0.6, 0.4), u*= (0, 1, 3, 6, 0, 0) with F*= 29.2. The branch and bound tree for
this example is shown in Fig. 1.

u 5 -0

114=

F=29.2
F7 < F

FIG. 1. Branch and bound tree for example.

By way of comparison, when this problem was solved with the separable program-
ming approach of Bard and Falk (1982), the optimal solution was uncovered on the
51st iteration but not recognized until iteration 103. (Each iteration required the solution
of a linear program in nl + n2 + 2m variables and 2(m + n2) + 1 constraints.) This result
typifies the relative performance of these two algorithms.

Finally, we note that the above procedure is considerably more general than that
proposed by Bard (1988). Although both use branch and bound concepts, the latter
takes an active set approach, adhering to the inducible region until a local optimum
is found. This requires more bookkeeping, and will only succeed if the leader’s objective
function is strictly concave (for a maximization problem). Alternatively, our algorithm
would easily solve this version of the BLPP if an appropriate nonlinear optimization
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code were used at Step 1 for the subproblems (see Edmunds (1988) for an
implementation).

4. Computational eXlerienee. In order to test the efficiency of the algorithm, a
series of problems was randomly generated and solved. For the primary cases reported,
the coefficients of the A, B, Q1, and Q2 matrices ranged between -15 and 45 with
approximately 25% of the entries being less than zero. Each matrix had a density of
about 0.4. The coefficients of the two objective functions varied between -20 and 20
with approximately 50% being less than zero. The number of constraints in each
problem was set at 0.4 times the total number of variables, and the right-hand side
(RHS) values ranged between 0 and 50. The signs ofthe constraints had a 0.7 probability
of being =< and a 0.3 probability of being ->.

These settings are somewhat arbitrary, but were chosen to be consistent with
previous work (e.g., see Bard (1983b), Bialas and Karwan (1984)). The advantage of
having all coefficients of equal magnitude is that the resultant problems are almost
always stable numerically. From a testing point of view, the matrix density factor plays
an important role in generating random problems. Depending on the number of
variables and constraints in the model, if this value is set too low a considerable amount
of work may be required to assure that each realization is usable; i.e., unbiased and
feasible with at least one nonzero element in each row and column. For our generator,
a value of 0.4 was sufficient to guarantee usability in all but a few instances.

To complement the primary runs, additional testing was done on a subset of the
original problems. In the first case, we investigated the relationship between algorithmic
performance and the density of the A and B matrices. Here, the range of coefficient
values remained the same. In the second case, an attempt was made to construct
"ill-conditioned" problems by selectively generating coefficients on the order of 106

All computations were performed on an IBM 3081-D using the VS Fortran
compiler. As now coded, the subproblems encountered at Step 1 are solved with the
linear programming (LP) subroutine library XMP (Marsten (1981)); however, any LP
package including those based on interior point methods could be used. Multiplier
values required to be zero on a given iteration are accommodated by fixing their upper
and lower bounds at zero. Similarly, constraints required to be binding are satisfied
by setting their slacks to zero. Both of these operations are easily handled in XMP by
a subroutine call. All variable bounds are treated implicitly, so additional constraints
are not needed in the formulation.

4.1. Results. Table 1 summarizes our computational experience with the algorithm
for the all linear case; i.e., f(x, y)=c3y. Each entry represents the average of 10
randomly generated problems. In all, 110 problems were solved ranging in size from
40 to 100 variables, and 16 to 40 constraints. Performance measures include CPU time
(seconds), the number of nodes in the branch and bound tree, and the node at which
the optimal solution is found. Also, data for the largest and smallest search trees are
given as a measure of variability.

As expected, the CPU time grows exponentially with the size of the problem, but
more importantly, depends on the way the variables are partitioned between the players.
As the number ofvariables controlled by the follower increases, the number ofvariables
included in the branch and bound process increases along with the expected computa-
tional burden. Compare, for example, the two cases with 90 variables (and 36 con-
straints). On average, 81 additional CPU seconds are required for the case where n2 45.

Also, as seen in Table 1, large differences in computational effort often result
among problems of equivalent size. For the 100 variable case, 34 subproblems had to
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TABLE
Computational results for the all linear case.

No. of Follower No. of Average No. of Optimal
variables variables consts. CPU time no. of nodes solution
(n + n2) (n2) (m) (sec) nodes (range) (node)

40 12 16 4.44 18 6-42 11
40 16 16 8.50 40 8-202 27
50 15 20 17.24 39 10-112 26
50 20 20 16.46 35 18-124 23
50 25 20 32.39 73 16-218 46
50 30 20 179.01 447 30-1250 391
70 28 28 106.99 96 32-270 67
70 35 28 122.26 106 26-246 84
90 36 36 352.37 138 30-384 81
90 45 36 433.14 185 48-374 122
100 40 40 294.22 159 34-476 120

be solved at one extreme and 476 at the other. The corresponding CPU times were 85
seconds and 804 seconds, respectively. In general, the optimum is not uncovered until
60 to 70% of the realized tree is examined. This implies that if the algorithm is stopped
prematurely the best solution might be missed. A final point to be made about the
empirical results is that about 45% of the nodes in the search tree are fathomed due
to infeasibility, and rarely (only 5% of the time) due to a solution being in the inducible
region. As discussed in 4.2, this is due in large part to the branching rule employed
at Step 3. The remaining 50% are fathomed at Step 2 when the relaxed solution is less
than or equal to the incumbent.

In order to see if the algorithm performed any differently when the follower’s
objective function contained quadratic terms, the problem sets were rerun for the case
where f(x, y)= c3y+xTQly+1/2yTQ2y. In the actual implementation, Q2 is coded as a
lower triangular matrix to facilitate data input. This format eliminates duplicate entries.

The second set of results is presented in Table 2 where little if any significant
difference can be seen when compared to the results in Table 1. Nevertheless, the
algorithm does seem to take a bit longer to converge when the quadratic terms are

TABLE 2
Computational results for the linear/quadratic case.

No. of Follower No. of Average No. of Optimal
variables variables consts. CPU time no. of nodes solution
(n / n2) (n2) (m) (sec) nodes (range) (node)

40 12 16 4.83 20 6-55 13
40 16 16 9.01 45 7-238 30
50 15 20 16.79 37 9-114 25
50 20 20 18.71 41 22-139 31
50 25 20 38.28 82 19-205 48
50 30 20 192.37 482 30-1163 372
70 28 28 116.99 104 38-299 75
70 35 28 112.65 104 32-281 71
90 36 36 393.21 143 28-407 89
90 45 36 451.78 202 53-392 130
100 40 40 363.93 178 38-511 132
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added. Only problem sets 3 and 8 show an improvement. In general, this slight
degradation in performance was traced to the fact that (2b) was more easily satisfied
when terms in x and y were present. Compared to the all linear case, fathoming at
Step 1 due to infeasibility was not as likely to occur at the early iterations. This
produced slightly larger trees.

The next set of runs was designed to see how algorithmic performance varied
with the density of the A and B matrices. In order to limit the computational effort
of this phase of the analysis, two representative problems sets were singled out for
investigation, and only the linear case was considered. The first problem set is character-
ized by parameter values (n,m, nl, n2) (50, 20, 25, 25), and the second set by
(70, 28, 35, 35). The results for density factors of 0.2, 0.3, and 0.4 are reported in
Table 3. All entries represent an average of 10 cases. As the density is reduced from
0.4 to 0.3, the average CPU time stays about the same while the number of nodes in
the search tree increases modestly. For a density factor of 0.2, however, a significant
drop in CPU time is observed. In the first case, this is accompanied by an incresse in
the average size of the tree from 73 nodes to 100 nodes, and in the second case by a
decrease from 106 nodes to 82 nodes.

TABLE 3
Results for different matrix densities for all linear case.

No. of Follower No. of Average No. of Optimal
variables variables consts. CPU time no. of nodes solution

(nl / hE) (hE) (m) (sec) nodes (range) (node)

Matrix density 0.4
50 25 20 32.39 73 16-218 46
70 35 28 122.26 106 26-246 84

Matrix density 0.3
50 25 20 32.11 86 16-208 68
70 35 28 135.52 119 26-332 95

Matrix density 0.2
50 25 20 22.29 100 22-382 59
70 35 28 67.84 82 16-236 55

Although no definitive conclusions should be drawn from these findings, it would
be fair to say that a positive correlation exists between the overall density of the
problem and the average time spent on each subproblem. This might be accounted for
by a combination of factors. First, as the density decreases, the average time XMP
takes to solve each subproblem decreases as well. Second, lower densities increase the
likelihood that subproblems at a given level in the treewill be infeasibility. This implies
that fewer LPs will have to be solved.

Finally, it should be mentioned that when the density factor was set to 0.1, our
random problem generator failed to produce any problems in the 50 variable case that
did not have either a null row or null column (most of these problems were feasible,
though). In the 70 variable case, about 1 in 20 randomly generated problems were usable.

The last set of runs was aimed at determining how well the algorithm performs
on problems with widely varying coefficients. In all, eight different scenarios were
examined for the 50 variable case. The density factor was held constant at 0.4 and no
quadratic terms were included in the follower’s objective functionf(x, y). Each scenario
was characterized by coefficient values randomly selected from one of two ranges. For
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the cost coefficients, the ranges were [-20,20] and [-106, 106]; for the A and B
matrices, the ranges were [-15, 45] and [-2.5 x 105, 7.5 x 105]; and for the RHSs, the
ranges were [0, 50] and [0, 106].

The results are displayed in Table 4. Each row represents an average of 10 cases,
with the data in the first row taken from Table 1. Average CPU times range from 23.4
seconds to 78.5 seconds, but no clear patterns emerge. However, the algorithm does
seem to be slightly less efficient when the problems are ill-conditioned. The only real
point worth making is that XMP had no trouble solving any of the subproblems.

TABLE 4
Results for ill-conditioned problems.

(n 50, m 20, nl n2 25, density 0.4).

Average No. of Optimal
Range of coefficients" CPU no. of nodes solution

Matrices Cost RHS time nodes (range) (node)

[-15, 45] [-20, 20] [0, 50] 32.4 73 16-218 46
[-15, 45] [-20,20] [0, e6] 43.6 119 14-284 109
[-15, 45] [-e6, e6] [0, 50] 78.5 207 60-420 97
[-15, 45] I-e6, e6] [0, e6] 34.6 100 30-216 73

[-0.25e6, 0.75e6] [-20, 20] [0, 50] 45.9 102 26-242 83
[-0.25e6, 0.75e6] [-20,20] [0, e6] 51.8 141 18-264 110
[-0.25e6, 0.75e6] I-e6, e6] [0, 50] 23.4 56 24-82 41
[-0.25e6, 0.75e6] I-e6, e6] [0, e6] 47.6 132 52-194 102

The notation e6 denotes 106.

It is interesting to compare the above findings with those reported by others.
Although Fortuny-Amat and McCarl (1981) did not seriously test their scheme, it is
an easy matter to obtain an assessment. After investigating a few 20 variable problems
with ZOOM (a zero-one, mixed integer version ofXMP), we found that the accompany-
ing run times and search trees were 10 to 100 times larger than ours. The reasons for
this were twofold. First, their approach leads to problems with an additional 2(m / r/E)
constraints and m / n_ variables; second, ZOOM has its own built in branching rules
that are not necessarily "optimal" for BLPPs (the same could be said for any commercial
mixed integer code).

Bialas and Karwan (1984) report results for both their "Kth-best" algorithm and
their Parametric Complementary Pivot (PCP) approach. (While the former did not
fare too well and will not be discussed, the latter should really be considered a heuristic
because convergence is not guaranteed. In addition, it is limited by the requirement
that the leader’s objective function coefficients associated with the follower’s variables
be nonnegative; i.e., c2_-> 0.) The largest problems they solved contained 50 variables,
with 20 being controlled by the follower. The number of constraints was fixed at 0.4
times the number of variables. Each data set contained five problems, and all computa-
tions were done on a CDC Cyber 174 using a Fortran IV code.

Table 5 presents a comparison of the PCP algorithm, our branch and bound
scheme, and the separable approach of Bard and Falk. The latter is roughly equivalent
to the zero-one formulation of Fortuny-Amat and McCarl in that both approaches
lead to problems of nearly identical size and structure. Note that Bard’s (1983b) grid
search algorithm is not discussed because it only works for BLPPs whose solutions
are known to be Pareto-optimal. As can be seen, the first two algorithms are on equal
footing with respect to CPU time, and outdistance the third by more than an order of
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TABLE 5
Comparison with other algorithms.

No. of Follower PCP B&B Separable
variables variables CPU time CPU time CPU time
(n + n2) (n2) (sec)f (see):i: (sec):l:

40 12 4.46 4.44 76.25
40 16 11.23 8.48 145.93
50 15 16.48 17.24 298.31
50 20 16.52 16.46 344.77

Average of 5 problems; CDC Cyber 174.
Average of 10 problems; IBM 3081-D.

magnitude. Note that the Cyber 174 and the IBM 3081-D each perform about 1.7
million floating point operations per second when solving dense systems of linear
equations using the LINPACK software (Dongarra (1986)). Nevertheless, the experi-
mental nature of the codes, coupled with the fact that different test problems and
different machines were used in the analyses, strongly argue against drawing all but
the most tentative conclusions from the data in Table 5. To credibly determine the
relative performance of each algorithm, a much more deliberate experimental design
would have to be established. At a minimum, it would be necessary to examine a wide
variety of problems under identical conditions using the same LP package at each
stage in the computations.

4.2. Alternatives explored during testing. In the actual implementation, whenever
a feasible solution is found at Step 1, the accompanying basis is stored in XMP format
and used as the starting point for the next subproblem. Because this subproblem only
differs from its parent by a single constraint (at the next level down just one additional
ui or gi is set to zero), only a few pivots are normally required to regain feasibility.
This was seen to provide a relative advantage when compared to two other procedures
tested for maintaining a starting basis. For the first alternative, the previous basis
whether feasible or not was used to initiate the next subproblem. For small formulations
the results suggested no significant difference in CPU time; but for problems with 50
or more variables, a slight degradation in performance was observed. The second
alternative used the basis associated with the last point found in the inducible region.
If none existed, the last basis was used. This procedure yielded CPU times two to
three times larger than the others and hence is not recommended. In general, the ability
to quickly find a feasible solution is the key. On average, the latter procedure spent
more than half its time in phase I of the simplex algorithm.

An important determinant of computational efficiency is the rule for selecting the
branching variable at Step 3. The rule chosen branches on the Kuhn-Tucker (KT)
multiplier associated with the largest complementarity term u.g. Another rule that
was examined, primarily because it worked well when nonlinear BLPPs were solved
with an active set strategy (see Bard (1988)), proved to be noncompetitive. In this
case, the selection is made by finding the surface on which F increases most rapidly;
i.e., by solving

(3) max [VF(xk, yk) Vg,(xk, y)/llVF(x, Y)II IlVg,(x, Y) II]

where V is the gradient operator and II" is the Euclidean norm. Using this rule and
branching on g produced large increases in CPU time; branching on u led to some
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relative improvement but anywhere from 50 to 100 additional subproblems had to be
solved. These results were observed for moderate sized problems where nl 15, n2 10,
and m 10. Note that for linear/quadratic BLPPs, (3) automatically establishes the
branching order. This is probably the reason why it did not work well.

After testing several other rules, it became evident that it is never advantageous
to branch on g first. In general, when this strategy is used there is little early fathoming
due to infeasibility so the left-hand side of the tree (denoted by gi 0) grows rapidly.
Alternatively, by forcing the KT multipliers to zero, one of two situations quickly
arises: either the gradient equations (2b) become infeasible or a point in the inducible
region emerges. For this reason, we limited our testing to the following branching rules:

(1) KT multiplier associated with largest u.g product,
(2) KT multiplier with largest value,
(3) KT multiplier with smallest value,
(4) KT multiplier associated with largest g,
(5) KT multiplier associated with smallest g,
(6) KT multiplier associated with smallest u.g product,

where the first is the procedure implemented. Table 6 displays our findings when each
of these rules is applied to the original 50 variable problem set. The data represent an
average of 10 cases for the all linear version of problem (la)-(le).

TABLE 6
Comparison of results for different branching rules.
(n =50, m= 10, n =25, n2=25, density= 0.4)

Average No. of Optimal
Rule CPU no. of nodes solution
no. time nodes (range) (node)

32.39 73 16-218 46
2 38.91 78 15-225 49
3 98.44 127 20-404 83
4 72.12 106 18-374 71
5 47.66 82 16-271 57
6 68.83 92 18-326 64

As shown in Table 6, none of the variants performed as well as the first rule.
Increases in average CPU time of roughly 5 to 66 seconds or 12 to 230% can be
observed. In general, those rules that give priority to large values of u seem to do
better; the first two rules exhibit almost identical performance.

One possible explanation for these results centers on (2b). Here, the second set
of KT multipliers u2, corresponding to the nonnegativity constraints on the y variables,
can be viewed as slacks. At the early stages of the computations these variables tend
to take on large values and are hence selected for branching. When this happens, (2b)
is usually more difficult to satisfy so fathoming due to infeasibility is more prevalent.

By implication, a rule that gives priority to the u2 variables might also be a good
choice, but this remains to be tested. Finally, note that the results accompanying this
phase of the analysis might very well have been different had quadratic terms been
included in follower’s objective function.

5. Summary and conclusions. Experience has shown that even for the simplest of
formulations, the bilevel programming problem is inherently difficult to solve. The
branch and bound algorithm developed in this paper attempts to exploit some of the
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special structure in the problem, and in so doing, is able to achieve rapid convergence.
Linear problems with up to 100 variables and 40 constraints can be solved in less than
300 seconds on average. After thorough testing, the algorithm’s performance and
robustness are seen to compare favorably with virtually all contenders. A scarcity of
data on other algorithms, though, limits the strength of this assertion. More and better
controlled experiments are needed before any final conclusions can be drawn.

Nevertheless, one of the main advantages of the branch and bound approach is
that it is quite general. Although our analysis centered on the linear/quadratic formula-
tion, solutions to the nonlinear problem can be readily obtained by substituting a more
general code such as GRG2 for the XMP library. The algorithm is valid for all functional
forms, as well as the case where more than one follower is present. Convergence to
the global optimum, though, can only be guaranteed when certain convexity and
separable properties hold.
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Abstract. A new particle method adapted to the simulation of convection-diffusion problems is pre-
sented. The method relies on the definition of a convective field associated with the heat operator, which
allows the convection of the particles in a deterministic way.

No rigorous error analysis is given but, instead, a detailed numerical study of the influence of the
parameters is presented. This study is performed on the heat equation, then applied to a Fokker-Planck
model arising in the kinetic theory of plasma physics. Finally, an extension of the method to other problems
is given.
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1. Introduction. Particle methods have been used for a long time to give a numeri-
cal solution of purely convective problems, such as the incompressible Euler equation
in fluid mechanics, or the Vlasov equation in plasma physics (cf. the reviews of Harlow
[9], Leonard [12], [13], and the books of Hockney and Eastwood [11] and Birdsall
and Langdon 1 ]). Indeed, they give rise to accurate solutions with very few numerical
diffusion, and they are extremely simple to interpret in a physical sense.

It thus became interesting to wonder if they could be adapted to slightly diffusive
problems (e.g., the Navier-Stokes equation in fluid mechanics, or the equations of the
kinetic theory in presence of scattering processes, such as the neutron transport
equation, the Boltzmann equation of gas dynamics or of semiconductors, and the
Fokker-Planck equation of plasma physics).

The most famous particle method used to solve these problems is the Monte Carlo
method: the diffusive term is modeled by random motions of the particles according
to a suitable probability law (cf. Chorin I-3] for the Navier-Stokes equation and [5],
11] for the equations of the kinetic theory). The success of this method is mainly due

to the fact that the dynamics of the numerical particles is a reproduction ofthe dynamics
of the physical ones. However, from a numerical viewpoint, the random choices
introduce a very large amount of noise leading somehow to inaccurate computations.

Recently there has appeared a new particle method that relies on a deterministic
treatment of the diffusive term and that could be expected to give more accurate results.
This method has been proposed by Cottet, Mas-Gallic [2], and Mas-Gallic and Raviart
[15] for the Navier-Stokes equations, and adapted by Mas-Gallic to the equations of
the kinetic theory 14]. It makes use of a supplementary degree of freedom associated
with each particle: its "weight." The convective (Euler or Vlasov) part of the equation
is modeled by the convection ofthe particles, while the diffusive part (heat or Boltzmann
operator) is taken into account by the variation of the weights, through a finite-
difference-like approximation of the diffusion operator, in which the particles act as
meshpoints. Recent tests (cf. 16], [4]) have shown that this "weighted particle method"
could provide quite accurate results.

* Received by the editors November 18, 1987; accepted for publication (in revised form) November
21, 1988.
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However, one of the main drawbacks of this method is that the positions of the
particles do not have any physical meaning. Indeed, the diffusion processes do not
modify them but rather the weights, and thus, the information on the solution cannot
be recovered from the positions of the particles alone; the complete set of positions
and weights has to be considered.

Therefore, it seemed interesting to derive an intermediate method between the
Monte Carlo and the weighted particle method: a method that would rely on a
deterministic treatment ofthe diffusion operator (to provide an accurate approximation)
but that would model the diffusion process by the motion of the particles in some
physically relevant way. The purpose of this paper is to present such a method for the
case of second-order diffusion operators. The case of an integral operator (Boltzmann
or transport) is much more difficult, and has not been solved yet.

For the heat operator, this method relies on the interpretation of Fick’s law in a
deterministic way. Let u(x, t) be a solution of the heat equation. Then Fick’s law states
that the flux of u is proportional to -V u. A particle approximation of the heat equation
thus will be achieved, if we can move the particles in the direction of-Vu (the exact
magnitude will be given later). Since V u itself depends on the particle distribution, a
smoothing is necessary to recover a smooth flux V u. As announced, this method is
deterministic (no random choices are involved), and leads to an actual motion of the
particles.

The idea of using Fick’s law to derive deterministic Lagrangian schemes for the
heat equation has previously been used by Fronteau and Combis [6] and Grmela,
Fronteau, and Tellez-Arenas [8]. However, their method differs in the computation of
the flux V u. For this purpose, they use finite-difference methods on the moving grid.
In this respect, their method is a moving grid method rather than a particle method.
The use of a smoothing procedure to compute Vu allows us to get rid of the grid, and
gives more flexibility. Recently, using our method, Hermeline [10] has obtained
interesting results on an alpha particle transport problem, showing that the present
method can be useful for real physical problems.

No error analysis is yet available for this method. But the purpose of this paper
is to present numerical results that give evidence that this method converges to the
solution of the heat equation. Practical considerations on the reliability of this method
for plasma physical simulations are also detailed.

This paper is organized as follows. In 2 we give a detailed presentation of the
method, followed by some heuristic considerations concerning the accuracy of the
scheme in 3. In 4 we display numerical tests performed on the case of the one-
dimensional heat equation. In 5 two-dimensional results on a Fokker-Planck model
are presented. A conclusion is drawn in 6.

2. Introducing the method. We consider a solution u(x, t), x E Rn, t>0 of the
following heat equation on R":

0u
---V’(S(x,t)’Vu)=O,
Ot

(2.1)
u(x,O)=uo(x),

where S(x, t) is a n x n positive definite matrix. Following a classical idea in the physics
of diffusion processes, we can rewrite (2.1) into a couple of equations:

(2.2)
Ou
+V .j 0 (conservation equation),
Ot
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(2.3) j(x, t)=-S(x, t)" Vu(x, t) (Fick’s law).
Such a formulation is also the basis of the method of Fronteau and Combis (see

[6], [8]), and more classically, of the mixed finite-element method.
Then we rewrite the conservation equation (2.2) as a convection equation by

Ou
(2.4) --+ V. (A(x, t)u)=0,

Ot

where, from (2.3), the vector field A(x, t) is given by

(2.5) A(x, t)u(x, t)=j(x, t)=-S(x, t) Vu(x, t);
thus

(2.6) A(x, t)=-S(x, t) Vu(x, t)/u(x, t).

Now, if we forget (2.6) temporarily, and if we assume that A(x, t) is given and
known, then (2.4) is simply a convection equation, for which the particle approximation
is classical (cf. Raviart [17]). Let UOh(X) be the particle approximation of the initial
data Uo(X)"

(2.7) Uh(X) , aj(x xy) Uo(X).

Then an approximate solution Uh(X, t) of (2.4) is found by letting

(2.8) u(x, t)=Z (x-X(t)),
J

where X(t) is the characteristic curve associated with the vector field A(x, t), issued
0.from the point xj

0(2.9) dX A(X(t), t) X(0) x2.dt

Then, going back to equation (2.6), we see that A(x, t) is not known, but depends
on the solution u itself. Furthermore, replacing u in (2.6) by its approximation Uh
given by (2.8) is meaningless, because the ratio of linear combinations of Dirac masses
cannot be defined in a proper way. The idea is thus, to introduce a smoothed approxima-
tion u,(x, t) by

(2.10) u(x, t)--(uh * ’e)(X, t)=Z a2Sr(x--Xj(t)),

where the cutoff function r(x) is such that

(2.11) r(x) (x/e)/e", (x) dx= 1.

Then, gradients and ratios involving u, can be computed in a proper way and an
approximation of A can be given as

(2.12) A,(x, t)=-S(x, t) Vu,(x, t)/u,(x, t).
Now the particle approximation of (2.1) can be given completely:

U(X, t)--Uh(X, t)= Z Cei(x--Xi(t)),

where (X(t)) is the solution of the following system of differential equations:

dX, S(X,(t), t) ,j jV(X(t)-Xj(t))
(2.13) dt Z2 aj(X(t)-Xj(t))

ox,(0) x,,
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0and the initial positions xi and the weights aj are chosen to give an approximation of
the initial data according to (2.7). As we have mentioned previously, the weights aj
do not vary in time. If they are initialized equally they will remain equal, and all the
information will be carried by the positions of the particles.

3. Various comments.
3.1. Iaitializatian. One frequently used initialization algorithm is to choose an

equal volume initialization (cf. Raviart [17]). For that purpose, the computational
domain is divided into cells Bi of equal volume to, centered at x and we let

N

(3.1) u(x)= Y. tou(xj)8(x-x).
j=l

This leads to a nonconstant weight a =u(x) and is therefore more suitable to
weighted panicle methods, in which weights are already subject to time variations.

Similarly, if source terms or zeroth-order terms were present in the equation, the
weights would no longer be constant in time, and the initialization (3.1) would be
perfectly suitable.

Therefore, for the above-presented method, an equiweighted initialization is prefer-
able. One way to achieve this in one dimension for a positive initial data Uo(X) is to
use the change of variable"

(3.2) y(x)=fUo(S)dS./fUo(s)ds,
which is a one-to-one, onto, smooth mapping from to [0, 1], of inverse x(y). Thus,
for any compactly supposed smooth function on , we obtain

(3.3) Uo(X)(x) dx= (x(y)) dy. Uo(S) ds.

The equiweighted quadrature of (3.3) leads to

(3.4) Uo(X)(x) dx E x j- N-1 Uo(S) ds,
j=l

which is equivalent to the following panicle approximation:

where xj is given by

(3.6)

or equivalently,

x x( N-’(j-1/2)),

(3.7) Uo(S) ds=N-1 Uo(X) dx" j-

Extensions of this algorithm to a can be given easily (cf., e.g., [11]).

3.2. Alternate schemes. We can imagine other ways to recover a smoothed convec-
tion field A,(x, t) from the particle distribution Uh(X, t). For instance, we can choose
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different cutoff functions for the approximations of Vu and of u. Indeed, let/z(x) be
an approximation of the gradient of the Dirac mass:

(3.8)

1

lz(x) dx O,

Then, we can take

(3.9) A,(x, t)=-

I x(x) dx =-,.

S(x, t) Z1 ceitx(x-X(t))
x

Another method could be based on the cloud in cell (C.I.C.) methodology (cf.
[9], 11]). If u was known on a fixed regular grid, then (2.6) would be easy to compute
by finite differencing. The C.I.C. methodology consists in using assignment and interpo-
lation procedures to connect the grid quantities with the particle quantities.

3.3. Accuracy of the method. The error analysis for this method has not yet been
performed. However, we think that it is possible to prove that classical error estimates
for particle methods apply to this new method, at least in any compact region where
u does not vanish. Indeed the error can be written:

e(x, t)= u(x, t)-E aj(x-X(t))
(3.10)

u(x, t)- E aj(x-X(t))+E aj[(x-X(t))-(x-X(t))],

where X(t) is the solution of equation (2.9) and X(t) is the solution of system (2.13).
The first term in formula (3.10) is classically estimated in L norm by C(e k +(h/e)m)
where h is the mean interparticle distance, m is related to the smoothness of the cutoff
’, and k is related to the higher-order vanishing moment of r (cf. Raviart 17]). The
second term is estimated as soon as the difference X(t)-X(t) is estimated. Again,
in the region where u does not vanish (say u => a > 0), this estimation reduces to a
"convolution and quadrature" estimate for the flux A(x, t), in the same spirit as Raviart
[17]. Of course, the argument has to be bootstrapped, and the rigorous proof will be
given in a forthcoming paper.

Therefore, we expect the error to be of the form

(3.11) e+

From a practical viewpoint, this has several consequences. Indeed, for a given
interparticle distance h (fixed by the number of particles N), there is an optimal value
of e for which the error is minimal. Besides, for a given e, the error deteriorates as h
grows. However, the motion of particles under diffusion is generally an expansion and
thus, h grows with time, leading to unacceptably large errors after a suciently long
simulation time. A remedy against this would be to allow e to vary in order to achieve
the minimum value of the error (3.11) at any time. In 4, we will present a method
to perform this, even locally, by considering a "local" interparticle distance h.

However, this method displays special behaviors that other particle methods do
not present. The most obvious one is that the method is nonlinear. Indeed, for two
different initial data ul(x) and u2(x), the positions of the particles X(t) and X](t)
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will be different, and different from the positions X]+2(t) of the particles associated
with the initial data ul(x)+ u2(x). Thus we will never get

ulh+2(X, t)= ulh(x, t)+ U2h(X, t),

as should be expected from the linearity of the equation.
Another special behavior is displayed whenever the exact solution u vanishes, or

at least becomes very small. In this case, the convection field A(x, t) becomes very
high or even infinite. Of course, such a behavior cannot be followed by the numerical
solution, for which the velocity, for stability reasons, must remain finite, and bounded
by a maximum velocity A*. Thus, instead of a diffusion at an infinite velocity as should
be expected from a linear diffusion equation, the method generates diffusion at a finite
velocity A*, with creation of a diffusion front (as in some nonlinear diffusion
phenomena). This front creation may be the source of instabilities.

3.4. Time discretization and stability. Of course, the time differential equation
(2.13) must be solved numerically, and throughout the following tests, an explicit Euler
scheme has been used. Therefore, the question of stability arises. We have numerically
verified a stability constraint of the type

(3.12) At < ee2,
with c of the order of unity, but such a relation still has to be proved.

4. One-dimensional tests on the heat equation.
4.1. Comparisons of the exact and approximate solution. In this section, we present

numerical tests of the scheme (2.13) performed on the one-dimensional heat equation:

(4.1)
Ou oEu

=0, x, t>O.
Ot Ox

A first series of tests have been performed for a positive solution u(x, t). The
initial data has been chosen to be the characteristic function of the [-1/2, 1/2] interval. In
Figs. l(a) and l(b), snapshots of the exact and approximate solutions are displayed
for different times. For these numerical experiments, two different types of cutoff
functions ’(x) have been used. In Fig. l(a), an order 2B-spline has been employed:-x, 0 - Ixl 1/2,
(4.2) ,(x) 3( Ixl)=, -<-Ixl-<- ,
whereas in Fig. l(b), a super-Gaussian cutoff has been considered:

(4.3) ’2(x) II-1/2( x2) exp (-x2).
The order 2 B-spline is only once continuously differentiable and satisfies

(4.4) f X2’l(X) dx # O,

whereas the super-Gaussian cutoff is infinitely differentiable and has a first nonvanishing
moment of higher order:

(4.5) f x22(x) dx O, f x4z(x) dx O.

Thus both m and k in the error formula (3.11) are higher for ’2, leading to a more
precise smoothing procedure.
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(a) Order 2 B-spline cutoff. Timestep DT 0.01.
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(b) Super-Gaussian cutoff. Timestep DT=0.02.

FIG. 1. Heat equation solutions at times T 0.2 and T 0.6. Regularization parameter: e 0.2. Number

ofparticles: N 100. Solid line: exact solutions. Dashed line: calculated solutions.
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POSITION
FIG. 2. Influence of the regularization parameter e. Order 2 B-spline cutoff. Timestep DT 0.02. Number

of particles: N 100. Time: T 0.8. Exact solution: solid line. Calculated solution e 2)" dashed line.
Calculated solution (e 0.2): dotted line.
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Indeed, in Figs. l(a) and l(b) we see that the use of the super-Gaussian cutoff
leads to a better approximation; however, it seems to be more sensitive to the formation
of the diffusion front in the external areas, where the solution is small. Furthermore,
the B-spline is compactly supported; this fact can be exploited to reduce the computa-
tional cost, which is not possible with the super-Gaussian.

Figure 2 shows that, as expected, too small values of e lead to parasitic oscillations
while too large values of e generate unacceptable smoothing errors. An average number
of particles per cutoff of 10-15 seems to lead to the most accurate results.

Finally, Fig. 3 shows that the nonobservation of a stability requirement such as
(3.12) results in nonphysical oscillations.

z "’-".

3.0 -2.0 -1.0 0 1.0 2.0 3.0

POSITION
FIG. 3. Influence of the timestep DT. Order 2 B-spline cutoff. Regularization parameter: e 0.2. Number

ofparticles: N 100. Time: T 0.8. Exact solution" solid line. Calculated solution (DT 0.04): dashed line.
Calculated solution DT 0.02)" dotted line.

A second test has been made with a solution of nonconstant sign. This is a more
severe test, since the approximation is expected to be bad in the area where the solution
vanishes (cf. 3.3). The initial data and the exact and approximate solutions are given
on Fig. 4 after 80 iterations. Though the approximation is not as good as in the case
of a positive solution, it remains stable, and leads to a yet qualitatively reliable solution.
For all these tests, an equiweighted initialization was used.

4.2. Analysis of the convection field. The whole method relies on the approximation
of the convection field (2.6) by the formula (2.12), and thus, on the quality of the
smoothing (or interpolation) procedures, allowing the recovery of point values from
the particle distribution (2.8). Thus, a detailed study of this approximation has been
made, in the case of a typical Gaussian profile"

(4.6) u(x) I1-1/2 exp (-x2).
Function (4.6) has first been approximated by the particle distribution arising from an
equiweighted initialization procedure (3.5)"

N

(4.7) Uh (X) N-1 t(x xj),
j=l

exp (-s ds lI1/2N j-

Then, a smoothing procedure has been applied to (4.7) to compute

N

(4.8) u,(x)=N- , (x-x2),
j=l
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,Z

-4 -2 0 2 4

POSITION

FIG. 4. Heat equation solutions with nonconstant sign. Number of particles" N= 100. Regularization
parameter: e 0.3. Timestep" DT= 0.01. Initial data: solid line. Exact solution at time T 0.8: dotted line.
Calculated solution at time T 0.8" dashed line.

N

(4.9)
dUh N_ ’(x- xj),
dx =

(4.10) duA,(x) =---x (X)/ U,(x).

These values have been compared with the exact ones, given from (4.6)"

u’(x) -2H-1/2 exp (-x:Z), A(x) -2x.

In Figs. 5(a) and 5(b) these comparisons are plotted for an order 2 B-spline cutoff
and a super-Gaussian cutoff. For each u,(x), U’h(X), the "best" value of e has been
chosen (on empirical grounds). We see that it is not the same for u and u’, and for
each choice ofthe cutoff. A larger e is needed for u’ than for u, and this is understandable,
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(a) Order 2 B-spline cutoff.
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(b) Super-Gaussian cutoff.
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FIG. 5. Convection field approximation. Number of particles: N =32. Left figures: approximation of
u(x) e- /v/-. Central figures: approximation of u’(x). Right figures: approximation of u’(x)/u(x). Exact
functions: solid line. Approximate functions: dashed line.

since the differentiation of ’ lowers the accuracy of the quadrature error, which must
be balanced by choosing a larger e.

These figures essentially show that an accurate approximation of the convection
field is difficult, especially where u is small. Thus, the convection of the outermost
particles is very poorly accurate, and this creates the diffusion front that was apparent
in Figs. l(a) and l(b). Of course, the error on the outermost particles propagates from
particle to particle inside the domain, as time proceeds, and this is one of the major
drawbacks of this method. However, for the super-Gaussian cutoff, this error is small,
which explains the better results obtained in this case.

In order to get a better improvement of the method, a smoothing procedure with
variable e has been tried. Indeed, the smoothing is worse in regions where u(x) is
smaller, that is, where the (local) interparticle distance h is larger. If we assume, based
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on 17], that the local error is of the form

(4.11) ekd

we see that in these regions the quadrature error (h/e) may be larger by several
orders of magnitude than the convolution error ek. Thus, if we could increase e in
these regions, this would lower the local error. This suggests binding e and h by a
relation that, based on (4.11), must be algebraic:

(4.12) e Ch, 0 < c < 1.

Then, for each particle j, an estimate of h is given by assuming that the weight (1/N)
must be an approximation of hs.u(x). Indeed, we let

(4.13) h (Nu(x)) -1, e Ch;,
and the smoothing u, is now written

1
(4.14) u,(x) - j(x-xs).

The biggest problem to solve is how to find suitable values of C and a. In the absence
of a mathematical theory for (4.12), only a numerical study is possible, which makes
the method very empirical and problem dependent.

z

POSITION POSITION
(a) (b)

FIG. 6.1. Approximation of the distribution function (a) and relative error (b) with variable e. Gaussian

cutoff. Number ofparticles: N =32. C =0.49. c =0.6.
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We have tested in a rather systematical way all the reasonable values of C and
a, in order to give the best approximation of (4.6) and its derivative, with formula
(4.14). Of course, different values of C and a must be chosen to minimize the error
on u and u’.

However, values of C and a can be designed so as to lead to an error on u less
than 1 percent all over the domain, with a Gaussian cutoff and only 32 particles (cf.
Fig. 6.1). For the derivative u’(x) things are worse: we must face the alternative that
either we get a very good accuracy inside the domain (again less than 1 percent),
but with a 25 percent error on the outermost particles, or we get a more homogeneous
accuracy of about 5 percent all over the domain (cf. Fig. 6.2). Of course, for the
outermost particles, the interparticle distance is not a well-defined concept (logically
it should be equal to infinity). Thus, the improvement is not as large as expected for

C-0.45 ’-0.4

.4.2
.24

C) .16}1

--,2

-1.2 -.4 .4 1.2 -1.2 -.4 .4 1.2
POSITION POSITION

C 0.6 cr 0.25

.4

.05

.2 ( 04

/

,."
-.4 "01

1.2 -.4 .4 1.2 1.2 -.4 .4 1.2
POSITION POSITION

FIG. 6.2. Approximation of the gradient and relaive error ith variable e. Gaussian cuto Number of
particles: N 32. xact functions: solid line. Approximate function: dashed line.
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the region near the outermost particles. Then, again, the error is likely to propagate
from particle to particle inside the domain, as time proceeds. For this reason, and due
to its complexity, this method with a variable e has not been retained for further
computations.

5. Two-dimensional tests on a Fokker-Planck model.
5.1. Introduction. We intend to model a two-dimensional infinite and

homogeneous sample of plasma or semiconductor, submitted to an external constant
electric field E. The kinetic theory then provides the distribution function of electrons
that, in this case, is a function of the velocity v R2 and the time alone, f(v, t). In
our model, the equation for f(v, t) is written:

(5.1) Of+
Ot i=,

2"
i=1

The left-hand side represents the acceleration of the particles under the electric field,
while the right-hand side is a Fokker-Planck model used to describe the interactions
of the particles with a medium at a temperature T. Of course, this model is very crude,
but it retains many features of the kinetic models, and will provide a more realistic
test problem for our method.

We will consider a two-dimensional velocity space v (vl, v), and initialize with
a Maxwellian distribution at temperature To:
(5.2) fo(v)= MTo(V)=(2IITo)-’ exp (-lvl/2To), Ivl =
The solution of (5.1) can then be computed analytically, and in particular, the stationary
solution is given by a displaced Maxwellian at temperature T:

(5.3) foo(v) (21-1T)-’ exp (-Iv- ETI/2T).
If E 0, the equation models the relaxation of the initial distribution function MTo
toward the stationary solution of the Fokker-Planck operator Mr.

5.2. The numerical scheme. Equation (5.1) is a convection-diffusion problem.
Using the method of 2 it can be written in the form of a convection equation:

(5.4) Of+ Vo.(a(v, t)f)=0
Ot

with

(5.5) A(v,t)=E
v vj
T f’

where V and V denote, respectively, the divergence and the gradient operators with
respect to the variable v.

Then, let fh be a particle approximation of f:
N

(5.6) fh(V, t)= N-’ Y. (v- V(t)).
i=1

Following the ideas of 2, we get a particle discretization of (5.1) by letting

(5.7) dE
dt

1 NIVe(Vi(t)-Vj(t))j=
E

T
V’( t)

d=
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An alternate scheme can be derived by noting that

(5.8) VvMr(v)/Mr(v),
T

where Mr(v) is given by (5.2). Then let a particle approximation of Mr be defined by

N

(5.9) Mr(v) N-1 8(v- W),
j=l

where W are fixed "Maxwellian" particles. Then we get an approximation of (5.8) by
letting

T 2jV=I be(C Wj)

This leads to the following scheme:

(5.10) dE_ E +J V’(V(t) Wj) _j V’(V(t) Vj(t))
dt j (V(t)- Wj) j (V(t)- Vj(t))

From a physical viewpoint, (5.10) can be interpreted as a dynamics of particles subject
to a mutually repelling force, and to an attracting force, from the fixed particles W.
In some sense, this gives a pictorial idea of the relaxation mechanism" when E 0,
the particles will have a tendency to forget their initial distribution (due to the repelling
force) and to "fall" into the attractor holes W, which will make them represent the
equilibrium distribution function. However, as we will see, the numerics do not follow
this nice physical picture, and the scheme (5.7) is better.

5.3. Numerical experiments. As a first test, we have investigated the relaxation
process. In this case, a zero electric field has been considered and the relaxation of
the initial distribution Mro toward the equilibrium Maxwellian Mr has been investi-
gated. The contour lines of the calculated solution have been plotted, after a sufficiently
long time, so that a steady state has been reached (Fig. 7). Two different cutoffs have
been used, and for each of them, the two schemes (5.7) and (5.10) have been tested.

From Fig. 7 it appears that there is no real advantage to using (5.10) rather than
(5.7), despite its nice physical interpretation. Since (5.10) is computationally more
costly, it does not seem to be worthwhile using it.

Besides, the use of the super-Gaussian cutoff leads to a considerable improvement
of the method. As we have seen in 4.2, this is mainly due to the better accuracy of
the smoothing procedure.

In a second numerical experiment, an electric field has been applied, and again,
contour lines of the stationary computed solution have been drawn (cf. Fig. 8). It
appears more clearly that the scheme (5.7) gives better results than (5.10).

As a general conclusion of these experiments, we can say that this method is very
sensitive to the smoothing procedure used to recover a smooth convection field from
the distribution of particles. However, the use of smooth high-order cutoffs such as
the super-Gaussian leads to reliable results in the model cases that we have investigated.
Whether it would give as good results in real physical situations is an open question.
We believe that more accurate smoothing procedures have to be designed and tested
for that method to be usable in physical codes.

6. Conclusion. In this conclusion, we would like to emphasize that this method
can be used in any evolution problem that can be written in a natural way as a
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Order 2 B-spline cutoff Scheme (5.7)

_1 A

Super-Gaussian cutoff Scheme (5.7)

Order 2 B-spline cutoff Scheme (5.10) Super-Gaussian cutoff Scheme (5.10)

FIG. 7. Stationary solution of the Fokker-Planck equation. Electric field: E =0. Initial temperature:
T 1.1. Equilibrium temperature: T 1. Number ofparticles: N 1024.
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Scheme (5.10)

Scheme (5.7)

FIG. 8. Stationary solution of the Fokker-Planck equation. Electric field" E 0.5. Super-Gaussian cutoff.
Same values of T, To, and N as in Fig. 7.
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convection equation. As an illustration, and though we have not performed any
numerical test yet, we show that first-order systems can be simulated by such a method.

Let us recall that weighted particle methods have already been applied to first-order
systems (cf. Mas-Gallic and Raviart [15]) and to the system of gas dynamics (cf. the
smoothed particle hydrodynamics of Gingold and Monaghan [7]). These methods
consist in picking a particular velocity among all the set of characteristic velocities
available (it is usually the velocity ofthe fluid); the convection ofthe other characteristic
fields is performed by a suitable variation of the weights.

The ideas exposed in this paper apply to first-order systems and allow all of the
characteristic fields of the system to be modeled by a convection of particles, which
is more natural. Indeed, let u(x, t)= (ul," ", u,)(x, t) be a solution of the following
first-order system:

(6.1) Ou + (atO k (X, t)ut3 =0, a 1, m,
(9 ,k OXk
k (x, t) are real functions (possibly depending on u). System (4.1)where x E and a,

can be rewritten as a system of convection equations:

(6.2) Ous
k

0- (ak(x,t)us(x,t))=O,
Ot OXk

where

Now we allocate a different set of particles { i.(t) is 1 Ns} to each
component us of the vector field u. And we define a particle approximation of us as

(6.4) us(x, t)- Z ooi26(x-XT(t)).

XThen, each set of panicles { } is moved according to its associated convection field
(4.3). Now since the convection field itself depends on the solution u, an interpolation
procedure is again necessary to recover a smoothed approximation of the convection
field. Thus the scheme can be written

(6.5) dXdt_a,(, X(t) t)=t(a ATe),

where

ast (x, t) . to’(x X t)y.= ()
(6.6) Ak,s (X, Et)=2

j=, wj(x-Xj(t))

where is an appropriate cutoff function. Using these ideas, it seems possible to
approximate first-order systems by purely deterministic convections of panicles.

Now, we summarize the conclusions ofthe numerical study presented in this paper.
First, the numerical results seem to evidence that this method is consistent and

convergent, and this is an encouragement to try to obtain a convergence proof and
error estimates for this method.

Second, to the question "is it wohwhile using this method," we can give a twofold
answer. In the standard cases, such as the Navier-Stokes equation or the heat equation,
it seems that this method may be less accurate and more expensive than the standard
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finite-difference or finite-element methods, or (at high Reynolds number) than the
weighted particle method. Now, for problems arising in kinetic theory, where the high
dimensionality of the problem does not allow the use of standard methods, such a
method can be useful, at least to give a qualitative behavior of the solution.

In any case, a sharper study of the interpolation procedure used to recover a
smooth convection field from the particle distribution would certainly lead to a
considerable improvement of the accuracy of the method.

Furthermore, to be able to cover most cases in kinetic theory, the method must
be extended to Boltzmann integral operators. Such an extension presents major difficul-
ties that we have not yet been able to overcome.
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FINITE-ELEMENT PRECONDITIONING FOR PSEUDOSPECTRAL
SOLUTIONS OF ELLIPTIC PROBLEMS*

M. O. DEVILLE? AND E. H. MUND

Abstract. A preconditioning technique for pseudospectral solutions of elliptic problems based on
quadrangular finite-element algorithms is analyzed, which exhibits excellent convergence properties. The
pseudospectral technique is implemented through a collocation grid based on Gauss-Lobatto quadrature
nodes associated to the Jacobi orthogonal polynomials. Various types of basis functions are used in the
finite-element preconditioner (i.e., low-order Lagrange or cubic Hermite elements). Dirichlet and Neumann
problems are investigated in one- and two-space dimensions. Numerical results show that the eigenvalue
spectrum of the iteration matrix is inside the unit circle and even, close to zero for a wide range of operators.
This property ensures convergence until roundoff error level in a few iterations. The differences between
finite-element and finite-difference preconditioning are analyzed. Finally, the application of the algorithm
to a problem exhibiting geometric induced singularities is discussed.

Key words, finite element, pseudospectral method, eigenvalue analysis

AMS(MOS) subject classifications. 65N30, 65N35, 65B05

1. Introduction. Some fields in physics are particularly demanding in terms of
numerical simulations of engineering problems or natural phenomena. Among them,
numerical fluid mechanics has emerged as a major discipline concerned with applica-
tions in aerodynamics, thermal convection, direct simulation of turbulence,
meteorology, etc.

When looking back over the last decades, we are striken by the importance of
low-order classical methods such as finite differences (FD) or finite elements (FE) that
have pervaded almost all applications of computational fluid mechanics. Other
strategies, however, consist in using higher-order schemes that have accomplished
breakthroughs in recent years. In that respect spectral techniques offer attractive
properties such as exponential rate of convergence, reduced numerical dispersion and
ability of treating high Reynolds number flows. Spectral schemes are based on several
projection methods: Tau, Galerkin, and collocation [2]. In recent years, much
experience relied on the Tau approach for simple geometries. However, the need of
simulation tools able to treat general geometries leads to the choice of the pseudospec-
tral approach that is carried out completely in the physical domain. The pseudospectral
(or orthogonal collocation) technique does not suffer from the restrictions imposed by
the Tau method. We may note that within the pseudospectral context, nonconstant
coefficients in the partial differential equations are easily handled. Another comment
comes from the fact that the numerical integration of the Navier-Stokes equations
calls for efficient solvers of simpler problems such as Helmholtz or Poisson equations.
This is the reason we investigate general second-order elliptic problems with noncon-
stant coefficients.

The pseudospectral approach imposes the mathematical problem to be solved
exactly on a set of discrete points forming the collocation grid. Of major importance
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is therefore the choice of these collocation points. In this paper, the collocation points
are zeros of orthogonal polynomials. The pseudospectral approximation is described
generally in terms ofJacobi polynomials. The Chebyshev and Legendre approximations
are two important particular cases that are easily deduced from the general theory.
Most of the subsequent analysis will be performed for the Chebyshev method.

Preliminary computations of the condition number characterizing the pseudospec-
tral matrix system reveals O(N4) conditioning, where N+ 1 is the number of degrees
of freedom in a one-dimensional problem. This is a dismal performance in comparison
with the O(N2) conditioning proposed by FD or FE techniques. Expecting to achieve
better accuracy with a high-order approximation, we are faced with a loss of accuracy
induced by the solution of the linear system. To overcome this difficulty, we plan to
reduce the conditioning by preconditioning. Finite difference preconditioning was
proposed by Orszag [21] and Morchoisne [20]. A theoretical analysis carried out by
Haldenwang et al. 17] shows that FD preconditioning requires under-relaxation with
an optimal value of the relaxation parameter being 4/7. Finite-element preconditioning
appeared almost at the same time [5], [10], [11]. In Deville and Mund [10], the
relaxation parameter is set to one and this value holds for a large class of problems.
The behavior of the FE preconditioner seemed to be more robust and efficient than
the FD preconditioner and this contrasting observation needed to get a sound explana-
tion, which is given here through the spectrum analysis of the iteration operator.

In 2, the pseudospectral approximation algorithm is presented for a general
mixed boundary value problem of elliptic type. The basis functions of Lagrange
interpolation are expressed through Jacobi polynomials. Chebyshev and Legendre
cases are recovered for special values of the indices defining the general orthogonal
polynomials. The matrix structure of the pseudospectral system is examined and some
interesting conclusions may be drawn.

Section 3 analyses the finite-element preconditioning of pseudospectral approxi-
mations. Using functional notation, the preconditioned Richardson iterative procedure
is introduced for the Dirichlet and Neumann conditions. The general case (Robin
conditions) is then described. In 4, numerical results are obtained. A complete analysis
of the eigenvalue spectrum for the iteration operator is carried out for several mathe-
matical problems including nonconstant coefficients. Linear, quadratic, and cubic
Lagrangian elements and Hermite cubic elements are used as preconditioners. It is
shown numerically that linear elements and Hermite elements provide the best results
from the preconditioning point of view. Because of the larger bandwidth associated
with Hermite elements, the final choice is clearly the linear element preconditioning.
Afterward, several cases of two-dimensional problems are inspected within the
framework of bilinear elements as preconditioners.

Section 5 is especially focused on the solution of an elliptic problem with corner
singularities. As it is known from convergence analysis [4], the spectral rate of conver-
gence is not attained. Nonetheless, it is revealed that the pseudospectral preconditioned
algorithm performs extremely well. Such unexpected behavior is encouraging to pro-
mote pseudospectral calculations even for mathematical problems where geometric
induced singularities decrease the convergence rates. The final section is devoted to
conclusions.

2. The pseudospeetral approximation algorithm. This paper examines the numeri-
cal solution of two-dimensional elliptic boundary value problems with mixed boundary
conditions:

(2.1a) Lug-(p()u())+q()u()=f()
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(2 lb) Bu a a()(p() 0_) +b()u()=g() VF aO.

The domain is simply connected and bounded in the (x, y) plane; its boundary aO
is piecewise smooth. The symbol 0/an denotes the normal derivative to aft. We assume,
moreover, conditions of uniform ellipticity to be satisfied [6]"

(2.2a) p()_->y>0, q()_->0 V?O,

(2.2b) a(Y)+ b()> 0

thus ensuring problem (2.1) is well posed. With properties (2.2), a unique solution of
(2.1a), (2.1b) is known to exist in the Sobolev space HI(o). For now, we restrict
ourselves to problems having a C solution; later, we discuss the application of the
algorithm to cases where corner singularities might hamper the convergence of spectral
approximations.

Let (u, v) denote the scalar product of elements of L2(O).

(2.3) (u, v)= f du(f)v().

In order to describe the pseudospectral approximation on the reference square O
[- 1, 1] (R) [- 1, 1], we start by defining some notation. We set N (Nx, Ny) x V any
couple of natural numbers (positive integers). Let G’) denote the tensor product of
one-dimensional Gauss-Lobatto-Jacobi quadrature grids:

(2.4) G,t) r,_(,,) (,,t)
,-,x,s (R),y,S

where ’ and c,_,
-,x.s., ,-,y,s,. are the ordered sets {zj,j =0,. ., Nz} of the roots of

d
(2.5) (1-zz) P;t)(z) 0,

in both space directions. The functions P;t3)(z) are the Jacobi polynomials of degree
Nz and indices a and/3. In particular, two important practical cases will be considered
corresponding to Chebyshev polynomials of first kind (a =/3 =-1/2) and Legendre
polynomials (a =/3 0). The pseudospectral approximation belongs to the family of
weighted residual methods, whereby the residual is evaluated using an expansion of
the dependent variable us into a finite sum of two-dimensional basis functions. These
basis functions are obtained by tensor products over a set of one-dimensional poly-
nomials {bi} and

NxNy
(2.6) us Y. Y’. uud,bi(x)qbj(y).

i=0j=0

Inserting (2.6) in (2.1), we obtain the residual R[us]:

Lus( F) f( F),
(2.7) R[us]

Bus( F) g( F),

We also introduce a set of test functions, {w(), i-0,. ., N}, and require

(2.8) f dg[us]w,()=O, i=0,..., N.

The pseudospectral method (equally known as the orthogonal collocation method)
corresponds to the case where the w functions are Dirac distributions. Therefore, the
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partial differential equation (pde) is required to be solved exactly on a discrete set of
interior nodes while the boundary conditions are enforced on 0f. This procedure
depends very much on the choice of collocation nodes. Orthogonal collocation that
is applied here rests on the nodes associated to the Gauss-Lobatto-Jacobi quadrature
rule induced by (2.5) (see, for instance, [7] and [24]).

The most convenient functions 4j correspond to the cardinal basis of the Lagrange
interpolation problem on the grid -,Z,Nz They are given by

(2.9) 4,j(z) Cj (1-z2)dpf)(z), z=x,y,
(z %) dz

C being a normalization constant such that

(2.10) C Zk 6k,
where 6 denotes the Kronecker symbol. With a little algebra, we obtain

(2.11) C

with

1 1

N(N+a+8 + 1) Pf)(%)’

l/(/ + 1), j=0,

(2.12) C) 1, j 6 1, Nz 1 ],
1/(a + 1), j:Nz.

For the particular cases of Chebyshev and Legendre polynomials, the constant C is
assigned to the classical values

(-1)j/l
(2.13a) C= i7i- C-o=C-=2, )=1 Vie[l, Nz-1]

(-1)
(2.13b) C [Nz(Nz + )q,,,z(Z)]
where qNz represents the Legendre polynomial of degree N. The collocation abscissae
for the Chebyshev case are given explicitly by

zrk
(2.14) z cos Nz’ k [0, N],

while for other choices of Jacobi polynomials, they must be determined numerically
(see [24]). The pseudospectral equations corresponding to problem (2.1a), (2.1b) may
be written as follows"

-[p(?)u()]+ q()u()=f() V
(2.15)

Equation (2.15) leads to the algebraic system of equations

(2.16) Lpfi =f, f [f(g), g(g)],

where Lps is the pseudospectral operator including the pde and the boundary conditions.
The notation T denotes the transpose operation.

Some care must be taken with the boundary conditions, which deserve a few
comments. In the sequel we shall assume that the boundary conditions are of the same
type at all points of a side. Further, we shall denote by 0fD and 0f, respectively,
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the collection of sides where essential and natural boundary conditions apply to the
solution of (2.1). Essential boundary conditions correspond to the situation where
a (g) 0 in (2.1.b). At vertices joining 0lid and 01IN in the pseudospectral equation
(2.15), the Dirichlet boundary condition will systematically be preferred, whereas at
vertices joining natural condition sides, a linear combination of the two conditions
will be the rule. This strategy has proven to be the most efficient (cf. [3]).

Notice that (2.15) involves first- and second-order derivatives. We need to express
these derivatives in terms of the basis functions bj(z) given by (2.9). For the sake of
simplicity, only one-dimensional expressions will be given, the extension to higher
spatial dimensions being trivial because of the tensor-product character of the approxi-
mation. In the one-dimensional case, (2.6) reduces to the following:

(2.17) uc(z)= Y ujcb(z),
j=0

and therefore

(2.18)
d’uv(z)

udz =o dz

In order to evaluate the derivatives in the right-hand side of (2.18), one observes that
Jacobi polynomials satisfy the second-order differential equation

(2.19)

(1 Z2) P.O)"(2) + (fl a g(a + fl + 2))P;0)’(z)+ Nz(Nz + a + fl + 1)P;O)(z) O.

With the help of (2.19) one obtains, after some algebra,

d
(2.20a) d-’ bj (z)

d
(2.20b) d-- b(z)

d
(2.20c) -7 bo(Z)

az

Ck 1 P(Zk)
C Zk z.i P)(z) Zk yS Z.i, j, k[O, Nz]

l fl-a -(a + fl)z2
2 j6 [1, Nz- 1],

2 1-zj

1Nz(Nz+a++ 1)-a
z=--I 2 /3+2

d
(2.20d) zzb(z)

z=l

1Nz(Nz+a+fl+l)-fl
2 a+2

The special cases of Chebyshev and Legendre polynomials yield the classical
expressions that can be found in the literature (see [14]). The constants C in (2.20)
are those defined by (2.11)-(2.12).

For the second-order derivatives, we have

dE 1 ((fl--Ot--(Ot+fl)Zk)(Zk--Zj)+E(1--Z2k)) P(’zO)(Zk)(2.21a) z2 b(z) P;)(z)Z=Zk Cj (Zk Zj)2(1-- Z)

z,z, je [0, N], ke[1, Nz-1],

(2.21b) zEb(z)
1 Co 4 2 Nz(Nz+a+fl+l)-a P;t)(-1)

z=_, 2 (l+z)2-fl+2 l+zj Pi;i’
je[1, Nz],
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d2

(2.21c) dz--5

d2

(2.21d) dz---5 ds(z)

d 2

z=l
1CN( 4 2=-- (1-z)z a+2 Nz(Nz+a+fl+l)-fl) Pf)(1)

1- z Pf)(zs)’
j6[O, Nz-1],

1 (3(1 z]) Nz(N+a+fl+l)-2(a+fl)

(fl a a + fl )z)( a + fl + 4)z))21-zs

j [1, Nz- 1],

(2.21e) z2 bo(Z)

1 (Nz(Nz+a++l)-2a)(Nz(Nz+a++l)-(a++2))
4 (fl +2)(fl +3)

d
(2.21f)

dz
z(Z)

z=l

1 (Nz(Nz+a+fl+l)-2fl)(Nz(N+a+fl+l)-(a+fl+2))
4 (a +2)(a+3)

Again (2.21) provide the user with well-known expressions for the special cases related
to Chebyshev and Legendre approximations.

Let us now examine the structure of the Lps matrix and some associated operation
counts. For that purpose we consider the matrix corresponding to the Laplace equation
with Dirichlet boundary conditions and Nx Ny N. Figure 1 displays the topological
structure of the pseudospectral system for N 7 with unknowns u0 numbered in the

XXXXXXX X X X
XXXXXX X X X X X
XXXXXX X X X X
XXXXXX X X X
XXXXXX X X X X
XXXXXX X X X X X
X XXXXXXX X X X
X XXXXXX X X X X

X XXXXXX X X X X
X XXXXXX X X X X

X XXXXXX X X X
XXXXXXX X X X X

X X XXXXXXX X X
X X XXXXXX X X X

X X XXXXXX X X
X X XXXXXX X X X

X X XXXXXX X X X
X XXXXXXX X X X

X X X XXXXXXX X
X X X XXXXXX X X

X X X XXXXXX
X X X XXXXXX X X
X X X XXXXXX X X

X X XXXXXXX X X

X X X X XXXXXXX
X X X XXXXXX X

X X X X XXXXXX X
X X X X XXXXXX X

X X X X XXXXXX X
X X X XXXXXXX X

X X X X X XXXXXX
X X X X XXXXXX

X X X X X XXXX XX
X X X X XXXXXX
X X X X XXXXXX

X XXXXXXX

FIG. 1. Topological structure of the pseudospectral system Lps for the two-dimensional Laplace equation
with homogeneous Dirichlet conditions and N, Ny 7. The unknowns are numbered in the lexicographic order.
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classical lexicographic order. The matrix has a very peculiar block structure. Each
diagonal block is related to a row of unknowns, while off-diagonal blocks are diagonal
and related to unknowns in the vertical direction. Contrary to a widespread opinion,
the pseudospectral matrix is not full. But long-range coupling between unknowns gives
an exceptionally large bandwidth (B), almost equal to the total number of unknowns:
Bps N2- N. Obviously, other ordering schemes might be chosen such as, for instance,
the classical antidiagonal scheme. The resulting bandwidth is slightly reduced but still
large as shown in Fig. 2. By contrast, finite-difference and finite-element methods have
quite smaller bandwidths since, typically Bfe N + 1. Figure 3 shows the topological
structure of the bilinear Lagrangian FE stiffness matrix associated to the same space
grid and with lexicographic ordering of the unknowns.

XXXX XX XX
XX XX X X X
X X XX X X X
XX X XX X X
XX X XX X X

X X X XX X X
XX X X XX

XXX X XX
X XX X XX

X X X X XX
XX X X X

X X XX X
X X XX X

X X XX X
X X X X X
XX X X X

X X X XX
XX X XX

X X X XX
X X X XX

X X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X
XX X

X X X
X X X

X X

XX X
X X X X
X X XX
X X X
X X X X
X X X X

X X X
X X X X

X X X XX
X X X X

XX X X
XX X X

X X X
X X X

X
X X
XX X
XX X
XX X
XX
X

X
X

X
X
X

XX
XX
XX
XX

X X
X X
X X

XX
XX
XX

X
X
X

X
X

X
XX
XX
XX
XX
XX

X X
X X

X X
X X

X X X
X X X

X X
XX

X X
X

X X
X

X X
X X
XX

X X
XX

X
X

X X X
X X X
X X

X X
XX

X X X
X X XX

X X X X
XX X X
XX X X
XX X X

X X XX
X X X X
X XX X

x xxx
x x xx

xx x x x
xx x xx
xx x xx

x x x xx x x
x x x xx xx
xx xx xxxx

FIG. 2. Topological structure of the pseudospectral system Lps for the same problem and the same mesh
grid as in Fig. 1. The unknowns are numbered in the antidiagonal order.

If we use a direct inversion technique to solve the pseudospectral algebraic system
(2.16), Golub and Van Loan’s estimates of flops (floating point operations per second)
for LU factorization (w) and forward and backward solve (r) give (see [12])

(2.22) Wp(N)=(N6-N3)/3, rps(N) N4

whereas for bilinear finite elements on the same grid, we obtain Wre N4+ O(N3) and
rre--2N3+ O(Ng-). It is interesting to note that, because of the reduced bandwidth,
the factorization of this finite-element matrix is only slightly more expensive than the
forward and backward solve of the factorized pseudospectral system. We shall come
back to this point later.

Little is known about the properties of the pseudospectral matrix Lps. It is not
symmetric. However, because of the symmetry of the Chebyshev (or Legendre)
abscissae, the matrix coefficients of Lps satisfy

(2.23) (Lps)i,j--(Lps)(Nz_l)2+l_i,(N_)2+l_j, i,j 1.., [(Nz 1)2]2
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XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
xxx
XXX

X.X
XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

XX
XXX
XXX
XXX
XXX
XX

FIG. 3. Topological structure of the bilinear FE stiffness matrixfor the same problem, the same mesh grid
and same unknowns ordering as in Fig. 1.

for problems where the diffusion coefficient p() has the symmetry properties of the
domain 1"/. Gottlieb and Lustman have shown that the collocation operator of the heat
equation has negative real eigenvalues (see [13]). Their proof rests on the use of
Hurwitz polynomials. There are good prospects that their result might be extended to
other collocation grids.

One of the major drawbacks of pseudospectral calculations lies in the value of
the condition number K(Lps)=O((N4)d), which makes large systems increasingly
ill-conditioned. In the previous estimate of K, d is the number of space dimensions.
This, once again, is in sharp contrast with FD or FE methods that have r O((NE)d).
Therefore, instead of solving (2.16), Lps is split into two parts:

(2.24) Lps L+ (Lps- L),

where L is a nonsingular approximation of Lps. Introducing (2.24) into (2.16), we obtain

(2.25) Lff Lff (Lpsff -f),

or, more simply,

(2.26) a a-/-’(Lpsa -f).
This result is the heart of the preconditioned Richardson iteration procedure, which
is written

(2.27) ak+ ffk Ok-,(Lpsffk f)
where k denotes an iteration index. If the sequence of iterates converges, (2.27) yields
the solution of (2.16). The parameter ak controls the rate of convergence of the iterative
process. Its numerical value (that might change from iteration to iteration) will depend
on the spectral radius p(I-f-lLps) of the iteration operator. Two choices of the
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splitting matrix/ seem quite natural. The first relies on finite differences (see [5], 17],
[20], [21]), and the second on finite elements (see [5], [10], [11]).

A theoretical study for the FD preconditioning of the second derivative operator-[17] shows that the eigenvalue spectrum of 1Lps lies in the interval (1 7r2/4). The
optimal value of the relaxation factor is

2
(2.28) aop

/mind"/max’
where ’rnin and max are the minimum and maximum eigenvalues of f_,-1Lps [15]. In
the FD preconditioning case, aopt 4/7. This value differs very much from the relaxation
factor used by Deville and Mund in the FE preconditioning case [10] that was
systematically set to one for broad classes of differential operators. The justification
of this choice is the central subject of the present work.

3. The finite-element preconditioning of pseudospectral approximations. As this
paper is aimed at finite-element preconditioning, we first introduce some specific
notation referring to low-order polynomial representations. In the sequel, we closely
follow and extend the approach of Canuto and Pietra (see [3]).

Let 5v represent the collection of rectangles {Ri, 1, , N,Ny} whose vertices
are four neighboring gridpoints of G’) (i.e., 5v U R). Also let Q, denote the
space of all polynomials in x, y of degree less than or equal to n with respect to each
variable. We shall represent by V,,t’,h and v3,Hh, the Lagrange finite-element spaces of
degree n and the bicubic Hermite space on the "triangulation"

(3.1a) VnL,h {I.)h E C(fi)[VR, E rN, DhlRi Q,,},

(3.1b) Va,nh {Vh cl(fi)IVR, N, )hlR G_ Q3}.

These spaces are known in the literature to be made of two-rectangles of type (n)
and Bogner-Fox-Schmit rectangles, respectively, (see [6]). For practical purposes, the
value of n in (3.1a) will be limited to three (bicubic Lagrange elements at most).
Further, let 3L n

,,N and 33,N represent the set of finite-element nodes for the (Nx, Ny)
partition of f in the Lagrange and Hermite cases.

We denote by l( ,,v) and l( H3,), the sets of linear functionals corresponding
to the degrees of freedom of V,,h and v3H,h In the particular case of one finite element
covering the unit square, these sets are such that

,,,N)(U) U i,j=O, n

(3.2b) 1( H ( 0or
3,N)(U) Ox,,-Oy,, u x=0,1 O" O" + 0"2, 0"1,0"2 0, 1j,

y =0,1 /

whereas in the general case, similar relations apply for each rectangle R, after mapping
onto the simplex [0, 1](R)[0, 1]. Later, we shall refer to an element (or a subset) of the
set of linear functionals at a given node of the finite-element grid by using l( ,,)( ")1
or/( n,)(’)1.

The finite-element grids (3,NH,,u and satisfy the relations

(3.3) G’) c G’)= ’n,N, (-3,N
Given a smooth function g on 01)o, let VnL,h (g) denote the affine space of functions

of V,,,h that interpolate g at the essential boundary nodes of .,N
(3.4a) L L LV.,h(g) (Vh e V.,hll(
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Similarly, in the Hermite case, we introduce Va,h(g) such that

(3.4b) /-/ /-/ 0, Vk EV3,h(g) (v V3,hll( n,)( g

In the paicular situation where g is identically equal to zero, we shall write

(3.5) vnL: Vnh(O), v3,HO Vh(O).

The preconditioning algorithm uses three families of interpolation operators, I,, and J, that are needed to go from spectral to finite-element representations back
and foh. Both the I and families are made of two-dimensional operators, whereas
the operators J are one dimensional.

Let I.h and Ia, be the Lagrange and Hermite finite-element interpolation operator
on the grids L H3,N,. and These operators are defined by

I,h"
Vu() co(fi)., u v ) V.,h

(3.6)
l( 0

and

v,,() c’() --) I,u v() v,%,
(3.7)

l(qJv)(lu-u)l,=O, V?E 3.
t,o and I3H,’h finite-element interpolationIn the same way, we represent by In,h

operators setting to zero the values of the linear functionals on the boundary nodes, i.e.:

L,0.ln,h
L0 L0Vu(f) E C(fi) --) l.L’u Vh(f) E

(3.8) t( ’ ,o.,,,,)(i -)I,=o, v, ’.L’,,u u J..,v f’]

l( ’ ,o..)( 0, V, E

and
H0I3,

H0 H0Vu(F) C’(fi)--) I3,; u Vh(f) E V3,,

(3.9) 1( n n0 /-/(3,N)(I3,} U- U )]ff 0, Vk e 3,N fl,

l( " .o,)(I3,u =0 VPkE3,N.
Basically, these operators will be used to project spectral residuals of the pde into the
finite-element spaces V.t; or V3,h.

We denote by N, the two-dimensional spectral interpolation operator acting on
a set of discrete values to produce an element of ’), the space of functions obtained
by tensor product of Jacobi polynomials in both space directions. The operator is
the same, regardless of the finite-element choice. We have the following

vv() v. PNV U() ’),
(3.0)

(,.)(P.V--V)I, =0, V G’),
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for Lagrange finite elements and also

vv() v3,h --"Vh U() ’N(3.11)
I(,,rV)(PvVh--Vh)I =0, kGt and tr=0,

for Hermite elements. Interpolation occurs at the collocation nodes only. Both the
"internal" degrees offreedom of Lagrange elements with n > 1 and the nodal derivatives
of Hermite elements are therefore discarded. s is merely a convenient tool to identify
an element of ’, using its nodal values.

The one-dimensional interpolation operator J is used for the treatment of the
boundary terms arising in the variational formulation of Neumann problems. We
postpone its definition until 3.2.

3.1. Preconditioning of Dirichlet problems. We start by investigating the finite-
element preconditioning of homogeneous Dirichlet boundary value problems (i.e.,
a(f)=0, g()=0, and b()= 1 in (2.1b)). The algorithm will be outlined with the
Lagragian finite elements of degree n. The case of the Hermite elements is easily
transposable.

Given a function F L2(f), we denote by w =/[F] the finite-element solution
of a problem that, in the standard Galerkin approach, is written

Wh VnL,’(
(3.12)

J. de (pWhl)h 4r qWhl)h)

Actually, Wh results from the inversion of an algebraic system:

(3.13) (S)

where (S/) and (M,v) are the stiffness and mass matrices associated to the problem
and its discretization.

A genuine FE discretization results only when the numerical quadratures appearing
in (3.12) are made exactly (at least after projection of the coefficient functions p()
and q() into V.,h). If, instead, we use approximate quadrature rules (i.e., trapezoidal,
Simpson, etc.) the algebraic system (3.13) reduces to a FD scheme. The main difference
between the two cases lies in the mass matrix whose presence in the FE discretization
is crucial and explains its remarkable preconditioning properties. We shall use this in
order to compare the spectral properties of both preconditioning techniques in the
same software environment.

The preconditioned Richardson iterations are implemented as follows. Let w be
the solution of

(3.14)

and let

I. d (p Wh Vh + qWhVh)= I,, d fvh VVh

(3.15) U=uWh
represent the projection of w into ,t).
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Using the interpolation operators defined earlier, the subsequent iterations may
be written, in obvious notation:

(3 16) uk+l llk kCNfl( LO kI:h(Lpsu -f)), k=0,1,....

The iterative process is carried out until convergence that, in practice, is controlled by
the residual (Lpu k -f).

The evaluation of the residual is an important part of the algorithm. For any
values of the Jacobi polynomial indices (a, 13), the pseudospectral matrix Lp is easily
set up, using the relations (2.9)-(2.10) and (2.20)-(2.21). Evaluation of the residual
entails N4 flops, which is approximately the numerical work corresponding to the
factorization of the FE stiffness matrix. If, however, a Gauss-Lobatto-Chebyshev grid
is selected (a 13 -1/2), evaluation of the residual can be made straightforwardly using
direct and inverse FFT (see [9]). In that case, the numerical work is reduced to
2N log 2N, which makes it cheaper than even the forward and backward solve parts
of the FE preconditioning.

The convergence of the numerical scheme (3.14)-(3.16) is governed by the spectral
’. Lps). Using the stiffness and massradius of the iteration operator (I--l"In,h

matrices defined in (3.13), the iteration operator may be written, equivalently:

(3.17) A a I (SL -1 L L0,,N) "( (I,&) (Lps),
where the symbols L0(I,?,h) and (Lps) represent the matrix form of the (abstract) operators
L,0In,h and Lps. The coefficients of (I) are easily calculated using the cardinal basis

(2.9) and its derivatives (2.20) and (2.21). Note that in the simple case of linear FE
preconditioning, (I:) reduces to the identity matrix.

A necessary and sufficient condition for convergence of (3.16) is that p(A) < 1. A
rough estimate of the number of iterations (n) required to reduce the error norm by
a factor " is then given by

log sr(3.18) n
R(A)

where R(A) -log p(A) is the asymptotic rate of convergence of the iteration matrix
(see [15]).

3.2. Preconditioning of Neumann problems. Let us turn to the finite-element pre-
conditioning of a homogeneous Neumann problem (i.e., b(), g()=0, and a()= 1
in (2.1b); O-= Of).

The treatment of boundary terms in the weak formulation of a Neumann problem
requires a one-dimensional interpolation operator that has been termed J in the
introduction of this section. Depending on the choice of the FE discretization of the
problem (Lagrange or Hermite), the operator will be called J,,h or J3,nh.

We shall further denote by TnL,h(C3’) and T3H,h(O,), the FE trace spaces associated
to v.. and V,%, respectively. The definitions of J,h and J3,h are the following"

LJn,h:
Vt(f) L2(Oa) "--> JnL, ht, th(f) E rnL,h(Oa),

(3.19)
l( cL L L

and

(3.20)
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Special notice must be given for the one-dimensional Lagrange interpolation
operators JnL,h, which will be made clear after outline of the iterative procedure. Once
again, the developments will use the Lagrangian finite element of degree n. Transposi-
tion to the Hermite element may be easily carried out.

Given a function F L2(), and a function L2(0) we represent by Wh

/I[F, if], the FE solution of the following problem"

(3.21)
Wh Vn-,h

df (pVWhVVh -I- qWhl)h) dFvh + dfVh V I.)h VnL,h

The iterative algorithm for the FE preconditioning of the homogeneous Neumann
problem (2.1) proceeds as follows. Let w be the solution of

(3.22)
d? (p wOh Vh + qwOhvh)= d fVh VVh

Projection of this function into ’) with N given by (3.10), yields the initial
approximation

(3.23) U NWh
Subsequent iterations are performed according to the scheme

k=0, 1,...

The difference between (3.24) and (3.16) lies mainly in the presence of a boundary
residual originating from the natural conditions.

Ifthe sequence {ulk/} generated by (3.22)-(3.24) converges to a limit u 6 ,tu
and the sequence {cl k } is bounded away from zero, then we have

(3.25) Lre I f), Jn,h P an /
o,

or also, because of (3.21)

(3.26) df ln,ht, Lpstl --f)lgh d- dJn,h p i)h --0
a On /

I.)h VnL,h

In particular, for ;Oh --InL’,(Lpsu-f), test function whose value vanishes identically
along 0fl (see (3.8)), we conclude that

(3.27) Lo uI,;h Lps --j] 0,

which constrains u to satisfy the collocation equations.
Insertion of (3.27) into (3.26) further yields

(3.28) fo dJ"’h(p ou]On /
th --O [th G TnL,h

Unfortunately, the argument developed above for the residual of the equation is no
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longer applicable. This is due to the behavior of (0u/0n) at a corner. If we consider
the limit values ofthe normal derivatives on two consecutive faces of 01) as we approach
the corner point, most of the time (0u/0n) will be discontinuous, whereas the function
th must be continuous. Therefore, we cannot enforce on the boundary residual a
constraint similar to (3.27). All we can expect is that, because of its orthogonality
properties (3.28) with respect to the test functions of Tnkh, J.,h (P OU 0n) is globally
small. In fact, this is what happens in practice as will be shown later. It is possible
however, as shown by Canuto and Pietra [3], to enforce the collocation constraint
exactly. We have therefore to modify slightly the interpolation operator Jnh at the
corner nodes, into a linear combination of the normal derivatives at the adjoining sides.

Let us emphasize that these remarks do not apply to the preconditioning with
cubic Hermite polynomials since, in that case, the boundary conditions may be satisfied
exactly along 0.

3.3. The general case. Having treated separately the Dirichlet and Neumann
problems, we are now in the position to describe the FE preconditioning of the general
boundary value problem (2.1). It is only a matter of choosing the right projection spaces.

Let g() be decomposed into go(?) U gu(), where go() and gu() are the values
of g() on the "essential" and "natural" paas of the boundary. As previously, we
denote by wh Lr [F, $] the FE solution of (3.21).

The iterative algorithm for the FE preconditioning of (2.1) runs as follows. We
first determine w such that

Lw v.,(go),
(3.29)

I d(pwvh +qWVh)= f dfVh + Io
Then, after projection into ’
successive approximations of the pseudospectral solution are given by

,t:(Lpsu-f),J,kh ap+buk--gu k=0,1,....

The conclusions of 3.2 can readily be transposed to (3.30).

4. Numerical results. In this section we present a series of numerical results for
various one- and two-dimensional Dirichlet and Neumann boundary value problems.
We shall first describe the eigenvalue propeies of the iteration operator (3.17). Then,
we shall verify the effectiveness of the preconditioning algorithm by looking at its
convergence speed.

Table 1 displays the lower and upper bounds (JAil, JAil) ofthe eigenvalue spectrum
and the condition number (L Lps for three ordinary differential operators with
Dirichlet boundary conditions on (-1, + 1). These quantities are evaluated as a function
of the mesh size N, on a Chebyshev collocation grid. Computation of the eigenvalues
has been performed with EISPACK (see [22]). The upper pa of the Table 1 corre-
sponds to linear Lagrange elements with exact quadrature (i.e., FE preconditioning),
whereas the results in the lower half were obtained with linear Lagrange elements and
the trapezoidal quadrature rule for evaluation of the stiffness and mass matrices. This
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TABLE

Finite-element preconditioning of various one-dimensional Dirichlet boundary value problems. [A,, and
IA,I are the lower and upper bounds of the eigenvalue spectrum of Lps; K Ix,l/Ixl is the condition
number.

Lu -u, Lu -V((1 + x2)Vu) Lu -V((1 + 10x2)Vu)

Linear Lagrange elements with exact integration (FE preconditioning)
4 7.146 (-1) 8.998 (-1) 1.26 5.988 (-1) 8.999 (-1) 1.50 2.241 (-1) 9.027 (-1) 4.03
8 7.776(-1) 9.748(-1) 1.24 7.470(-1) 9.716(-1) 1.30 5.639(-1) 9.808(-1) 1.74
16 7.446 (-1) 9.936 (-1) 1.33 7.658 (-1) 9.937 (-1) 1.30 6.547 (-1) 9.870 (-1) 1.51
32 7.233 (-1) 9.984 (-1) 1.38 7.209 (-1) 9.984 (-1) 1.38 6.985 (-1) 9.982 (-1) 1.43
64 7.085 (- 1) 9.996 (- 1) 1.41 7.060 (- 1) 9.996 (- 1) 1.42 6.950 (- 1) 9.996 (- 1) 1.44
128 7.009 (-1) 9.999 (-1) 1.43 6.988 (-1) 9.997 (-1) 1.43 6.936 (-1) 9.999 (-1) 1.44

Linear Lagrange elements with trapezoidal quadrature (FD preconditioning)
4 1.000(0) 1.757 (0) 1.76 9.439(-1) 1.560(0) 1.65 3.983 (-1) 1.384(0) 3.47
8 1.000 (0) 2.131 (0) 2.13 9.961 (-1) 2.040 (0) 2.05 8.583 (-1) 1.877 (0) 2.19

16 1.000 (0) 2.306 (0) 2.31 9.990 (-1) 2.268 (0) 2.27 9.851 (-1) 2.186 (0) 2.22
32 1.000(0) 2.388(0) 2.39 9.997 (-1) 2.372(0) 2.37 9.962(-1) 2.336(0) 2.34
64 1.000 (0) 2.428 (0) 2.43 9.999 (-1) 2.421 (0) 2.42 9.990 (-1) 2.405 (0) 2.41
128 1.000 (0) 2.448 (0) 2.45 1.000 (0) 2.445 (0) 2.45 9.998 (-1) 2.437 (0) 2.44

1.00

-1.00

1.00

O.

-1.00

-1.00 O. 1.00 -1.00 O. 1.00

Re
FIG. 4. Spectrum of the iteration matrix for the problem- dZu/dxZ + u, with Diriehlet conditions. Cases

a, b, e, d correspond to linear (L1), quadratic (L2), cubic Lagrange (L3), and cubic Hermite (H3) finite
elements, respectively.
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yields the classical three-point finite-difference stencil (five-point stencil in two-
dimensional space) and will be referred to in the sequel as FD preconditioning.

Both preconditionings lead to a condition number independent of the grid size
even for cases where p() has important variations. The FD condition number tends
toward 7/’2/4 (2.47), its asymptotic value, as shown in [17]. The FE value is even
lower 1.45), a strong indication of the "closeness" of Lf and Lps.

Figures 4 and 5 show the eigenvalue spectrum of the iteration matrix (3.17) for
the one-dimensional operators:

-x (1 +/xx2) + I, x (-1, +1),

with Dirichlet boundary conditions and /z =0 (see Fig. 4) or /z 100 (see Fig. 5).
Finite-element preconditioning is performed with linear (L1), quadratic (L2), and
cubic (L3), Lagrange elements and with cubic Hermite (H3) elements. The results are
displayed clockwise, from (a)-(d). Figures 4 and 5 were obtained with Chebyshev
collocation and N 64. When/x 0, the eigenvalues of the iteration matrix are close
to zero, yielding fast convergence of the iterations. This is especially true for the L2,
L3, and H3 elements. Increasing the operator complexity (i.e.,/z 100) does not affect
the L1 and H3 spectral properties. However, for the L2 and L3 preconditionings, we
observe a progressive "blowup" of the spectrum in the complex plane, eventually
leading the iterative scheme to diverge. This property, together with considerations on
computational costs, concur to focus the study on L1 elements.

C
1.oo

o.

-1.00

1.00

O.

--1.00

-1.00 O. 1.00 -1.00 O. 1.00

FIG. 5. Same as Fig. 4 except for problem -d/dx((l/ 100x2) du/dx)+u(x).
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Let us indeed make a briefpreliminary incursion into the discussion of convergence
results. Table 2 displays error norms and (relative) CPU times for two Poisson equations
in two space dimensions with Dirichlet boundary conditions on the unit square
(0,1)(R)(0,1). The solution of the first problem (upper half) is u(x,y)=
sin(Tr/2)xcos27ry and for the second problem (lower half), we have u(x,y)=
sin 47rx. sin 4Try. The CPU times are given in units of the L1 (16x 16) initial guess
(u) computation time. As seen in Table 2 (upper part), the L1 (16x 16) converged
result is only 0.25 more costly than the initial H3 (16 x 16) calculation and twice as
cheap as its converged value. More striking perhaps are the results in the lower half
of Table 2. The cutoff value of the Chebyshev representation of sin 47rx. sin 4ry with
N 16 is too low to allow machine accuracy to be reached (we should therefore go
to N =32). But the converged value with the Ll(16x 16) iterative scheme is still 20
times more accurate (in L error norm) than the L2(32x32) initial guess and costs
only one fifth of its CPU time. This is due to the computation costs of static condensation
or, more generally, to the presence of internal degrees of freedom. We shall come back
to these arguments in the next paragraph.

It seems clear that, although the number of preconditioning iterations entailed by
the L1 scheme might be higher than in the H3 scheme, the low computational cost
per iteration of the L1 scheme makes it preferable.

Further evidence of the robustness of this scheme is given in Fig. 6 that displays
the eigenvalues of (3.17) for the operator (4.1) with/z 100 and Neumann boundary
conditions. Here, collocation is performed on a Gauss-Lobatto-Legendre grid with
N 32. Collocation on a Gauss-Lobatto-Chebyshev mesh would produce a similar
spectrum. This operator is nearly singular because of the high value of p(). As a
consequence, a few eigenvalues are close to 1. This does not prevent, however, the
main part of the spectrum from being inside the unit circle, not far from zero. Later
on we shall verify on a particular problem that, even in this difficult case, the L1
scheme converges towards machine accuracy.

Figures 7-16 are all related to the L1 preconditioning (both FE and FD) of
two-dimensional partial differential operators:

(4.2) L --a -(7((1 + la,x2y2))+ I, x, y (-1, 1)(R)(-1, 1),

on Chebyshev grids with Nx Ny 16 and homogeneous Dirichlet (or Neumann)

TABLE 2
Comparison of different types offinite-element preconditioning with respect to accuracy and computing

times for two Dirichlet boundary value problems. The CPU times are normalized with respect to the L1 initial
guess for the coarser grid.

CPU CPU No
Ilu-ull= Ilu-u I1= Ilu-ull Ilu-u I1o u u iterations

Problem u(x, y) sin (Tr/2)x. cos 2Try
L1 (16x 16) 2.27 (-3) 1.65 (-13) 8.21 (-3) 6.57 (-13) 22.8 10
L2 (16x 16) 3.46 (-6) 2.54 (-14) 1.33 (-5) 7.76 (-14) 5.5 31.0 5
H3 (16x 16) 1.13 (-5) 8.07 (-14) 2.93 (-5) 2.35 (-13) 16.8 36.3 5

Problem u(x, y) sin 4rx. sin 4Try
L1 (16x 16) 3.07(-2) 6.37(-7) 9.88(-2) 3.86(-6) 13.5 6
L2 (16 x 16) 4.40(-4) 8.01 (-8) 1.71 (-3) 2.20(-7) 5.5 18.8 3
L1 (32 x 32) 8.29 (-3) 9.09 (-15) 2.82 (-2) 2.91 (-14) 9.5 138.5 11
L2 (32 x 32) 2.30(-5) 9.08(-15) 8.25(-5) 2.91 (-14) 65.3 384.5 5
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1.00

-1.00

-1.00 O. 1.00
.R,

FIG. 6. Spectrum of iteration matrixfor problem d/ dx(( + 100x2) du/ dx) + u(x) with Neumann condi-
tions. The preconditioner uses linear elements.

.00

-1.00

O. .00
Re

FIG. 7. Spectrum ofiteration matrixfor problem -Au + u with Dirichlet conditions. Bilinearfinite elements
are used in the preconditioning. N. N 16.
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boundary conditions. Figures 7, 8, 10, and 11 correspond to FE preconditioning of
problems with essential boundary conditions and/ =0, 1, 10, and 100, respectively.

Once again in all cases, the spectrum of the iteration matrix (3.17) lies inside the
unit circle, ensuring convergence of (3.16) with a relaxation factor tk 1 (k 1,...).
For k 1 the spectral radius of A is 0.32. Inserting this value into (3.18) gives the
number of iterations required for an error reduction of, say, " 10-1: n 18. In most
cases we should expect less than 30 iterations to reach machine accuracy.

Figure 9 displays the spectrum of the iteration matrix in a case where the precon-
ditioning operator has been chosen as the FE approximation of an operator L.
Basically, the differential problem (4.2) with/. 1 and Dirichlet conditions is precondi-
tioned with the FE discretization of (4.2) with/ 0. The stability of the eigenvalues
inside the unit circle is quite remarkable.

Spectral properties of FE preconditioning of Neumann problems do not differ
essentially from those of Dirichlet problems. Figures 12 and 13 are the exact counterpart
of Figs. 8 and 9, except for the boundary conditions. The conclusions that can be
drawn are the same.

We shall now pay some attention to L1 FD preconditioning. Figures 14-16 display
the eigenvalues of the iteration matrix (3.17) for two differential problems (4.2) with
Dirichlet boundary conditions and/ =0 (Fig. 14) or/- 1 (Figs. 15 and 16).

The differences with FE preconditioning are striking: in this case, the spectrum
straddles the unit circle and underrelaxation is compulsory to ensure convergence of
the iterations. Figures 15 and 16 show the effects of changing the reference operator
for the preconditioner. If, again, the preconditioner is the FD discretization of (4.2)

.00

-1.00

-1.00 O. .00

Re
FIG. 8. Same legend as in Fig. 7 except the problem is -((1 d-x2y2)U)d- U.
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.00

-I .00

-I .00 O. .00

Re
FIG. 9. Same legend as in Fig. 8. The preconditioning operator is -Au + u.

.00

-I .00

-1.00 O. .00

Re F,

FvG. 10. Same legend as in Fig. 7 except the problem is -((1 + lOx2y2)u)+u.
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-1.00 O. 1.00

.00

-1.00

FIG. 11. See Fig. 7 except the problem is -((1 + lOOxEyE)tl)+u.

.00

-1.00

-1.00 O. 1.00
Re. ?x

FiG. 12. Spectrum ofiteration matrixforproblem -(( + xEy2)u) + u with Neumann conditions. Bilinear

finite elements are used in the preconditioner. N Ny 16.
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-1.00 O. 1.00

1.00

-1.00

Re},

FIG. 13. Same caption as in Fig. 12. The preconditioning operator is -Au / u.

-1.00 O. 1.00

1.00

-1.00

ReZ
FIG. 14. Spectrum of the iteration matrixfor problem -Au + u with Dirichlet conditions. Finite differences

constitute the preconditioner. Nx Nv 16.



FE PRECONDITIONED PSEUDOSPECTRAL SOLUTIONS 333

-1.00 O. 1,00

1..00

-1,00

FIG. 15. Same legend as in Fig. 14 except the problem is -((1 + x2yE)gu)+ u.

-1.00 O. 1.00

2.00

o00
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Rek
FIG. 16. Same legend as in Fig. 1. The preconditioning operator is -Au + u.
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with/. 0 (see Fig. 16), we observe an increase in the dispersion of the eigenvalues
that will only alter the rate of convergence. Changing the nature of the collocation
grid does not modify these results significantly.

Let us now examine the preconditioning iterations for the pseudospectral approxi-
mation of

(4.3) Lu(x,y)=-((l+x2y2)u(x,y))+u(x,y)=f(x,y), x, y (-1, 1)(R)(-1, 1)

where the right-hand side f(x, y) is such that

(4.4) u(x, y) sin2 rx sin2 ry exp (x + y).

Both homogeneous Dirichlet and Neumann boundary conditions have been treated
according to the schemes (3.14)-(3.16) and (3.21)-(3.24), respectively, with L1 elements
on a Chebyshev grid (Nx Ny 32).

Figures 17 and 18 show the evolution of discrete L error norm ]]]e][]oo as a function
of the iteration index. The circles correspond to FE preconditioning and the squares
to FD preconditioning. While in Fig. 17 the preconditioned and preconditioner are
the same operators, Fig. 18 exhibits the results when the preconditioner is obtained
from (4.2) with/., 0. In all cases the optimum relaxation factors have been introduced
from careful study of the spectrum.

For FE preconditioning, the introduction of the optimum relaxation factor does
not change the convergence speed very much; a few iterations at most. For FD
preconditioning, it is essential as already mentioned. When both operators are equal
(preconditioned and preconditioner), FE preconditioning requires less than half the
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FIG. 17. Plot of the error in maximum norm with respect to the number of iterations for the problem
-((l+x2y2)u)+u=f, subject to homogeneous Dirichlet conditions. The exact solution is u(x,y)=
sin ,rx. sin2ry exp (x + y). Here, Nx Ny 32. The dots correspond to finite-element preconditioning with
tx 1.13, while squares deal with finite difference preconditioning and ak 0.62, (k 1,’’ ").
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FIG. 18. Same legend as Fig. 17. Thepreconditioning operator is -Au + u. The dots ofthe FE preconditioning

are obtained with a =0.75 and the squares of the FD preconditioning with t =0.45, (k 1,. .).

number of FD iterations to reach roundoff error. We also remark that the estimation
of 18 iterations made earlier is well verified. By changing the preconditioner, we only
multiply this result by a factor two. Figures 19 and 20 present the same results as
Figs. 17 and 18, but for the Neumann problem; the conclusions are the same.

As a last example of the effectiveness of the L1 FE preconditioning, we turn back
to a one-dimensional Neumann problem:

(4.5)
Lu(x, y) a__ d ( d_xx)xx (1 + 100x2) +u(x)=f(x), x (-1, +1),

u’(-1) u’(1) 0,

whose iteration matrix has the spectrum displayed in Fig. 6. The right-hand side (4.5)
is such that u(x) (x- 1)2(x 4-1)2 exp (x). Convergence must be slow, as already stated
(see Figs. 21 and 22).

L,0The preconditioning of Neumann problems involves the projection operator In,h
for the residuals of the equation. Use of this operator gives a strong argument for the
convergence of the iterative scheme (see (3.26)-(3.28) and the related discussion).
However, the numerical calculations indicate that the inclusion of these residuals at
Neumann boundary nodes might enhance the convergence. This is shown in Fig. 21
where problem (4.5) is solved on a Legendre grid with N 32 and the relaxation factor
Cek 1, (k 1,’..). If the residuals (Lpsuk --f) are projected onto the interior domain,
there is a sudden drop in the error and afterwards the convergence is extremely slow
(see squares). If, however, we use these residuals both in the domain and at the
Neumann boundary nodes, convergence is increased and the 10-9 error level reached
in 180 iterations.
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FIG. 19. Same legend as in Fig. 17. Here, Neumann homogeneous boundary conditions are applied. The
ak values are 1.30 and 0.65 for FE and FD preconditioning, respectively.
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FIG. 20. See caption ofFig. 19. The preconditioning operator is -Au + u. The ak values are 0.80 and 0.40
for FE and FD preconditioning, respectively.
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F]G. 21. Error in maximum norm versus the number of iterations. The problem -d/dx((l+
100x2) du/ dx) + u fwith Neumann homogeneous boundary conditions is solved on (- 1, ). The exact solution

is u(x) (x )2(x + 1)2 exp (x). Nx Ny 32. Linearfinite-element preconditioning ofa Legendrepseudospec-
tral approximation is used with ol --1. The convergence curve with dots occurs when at the boundaries, the
residuals to the pde and the boundary conditions are incorporated. Squares correspond to the case where at the
boundaries the residual to the conditions are the only ones taken into account.

Figure 22 displays the error norms with the relaxation factors Otk 1 (circles) and
tk 1.307 (squares) which is the optimum value.

As a final comment, let us examine again the question of operation counts. We
denote by X the number of preconditioning iterations equivalent to a direct solution
of the pseudospectral linear system (2.16). Given the fact that the actual number of
iterations is approximately 20, let R be the computation time reduction factor. Using
the notation defined previously, we have:

(4.6) X(N) wp,(N) Wry(N)) + rp(N) rr(N))
O(N3)

rf(N) + 2N2 log2 N

(4.7) R(N) w,(N)+ r,,(N) O(N2
wfe(N) + rfe(N) + 20(rre(N) + 2N2 log 2N)

where N is the cutoff of the Chebyshev expansion in one dimension. Figure 23
represents the dependence of these quantities with respect to N. Of course, the direct
solution of the pseudospectral system is out of question because of both huge
operational count and bad numerical conditioning. It is, however, interesting to realize
that the computation reduction factor might go as high as 100 for N 30.

5. Spectral IDeC for the finite-element solution of singular problems. The precondi-
tioned pseudospectral method may be regarded from an other point of view, i.e., as
an application ofthe iterative Defect Correction (IDeC) principle proposed by Auzinger
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FIG. 22. See caption of Fig. 21. Both the residuals to the pde and the boundary conditions are considered

at the boundaries. The curve with dots is obtained with a --1.0, while the curve with squares is gotten for
ak 1.307, (k 1,’’ ’).

and Stetter 1], [23]. The defect correction works as follows. Suppose we want to solve
the problem

(5.1) Lpst ---f.

However, we possess a very efficient procedure for the related problem

(5.2)

Therefore, the following iterative procedure yields the solution

(5.3) ilk+,= fik _/.-l(Lp,k _.f).

In this last relation, we recognize (2.27). It is well known that the convergence of this
process depends on the contractivity of the operator:

(5.4) I -/-1Lps.

In the previous section, we analyzed the properties of (5.4) with/ being a finite-element
approximation of the original problem with various interpolation techniques. As a
consequence, we may consider that spectral accuracy may be achieved from standard
finite-element codes with a little extra effort of programming. This requires only the
evaluation of the pseudospectral residual.

A malicious objection that tempers the enthused spectral numericist comes from
the presence of singularities that dramatically alter the rate of converge ofthe numerical
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FIG. 23. With respect to the number ofdegrees offreedom N, X N) yields the number ofpreconditioning
iterations equivalent to the direct solution of the pseudospectral linear system. R(N) is the speedup factor
achieved by the actual computations where convergence is attained in about 20 iterations.

method. In order to face the argument, we will revisit the following problem (see 16],
[18]):
(5.5) -Au 1, a= (-1, 1)@(-1, 1)

with homogeneous Dirichlet conditions on 0. The geometric singularities arise near
the four corners, where the problem (5.5) is solved while the boundary conditions lead
to a vanishing Au. The local behavior of the solution is

(5.6) u O(rEIln rl) as r--> O,

where r is the distance from a corner. The exact solution is a double cosine series
given by (see [16])

tory / 2 2))64 1/2(n+m)+l nTrx

---/nm(n rnu(x, Y)=-5 E E (-1) cos--cos +
n=l m=l
odd odd

The numerical evaluation of this expression was performed by a singular finite-
element technique due to Descloux and Tolley [8]. From the analysis carried out by
Canuto and Quarteroni [4], we know that the spectral solution of a Dirichlet boundary
value problem converges as O(Nl-s) in Sobolev norm I1" II1, where s is the highest
order of derivative still belonging to a square integrable weighted space and N, the
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inverse of the one-dimensional mesh. In our case, s 2. The results of the above
example (see Table 3) are presented in discrete L and L norms defined by the relations

=-- Y (a,-u,)= Illellloomaxl,-u,I
i=1

with i the computed values and u the exact solution evaluated on

TABLE 3
Discrete L and L errors norms for the FE guess u, the converged

pseudospectral solution u and the Tau solution (see 16]) ofproblem -Au 1.

N u t/cnv Tau

8 2.82 (-4) 7.37 (-3) 6.91 (-7) 1.61 (-5)
16 3.94 (-5) 1.83 (-3) 9.65 (-9) 7.47 (-7) 3.52 (-5)
32 5.23 (-6) 4.56 (-4) 1.56 (-10) 5.52 (-8) 2.23 (-6)

From Table 3, we observe that the error II1111oo on u converges as N-2 as it should
(see [6]), whereas, the II1 !11= error on u converges algebraically as N-6 which is the
same rate as the Tau method. Nonetheless, the lllelllo error produced by the pseudospec-
tral calculation is consistently 40 times smaller than the Illelll error given by the Tau
method. This different behavior is attributed to the fact that the boundary conditions
are exactly enforced in the pseudospectral approach, whereas interior collocation
points deal with the residual to the pde. The Tau approach is more global and the
boundary conditions are affected by the solution of the full system. Even if this is by
no means spectral accuracy, the rate of convergence is still faster than the convergence
shown by classical techniques for singular problems (see [18], [19]). The N-6 decay
rate of the error exceeds by a few orders of magnitude the theoretical estimate, which
in this case is too pessimistic.

We can estimate the power of the IDeC pseudospectral algorithm estimating the
grid size necessary for a finite-element calculation to achieve the same level of accuracy
as the collocation results. Instead of N =8, 16, 32, we get the values N 171,791,
3000, respectively. The computational work for the finite element with the N discretiz-
ation requires

Wfe(hr) Wfe(]) + rfe(]) ._/r4 _. 2/r3 + O(N2),
while the spectral IDeC algorithm performs

(5.7) Wps(N) wfe(N) + rre(N) + (2N2 log 2N + rr(N))

operations. In the previous expression, is the number of iterations required to obtain
convergence. Typically, we observed that : 20 for this example. Consequently, to
achieve the best accuracy, the speedup factor ofthe pseudospectral scheme with respect
to the finite-element computation is

Wry(N)
Wps(S)"

For N 16 and /=791, the speedup factor is 1.35 106. Of course, no one would
choose to solve the finite-element problem with the N discretization, but the perform-
ance gain provided by the collocation procedure is striking.
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To conclude this section, we compare the computational work of the Tau method
with respect to the preconditioned pseudospectral technique. If we use the Haidvogel
and Zang algorithm [16] with a one-dimensional diagonalization and the solution of
tridiagonal systems, we obtain the following operations count (see [17]):

WTau(S) O(S3).
This count is in favor of the Tau method if it is compared to (5.7). But the Tau algorithm
works essentially for equations with constant coefficients on very simple geometries.
The extension to complicated geometries and the nonconstant coefficients case seems
to be a formidable task.

6. Conclusions. In this paper, we derived the analytical expressions of the pseudo-
spectral method based on general Jacobi polynomials. The collocation grid uses
Gauss-Lobatto quadrature nodes. As the condition number of the pseudospectral
matrix system for elliptic problems increases with the fourth power of the number of
degrees of freedom, a preconditioning technique resorting to finite-element computa-
tion is analyzed. Among the various possible interpolants, the Lagrangian bilinear
element shows extremely good properties from both the aspects of convergence and
computational efficiency. The finite-element framework for the preconditioner provides
the user with a powerful tool to treat either Dirichlet or Neumann boundary conditions.
Even in the presence of geometric singularities, the preconditioned pseudospectral
approach performs very well and far better than theoretical estimates predict.

Acknowledgments. We are indebted to C. Canuto and A. Quarteroni for several
discussions that helped resolve open questions in the course of this research.
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NODAL SUPERCONVERGENCE AND SOLUTION ENHANCEMENT FOR A
CLASS OF FINITE-ELEMENT AND FINITE-DIFFERENCE METHODS*

R. J. MAcKINNONf AND G. F. CAREY’

Abstract. A class of finite-element methods for elliptic problems is shown to exhibit nodal superconver-
gence in the approximate solution, and some equivalence properties to familiar finite-difference operators
are demonstrated. The superconvergence property is exploited in a Taylor series analysis to demonstrate
Gauss-point superconvergence for the derivatives of the approximation. A post-processing formula for the
derivative at the nodes is constructed and shown to exhibit superconvergence. The nodal superconvergence
property can be exploited recursively to further enhance the finite-element or finite-difference solution.
Supporting numerical studies are given.

Key words, finite element, finite difference, superconvergence, post-processing
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1. Introduction. In this note we consider a Galerkin finite-element approximation
of the Dirichlet problem for the equation Lu -f in 12. Here 12 is a union of rectangular
subdomains, L is a second-order elliptic differential operator with smooth coefficients,
and u is assumed to be sufficiently smooth. By introducing an appropriate integration
rule for element quadrature we show that the Galerkin approximation Uh, defined on
a square mesh of piecewise bilinear elements, is equivalent to a familiar finite-difference
approximation of u. Discrete uniform error estimates for this difference approximation
are known (Bramble and Hubbard 1]). These estimates imply that difference quotients
of the error have the same order of convergence as the error itself; i.e., O(h2) for the
bilinear element. It follows that this nodal superconvergence property holds for the
standard Galerkin approximation with higher-order (or full) integration. We use this
result to prove new superconvergence results and show how simple and accurate
superconvergent post-processing formulas for the solution and derivatives can be
derived using Taylor series expansions. Although the formulation and analysis pre-
sented here is for problems in two dimensions, the results apply to problems in one
dimension as well, and extend directly to three dimensions.

2. Formulation and analysis.
2.1. Nodal solution superconvergence. Consider the boundary value problem

(1, Lu al + a2 + blUx + b2uy + cu =f

in the unit square O (0, 1)x (0, 1) with Dirichlet data

(2) u=g on0.

Here we assume that a, b, c, and f are smooth, and L is uniformly elliptic in
The Galerkin finite-element approximation to (1) is defined to be Uh Hh, satisfying

the essential boundary condition, and such that

(3) n(u, Vh)=

* Received by the editors December 16, 1987; accepted for publication (in revised form) June 7, 1988.
t Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin,

Texas 78712. This research has been supported in part by the Office of Naval Research.
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for all Vh Hho c H(f), where (.,.) is the L2(I) inner product and B(.,.) is the
bilinear functional

(4) B(w, ) Ic [al Wx@x + a2Wy@y + (bl wx + b2wy + cw)d/] dx dy.

Now consider a uniform partition of f into square elements of size h and take
Hh(’) to be spanned by CO piecewise-bilinear functions defined on this partition.
Approximating the integrals in (3) by a suitable integration rule applied over each
element, we get the approximation Bh(Uh, Vh) (f, Vh)h for all Vh nh. The resulting
algebraic system is

(5) Bhllh -’-fh
where the precise forms of Bh and fh depend on the particular integration rule used.

For clarity of exposition, let us first consider the case where coefficients a, b, and
c are constants, and a (2 x 2) trapezoidal integration rule is used to evaluate integrals
in (3). Accordingly, evaluating the coefficients in (5), for typical interior node point
at (xi, Yi) with test function Vhi, we obtain

nh(tlh, Vhi --{al[tlh(X "l- h, yi)--2tlh(Xi, yi)-t-Uh(Xi-- h, Yi)]

+ a2[Uh(Xi, Yi + h)--2Uh(X,, y,)+ Uh(Xi, y,-h)]}
(6)

+h b-- [Uh(X, + h, Yi)- Uh(X, h, y,)]

+h b2-- Uh X,, Yi + h Uh Xi, y, h + CUh X,, Yi h 2

and

(7) (f, Vh,)h =f(x,, y,)h 2.
For this case, we see from (6) and (7) that (5) is equivalent to the five-point central
difference approximation to (1).

Bramble and Hubbard 1 have shown that, for a solution u of (1) having bounded
fifth derivatives, the gridpoint error ei u(xi, y)- uh(x, y) for the five-point difference
approximation satisfies

(8) e, (x,, y,)h2+ R(x,, y,, h)h

where tk has Lipschitz continuous second derivatives, and R is uniformly bounded in
x, yi, and h. It follows from (8) that the solution to this finite-element problem (5)
has gridpoint errors of order O(h). It should be emphasized that this estimate is a
gridpoint result for the discrete problem, and is of the same order as the global L2

estimate usually encountered in finite-element theory.
Remark. If the domain discretization error is zero (as assumed here), then it

follows directly from the proof in Bramble and Hubbard that maxx,.y, [R(x, yi, h) <-_ Ch,
constant C, so the final term in (8) is actually O(h4).

In (8) b is the solution to the auxiliary problem

Lck r(u) in f,
(9)

b 0 on f

with the truncation error. In particular,

(10) nh(U, )hi)= h2Lu(xi, Yi) + h4"t’i(u) + O(h6)



SUPERCONVERGENCE AND ENHANCEMENT 345

where "r(u) denotes "r(u) evaluated at interior gridpoint (x,y). For trapezoidal
integration r(u) corresponding to (6) is

(11) ,r u 2 a U,,xxx + a Uyyyy 2 b Uxxx + b2Uyyy) ].

According to (10), the discrete approximation given in (6) and (7) has local truncation
errors of order O(h4). On dividing by h2, we see that the differential operator is
approximated to a local accuracy of order O(h2). Even if a more accurate quadrature
scheme is used for integrating (3), O(h4) truncation errors remain. Their precise forms
depend on the integration rule used. It follows that the estimate in (8) gives the best
possible rate for the nodal solution error irrespective of the increase in quadrature
accuracy.

This conclusion also holds for the case of smooth variable coefficients, since their
variations only introduce O(h4) truncation errors. (See the Appendix for an example.)

2.2. Derivative superconvergence points. Consider first the problem of derivative
calculation from the bilinear finite-element nodal interpolant ul of u. Simply differen-
tiating the expansion on element fe, we have

4

(12) U,x(,, )= E u,x(, )
j=l

where uj are the interpolated nodal values for fe, j are the element basis functions,
and g, )7 is an arbitrary point in the element.

Next, we introduce Taylor series expansions for u u(x, y) about x= g, y= j7
with 6] x g, 6 yj -)7 to obtain

u u(x, y2) u(g, y)+ u(g, y)j’ + Uy(g,
(13)

+Uxx(,, Y)(6])2/2t+Uyy(, fi)(6f)212!+Uxy(, fi) y8 8 +. .
Using (13) in the right side of (12) and regrouping terms, we have

ax= X xu- (;) axx
(14) = =

j=l j=l

where for notational convenience u(, fi), fix Ux(, ), $x $x(, ), and so on.
A similar expression holds for fly.

Now the derivative of the approximate solution Uh at , fi in Oe is

4

(15) fihx X Uhx
j=l

Subtracting (15) from (14) yields the error in the derivative

-= eflOx- axx
(16) = j=l

When we introduce nodal estimate (8) for e and use the fact that derivatives and
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hence difference quotients of b are bounded, the first term on the right in (16) satisfies

This implies that (16) will be an O(h2) approximation, provided the remaining first-
order terms are zero or collectively cancel. On examination, we find that coefficients
of txy and yy are zero for all g, )7 in le, but the coefficient of txx is zero for all 37 with
g (Xl+ X2)/2. Therefore, Uhx is superconvergent on the line bisecting the horizontal
sides of fe. Similarly, Uhy is O(h2) along the line bisecting vertical sides of fie. Hence,
the centroid (Gauss point) is the superconvergent point for both Uh and Uhyo

2.3. Nodal derivative extraction. Now consider the calculation of derivatives (flux
components, stresses) at interior node point xi, yi. For a solution u of (1) having
sufficient smoothness in the interior of fl, Bramble and Hubbard 1] prove the following
estimate for the equivalent finite-difference scheme:

(17) ]D’e(x, Y,)l <- c,[lel, + O(h2)]

where D, is an nth order difference quotient having O(h2) truncation error, c, is a
constant independent of h, and ]e]ah max,,y, ]e(xi, y)]. For the problem considered
here we have, according to (8),

Thus, (17) becomes

el. O(h2).

(18) ]DT, e(x,. Y,)I <- Ch2.

This result can now be used to derive a superconvergent approximation for the flux
components alux, aEtly (and hence derivatives if desired) at node point x, y.

A Taylor series expansion for u(xi- h, y) about (x, yi) yields

(19) al h
al Ux(Xi, y,) -- U(Xi, y,) u(xi h, Yi)] +- al Uxx(Xi, Yi) + O( h:Z).

Replacing alUxx(Xi, y) in (19) using differential equation (1) and then introducing the
following difference formulas for alx, u,, Uy, and (aEUy)y

al(xi, Yi)- al(x,- h, y,)
alx(xi, y,) + O(h),

h

u(x,, yi)- u(x, h, y,)
Ux(X,, y,) + O(h ),

h

uy(xi, yi)
u(x,, y, + h)- u(x, y,- h)

2h
+ O( h:Z),

(a2Uy(X,, yi))y=
a(x,, y, + h + aE(x,, y,

2h 2 [u(xi, Yi + h)- u(xi, Yi)]

(a2(x,, Yi) + a2(xi, Yi- h))
2h2 [u(x,, y,)- u(x,, Yi- h)]+ O(h2),
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we obtain

alUx(X,, yi)
(al(x,, yi)+ al(x,- h, y,))

2h
[u(xi, Yi)- u(xi h, Yi)]

(a2(x,, y, + h)+ a2(x,, Yi))
4h

[u(xi, Yi + h)- u(xi, Yi)]

(20)
a2(x,, y,) + a2(xi, Yi h ))

4h
[u(xi, yi)- u(xi, yi- h)]

b2b [u(x, yi)-u(x,-h, y,)]+-[u(x,, y,+h)-u(xi y,-h)]-I--
h h 2).+ c’ u(x,, y,)- f(x,, Yi)+ O(h

Note that (20) is an O(h2) difference formula involving nodal values of the exact
solution u. On introducing the finite-element approximation Uh for u on the right in
(20), we define the approximation for aUx(Xi, yi)

a,U*x(X,,y,)= (a(x,, y,)+ al(x, h,
2h Uh Xi, Yi Uh (Xi h, Yi

(a2(x,, y, + h)+ a2(x,, y,))
4h Uh (Xi, Yi + h uh xi, Yi

(21)
(a2(x,, y,)+ a2(xi, y,- h))

4h Uh (Xi, Yi Uh (Xi, Yi h

+b b2- [Uh Xi, Yi glh Xi h, yi d- "- Uh Xi, Yi + h)- Uh Xi, Yi h)]

ch h+- Uh(Xi, y,)--’f(xi,
Subtracting (21) from (20) and using (18), we find that (21) is a superconvergent O(h2)
flux approximation. (For a related study of derivative approximations see MacKinnon
and Carey [5].)

Finally, let us use this result to analyze a finite-element projection technique for
flux post-processing. This technique is based on the integration-by-parts procedure in
the finite-element integral statement, from which we define the projection relationship
for aU*x:

(22) Is altl*xl)hi dS-- I (altlhxVhixd-a2tlhyVhiy+(l" VUh 4rCUh--f)1)hi) dxdy

where s is defined by element sides connecting gridpoints (x, y h), (xi, y), (x, y + h)
and fp represents the two-element patch defined by gridpoints (x-h, yi), (x, y),
(x, y + h), (xi- h, yi + h), (xi, y- h), (x- h, y- h). This approach has been examined
in one dimension by Wheeler [6], Dupont [4], and Carey [2]. In two-dimensional
numerical test cases the method has been demonstrated to yield an O(h2) approximation
to the nodal flux when alU*x is assumed to be piecewise-constant over s (Carey, Chow,
and Seager [3]). Indeed, if we integrate (21) using the trapezoidal rule, as described
in the Appendix, then the resulting discrete formula for alU*x is identical to (21). This
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then confirms the observed numerical convergence rate of O(h2). If a more accurate
quadrature scheme is used to evaluate (22), the resulting difference formula is, in
general, different from (21). However, a simple Taylor series analysis confirms that
the formula is O(h2) accurate.

3. Nodal solution enhancement. In this section we apply the results obtained in
the foregoing analysis and formulate a new scheme to compute an accurate approxima-
tion e* to the gridpoint error ei--u(xi, Yi)--tlh(Xi, Yi). This approximation may then
be used to improve Uh and, moreover, increase the asymptotic rate of convergence of
Uh and its derivatives. We point out that although the formulation presented here is
for problems in two-dimensions, it includes the one-dimensional case by simply setting
y derivatives equal to zero.

In the interest of clarity, we restrict our analysis to the constant coefficient case
described by (6)-(11). The extension to other cases involving different quadrature
schemes and variable coefficients is straightforward in view of our previous results.

First recall (10) and (11)"

(10) Bh(U, 1)hi)-- h2Lu(x,, y,)+ h4’r,(u)+ O(h6),

(11) z(u) --1-[ al Uxxxx + a2tlyyyy 2( bl ttxxx + b2tlyyy) ].

Now from estimate (18), since Uh is O(h2) accurate at the node points, any nth-order
difference quotient D, of Uh also converges to the exact value D"u at a rate of O(h2).
Therefore, at any interior node point i, r(u) can be rewritten using difference quotients
OUh as

’,(u) [a Oahx, Uh + a2Oahy, Uh 2 b O3hx, Uh + b2O3hyi Uh + O(h2)
(23)

"l’h Uh "-F O h2

(Note that since the fifth derivatives of u are assumed bounded, then ’i(u) at node
points on boundary 011 can also be approximated to O(h2) accuracy by simply using
an O(h2) extrapolation to the boundary.)

Next, interpolate the nodal values "ri(u) in the piecewise-bilinear basis as

N

(24) ’(u) Z "rj(u)j(x, y)+ O(h2)
j=l

where N is the number of node points.
Introducing (23) in (24), we have

N

(25) ’r(u) Z "rh.(Uh)C’j(X, y) + O(h:).
j=l

Replacing r(u) in (10) using (25), we have

(26) nh(u Dhi h2Lu(xi, yi)F h4’l’hi(1,lh)"t O(h6).

(27)

Using (26) in place of (10), the estimate (8) now has the form

e, *(xi, yi)h2+ R*(x,, Yi, h) h3

where b* satisfies the auxiliary problem

(28)

N

Lb*= "rh(Uh)= Z Zh2(Uh)9(x, Y) in Il,
j=l

4*=0 on 0ii.
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The objective now is to construct a finite-element approximation bh* to b* in (28),
and then use this approximation in the leading term on the right of (28) to obtain an
accurate correction to the nodal solution.

First, let us assume that we have already computed Uh from (5) using LU fac-
torization and have saved the computed matrix factors. The Galerkin finite-element
approximation to (28) is as follows. Find bh* Hh such that

(29) B(b*, vs)= (’s(u), vh)

for all v HS H. As before, if we evaluate integrals in (29) using the (2x2)
trapezoidal integration rule we get

(30) ,I,* =(u)h

where "rhi(Uh) is defined in (23) and Bh(qb*h thi) is analogous to (6).
Since the matrix factorization of Bh is already given from the previous calculation

of Uh, the approximate function bh* in (30) can be computed efficiently once "rhi(Uh)
are computed (for the Dirichlet problem "rh(Uh) is needed at interior points only);
"rh(Uh) is easily computed using one-dimensional difference formulas. For example,
we may write

k d" O(hk+l_Ou ,I,()u() +j=l-
(31)

Du + O(hk+l-"), k >- n, x, y

where u() are node point values of function u, and are Lagrange polynomial
shape functions of degree k. In particular, for a second-order (O(h2)) approximation
to du/dx4, n=4 and k=5. Note that (31) can be used to approximate d4u/dx at
interior nodes near the boundary. For this case (31) is simply a one-sided difference
formula involving interior node point values of u only.

Solution bh* from (30) will approximate b* with accuracy O(hp) at all node
points, where p depends on the smoothness of solution u to (1). Note that - in (24)
is C in view of the assumptions on u. Moreover, Zh in (28) is CO by construction so
tg C2 and p >_-1. Replacing b* in (28) with bh*, we have

e* 6*h (X,, y,)h2 + R*(x,, y,, h )h3 + O(h2+p)
(32)

b h*,h 2 + O(h2+p)

since R* is O(h).
This important result implies that we can compute node point errors e* having

at least O(h3) accuracy, and O(h4) accuracy (p 2) for sufficiently smooth solution.
An immediate consequence of this result is that we can also increase the accuracy of
our approximation Uh (and its derivatives, if desired) from O(h2) to at least O(h3).
That is, the enhanced gridpoint value obtained by adding the nodal correction e*
becomes

(33) U’h, Uhi "dr" e*i
The solution enhancement procedure may be summarized as follows:
(1) Solve the finite-element problem Bhllh fh using sparse LU factorization and

save matrix factors.
(2) "Process" approximation Uh and form associated vector Xh(Uh)o Then, using

matrix factors of Bh, solve auxiliary problem Bhth*
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(3) Compute approximate node point error correction

e* qb’(x,, y,)h2

and hence the "enhanced" solution

u*, Uh, + e*
3.1. Numerical examples. Numerical test studies have been made to demonstrate

the effectiveness of the nodal enhancement post-processing procedure. (For results
related to the application of post-processing derivative formula (22) and related
formulas, we refer the reader to Carey [2], Carey, Chow, and Seager [3], and MacKin-
non and Carey [5].)

In the first test case we consider the two-point boundary value problem

ux, + Ux + u f, 0 < x < 1,
(34)

u(0) u(1) 0

where f is constructed such that the analytic solution is u x(1 x)(1 + x)5.
We take a sequence of uniform mesh refinements with h , +/-1o, +/-2o, and o Numeri-

cal integration is performed using the trapezoidal rule, and derivatives Uxxx and Uxx,,,
in z are approximated to order O(h3) and 0(h2), respectively, by six-point difference
formulas. A six-point formula foru was used because it is computationally convenient
to simply differentiate this formula and use the result to approximate ux,.

Node point errors Ei, E* for approximations Uhi and enhancement u* are presented
in Table 1. Note the substantial increase in accuracy and asymptotic rates of conver-
gence afforded by the enhancement procedure.

Next we examine three approximations to u, at x 1. These approximations are:
the standard O(h) derivative approximation Uhx; the post-processed derivative u*
given by (21); and the enhanced derivative denoted by u** and given by an O(h4)
six-point difference formula operating on enhanced solution u*. Results are presented
in Table 2. Approximations u* and u** are O(h2) and O(h4) accurate as predicted.

TABLE
Node point errors E(xi), E*(x) for the case b 1.

E(0.2)

0.085004
0.021283
0.005323
0.001330
O(h

E*(0.2) E(0.4) E*(0.4)

0.016524 0.161265 0.010216
0.204E- 3 0.040342 0.598E- 3
0.27E-4 0.010087 0.51E-4
0.18E- 5 0.002521 0.33E 5
O(h4 O(h O(h4

E(0.6)

0.200329
0.050081
0.012520
0.0031301
O(h

E*(0.6) E(0.8) E*(0.8)

0.009952 0.162612 0.015906
0.724E- 3 0.040634 0.389E- 3
0.61E-4 0.010157 0.46E-4
0.40E 5 0.002539 0.31E- 5
O(h4 O(h O(h4

TABLE 2
Derivatives Uhx, U*, and U’x’at x 1. The exact derivative is Ux(1)=-32.0.

tlhx

-14.303480
-22.034701
-26.716385
-29.280084

-34.933828
-32.736437
-32.184295
-32.046085

-31.476970
-31.982434
-31.999583
-31.999975

tl Uhx]

17.69652
9.965299
5.283615
2.719916
"-O(h)

2.933828
0.7364370
0.1842950
0.0460850

O(h

0.5230300
0.0175660
0.417E-3
0.25E-4

O(h4
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As a two-dimensional test problem we take the example

(Uxx+Uyy)=(2-42xS)(y-y7)-42yS(x2-x7) in f (0, 1)x (0, 1)

with

(35) u 0 on 012.

The analytic solution is the polynomial

(36) u (x2- x7)(y- y7).

Node point results for a sequence of calculations on uniformly refined meshes of
and o are given in Tables 3-5. Again, the observed rates of convergenceh=, 1,

corroborate our analysis.

Conclusion. By a suitable choice of quadrature rule the finite-element approxima-
tion for a two-dimensional elliptic problem has been related to a familiar finite-
difference approximation. Nodal superconvergence of the solution then follows from
an estimate of finite-difference theory. Moreover, any nth order difference approxima-
tion having Taylor series truncation error of O(h2) at a node point converges to the
exact value at a rate of O(h2). Therefore, accurate derivative extraction formulas can
be derived directly using Taylor series ideas.

TABLE 3
Node point errors E(xi), E*(xi) along x =0.8.

E(0.8, 0.2)

0.012138
0.003102
0.346E-3
O(h

E*(0.8, 0.2)

0.004074
0.40E-4
0.2E-6
O(h4

E(0.8, 0.4)

0.023837
0.006087
0.680E- 3
O(h

E*(0.8, 0.4)

0.005127
0.60E-4
0.3E-6
O(h4

E(0.8, 0.6)

0.032477
0.008275
0.924E-3
O(h

E*(0.8, 0.6)

0.006333
0.80E-4
0.4E-6
O(h4

(0.8, 0.8) *(0.8, 0.8)

0.030038 0.006824
0.007625 0.93E-4
0.850E- 3 0.4E- 6
O(h O(h4

TABLE 4
Node point errors E(xi), E*(xi) along y =0.8.

(o.2, o.8)

0.007514
0.001982
0.214E-3
O(h

E*(0.2, 0.8)

0.003668
0.21E-4
0.2E-6
O(h4

E(0.4, 0.8)

0.017644
0.004496
0.502E- 3
O(h

E*(0.4, 0.8)

0.003680
0.22E-4
0.4E-6
.-..O(]14

E(0.6, 0.8)

0.028428
0.007233
0.807E 3
O(h

E*(0.6, 0.8)

0.005004
0.48E-4
0.5E-6
O(h

TABLE 5
Derivatives Uhx, U’x, and u’x* at (x, y) (0.8, 0.8). The exact derivative is Ux(0.8, 0.8) -0.1387215.

tlh

0.282010
0.137307

-0.0310355

-0.405757
-0.208948
-0.146723

Ux**

-0.155165
-0.139683
-0.138726

lg Uhx

0.420731
0.276028
0.107686
--.O(h)

0.267035
0.070227
0.008001
O(h

0.016443
0.961E 3
0.4E-5
O(h4
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We emphasize that since this Taylor series approach relies only on elementary
analysis concepts, it is straightforward to understand and implement. Furthermore,
although this is not taken up here, the method can be easily applied to higher-order
elements and problems in three dimensions. Also, derivatives can be extracted from
finite-difference solutions in the same manner.

Finally, using the truncation error in an auxiliary problem the nodal superconver-
gence property can be further exploited to enhance the gridpoint solution accuracy.
These results are of practical significance in solution and derivative post-processing
and also for a posteriori error analysis in conjunction with adaptive refinement. The
adaptive refinement aspects will be taken up in future studies.

Appendix. Trapezoidal rule and variable coefficients. For the case of variable
coefficients and trapezoidal integration, we have from (3) at interior gridpoint

(1.1) Bh (Uh, Vhi) fhi
where

_f al(xi + h, yi) + al(x,, Yi)
Bh(Uh, t)hi 2h

[Uh(Xi + h, Yi)- Uh(Xi, Yi)]

al(x,, y,) + al(xi h, y,)
2h Uh Xi, Yi Uh (Xi h, y,

(1.2)

a2(x, y, + h + a2(x,, y,
2h Uh (X,, y, + h uh (x,, y, ]

a2(x,, y, + a2(x,, y, h
2h Uh (Xi, y, Uh Xi, Yi h )

bl+ h -- (x,, y, )[ Uh (X, + h, Yi Uh (X, h, y,

b
+ h -_._2 (x,, y,)[Uh(X,, y, + h)- Uh(X,, y,- h)]+ c(x,, yi)Uh(Xi, y,)h2

2

and

(1.3) J, f(x,, y)h2.
For a smooth function w, and using Taylor’s theorem,

Bh W, Vh,) h2Lw(x,, y,)+ h4"l’i( w) 4r O(h6)(1.4)

where

z( w) -2[al Wxxxx + axWxxx + alwx+ alxxxW
(1.5)

-" aEWyyyy " a2y Wyyy + aEyy Wyy 4- aEyyy Wy 2(bWxxx + b2wyyy) ].

From (1.4) and (1.5) we see that variable coefficients produce additional O(h4)
terms in z. Hence, the accuracy of (1.1) remains O(h2) and the results demonstrated
for the constant coefficient case extend directly to the case of variable coefficients.
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Abstract. A vectorized version of the odd-even hopscotch (OEH) scheme and the alternation direction
implicit (ADI) scheme have been implemented on vector computers for solving the two-dimensional Burgers
equations on a rectangular domain. This paper examines the efficiency of both schemes on vector computers.
Data structures and techniques employed in vectorizing both schemes are discussed, accompanied by
performance details.

Key words, vector computers, Burgers equations, odd-even hopscotch scheme, alternating direction
implicit scheme, vectorization
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1. Introduction. This report is written as a contribution to a project for developing
numerical software for vector- and parallel computers. Vectorized versions of the
odd-even hopscotch (OEH) scheme and the alternating direction implicit (ADI)
scheme are developed in FORTRAN77 for the two-dimensional Burgers equations. In
the near future, the vectorized codes will be combined with a pressure correction
technique [8], 13] in order to solve the time-dependent, incompressible, Navier-Stokes
equations.

The OEH scheme and the ADI scheme are integration schemes for time-dependent
partial differential equations (PDEs) and are applicable to wide classes of problems.
The OEH scheme has shown to be an efficient scheme on serial (scalar) computers,
in the sense that it is fast per timestep. Moreover, the scheme is relatively easy to

implement. Due to its near-explicitness the OEH scheme is also very suitable for use
on vector computers. A detailed discussion of the OEH scheme is given in [4]. The
ADI scheme we consider in this report is the Peaceman-Rachford scheme [11]. The
ADI scheme is more expensive per timestep than the OEH scheme since it requires
the solution of tridiagonal systems of equations. However, the ADI scheme is more
robust than the OEH scheme.

For the solution ofthe tridiagonal systems we use the Gaussian elimination method,
a variant of the partition method of Wang [17], which is described in [3], [9], and a
method developed by De Goede and Wubs [3]. By the approach of De Goede and
Wubs, the tridiagonal systems are solved by a combination of explicit and implicit
calculations, thus resulting in an alternating direction explicit-implicit (ADEI) scheme.
Since the Gaussian elimination method is a sequential method, this method seems to
be unsuitable for use on vector computers. However, for the two-dimensional ADI
scheme a number of (independent) tridiagonal systems must be solved. Therefore, this
method allows vectorization across the systems. Moreover, this method does not
increase the operation count, unlike the above-mentioned partition methods. Further-
more, it turns out that also the partition method and the explicit-implicit method are
efficient on vector computers.

* Received by the editors November 18, 1987; accepted for publication (in revised form) November
30, 1988.

" Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.
Nederlandse Philips Bedryven B.V., P.O. Box 80000, 5600 JA Eindhoven, the Netherlands.
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The purpose of this paper is to report our experience in vectorizing both schemes
for the two-dimensional Burgers equations. Much effort has been spent in optimizing
the FORTRAN code for vector computers, avoiding the explicit use of assembler code.
The experiments have been carried out on a (2-pipe) CDC Cyber 205 and a Cray
X-MP/24. We used one (portable) code on both machines. Since the code contains
many long vector operations, it is our opinion that on other vector machines (such as
the NEC SX-2, Fujitsu VP200, Alliant FX/8, etc.) we will also obtain good perform-
ances.

Section 2 contains a brief summary of the conceptual features of vector computers,
which are relevant to the present application. In 3 a description of the OEH scheme
and the ADI scheme is given. Section 4 is devoted to the description of the techniques
used for vectorizing both the OEH scheme and the ADI scheme. In 5, we compare
the accuracy and performance of both schemes. Finally, 6 contains some concluding
remarks.

2. Vector processing. Vector operations fall into two main categories: those that
perform floating-point arithmetic, and those that may be called data-motion operations
(for example, operations to compress or expand an array using an index-list). The
need for vector data-motion operations also becomes apparent when we consider the
definition of a vector on a CDC Cyber 205: a vector is a set of similar elements
occupying consecutive memory locations. The reason for this vector definition is that
when performing vector operations on a CDC Cyber 205 the input elements stream
directly from the memory to the vector pipes (arithmetic units) and the output elements
stream directly back into the memory. A Cray-computer accepts vectors for which the
number of memory locations between consecutive elements (the so-called stride) is
constant.

To enhance an effective data flow rate in order to match the computation rate of
vector computers, the memory is divided into memory banks that may operate concur-
rently. For example, the memory of the CDC Cyber 205 is divided into 16 memory
stacks, each of which is divided into eight independent banks. When one memory
stack is busy with a memory request, further references to the same stack cannot be
made. If a vector operation calls for an operand whose elements are located w words
apart in the memory (i.e., stride w), then the data flow rate might be reduced due to
the memory conflicts and thus result in a longer vector operation time. So, in order to
obtain a good performance on vector computers it is important to consider the data
structure very carefully (see 4) [6].

For an efficient use of vector computers, the compiler plays an important role.
The compiler translates FORTRAN DO-loops into vector machine instructions, if
possible. This process is called auto-vectorization. The nature of vector operations is
such that only DO-loops are candidates for vector operations. Specific characteristics
of a given DO-loop determine its vectorizability 1 ]. It is not always possible to vectorize
a code, as in the following example:

DO 10I=I,N

(2.1) A(I+I)=A(I)+S

10 CONTINUE

Because in vector processing the arguments must be determinable before the operation
starts, this loop cannot be vectorized. This restriction is known as recursion; it conflicts
with the nature of vector processing.
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In many situations the compiler can be instructed to generate more efficient codes.
We have used such instructions, e.g., in the following situation. The compiler can be
instructed to vectorize DO-loops, ignoring possible vector dependencies, by inserting
a so-called comment-directive:

for the CFT77 compiler (Cray X-MP/24): CDIR$ IVDEP
and for the VAST compiler (Cyber 205): CVD$ NODEPCHK

3. The OEH scheme and the ADI scheme for the two-dimensional Burgers
equations. Consider the two-dimensional Burgers equations:

Ut--fl(U, I)) withfl(u, v)---UUx-i)Uy+(Uxx+Uyy)/Re,
(3.1)

vt=fE(u, v) withfE(u, v)=-uvx-VVy+(Vxx+Vry)/Re,

with Re denoting the Reynolds number and u and v the velocity components in x-
and y-direction, respectively. On the boundary F of the connected space domain fi,
we prescribe the Dirichlet conditions

U UF, /)-" t7F.

The Burgers equations have the same convective and viscous terms as the incompressible
Navier-Stokes equations, although the pressure gradient terms are not retained. Also
a solution to the Burgers equations would not, in general, satisfy the continuity equation.
These equations possess the desirable property that exact solutions can be constructed
by means of the Cole-Hopf transformation [2]. This enables us to compare the
numerical solution of the Burgers equations with the exact solution.

In this section we give a description of the OEH scheme and the ADI scheme for
the Burgers equations. The space discretization is discussed in 3.1 and the time
integration in 3.2.

3.1. Space discretization. For the space discretization the computational domain
is covered by a N x M rectangular staggered grid, with h and k being the grid sizes
in x- and y-direction, respectively (see Fig. 1). In a staggered grid different variables
are defined at different grid points. The reason for this choice is that in continuation
to this report we want to apply the OEH scheme and the ADI scheme to the incompress-
ible Navier-Stokes equations, for which a staggered grid is most suitable [14].

In what follows, U is a grid function approximating the velocity u (likewise for
V, F1, and F2) with components U0. The components U0 are numbered lexicographi-
cally. The application of standard second-order central differences converts (3.1) into

cell i,j

FIG. 1. The staggered grid.
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the system of ordinary differential equations (ODEs)"

d
(3.2a) -Uij=FI,ij(U,V), i=I,...,N-I,j=I,...,M (interior x -points),

d
(3.2b) - Vj F2,ij(U, V), i= 1,..., N, j=l,...,M-1 (interior (D-points),

where

(3.3a)

Vi+l,J- Vi-l,J r__ Vid+l- Old-l)
2h ,o 2k

1 Uid+ 2 Uij +- 1 (Ui+,3 2Uj+ Ui_l,j) -Re h2 Re k2

F2, ij Oij V+,,J2h- V/- l’J)
V/j V/d+12k- V/a-l)

(3.3b)
1 (Vd+,-2Vj+ V/a_l)+

1 (+1, 2+ _,,)+-
Re h: Re k:

In (3.3a) represents an approximation to V at the x-points; likewise in (3.3b) U
represents an approximation to U at the -points. The values of Uj and are
determined by averaging over neighbouring values. For the ADI scheme U and
are trivially defined by

(3.4a) Oij=(Uij + Ui,j+l+ Ui--l,j + Ui-l,j+l), j=(j+ ,j-1 + +l,j + +l,j-1).

However, for the OEH scheme we choose

(3.4b) Oi=(U,_m.+ ui,+,), =k(,_,+ +,,).
The reason for this choice will become apparent in 3.2.1.

For the treatment of the boundary conditions, we apply a simple reflection
technique [13]. Consider, e.g., (3.2b) and (3.3b) at the -points (1,j), which involves
the outside value Vo,j. The reflection technique consists of writing the boundary value
VI/2,j as a mean value of its neighbouring values Vo,j and V3 so that Vo3 2 V/23 V,j
(see Fig. 1).

3.2. Time integration. Let U= (U, V) and F(U)= (F( U, V), F2( U, V)); then
(3.2) can be written in the vector form

d
(3.5) --u=v(u).

dt

For reasons of computational feasibility, we apply a two-term splitting formula for
the numerical integration of (3.5). Let

F(U) FI(U) + F2(U),

and consider the two-stage formula

(3.6)
u"+/ u" + k,[v,(u"+/) + v(u)],

with - denoting the timestep. It can be easily verified that this integration formula is
second-order consistent for any ODE system (3.5) [7]. Both the OEH scheme and the
ADI scheme are special cases of (3.6).
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3.2.1. The OEH scheme. In what follows, U denotes the discrete approximation
to u at the grid point (ih, jk) at time level t, m- (likewise for V). The OEH scheme
for (3.5) is given by the numerical integration formula [4]

n+l(3.7) U -r0+IF(U+I) U,+zOoF(U"),

where U= (U, V)r (likewise for F(U")). The function 0 is defined by

{1 if n + +j is odd (odd points),
(3.8) 0ij

_0 if n + +j is even (even points).

Writing down two successive steps of (3.7) yields

(3.9a) l/n+l n+l (un+i Ui + OiFi U + Oi Fi ’),
l/n+2 n+l ,+IF,j(U,+ ,+2 (U,+2).(3.9b) Ui.i + "rO + rO Fo

Let Fo(U) and F(U) denote the restriction of F(U) to the odd and even points
respectively, then replacing z by -/2, (3.9) can be written in the form

(3.10a) U "+1/2 U" + 1/2z[F (U "+/2) + Fo(U")],

(3.10b) U"+I U"+’/z + 1/2r[F (U"+1/2) + Fo(U"+I)].

The order of computation for the OEH scheme is

(3.11a) U9+1/2 U9+1/2zFo(U") (= 2U9-U-/2 if n=>l),

(3.1 lb) U+/2=U+1/2rF (u"+l/2),

(3 llc) Un+l +1/2 +1/2) n+l/2
e U + 1/2rF (U" 2U Ue),

(3.11d) |ln+l |ln+l/2
o =,o +rFo(U"+).

Note that (3.11a) is just the forward Euler rule at the odd points, whereas (3.11b) is
the backward Euler rule at the even points. For (3.11c) and (3.11d) it is just vice versa.
Substituting (3.4b) into (3.3), it can be easily verified that in (3.11) there exists an
odd-even coupling between the variables, i.e., a variable at an odd point is only coupled
to variables at even points and vice versa. Because of this odd-even coupling and the
alternating use of the forward- and backward Euler rule, scheme (3.11) is only
diagonally implicit. Note that the computation of the forward Euler rule in (3.11a)
and (3.11c) can be economized by using a simple interpolation formula. The scheme
thus obtained is called the fast form of the OEH scheme [4].

3.2.2. The ADI scheme. For the ADI scheme we use the splitting formula

F(U) F(U) + Fy(U),

where F and Fy represent the space discretization terms containing the x- and
y-derivatives, respectively. For the Burgers equations such a splitting is possible,
because there are no mixed derivatives. So, the ADI scheme for (3.5) is given by [11]

(3.12a) Un+l/2 U +1/2’r[Fx(U n+1/2) + Fy(Un)],

(3.12b) U"+’ Un+l/2 +7"[Fx(Un+1/2) -- Fy(Un+l)].Note that (3.12a) is explicit in the y-direction and implicit in the x-direction, and vice
versa in (3.12b). Since there is a 3-point coupling in each direction, the ADI scheme
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can be implemented such that only nonlinear tridiagonal systems must be solved at
each step.

In order to obtain linear systems, the terms Fx(U "/1/2) in (3.12a) and Fy(U n+l)
in (3.12b), which can be written in the form (cf. (3.3))

(3.13a) F,,(U "+1/2) A( U"+/)U"+1/2 and

are linearized as follows:

(3.13b) F’(U"+/2) A( U*)U"+/2

Fy(Un+I)=B(Vn+’)U"+’,

and F(U"+’) B(V*)U"+’,

with A and B tridiagonal matrices and U* and V* approximations to Un+l/2 and
V"+, respectively. To maintain second-order accuracy, the approximations U* and
V* are given by (see [12])

U* =-U" -1/2U"- V* 2 V"+/2- V".

Now, the ADI scheme only requires the solution of linear tridiagonal systems. In 4.2
we will discuss some algorithms for the solution of these systems. Due to the lineariz-
ation process, it is not possible to formulate a fast form for the ADI scheme, as for
the OEH scheme (cf. (3.11a) and (3.11c)).

3.3. Stability. Finally, we make some remarks about the stability of both the OEH
scheme and the ADI scheme. Consider to this purpose the linear convection-diffusion
equation

(3.14) ut --qlUx q2Uy q-(Uxx q- Uyy)/Re.

.Here, the vector (q, q2)7" represents a constant velocity. Now suppose that for the
space discretization we use standard central differences, with constant grid sizes h and
k in x- and y-direction, respectively. Then von Neumann stability analysis applied to
the OEH scheme (3.10) yields the following necessary and sufficient timestep restriction
[14], [15] for (3.14):

This inequality shows that the OEH scheme is conditionally stable (r O(h)), indepen-
dent of Re. The ADI scheme for the linear equation (3.14) is unconditionally stable
in the sense of von Neumann stability [10].

Remark A drawback of the OEH scheme is the so-called Du Fo-Frankel (DFF)
deficiency [14], [15]. By this we mean that for , h, k0, the solution of the OEH
scheme converges to the solution of the problem

u uu vu. + u + u.,)/e- r + u,.

(3.5

In general, for convergence it is thus necessary that o(max(h, k)).

4. lleefis. In this section we describe implementation techniques for
vectorizing both the OEH scheme and the ADI scheme for use on vector computers.
It is our goal to implement the schemes in such a way that they perform eciently on
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vector computers. We utilize the vector processing concepts discussed in 2. The
programs have been written in the ANSI FORTRAN77. Thus, the resulting software
is portable.

4.1. The OEH scheme. The OEH scheme is based upon the alternating use of the
forward and backward Euler rule. Because of the 5-point coupling that exists between
the variables, the OEH scheme is diagonally implicit (see 3.2.1). Specifically, the
scheme only requires scalar divisions and no nonlinear equations must be solved.

The obvious choice for the ordering of the grid points is the red-black or chess-
board ordering, where all the four neighbours of each point belong to another colour.
The grid points may be subdivided accordingly into two vectors that contain the red
and black points, respectively. The grid points are numbered along horizontal grid
lines. The OEH scheme is performed in four stages (see (3.11a)-(3.1 ld)). For example,
in the first stage the values in the red points are updated using the value in the red
point itself and old values in neighbouring black points (i.e., the forward Euler rule),
then in the second stage the values in the black points are updated using the old value
in the black point and new values in red points (i.e., the backward Euler rule).
Throughout the code the elements of the two vectors are stored in consecutive memory
elements (i.e., stride 1), which is, in general, an advantage on vector computers.
Moreover, no data reorderings must be performed.

Note that the two vectors are not confined to one horizontal grid line, but they
extend over the whole grid. This was done in order to achieve improved performance
through utilization of longer vectors. As a penalty for using those longer vectors, the
values in the boundary points are overwritten, thus destroying the correct boundary
values. To restore the correct boundary values, these values are stored separately.
Moreover, the first and the last grid points of each horizontal line must be of the same
colour to maintain the red-black ordering. Thus, the number of grid points in horizontal
direction (--N) has to be odd.

The OEH scheme requires minimal storage. In our implementation we used only
one extra array of length NM/2, which is one fourth of the total number of unknowns.
Hence, the total storage amounts approximately to 2.5NM memory locations.

4.2. The ADI scheme. The ADI scheme for two-dimensional problems requires
the solution of tridiagonal systems along horizontal and vertical grid lines, respectively.
Tridiagonal systems form an important class of linear algebraic equations. Con-
sequently, efficient algorithms have been developed for the solution of such systems.
The tridiagonal systems can be viewed in various ways. For example, for (3.12a) we
have M tridiagonal (linear) systems of order N. The first method we use to solve this
system is the Gaussian elimination method. Since the M systems are uncoupled, we
can vectorize across the systems, thus resulting into vector operations of length M. On
the other hand, the M individual systems can be combined in a single tridiagonal
system of order NM to obtain longer vectors. As a consequence, extra memory is
needed. Due to the large memory capacities of today’s vector computers, it is possible
to execute programs with large memory requirements. For example, on the Cyber 205
and the Cray X-MP/24 the maximal memory size is about four million 64-bit words.

Several methods have been proposed to achieve efficient methods for such large
systems on vector computers. In this report we use a variant of the partition method
of Wang [3], [9], which will be discussed briefly now. First, the tridiagonal matrix is
partitioned into a x block tridiagonal matrix with each block a rn rn matrix. The
method starts by reducing the tridiagonal system to a tridiagonal system of order
using vector operations. Then the reduced system is solved by Gaussian elimination.
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Finally, the other unknowns are solved by back substitution using again vector
operations. Although the variant of the partition method has a higher operation count
than the Gaussian elimination method, this is an efficient method on vector computers
since the vector length of the operations is much higher.

For this variant ofthe partition method, it is plausible that the off-diagonal elements
of the reduced system are very small relative to the main diagonal elements [3], [5],
which is confirmed by numerical experiments. Following Van der Vorst [16] and De
Goede and Wubs [3], the solution of the reduced tridiagonal system is approximated
by a truncated Neumann series. The resulting explicit-implicit method is advantageous
for use on vector computers. The price to be paid for the approximation of the reduced
system is a possible drop in accuracy. However, due to the relatively small off-diagonal
elements, this approach hardly affects the accuracy.

As said in 2, for the performance on vector computers the data structure is very
important. For the ADI scheme, tridiagonal systems must be solved along horizontal
grid lines and vertical grid lines, respectively. If the arrays are ordered horizontally,
then the x-differences can be calculated efficiently. Likewise, if the arrays are ordered
vertically, then the y-differences can be calculated efficiently. These two orderings
imply that during the performance of the ADI scheme, reorderings must be performed
to change from horizontal to vertical lines and vice versa. The reordering operations
have been implemented as efficiently as possible.

Moreover, during the solution ofthe tridiagonal systems, the variant ofthe partition
method requires vector operations with stride rn. The Cray-computer is hardly hampered
by a stride unequal to one. However, the CDC Cyber 205 requires contiguous vectors
(i.e., stride 1). Therefore, compress/expand instructions are necessary to restructure
the vectors. The alternative is to reorder in advance the data structure to obtain
contiguous vectors. On the CDC Cyber 205 this alternative may be useful. Both versions
have been implemented.

For each of the implementations, the storage requirements are significantly larger
than for the OEH scheme, viz. about 9NM memory locations.

Summarizing, for the Peaceman-Rachford ADI scheme the following implementa-
tions for the solution of the tridiagonal systems have been used:

ADIGE
ADIW
ADEI
ADIW1
ADEI1

(Gaussian elimination),
(a variant of the partition method of Wang (stride m)),
(the explicit-implicit scheme (stride m)),
(ADIW with an extra reordering of the data structure (stride 1)),
(ADEI with an extra reordering of the data structure (stride 1)).

5. Performance. In this section we report on the accuracy and performance of
the OEH scheme and the ADI scheme on vector computers. For this purpose, we have
applied the schemes to a moving wave front problem. In general, moving wave front
problems are difficult to compute since the solution contains sharp gradients, both in
space and time. This necessitates the use of small timesteps and, when employing a
uniform grid, a small grid size. Therefore, such problems are time and memory
consuming and the application of powerful computers (such as, e.g., vector computers)
is obvious.

In our experiments the following vector computers and FORTRAN compilers
have been used:

(i) (2-pipe) CDC Cyber 205 (SARA, Amsterdam, the Netherlands), max. 200
MFLOP/s, FORTRAN 200 compiler, (the VAST (version 1.22W) precompiler of Pacific
Sierra Research Corporation is used).
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(ii) Cray X-MP/24 (Cray Research, Bracknell, UK), max. 235 MFLOP/s.
FORTRAN CFT77 (version 1.3) compiler.

An exact solution of the Burgers equations can be generated by using the Cole-
Hopf transformation [2],

2 4’, 2 by
(5.1a) u- and v=

Re b Re th’
where b is the solution of

1
(5.1b) th, e (q,, + byy

In our test problem we choose b =fl +f2 [18], with

(5.2)
fl(x, y, t)= exp ((-12(x+y)+9t). Re/32),

f(x, y, t) exp ((-4(x + 2y) + 5t) Re/16),

which yields the exact solution

1 3fl+2f2 3
(5.3a) u=-,-

4 fl+f2 4 4

3f+4A1 3 1
(5.3b) v=-.=-+-.

4 fl+f2

1 +exp ((-4x+4y-t) Re/32)’

1

The solution represents a wave front at y x+0.25t. The speed of propagation is
0.125x/ and is perpendicular to the wave front. For increasing values of Re, the wave
front becomes sharper. In Fig. 2 the exact solution for u is shown at 2.5 for Re 100;
1,000; 10,000.

With the purpose oftesting the (order of) accuracy ofthe schemes, we first compare
the exact solution of the Burgers equations with the numerical solution obtained for
grid sizes h k 1/17, 1/33, 1/65, 1/129 and for timesteps r= 1/10, 1/20, 1/40, 1/80,
1/160, 1/320 (provided that the time integration is stable). The computational domain
is f =[0, 1][0, 1] and the time integration interval is [0, 2.5]. We prescribe time-
dependent Dirichlet boundary conditions that are taken from the exact solution and
we choose Re= 100. For the time integration we use the OEH scheme, the ADIW
scheme, and the ADEI scheme (see 4).

To measure the accuracy of the numerical solution we define

(5.4) cd=-llog (llglobal error at t= 2.511),
denoting the number of correct digits in the numerical approximation at the endpoint
=2.5.

Since max lu(x,y, t)1=0.75 and max lv(x,y, t)]=l.0, von Neumann stability
analysis applied to the OEH scheme suggests the timestep restriction

(5.5)

In Table 5.1 we list the cd-values for all three schemes. We only list the cdo-values
for the u-field; for the v-field we obtain nearly the same results.

First consider the OEH scheme. From Table 5.1 we can conclude the following:
(i) For small timesteps (e.g. r 1/320) the time integration error is neglectable,

and we can observe the second-order behaviour in space (1log (4)=0.6). On a fine
grid (e.g., h 1/129) we can observe the second-order behaviour in time since the
space discretization error is neglectable.

4 4 l+exp ((-4x+4y- t) Re/32)"
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Re 100 Re 100

Re- 1,000 Re 1,000

Re 10,000 Re 10,000

FIG. 2. Exact solutions (5.3a) for FIG. 3. Corresponding numerical solutions.
Re 100; 1,000; 10,000.

(ii) For z fixed and h 0 the accuracy decreases if r h is sufficiently large. This
is caused by the DFF deficiency (cf. (3.15)).

(iii) When looking along diagonals (-/h constant) we observe a second-order
behaviour if r h is small enough. For larger values of ’/h the scheme fails to converge
due to the DFF deficiency.
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TABLE 5.1

cdx-values for the OEH, ADIW, and ADEI schemes.

Correct digits for u-field (w-norm)

Scheme h-
OEH 17

33
65
129

ADIW 17
33
65
129

ADEI 17
33
65
129

7.=1/10

1.92
2.10
2.24
2.25
1.92
2.12
2.24
2.25

7.=1/20

2.54

2.29
2.56
2.75
2.77
2.29
2.57
2.75
2.78

7.= 1/40

2.55
3.05
2.82

2.48
2.89
3.19
3.26
2.48
2.89
3.19
3.26

7.=1/80

2.55
3.21
3.37
2.84
2.51
3.07
3.51
3.67
2.51
3.07
3.51
3.67

7- 1/160

2.55
3.20
3.73
3.44
2.52
3.15
3.68
3.99
2.52
3.15
3.68
3.98

7.=1/320

2.55
3.20
3.85
3.98
2.52
3.18
3.77
4.19
2.52
3.18
3.77
4.17

Now, consider both ADI-type schemes. In the same way as for the OEH scheme,
we can observe second-order behaviour in space and time. In general, the accuracy
of the OEH scheme is comparable with that of the ADI-type schemes. However,
especially on the finest grid the ADI-type schemes are more accurate than the OEH
scheme, because the latter suffers from the DFF deficiency. Note that the accuracy
results for the ADIW scheme and the ADEI scheme are comparable. So, the accuracy
is hardly reduced if the tridiagonal systems are solved by the approximating method.

Table 5.2 presents the execution times obtained for a single example, namely, for
a 129 129 grid with =2.5, -= 1/80, and Re= 100. We compare the OEH scheme
with the five implementations of ADI-type schemes (see 4). As an illustration, the
implementations have also been performed without vectorization on the CDC Cyber
205 (scalar code). In parentheses we list the ratio in performance of the vectorized
code to the scalar code. We emphasize that Table 5.2 contains the execution times for
the computation of 200 timesteps without paying attention to the accuracy or stability.

From this experiment we can draw the following conclusions:
(i) On both vector computers the OEH scheme is considerably faster than the

implementations of the ADI-type schemes. This is due to the fact that no systems of
equations must be solved and no data reorderings must be performed. For the scalar
code, it is fair to say that the ratio of the execution time for the ADI-type schemes

TABLE 5.2
Execution times in seconds for a 129 x 129 grid with 2.5, 7. 1/80 and Re 100.

Execution times (in seconds)

Cyber 205
Scheme (vectorized code)

OEH 1.8
ADIGE 15.0
ADIW 27.3
ADEI 22.4
ADIW1 18.6
ADEI1 12.6

Cray X-MP/24

1.0
6.0
8.7
6.1
8.9
6.7

Cyber 205
(scalar code)

15.4 (8.6)
118.2 (7.9)
181.6 (6.6)
176.6 (7.8)
187.1 (10.0)
182.2(14.4)
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tO the OEH scheme is misleading. For example, the data reorderings (from x-ordering
to y-ordering and vice versa) are uneconomical for use on scalar computers. So, the
scalar code for the ADI-type schemes is far from optimal.

(ii) On the CDC Cyber 205 the vectorized code is much faster than the scalar
code. For all schemes a considerable speed-up factor is obtained.

(iii) On the CDC Cyber 205 it is beneficial to reorder the data structure to obtain
contiguous vectors (compare ADIW with ADIW1 and ADEI with ADEI1). The
speed-up in performance justifies the overhead due to the data reordering. On the
Cray X-MP/24 this does not hold since the Cray is hardly hampered by a stride unequal
to one.

(iv) In general, the Cray X-MP/24 is considerably faster than the (2-pipe) CDC
Cyber 205. This is due to a smaller clock cycle and a better compiler.

(v) On the CDC Cyber 205 the fastest method is ADEI1 (i.e., the explicit-implicit
method with an extra reordering of the data structure). On the CRAY X-MP/24
however, the Gaussian elimination method and the explicit-implicit method ADEI
are the fastest methods.

Finally, we examine the accuracy behaviour of the OEH scheme and the ADIW
scheme for increasing values of Re. In this experiment we compute the numerical
solution at T=2.5 and use the grid size values h= k= 1/33, 1/65, 1/129, 1/257.
Especially for large values of Re we may expect oscillations in the solution. Therefore,
the cd-value, as defined in (5.4), is a too strict measure for the accuracy. Instead, we
define

Cdl =-log (I]global error at t= 2.5111).
We start our computations for Re 100 on a 33 x 33 grid. On each grid and for each
Re-number we choose the timestep as large as possible such that Cdl >- 3. As.soon as
cd <3 for each timestep we switch to the next finer grid and choose an appropriate
timestep. In Table 5.3 we list the cd-values for the u-field for increasing values of Re;
for the v-field we find nearly the same results. For the ADIW scheme the timestep is
listed in parentheses. In this experiment we used the ADIW scheme; however, nearly
the same results would have been obtained for the ADEI scheme.

TABLE 5.3

cd-values for the OEH and ADIW scheme for increasing values of Re.

Correct digits for u-field (1-norm)

Re

100
5OO

1,000
1,500
2,000
3,000
4,000
5,000
6,000
7,000
10,000

OEH scheme

1/33 1/65 1/129 1/257
1/40 1/80 1/160 1/320

4.05
3.08
2.51 3.42

3.06
2.86 3.74

3.39
3.18
3.03
2.88 3.70

3.59
3.35

h=1/33

3.30(1/10)
2.95(1/80)

ADIW scheme

h 1/65

3.37 (1/40)
3.19 (1/80)
2.91 (1/160)

h=1/129

3.36 (1/80)
3.15 (1/80)
3.09(1/160)
2.81 (1/160)

h 1/257

3.01 (1/80)
3.23 / 160)
3.32(1/320)
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From Table 5.3 we can conclude the following:
(i) In order to obtain the prescribed accuracy, the ADI scheme requires in general

a finer grid than the OEH scheme. This is possibly due to the linearization process of
the ADI scheme (see (3.13)). Both schemes require a comparable timestep. So, for
large Re-numbers the OEH scheme seems to be more suitable than the ADI-type
schemes for the numerical solution of the Burgers equations, at least for the present
type of solution.

(ii) The DFF-deficiency of the OEH scheme is virtually absent for large Re-
numbers since the terms u,/Re and v,/Re are very small, except in a small region
near the wave front (see (3.15)).

In Fig. 3 we present the numerical solution for the u-field for Re= 100; 1,000;
10,000 computed with the OEH scheme.

6. Concluding remarks. In this paper we examined the efficiency and performance
of the odd-even hopscotch (OEH) scheme and the alternating direction implicit (ADI)
scheme on vector computers, viz. the CDC Cyber 205 and the Cray X-MP/24. For the
ADI scheme the following methods for the solution of the tridiagonal linear systems
have been used: the Gaussian elimination method (ADIGE), a variant of the partition
method of Wang (ADIW) and the explicit-implicit method (ADEI). The vectorized
codes were considerably faster than the corresponding scalar codes.

First, let us consider the advantages of the OEH scheme over the ADI-type
schemes:

(i) On both vector computers the OEH scheme is considerably faster than the
ADI-type schemes, due to the near-explicitness of the OEH scheme.

(ii) The OEH scheme has minimal storage requirements. In our implementations
we used about four times more memory space for the ADI-type schemes than for the
OEH scheme. This is due to the way in which the tridiagonal systems are solved (see
{}4).

(iii) It is very easy to implement the OEH scheme for both linear and nonlinear
problems. For the ADI-type schemes the nonlinear tridiagonal systems of equations
must be linearized in some way (cf. (3.13)). Moreover, the OEH scheme can be extended
to multidimensional problems in a straightforward manner, contrary to the ADl-type
schemes.

The ADI-type schemes have the following advantages over the OEH scheme:
(i) The ADl-type schemes have a better stability behaviour than the OEH scheme.
(ii) The OEH scheme suffers from the Du Fort-Frankel (DFF) deficiency that in

general, has a negative influence on the accuracy.
Comparing the ADI-type schemes, the ADEI scheme and the ADIGE scheme

have a comparable performance on vector computers. However, for test problems with
an irregular domain, the ADEI scheme is to be preferred since in that case vectorization
across the systems requires extra operations. In the near future, we will extend the
codes for application to the incompressible Navier-Stokes equations.
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Abstract. The Monotonic Logical Grid (MLG) data structure is compared to alternative data structures
for tasks relevant to computing the dynamics of N moving objects. The tasks include identifying near
neighbors of designated nodes, retrieving information on the near neighbors, and ordering this information
according to distances of the associated near neighbors from the designated nodes. The test model consists
of a collection of N 64K (65,536) noninteracting objects with randomly initialized velocities. The calcula-
tions took place on the Naval Research Laboratory (NRL) Cray X-MP computer, which has a hardware
gather-scatter capability. The comparisons include two types of alternative data structures for which the
indexing is static (the data corresponding to each node always have the same index and memory locations).
Data structure "Type 1" carries no additional information or "pointers" that could identify the near neighbors
of each node. Data structure "Type 2" does carry coarse information on near neighbors by maintaining
linked lists or a related system of "pointers" that change with the motion of nodes in time. The numerical
tests presented show that the MLG data structure is vastly superior to the Type data structure when
near-neighbor information is needed for a large number Nf of designated or "focal" nodes. This occurs
because the process of identifying near neighbors requires Nf identical sorting or partitioning processes per
frame (or timestep) in the case of Type data structures while only one sort per frame is necessary to
maintain the ordering of data in the MLG data structure. In addition, the MLG is superior for the task of
finding some number Mn, of the nearest neighbors for each of Nf focal nodes, where Mn, << N and Nf N.
The MLG provides several advantages over Type 2 data structures, even though the respective operation
counts are quite similar. The advantages include efficiency of memory allocation and memory management,
smaller memory requirements, vectorizability and parallel partitioning on a wide variety of computer
architectures, and simplicity of programming. The last property should lead to computer software with a
reduced error rate and code that is more amenable to revision.

Key words, monotonic logical grid, dynamic data structure, near-neighbors problem
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1. Introduction. The Monotonic Logical Grid (MLG) algorithm organizes data
associated with a collection of nodes so that spatial or geotemporal near neighbors
will also be near neighbors in index space (Boris [2]). Appendix I gives a simple
example showing how an MLG might be constructed given a set of nodes with arbitrary
spatial locations. Arranging data according to an MLG vastly reduces the work required
for any calculation in which the near neighbors of each node must be identified or
analyzed. We find examples of such requirements in molecular dynamics (Hockney
and Eastwood [3], Lambrakos and Boris [5]) and sensor data analysis and target
tracking and correlation (e.g., Reid [8]). The restructuring portion of the MLG
algorithm, which maintains the proper ordering of memory, is of computational
complexity N log N, where N denotes the number of nodes. In addition, this iterated
restructuring procedure is ideally suited for highly parallel and vector computers.

The present study compares the MLG data structure directly with two other types
of data structures that might be used for the same tasks. For each of these alternative
data structures, the data associated with each node (e.g., spatial and velocity coordin-
ates) remain in the same memory locations throughout the evolution of the system.
The term "static" will represent this type of memory allocation. The first type of data
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structure maintains no additional information or "pointers" identifying the near neigh-
bors of each node. A model with a "Type 1" data structure might determine near
neighbors of a given node by computing the N-1 distances to the other nodes and
then ordering these distances according to a particular definition of near neighbors.
Another method would be to select those nodes whose spatial coordinates fall within
a prescribed interval about the coordinates of each designated or "focal" node. To
illuminate the differences between this "Type 1" approach and the MLG, when
implemented on a modern, high-speed computer, we have run a series of tests on the
NRL Cray X-MP with a system containing 64K (65,536) nodes. The initial conditions
involve regular spacing of the nodes on a cubical lattice with random initial velocities.
This favors the MLG less than would a situation in which the nodes were all moving
in roughly the same direction at roughly the same speeds. The present discussion covers
the following tests on the MLG and a representative Type 1 data structure:

(1) Find the indices of a specified number of near neighbors of given designated
or "focal" nodes and write these to a buffer. The Type 1 data structure implements
"Test 1" by computing the N-1 distances of the nodes from each focal node and
then ordering these distances from the smallest to the largest. To bracket the results,
we include two other, less comprehensive, and less expensive definitions of near
neighbors for the Type 1 data structure. "Test 1A" identifies those neighboring nodes
that are within a prescribed distance of each focal node. "Test 1B" identifies those
nodes whose spatial coordinates fall within a prescribed interval about the spatial
coordinates of each focal node. The above three definitions of "near neighbors" for
the Type 1 data structure carry varying amounts of implicit information on the vicinities
of the focal nodes.

(2) Write the data associated with the near neighbors identified in Test 1 to a
buffer. This requires random sifting through the Type 1 (and Type 2) data structures
and involves inefficient short loops with the MLG, when implemented on the Cray
X-MP.

(3) Order the data on the sets of near neighbors identified in Test 1 according to
distance of each near neighbor from a given focal node. Test 3 thus determines the
nearest neighbors of each focal node.

The next section presents the results ofthese tests and converts the data to equations
for predicting the relative performance of the two approaches.

The second class of data structures that are considered as alternatives to the MLG
are also static. However, these "Type 2" data structures maintain some dynamic
information or "pointers" for identifying the near neighbors of each node. An excellent
example is the method of Hockney and Eastwood [3], in which the physical space is
divided into cells and linked lists are used to identify the particular nodes located in
each cell at a particular time. As a given node passes from one cell to a neighboring
cell, the index of the node disappears from the list associated with the former cell and
appears in the list corresponding to the cell that the node has just entered. Prior to
the MLG, this was one of the best methods of computing near-neighbor interactions.
The reader who is familiar with the MLG concept will recognize this alternative as
being a distant relation of the MLG algorithm. Rather than moving the node data in
memory to maintain the knowledge of spatial or geotemporal relationships among
nodes, Hockney’s Type 2 data structure essentially swaps information (node indices)
between linked lists. The linked lists associate data that have a fixed location in memory
to fixed cells in space. These linked lists represent extra memory and a scalar component
of the restructuring computation that is absent with the MLG. The price paid for the
benefits of the MLG data structure is the need to move much more data than the
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linked lists require. In addition to Type 2 data structures used primarily for many-body
dynamics, some of the more general near-neighbor search algorithms are relevant to
our discussion. The k nearest-neighbor finding algorithm developed and analyzed
statistically by Kim and Park [4], in fact, bears some resemblances to the MLG. Section
3 explores Type 2 data structures. Section 4 provides our conclusions concerning the
data structures that have been considered.

2. Monotonic logical grid vs. "Type 1" data structures.
2.1. Description of tests. The test problem run on the Cray X-MP consists of 64K

noninteracting nodes moving randomly in a cubical volume. The boundary conditions
in each x-y plane are skew-periodic (Lambrakos and Boris [5]), and the model uses
reflecting boundary conditions perpendicular to the x-y planes at each end of the
z-domain. We prevent boundary conditions from influencing our results by choosing
focal nodes that lie near the center of an x-y plane and that have a sufficient
displacement from the lowest and highest z-values in the computational domain. Each
node has a set of MLG indices and a single, constant Type 1 index or identification
(ID) number. As the system evolves, the MLG indices of a node will change while
the ID will not. We may thus interpret ID as a label of the static memory locations
of the data on the nodes.

For the Type 1 data structure, the calculation of distances between a focal node
at (xy, yy, zy) and all others is fully vectorized. For Test 1, the code actually sorts on
the square of the internode distance

(1) Rd (-id Xf) 2 -- (Yid--Yf) 2 d- (Zid-- Zf) 2

rather than the distance itself. This saves time by eliminating the additional square
root operation required for computing the distance. In (1), the subscript f denotes the
focal node, and the subscript id is the index of running over the other nodes in this
system.

For Test 1 of the Type 1 data structure, the HEAPSORT algorithm (Nijenhuis
and Will [7]) orders nodes according to Rd. HEAPSORT has order N log N computa-
tional complexity and is a standard algorithm in the theory of sorting. Our routine is
not vectorized. For Test 1 the ordering of nodes by HEAPSORT accounts for most of
the time expenditure, so that a significantly faster sorting algorithm would yield
correspondingly reduced time costs for Test 1. Fully vectorizing on the Cray X-MP
typically yields an improvement in speed by a factor of 5 to 10. The restructuring
algorithm required to maintain the MLG is also not vectorized in the present tests.
The relative timings should therefore be meaningful even if the absolute computation
rates might not. Note that, for the Type 1 data structure, Test 3 above ("find the nearest
neighbors") is automatically satisfied on completion of Test 1.

Test 1A involves a comparison of the quantities Rind to RE, the square of a specified
radius vector centered at each focal node. The values used here are R 28, 38, 48,
and 58, where 8 is a constant that is approximately equal to the average difference in
the x, y, or z coordinates of adjacent nodes. Test 1B searches through the coordinates
(Xid, Yid, Zid) to find the nodes whose locations fall within the interval from (xy- mS, yy-
mS, zy m8 to (xy + mS, yy + mS, zy + mS), where m is an integer. The runs of Test 1B
used rn 2 and rn 4.

In the case of Type 1 data structures, the retrieval of data associated with the near
neighbors (Test 2) after the sorting is completed requires random sifting through the
data structure. For a particular focal node and timestep, the IDs of the near neighbors
will be random because of the random motion of the particles. This random sifting is
called a "gather" operation, for which the NRL Cray X-MP has a special hardware
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capability. Thus, the Type 1 data structure can attain an appreciable fraction of vector
speed when retrieving data associated with the near neighbors. This apparent gain
relative to the MLG will be difficult to sustain in a fully parallel computing environment.

The time expenditure in using the MLG data structure depends on the following:

(1) How much swapping must be done at each timestep or "frame" to maintain
the indexing in MLG order.

(2) The number of "near neighbors" that must be accessed and processed for
each focal node. Because of the MLG organization of computer memory (index space),
the near neighbors and the focal node will have a contiguous set of indices.

(3) The ability ofa given computer system to capitalize on the fact that a contiguous
set of indices identifies the data corresponding to near neighbors of a given node. Even
on a conventional scalar machine this provides an advantage in that the near-neighbor
data may be accessed through the use of DO-loops without performing a "gather"
operation.

To be more specific, denote the indices of a focal node by the set of integers
(is, Js, ks). To define the set of the near neighbors, we must specify the size of the index
interval from (if- Ai, jf Aj, kf Ak) to (if + Ai, JS + Aj, kf + Ak), within which the
indices of "near neighbors" will fall. That is, we require only the set of integers
(Ai, Aj, Ak) that define the "maximum index offsets" of the set of near neighbors.

The appropriate maximum index offsets to use in retrieving data depend primarily
on the number of nearest neighbors that the user wishes to identify. As shown in
previous papers, the MLG provides coarse quantitative information on the identities
of the nodes that are closest spatially to a focal node. This information is coarse
because displacement in index space does not correspond perfectly to geometric or
geotemporal displacement. Some of the nodes within a given index interval (as defined
above) might actually be farther from the focal node than some of the nodes whose
indices fall outside the interval. Thus we must be careful to retrieve data from a
sufficiently large interval to include the desired number of nearest neighbors. Fortu-
nately the cost of this safety factor is minor in practice, since the number of near
neighbors that must be considered will only be a small fraction of the total number
of nodes N, when N is large (Lambrakos and Boris [5]).

Given the dependence of the MLG data structure performance on (1) and (2)
above, two parameters provide the basis for delineating our tests. The first is a
dimensionless time interval between frames, given by

Vrt(2) DT-
8s

Here vr is a characteristic relative velocity component of two neighboring nodes. For
the present tests, vr is the maximum value of a given velocity component (e.g.,
x-component) that any node could have. In (2), 8t is the value of the time interval
between frames in the simulation, and s is the minimum average distance between
adjacent particles along each of the three coordinate axes taken separately. Expressed
mathematically,

where

s min {(Sx), (By), (Sz)}
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with similar expressions for (By) and (Sz). Thus, if the average distance between
adjacent nodes along the x-axis is smaller than the similar quantities along the y- and
z-axes, the choice is 8s (x). Note that the above expression for (Sx) is appropriate
for randomly moving particles because i, j, and k are MLG indices (see Appendix I).

These definitions of vr and 8s permit us to determine a characteristic time interval
over which internode crossings occur. Other definitions are possible and would merely
result in a rescaling of DT. The quantity DT indicates the frequency with which nodes
will pass each other during a timestep or frame interval. This, in turn, measures how
much work (sorting) is required to maintain (or restructure) the MLG after each
framing interval. In molecular dynamics calculations, DT is usually less than one
(Lambrakos and Boris [5]). The tests have covered values of DT up to 3.0. In our
tests, the maximum of any velocity component (e.g., x-component) was 4.0 x 10 cm/s,
and the average displacement of nodes along any axis was 1.0 x 10-7 cm. Given this
discussion, however, any values of vr, t, and 6s giving the same values of DT would
yield the same conclusions as those described below.

The second group of parameters that affect the results for the MLG data structure
is the set of maximum MLG index offsets (Ai, Aj, Ak) defining the vicinity of a given
focal node from which the near neighbor data are retrieved. That is, for a given set of
MLG focal node indices (if, jf, kf), the code will retrieve data for near neighbors whose
three indices lie in the intervals

if Ai <- <= if + Ai,

(3) jf Aj <--_j <--_jf + Aj,

k- Ak<- k <- k+ Ak.

Using larger offsets requires the computation of more distances and the use of more
sorting time to identify the nearest neighbors (Test 3). The present tests use offsets of
l, 2, 3, and 5.

In running the tests, we actually used five focal nodes to get an average time
expenditure per focal node for each test. The variations in results for the focal nodes
were negligible, so that averages based on five nodes are quite adequate. Each calcula-
tion ran for 500 frames (timesteps) and performed the tests at intervals of 100 frames
to ensure that the ensemble had undergone significant changes due to the random
velocities of the nodes. The timings for the various tests were expressed in seconds
per frame per focal node.

The MLG restructuring time per frame is independent of the number of focal
nodes used, so that the time required per focal node is inversely proportional to the
number of focal nodes processed. In molecular dynamics calculations, an appreciable
number of the nodes in the system must be processed as "focal nodes" at each timestep
or frame. Thus, the MLG restructuring time per frame per focal node will be quite
small for realistic cases. The test calculations did not include a vectorized MLG
restructuring algorithm, so that the MLG results represent upper bounds on the required
sorting time. To perform Test 3 for the MLG, the model had to compute distances of
the near neighbors from the focal nodes and then render them in ascending order. The
code did this with the same HEAPSORT algorithm as that used in ordering the data
in the Type 1 structure. Obviously a vectorized sorting module would have done a
faster job on this sort as well. In fact, the structure of the MLG itself contains enough
information on nearest neighbors so that no sorting should be required to compute
the appropriate interactions. Our MLG timing results therefore represent worst cases,
again a conservative comparison.
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2.2 Test results. Test results are in the form of graphs and tables. Some procedural
points are important to understand the discussions. First, the cost of Test 1 (identifying
near neighbors) should include sorting the nodes to restructure the MLG in order to
correspond to Tests 1, 1A, and 1B of the Type 1 data structure. The latter performs
Test 1 (Test 1A) by sorting (partitioning) the nodes according to values of Ri2d and
performs Test 1B by partitioning nodes according to the values of the spatial coordi-
nates. Our graphs of Test 1 costs includes the respective MLG and Type 1 sorting or
partitioning times. However, in Tables 1 and 2 of MLG results, the sorting time is in
a separate column because the cost of maintaining the MLG is independent of the
number of focal nodes in the problem. The remainder of the cost associated with MLG
Test 1 is proportional to the number of focal nodes, as is the time required in the case
of the Type 1 data structure for sorting or partitioning according to the Test 1, 1A, or
1B criteria.

The second point concerns the procedure for finding nearest neighbors (Test 3).
For Test 1 of the Type 1 data structure, the model sorts according to distance from a
given focal node and incurs no additional cost for determining nearest neighbors. The
procedure for finding nearest neighbors in the case of the MLG involves two steps:

(1) Identify enough near neighbors to contain the desired number of nearest
neighbors. The definition of "enough" will determine the maximum index offsets
(Ai, Aj, Ak) of near neighbors from each focal node. For the MLG, the maximum offset
along each axis should be no more than five for most practical problems.

(2) Order the set of near neighbors according to internode distance Rd in (1) to
determine the required number of nearest neighbors.

This would also be the procedure for the Type 1 data structure, if the method of
Test 1A or 1B were used to find near neighbors. Step (2) is much less expensive than
the HEAPSORT performed in Test 1 of the Type 1 structure when the total number
of nodes N is large. This is true because, in practice, the number of near neighbors
identified in Step (1) is much smaller than N. A final point is that this determination
of spatial nearest neighbors actually would not be performed when the MLG is in use.
Rather, a direct parallel calculation of interactions involving the near neighbors in
index space would most likely be performed. Once again, this is because the nearest
neighbors form a subset of those nodes already selected through index offsets as near
neighbors.

2.2.1. Graphs of costs vs. number of focal nodes. Figures 1-3 present the results
of our tests on the MLG data structure, and Figs. 4-6 present our results on the Type 1
data structure. The cost of each test is in units of seconds per frame, and the graphs
use a log-log scale in all cases. This is because our results cover a wide range in number
of designated or "focal" nodes, for which near neighbors are found. In most applica-
tions of interest, a large fraction (if not all) of the nodes will be processed as focal
nodes. The reader should exercise caution in comparing the graphs, as the maximum
order of magnitude on the vertical scale will vary from figure to figure.

Figure 1 shows the results of Test 1 (find a specified number of near neighbors
and write the MLG indices and ID to a buffer) for the MLG data structure. As indicated
above, the near neighbors are selected in groups defined by maximum index offsets
from the indices of each focal node (eq. (3)). If the maximum offsets for i, j, and k
have the same value A, then the number of near neighbors is

(4) Nnn (2A + 1 )3 1.

As shown in Fig. 1, the calculations used maximum offsets of 1, 3, and 5. In addition,
the dimensionless timestep is DT=0.6, which is reasonable for most problems. At
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FIG. 1. Cost perframe ofusing a Monotonic Logical Grid (MLG) data structure on the NRL Cray X-MP
computer. Test 1" Identify near neighbors of each focal node. The total number of nodes is 64K and the
dimensionless time interval between frames is DT 0.6.

small numbers of focal nodes, the cost goes asymptotically to the time required to
maintain the MLG from frame to frame. This restructuring process depends on DT
and N, but not on Ny, the number of focal nodes. We have included this "sorting"
time with Test 1 as a natural part of the cost in determining near neighbors. The
corresponding sorting time when using the Type 1 data structure constitutes most of
the cost of Test 1 in that case. At higher values of Ny, the cost ofthe MLG near-neighbor
access and write begins to increase linearly with Ns.

Figure 2 shows that accessing (retrieving) the data associated with the near
neighbors (MLG Test 2) varies linearly with Ns and becomes more expensive than
the simple writing of near neighbors indices. This is primarily because the code included
a significant number of data arrays: three position coordinates, three velocity coor-
dinates, and two extra words per particle for other information. Note that the vertical
scale of Fig. 2 is three orders of magnitude lower than the vertical scale of Fig. 1.

Figure 3 shows the cost of ordering the near neighbors according to distance from
their respective focal nodes (MLG Test 3). This would be the final step in determining
nearest neighbors using an MLG data structure. However, this is not really necessary
with a highly parallel processor, since we could simply perform any "nearest-neighbor"
interaction calculation by looping over the near neighbors identified in Test 1. Note
that at large Ns, MLG Test 3 costs more than Tests 1 and 2 and that the cost curves
depend primarily on the choice ofmaximum index offset A rather than the total number
of nodes N. In addition, the cost scales as Nnn log Nnn for a given value of Nf.
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FIG. 2. Cost perframe ofusing a Monotonic Logical Grid (MLG) data structure on the NRL Cray X-MP

computer. Test 2: Access the data associated with the near neighbors of each focal node and write to a buffer.
The total number of nodes is 64K and the dimensionless time interval between frames is DT 0.6.

Figure 4 shows the cost of Test for the Type data structure. To find near
neighbors, the model computed the distances of all nodes from a given focal node and
then used a HEAPSORT routine to render the distances in ascending order. Thus the
code actually computed nearest neighbors (Test 3) at the same time. Note that this
process depends on the total number of nodes N along with Nf; the scaling is N log N
because of the use of a HEAPSORT routine. This scaling has permitted us to plot the
two dashed curves for smaller values of N. The curves terminate at Nf N. A com-
parison of Figs. 1 and 4 shows that the cost of this near neighbors calculation for
N 64K is more than three orders of magnitude more expensive than accessing near
neighbors with an MLG.

Figures 3 and 4 show a difference of 2 to 3 orders of magnitude between the
Type 1 data structure (Test 1) and the MLG in the cost of finding nearest neighbors
when N 64K. This need not be true for significantly smaller values of N, if relatively
large index offsets are needed in the MLG for an accurate calculation. Such would be
the case if the spatial density of nodes were high enough that a significant fraction of
the nodes would influence any focal node. The cost of finding nearest neighbors for
N 2,000 using the Type 1 data structure is roughly equal to the MLG cost when
A 5, since Nnn-- 1,330--- N. Experience in molecular dynamics simulations of dimer
formation suggests that A 4 is adequate for N-- 10 diatomic molecules (Lambrakos
et al. [6]). For simulations of similar numbers of inert atoms, A 3 is adequate.

When comparing Figs. 1 and 4, the reader must remember that the MLG timings
are based on N 64K nodes. The value of N determines the MLG restructuring time,
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computer. Test 3: Order the near neighbors according to distances from each focal node. The total number of
nodes is 64K and the dimensionless time interval between frames is DT 0.6

which is the minimum value indicated on the graph (1.6 sec). This restructuring time
scales as N log N and would be much smaller for N 2,000, causing the curves to be
translated downward on Fig. 1. Thus, going to lower N (dashed curves in Fig. 4) will
not give the Type 1 data structure an edge over the MLG.

Figure 5 shows the cost of the alternative methods of identifying near neighbors
using the Type 1 data structure. In the method of Test 1A, the partitioning according
to distance from each focal node is much simpler than in HEAPSORT. Here we merely
ask which nodes are within a prescribed distance of each focal node. This test does
not provide nearest neighbors, in contrast to Test 1 above for the Type 1 data structure.
The information content is also much lower than that in the MLG data structure. Separate
runs used four prescribed distances, R 28, 38, 48, and 58, as described in 2.1. The
result scales linearly with the total number of nodes N and the number of focal nodes
N and is almost identical for all values of R. For Test 1 B, the code searched for those
nodes whose spatial coordinates fell within a prescribed coordinate interval containing
a given focal node. We ran the test twice, defining the interval by adding +/-mS to each
coordinate ofthe focal node, where m was an integer equal to two and four, respectively.
The results were almost identical to those for Test 1A. Equation (5) expresses the cost
for Tests 1A and 1B as

(5) C1A,I Nf x 0.036 x (N/65536) sec/frame.

A comparison of Figs. 4 and 5 for the Type 1 data structure shows that the HEAPSORT



TIMING ANALYSIS OF THE MONOTONIC LOGICAL GRID 377

N-65536
(64K)

104

/ N-IO000

10

102 =oo 500 10 104 105

NUMBER OF FOCAL NODES
FIG. 4. Cost perframe ofusing a conventional (Type 1) data structure on the NRL Cray X-MP computer.

Test 1: Identify near neighbors of each focal node by using a HEAPSORT routine to order the distances of all
nodes from the focal node. The total number of nodes is 64K. The dashed lines give predicted results for
N 10,000 and 2,000.

(Test 1) costs are over an order of magnitude more than testing to see which nodes
are within a prescribed distance of each focal node or a prescribed coordinate interval
(Tests 1A and 1B). However, the MLG is stillfaster than the latter method by two orders
of magnitude for large numbers of nodes and focal nodes (e.g., Ny N 64K).

Comparing Figs. 2 and 6, which correspond to the accessing of information on
near neighbors, shows that the costs in the two cases are approximately the same. In
fact the Type 1 data structure costs somewhat less, in apparent contradiction to ideas
previously stated. Because the MLG places the near-neighbor data in the vicinity of
each focal node, properly designed parallel hardware should be able to access the
near-neighbor data for all nodes simultaneously or at least with appreciable parallelism.
For a Type 1 data structure, the indices of near neighbors will be randomly placed in
memory and a "gather" operation must be performed. The results of this test point
out the importance of the particular hardware. The use of the Cray X-MP is actually
optimum for the Type 1 data structure rather than the MLG for two reasons. First,
the X-MP has a special hardware gather capability that provides vector speed to the
Type 1 random access. Second, the Cray vectorizes over only one index, and longer
vector loops are more efficient (faster) than shorter ones. The Type 1 data form
singly-indexed, long vectors while the data are triply indexed for a three-dimensional
MLG. The MLG vector loop is thus necessarily shorter. The results are still comparable
because the vector fetches of data in the MLG test are several times faster than the
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FIG. 5. Cost perframe ofusing a conventional Type 1) data structure on the NRL Cray X-MP computer.

Test A: Identify near neighbors ofeach focal node by testing to see which nodesfall within a given displacement
from the focal node. Results are the same for Test 1B: Identify near neighbors of each focal node by testing to
see which nodes have spatial coordinates that fall within a prescribed interval about the coordinates of thefocal
node. The total number of nodes is 64K. The dashed lines give predicted results for N 10,000 and 2,000.

hardware gather instruction, even though the MLG vector loops are short. Ironically,
the Texas Instruments Advanced Scientific Computer (ASC), that preceded the Cray
X-MP at NRL was a better model for a parallel processor because the ASC could
vectorize three indices simultaneously. This would have improved the speed of data
retrieval by a factor of three to four when using the MLG data structure. Note that
the data access times were not large enough to affect the comparisons of the overall
costs of the MLG and Type 1 data structures.

2.2.2. Tables. Tables 1 and 2 show the results of timing measurements of the
MLG data structure for various values of DT and maximum near-neighbor index
offsets from the focal nodes. The sorting times are in units of seconds per frame, since
the restructuring of the MLG does not depend on the number of focal nodes being
processed. The other timings for the MLG and the timings for the Type 1 data structure
do depend on the number of focal nodes. In molecular dynamics problems, an
appreciable fraction of the nodes will be treated as focal nodes. Thus the first three
columns must include a multiplicative factor (Ny) of order 104 to obtain the time
required per frame to perform each task.

The first three columns of Table 1 correspond to writing information on 27 nodes:
the 26 near neighbors of index offset 1 and the focal node itself. This is also the case
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FIG. 6. Cost perframe ofusing a conventional (Type 1) data structure on the NRL Cray X-MP computer.
Test 2: Access the data associated with the near neighbors of each focal node and write to a buffer

TABLE
Times for MLG data structure tests with index offsets of 1.*

DT

0.016
0.100
0.600
3.000

Test

2.93 x 10-5 Nf
2.91 x lO-SNf
2.91 x lO-SNf
2.93 x 10-5Nf

Test 2

5.07 x 10-5 Nf
5.07 x 10-SNf
5.08 x 10-5 Nf
5.07 10-5 Nf

Test 3

2.05 x 10-4Nf
2.05 x 10-4Nf
2.04 x 10-4Nf
2.04 x 10-4Nf

Sorting

8.88 X 10-1

1.10 X 10
1.56 X 10
3.05 X 10

* Times are in seconds per frame.
f Excludes the sorting time in column four.

TABLE 2
Times for MLG data structure tests with DT 0.6.*

26
124
342
1330

Test

2.91 x 10-SNf
7.46 x 10-5 Nf
1.44 x 10-4Nf
3.49 x 10-4Nf

Test 2

5.08 x 10-SNf
1.32x 10-4Nf
2.58 x 10-4Nf
6.46 x 10-4Nf

Test 3

2.04 x 10-4Nf
1.33 x 10-3Nf
4.35 10-3Nf
2.05 x 10-2Nf

Sorting

1.56 x 10
1.53 x 10
1.53 x 10
1.51 x 10

* Times are in seconds per frame. The index offset is the same for MLG indices i, j, and k.
t Excludes the sorting time in column four.
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in Table 3 for the Type 1 data structure. Note that the first three columns of Table 1
do not change with DT while the sorting time increases as DT increases. This is
consistent with our statement in 2.1 that a larger time interval (DT) between frames
will cause more swapping to be performed to maintain the MLG. The largest propor-
tional jump in sorting time occurs on crossing the DT 1.0 threshold. Test 3 is of
particular interest because the process of ordering the data according to distance is
completed. This requires computing the internode distances and then sorting. Using
a vectorized sorting algorithm of order N log N can reduce this time further. The
timing in Test 3 therefore represents an upper bound.

Table 2 shows the effects of increasing the number of near neighbors accessed
per focal node. For an offset A, the number Nnn of near neighbors is (2A + 1)3-1.
Note that the cost of writing more data goes up, but not linearly, with Nnn for Tests
1 and 2. This is because of the longer vector loops involved in accessing the information
and writing to the buffer as Nnn increases. For Test 3, the time varies approximately
as Nnn log Nnn, since the HEAPSORT algorithm is not vectorized and has approximate
computational complexity M log M for a set of M numbers that must be ordered.

Table 3 shows the results of tests on the Type 1 data structure. Since the nodes
have already been sorted on distance in Test 1, Test 3 (find nearest neighbors) is
automatically satisfied. For the MLG to determine a given number of nearest neighbors,
the index offset A must be sufficiently large to include those nearest nodes and an
additional sort according to distance must be performed. To carry out any calculation
that requires the "nearest neighbors," this extra sort is really unnecessary with the
MLG structure, provided that the safety factor (a sufficiently large value of A) can be
tolerated.

TABLE 3
Times for Type data structure tests with Nnn 26.*

DT

0.016
0.100
0.600
3.000

Test

1.56 x 10 Nf
1.57 x 10Ny
1.58 x 10 Nf
1.57 x lOONy

Test 2

1.66x O-SNf
1.63 x 10-5Nf
1.63 x 10-5 Nf
1.62x lO-SNf

Test 3

0.0
0.0
0.0
0.0

* Times are in seconds per frame.
t Includes HEAPSORT.

Table 3 shows that the cost of Test 1 when processing Ns focal nodes for the
Type 1 data structure is

(6) CTest Nf x 1.6 x [(N log N)/(65536 log 65536)] sec/frame.

Equation (6) includes the scaling of HEAPSORT for N nodes. For N 64K, Table 2
(column one plus column four) for the MLG and (6) tell us that the Type 1 data
structure will require between three and four orders of magnitude more computing
time for identifying near neighbors when using HEAPSORT than will the MLG data
structure. If the method of Test 1A or 1B to identify near neighbors is used, the Type
1 data structure will still cost two orders of magnitude more for reasonable numbers
of focal nodes (Ny--- N). The reason is that, for each focal node, 64K distances must
be computed and then sorted (Test 1) or partitioned (Tests 1A and 1B). Thus, the cost
of identifying near neighbors scales roughly as N x Ny. For Ny N, the cost scales
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approximately as N2. Maintaining the MLG requires only one global sort, and identify-
ing near neighbors is thus of order Nf.

Table 4 shows how the Type 1 data structure performs as a function of the number
of near neighbors for which data must be accessed. Note that the ordering of nodes
according to distance from each focal node (Test 1) does not change with Nnn. However,
the cost of accessing the data (Test 2) scales roughly with Nnn, as we might expect.

Table 5 shows how the cost of identifying near neighbors varies with the number
of near neighbors desired in the case of Tests 1A and lB. Test 1A finds those nodes
that are within some prescribed spatial displacement of each focal node, while Test
1B finds those nodes whose three spatial coordinates fall within some coordinate
interval containing a given focal node. As in the case of Test 1, the timings do not
depend on either DT or Nnn. In fact, the number of near neighbors that are found in
Tests 1A and 1B will depend on the particular configuration of nodes found at a given
time and the value of the radius and the coordinate interval, respectively, that have
been chosen to define which nodes are "near" neighbors.

3. Monotonic logical grid versus "Type 2" data structures. This section briefly
describes another class of data structures applicable to collections of moving nodes
with interactions between near neighbors. These data structures, denoted by "Type 2"
(T2), result in a computational complexity of order N for computing interactions, as
does the MLG. However, unlike the MLG, the T2 structures require extra memory to
carry information in the form of pointers that indicate which nodes are near neighbors.
This makes the T2 structures significantly more complex than the MLG, which simply
rearranges memory (index space) to reflect near-neighbor information. The T2 pointers
often appear in the form of linked-list variables that relate spatial groupings of nodes.

TABLE 4
Times for Type data structure tests with DT 0.6.*

26
124
342
1330

Test

1.58 x 10 Nf
1.59 x 10 Nf
1.57 x 10 Nf
1.59 x 10 Nf

Test 2

1.63 x 10-5Nf
5.47 x 10-SNf
1.40x 10-4Nf
5.22 x 10-4Nf

Test 3

0.0
0.0
0.0
0.0

* Times are in seconds per frame.
t Includes HEAPSORT.

TABLE 5
Timesfor alternative Type data structure tests with

DT= 0.6.*

30-70
100-300

5OO

Test 1A"

3.63 x 10-2Nf
3.63 x 10-2Nf
3.64 x 10-2Nf

Test B

3.57 10-2Nf

3.79 x 10-2Nf
* Times are in seconds per frame.

" Find nodes within a prescribed distance of a given
focal node.

t Find nodes with coordinates near those of a given
focal node.
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This feature could render them unvectorizable. As an example, we will describe the
method of Hockney and Eastwood [3]. Another T2 method is that of Appel 1], which
uses a hierarchy of clusters to represent near-neighbor relationships. Both of these
papers emphasize the methods of computing Coulombic or gravitational near-neighbor
interactions as much as the actual construction of the data structures. In addition to
the T2 structures designed for many-body dynamics, some of the more general near-
neighbor search algorithms are of interest here. The last section below briefly describes
the k nearest-neighbor finding algorithm of Kim and Park [4], which bears some
resemblance to the Monotonic Logical Grid.

3.1. The method of Hockney and Eastwood. The data structure of Hockney and
Eastwood, denoted by "HET2," covers the physical space with a set of identical cubical
cells, the length of a side being determined by the range of the near-neighbors
interaction. Each cell has a "head of chain" (HOC) variable that is one word in length,
and each moving node has a linked-list (LL) variable in addition to the other associated
data (e.g., position, velocity). The associated data are indexed by the particle ID as
in the Type 1 data structure. The HOC and LL variables form chains that identify all
of the node IDs associated with each spatial cell. In this way, the scheme maintains
coarse information on near neighbors: the near neighbors of a node are the other
nodes in the same cell plus those in the adjoining cells.

A simple example illustrates how this might be done. Suppose that the number
of nodes N is 100 and that at time the nodes with ID 10, 30, and 50 lie in cell
number 12. At each time step or frame, the algorithm cycles through the position data
of all of the nodes in order of ID value. Before the loop through node IDs is started,
all cells have an HOC of zero. For each successive node, beginning with ID 1, three
divide operations are performed to determine which cell contains the node. For node
ID= 10, the calculation shows that node 10 is in cell number 12. The algorithm sets
LL(10) 0, the value of HOC for cell 12 (that is, HOC(12)). The code sets HOC(12)
10, the ID of the first node found to lie in cell 12. At node number (ID=) 30, the
calculation again shows that this node is in cell 12. The code sets LL(30) HOC(12)=
10, the ID of the first node found to be in cell 12. The code than sets HOC(12)= 30,
the ID of the second node found to lie in cell 12. At ID= 50, the algorithm finds
the third node occupying cell 12. The algorithm sets LL(50)=HOC(12)=30 and
HOC(12) 50. After the loop over IDs is finished, the code can find which nodes are
in cell 12 by reading HOC(12) to obtain ID 50, then reading LL(50) to obtain ID 30,
and finally reading LL(30) to obtain ID= 10. Because LL(10)=0, only those three
nodes lie in cell 12.

After this procedure is performed, the "near neighbors" of a given node are then
all nodes found in the same cell plus the nodes in some set of the neighboring cells.
As in the case of the MLG, this is only coarse information on relative location, and
further distance calculations and sorting may be required. The details of updating or
recomputing the linked lists at each timestep will vary with user and application.

We need not perform test calculations to observe several advantages of the MLG
over this class of T2 schemes:

(1) Because the MLG manipulates computer memory directly rather than external
mapping of the memory (HOC and LL variables), the use of memory is more efficient.
The HET2 scheme requires extra memory in the form of one HOC per cell and one
LL variable per node, and an appreciable number of the cells could be empty.

(2) Depending on the problem, the optimum sizes and numbers of cells might
vary significantly over time. Furthermore, the cells must have constant or regularly
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varying size in each dimension independently of the others. The partitioning of space
might not, therefore, be very efficient.

(3) The computation of near-neighbor interactions using the HET2 structure is
not particularly vectorizable and cannot take advantage of a hardware gather capability
such as that on the NRL Cray X-MP. Replacing the linked-list concept by separate
list vectors for each cell would permit us to take advantage of the hardware gather
capability. This would drastically increase the requirements for memory or at least the
difficulty in allocating memory efficiently. The recent appearance of new multiple-
instruction-stream, multiple-data-stream (MIMD) and single-instruction-stream,
multiple-data-stream (SIMD) computers might permit parallelization of these
algorithms, bypassing the vectorization issue.

(4) Local restructuring of the linked-lists from frame to frame is not vectorizable
in the above prescription and may not permit vectorization on a Cray, for example.
The actual expense of constructing the linked lists at each timestep or frame, however,
might still be small.

(5) The T2 algorithm is more complex and cumbersome than the MLG algorithm
and thus more susceptible to programming errors. Moreover, extension of T2 to
four-dimensional (space-time) problems or even higher dimensions would be far less
transparent than for the MLG.

The extension of the MLG data structure to higher dimensions could be quite
important in some calculations. Attributes distinguishing nodes from each other would,
in fact, determine how various nodes participate in the calculation. The MLG data
structure could include extra dimensions corresponding to these attributes, so that
near neighbors in index space would be spatial near neighbors with similar attribute
values. We can also envision using a number of relational operators in addition to
"less than or equal to" (-<), which has been used to construct the three-dimensional
MLG data structure considered in this paper.

3.2. The method of Kim and Park. One class of algorithms that is relevant to our
discussion but that has not been designed particularly for many-body calculations is
that of k nearest neighbor searches. Kim and Park [4] have recently presented an
algorithm of this type based on an ordered partition. The method of Kim and Park,
denoted by "KP," has similarities to both the MLG and the Type 2 data structures
designed for many-body dynamics. The statistical analysis presented by KP for their
new algorithm thus sheds some light on the MLG algorithm and perhaps other Type 2
methods.

As an example relevant to our paper, consider a set S of N objects, each having
a set of coordinates (x, y, z) specifying its spatial location. For a given point with
coordinates (x’, y’, z’), KP have devised a two-step procedure for finding the k objects
in S that are nearest to these coordinates. The first step consists of constructing a
search tree through ordering and partitioning the N sets of coordinates, independently
of the focal coordinates (x’, y’, z’). The second step involves a search that is quite fast
because of the manner in which the tree was constructed.

This method bears some similarities to the MLG approach (Appendix I). The
ordering and partitioning at the/th level of the search tree depends only on the values
of the /th coordinate for the N objects in S. Furthermore, only one search tree need
be constructed for a given configuration of objects (corresponding to a given timestep
in a molecular dynamics simulation, for example). The nearest objects within S to any
value of (x’, y’, z’) may be accessed using the same search tree. In the case of the
MLG, the values of the/th MLG index assigned to,the members of S depend only on
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the respective values of the Ith spatial coordinate. In addition, only one global MLG
restructuring step is required for a given configuration or timestep. The latter feature
is also true of other Type 2 data structures.

Significant differences between the MLG and the KP algorithm also exist. For
many-body dynamics calculations, the KP algorithm appears to require the construction
of a new search tree from scratch at each timestep, while MLG restructuring requires
only local swaps of data in memory. The possibility exists that a similar local restructur-
ing of the search tree might be devised. A second difference is that the KP algorithm
requires NI searches to find the neighbors of Nf focal nodes in a many-body simulation.
The MLG requires no searching, since access of near neighbors is automatic. On the
other hand, the reader should recognize that, for the fast k nearest neighbor finding
algorithm of KP, the focal coordinates (x’, y’, z’) need not correspond to some member
of S. The MLG algorithm, in contrast, applies most directly to near-neighbor relation-
ships or interactions among the objects within S. The KP algorithm is thus more general
in this regard, although further development of the MLG may alter the situation.

The Kim-Park Algorithm is like other Type 2 data structures in that the storage
of data is static. Pointers map the object data to nodes in the search tree, playing the
same role as the linked lists in the Type 2 data structure of Hockney and Eastwood,
for example. The accessing ofdata on near neighbors then requires a "gather" operation.
Another similarity is the difficulty of vectorization of near-neighbor calculations on a
Cray using the search tree or, alternatively, the need for significant amounts of memory
to construct arrays of data on near neighbors to permit vectorization of interaction
calculations.

Some of the above disadvantages might not be as limiting as they first appear.
New MIMD and SIMD computers should provide parallelization of near-neighbor
calculations using the KP algorithm, bypassing vectorization problems. The possibility
also exists that the storage of data in computer memory might be rearranged according
to the structure of the search tree, thus adopting the philosophy behind the construction
of the MLG.

4. Summary. We have investigated the relationships of the MLG data structure
to two standard data structures and compared the different algorithms for several tasks:

(1) Identifying the near neighbors of a set of focal nodes within a set of noninter-
acting nodes that move randomly;

(2) Retrieving information on the near neighbors that were identified in (1); and
(3) Ordering the information retrieved on the near neighbors. The order cor-

responded to the distances of near neighbors from the respective focal nodes.
In many-body calculations, a large fraction of the total set of nodes will have to be
treated as focal nodes throughout the evolution of the system. Thus the access of data
on near neighbors will scale as N2mthe so-called "combinatorial explosion"--for most
conventional data structures. Such conventional structures generally fall in the Type 1
category considered above. Even for the clever Type 2 approaches considered in 3,
implementation and performance for many-body dynamics on a given parallel architec-
ture might fall short of the MLG. In the latter case, the source of the advantage is that
the MLG restructures data in computer memory directly--without an explicit apparatus
such as linked lists.

Two parameters that determine the performance of the MLG are the dimensionless
frame time DT and the maximum index offset h. The value of DT will determine how
much work will be required to restructure the MLG at each timestep. If the value of
DT is less than one, the MLG is easy to maintain. While the required index offset
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depends on the density of nodes and the desired number of nearest neighbors, offsets
larger than four or five should seldom be necessary.

The MLG approach has several strengths" a requirement for only one reordering
process per frame, order N scaling of calculations of near-neighbor interactions and
associations, ready implementation on vector or highly parallel computers, and direct
restructuring of memory, eliminating the need for an expensive, partly scalar apparatus
(e.g., linked lists) for the maintenance of near-neighbor identification data. As an
interesting side issue, computer hardware can directly impact the comparisons of data
structures. In this case, the Cray X-MP hardware gather capability permitted the test
code to retrieve near-neighbor data somewhat more quickly for the Type 1 data structure
than for the MLG data structure, when both were programmed in FORTRAN. This
was not, however, a significant factor in the comparison.

Appendix. Constructing a Monotonic Logical Grid---An example. Begin with a
collection of 16 objects randomly distributed in space as shown in Fig. A1. We will
organize these in a section of computer memory so that near neighbors in physical
space will be near neighbors in index space. This indexing scheme or rule for the data
organization in memory is an example of a Monotonic Logical Grid (MLG).

Step 1. Give each object x and y coordinates in two-dimensional space relative
to some origin. This has been done in Fig. A1.

FIG. A1

Step 2. Decide on the "type" of MLG one wants. This decision is expressed in
terms of a rule for constructing the grid. The rule may, for example, be
stated as follows"

Rule. Choose a computer memory location or index (i, j) for each object such that

x(i,j)<-x(i+l,j), y(i,j)<--y(i,j+l)

where and j run from one to four.
Step 3. Implement the rule as follows, remembering that the MLG chosen here

will occupy a 4 x 4 index space in memory"
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(A) Order all 16 objects according to increasing y-coordinate, that is, from lowest
to highest y-value. In Fig. A2 these are labeled A through P.

(B) Give the objects with the four lowest y-values (that is, objects A, B, C, and
D) a j index of one. Give those with the next four lowest y-values (E, F, G, and H)
a j-index of two, and so on. Figure A3 shows each set of four connected with straight
lines.

(C) Now assign an /-index to each object in a given set of four with the same
j-index according to the selected MLG rule. This assignment is in Fig. A4. Note that
those objects with the same /-index are connected with a line.
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The two-dimensional MLG in index space looks like Fig. AS. The letters in Fig.
A5 match the letters labeling specific nodes on the previous figures. Nodes (letters)
that are adjacent in memory (index space) are connected by lines in Figs. A3 and A4.
Thus adjacency of the node data in memory corresponds to geometric adjacency of
the nodes.

The eight near neighbors of point H in index space are points A, C, D, E, F, K,
J, and L in real space as shown in Fig. A6. The dashed line in Fig. A6 encloses the
near neighbors of H in index space (compare with Fig. AS).

Acknowledgments. We appreciate many helpful discussions with Mr. M. S. McBur-
nett and Dr. S. Jajodia of the Naval Research Laboratory Information Technology
Division.

4 M 0 N P

3 K J L

2 G E H F

1 B A C D

FIG. A5



388 J. M. PICONE, S. G. LAMBRAKOS, AND J. P. BORIS

Y

X
FIG. A6

REFERENCES

A. W. APPEL, An efficient program for many-body simulation, SIAM J. Sci. Statist. Comput., 6 (1985),
pp. 85-103.

[2] J. P. BORIS, A vectorized "near neighbors" algorithm oforder N using a monotonic logical grid, J. Comput.
Phys., 66 (1986), pp. 1-20.

[3] R. W. HOCKNEY AND J. W. EASTWOOD, Computer Simulation Using Particles, McGraw-Hill, New
York, 1981, Chap. 8, pp. 267-309.

[4] B. S. KIM AND S. B. PARK, A fast k nearest neighbor finding algorithm based on the ordered partition,
IEEE Trans. Pattern Analysis and Machine Intelligence, 8 (1986), pp. 761-766.

[5] S. G. LAMBRAKOS AND J. P. BORIS, Geometric properties of the monotonic Lagrangian grid algorithm

for near-neighbor calculations, J. Comput. Phys., 73 (1987), pp. 183-202.
[6] S. G. LAMBRAKOS, J. P. BORIS, R. GUIRGUIS, M. PAGE, AND E. S. ORAN, Molecular dynamics

simulation of NE)Eformation using the monotonic Lagrangian grid, J. Chem. Phys., (1989), pp. 4473-
4481.

[7] A. NIJENHUIS AND H. S. WILF, Combinatorial Algorithms for Computers and Calculators, Academic
Press, New York, 1978, p. 140.

[8] D. B. REID, An algorithm for tracking multiple targets, IEEE Trans. Automat. Control, 24 (1979),
pp. 843-854.



SIAM J. ScI. STAT. COMPUT.
Vol. 11, No. 2, pp. 389-397, March 1990

()1990 Society for Industrial and Applied Mathematics
011

A NOTE ON THE USE OF SYMMETRIC LINE GAUSS-SEIDEL FOR
THE STEADY UPWIND DIFFERENCED EULER EQUATIONS*

WIM A. MULDERt

Abstract. Symmetric Line Gauss-Seidel (SLGS) relaxation, when used to compute steady
solutions to the upwind differenced Euler equations of gas dynamics, is shown to be unstable. The
instability occurs for the long waves. If SLGS is used in a multigrid scheme, stability is restored.
However, the use of an unstable relaxation scheme will not provide a robust multigrid code. Damped
Symmetric Point Gauss-Seidel relaxation is stable and provides similar multigrid convergence rates
at much lower cost. However, it fails if the flow is aligned with the grid over a substantial part of
the computational domain. Damped Alternating Direction Line Jacobi relaxation can overcome this
problem.

Key words, line relaxation, stability, multigrid method, steady Euler equations

AMS(MOS) subject classifications. 35L65, 65N20, 76N15

1. Introduction. The Euler equations that describe the flow of an inviscid com-
pressible gas can be integrated in time by means of an implicit method. This is desired
if the flow displays features on different scales, or if the steady state has to be com-
puted efficiently. The implicit formulation gives rise to a large sparse system of linear
equations, which can be solved by factorization methods such as the Alternating Direc-
tion Implicit method [4] and Approximate Factorization [1]. However, if the spatial
discretization is obtained by upwind differencing, the implicit system is diagonally
dominant and can be solved more efficiently by classical relaxation methods. This
was pointed out and explored by van Leer and myself [15], and, independently, by
Chakravarthy [3].

In [15] we found that one particular relaxation method, Symmetric Line Gauss-
Seidel (SLGS), did not converge as fast as expected, and sometimes did not converge
at all. This was thought to be caused by the numerical boundary conditions. The
same problem was encountered in [13].

Here it is shown that the convergence problem is due to the intrinsic instability
of the SLGS scheme. In 2, the classical von Neumann stability analysis is carried out
on the system of linearized Euler equations in two dimensions. As the Fourier modes
used in the analysis are not the proper eigenfunctions for Gauss-Seidel relaxation,
some numerical experiments were carried out with the nonlinear equations (3).

The instability occurs for the long waves. If SLGS is applied as a relaxation
scheme in a multigrid code, the corrections from coarser grids are sufficient to suppress
the instability. This is shown in 4. A multigrid scheme based on SLGS relaxation
has already been used in [8]. However, damped Symmetric Point Gauss-Seidel (SGS)
provides similar convergence rates at a lower cost, and damped Alternating Direction
Line Jacobi has much better convergence factors.

The main results are summarized in 5.
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Project at Stanford University, under Office of Naval Research contract N00014-82-K-0335.

Department of Computer Science, Stanford University, Stanford, California 94305-2140. Present
address, Koninklijke/Shell Exploratie en Produktie Laboratorium, Postbus 60, 2280 AB Rijswijk, the
Netherlands.
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2. Stability analysis. The flow of an ideal inviscid compressible gas can be
described by the Euler equations. In conservation form, these are given by

(2.1a)
Ow Of Og
o-7 + + N o.

The vector of states w and the fluxes f and g are

pu pu2 + p puv(2.1b) w
pv f puv

g
pv2 + p

pE pull pvH

The density of the gas is denoted by p. The x- and y-component of the velocity are
u and v, respectively. The energy E, total enthalpy H, pressure p, and sound speed c
are related by

1 +1 p
(2.2) E=

(7 1) p (u2 + v2)’ H=E+
p

c2
p P

A nonconservative form of (2.1) is

(2.3a)
Ow’
Ot

OW OW
+ A-O---x + S---y O,

where

(2.3b) A= 0 u 0 0 0 v c 0 6v
c 0 u 0

B=
0 c v 0

*w’= @
0 0 0 u 0 0 0 v 6S

Here S log(p/p) is the specific entropy.
The stability analysis will be carried out for the discretization of the linear residual

operator

(2.4) n A-x + Oy’

with constant coefficients and periodic boundary conditions. The operator is dis-
cretized in space by upwind differencing. This is accomplished as follows. The matrix
A is diagonalized by Q1, according to

(2.5a) A=Q1A1Q-1 A1 u 0-1 0 0

O u QI= 1 0 0 1
u+c 0 0 1 0

For B we have

(2.5b) B Q2 A2 QI, A2 v 0 0 1

O v Q2= 0 0 1
v+c 0 1 0
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To obtain an upwind scheme, the matrix Ak (k 1, 2) is split into Ak+ and A-, which
contain the positive and negative elements of Ak, respectively. This implies

Now define

(2.7) A+/- QAQ, B+/- =_ Q2A2 Q.
It follows that

A=A++A-,
B-B++B-,

IAI =_ QIAIQ’ A+ A-;

IBI =_ QIAIQ B+ B-.

The discrete linear residual operator becomes

(2.9)
1

Lh =_

_
[A+(1 T_) + A-(T, 1)] + -[B+(1 T’) + B-(Ty 1)].

Here the shift operators are defined by TxWkl,k --" Wkl-l,k2, TyWkl,k Wkl,k2+l- For
simplicity, the grid is assumed to be uniform (hx hy h).

For the stability analysis we consider the usual Fourier modes of the form

(2.10a) exp [-i (kO + k20u)],

where kl and k2 are spatial indices on a N1 x N2 grid. The frequencies for a grid of
the same size are

l 12(2.10b) 0 Zr-, 0v Z’22, ll 0,...,Yl- 1, 12 0,...,N2- 1.

The Fourier transforms of the shift-operators T and Tu are

’ -= exp(i0:), "u -= exp(i0u) 0 <_ 0 < 2’, 0 _< Oy < 2.

The relaxation operator for SLGS, with the line in the y-direction, is the product
of a forward sweep

(2.12a) O1 I-/17/-lL, //1 Lh 1

and a backward sweep

(2.12b) 02 I-/IT/-L, 1 A+,-+ -resulting in

(2.12c) (SLCS (2(1.

Here I denotes a 4 x 4 identity matrix. If/1/1 or/1)/2 is singular, the pseudo-inverse
should be used. If these matrices are nonsingular, then we obtain

(2.12d) 0sLcs =/X/- A+/t;/- A-.
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FIG. 1. Amplification factor of SLGS relaxation .for u/c 0.8 and vie O.
corresponds to a 32 x 32 grid.

The figure

This shows that SLGS is an exact solver if [u >_ c, because either A+ or A- vanishes
in that case. The fourth equation of (2.3), which describes the convection of entropy
along streamlines, is also solved exactly, for all u and v.

The stability of this scheme is investigated by computing the amplification factor
of the residual

(2.13) r max tcr(Oz, Oy),
O ,Oy

gr(Ox Oy) -- p(LhSLGS(Lh)t)
Here p(.) denotes the spectral radius. The operator ,h can be singular [9, Lem.
3.1], and the waves for which it is singular are obviously not damped or amplified.
To exclude these waves, the operator Lh and its pseudo-inverse are included in the
definition of at. The value ofr will depend on the velocities u/c and v/c, and on the
grid-size N1 N2.

Figure 1 shows ar(0x, 0u) for u/c 0.8 and v/c O. Here N1 N2 32. The
instability is clearly visible. It occurs for the long waves, at ]0x 10ul 2r/32. For
the given u/c and v/c, the instability does not show up on a 16 x 16 grid, whereas it
becomes worse on finer grids.

Similar instabilities occur for most values of lu/c[ < 1 and Iv/cl _< 1, in some
cases on grids coarser than in the example of Fig. 1.

3. Numerical experiments. It is well known that Fourier modes are not the
proper eigenfunctions for Gauss-Seidel relaxation. Therefore, the validity of the above
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1

o o

o

FIG. 2. As Fig. 1, but for van Leer’s flux-vector splitting.

analysis may be questioned, especially for the longer waves. In this section the insta-
bility will be investigated by numerical experiments on the system of nonlinear Euler
equations (2.1).

For the upwind differencing, van Leer’s flux-vector splitting (FVS) [14] is used
as an approximate Riemann-solver. This scheme gives rise to matrices A+/- =_ df+/dw
and B+/- dg+/-/dw, which are different from those in (2.7). Therefore, the stability
properties of this scheme will be different from those predicted in the previous section,
but not by too much. Figure 2 shows the amplification factor for FVS, using the same
parameters as in Fig. 1.

As a test problem, flow through a straight channel is considered. The grid is
square and uniform. There are hard walls on the lower and upper sides. Boundary
conditions at the walls are implemented by mirror cells that contain reflected states.
Characteristic boundary conditions are used at the inlet and outlet. In principle,
overspecification can be used because the Riemann-solver takes care of the appropriate
switching between incoming and outgoing characteristics. However, because FVS
is not a very good approximate Riemann-solver, the use of characteristic boundary
conditions is recommended.

The free-stream values are chosen to be

(3.1) p 1, uo 0.8, vo 0, co 1,

whereas the gas-constant 1.4. As initial conditions, we take the free-stream values
and add random noise with an amplitude of 10-5 The steady state is given by the
free-stream values.
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TABLE 1
Amplification factors for flux-vector splitting on grids of vari-

ous sizes, with uoo/coo 0.8 and Voo/Coo 0.0. The result of the
Fourier stability analysis is denoted by "gr. The other values are de-
termined from numerical experiments on the full system of nonlinear
Euler equations.

N gr Observed
16 16
32 32
64 64

0.594
1.853
4.096

0.80
1.45
2.55

Table 1 shows the predicted and observed amplification factors. There is a clear
qualitative agreement. Inspection of the difference between the nonconverged solution
and the numerical steady state confirms the long-wave instability.

4. Multigrid. The instability of SLGS occurs for the long waves. It is therefore
expected that the combination of SLGS and the multigrid technique will provide a
stable scheme. The analysis of multigrid convergence for the linearized Euler equations
with constant coefficients is presented in detail in [9]. The multigrid convergence factor
,r of a given relaxation scheme is estimated by considering two grids, a fine and a
coarse. The number of cells on the coarse grid is one-fourth of that on the fine.
For the restriction to the coarser grid, simple averaging is used. Piecewise constant
interpolation is applied for the prolongation back to the fine grid (cf. [7]). In the
analysis, it is assumed that the coarse-grid equations are solved exactly. The combined
result of the coarse-grid correction and the relaxation scheme is described by ,r. This
two-level multigrid convergence factor gives a reasonable estimate of the convergence
speed when many coarser grids are used.

The result of the so-called two-level analysis is shown in Fig. 3. The instability has
disappeared. The overall convergence rate is good, except near the singularities of the
(linear) residual. The slow convergence around v 0 occurs when the flow is aligned
with the grid over a substantial part of the computational domain. To overcome the
problem of strong alignment [2], one might consider a relaxation scheme that consists
of a SLGS step with the line in the x-direction, followed by SLGS with the line in the
y-direction. This will be called Alternating Direction SLGS. ADSLGS turns out to be
stable in a larger region of the (u/c, v/c)-plane. However, the instability persists for
some parameters and is so severe that it does not disappear in a multigrid scheme.

A scheme that suffers from strong alignment in a similar way as SLGS is damped
Symmetric Point Gauss-Seidel (SGS) [9]. It is stable as a single-grid scheme and
much cheaper than its undamped line variant, and is therefore to be preferred. If one
wants a uniformly good convergence rate, a multigrid scheme that employs damped
Alternating Direction Line Jacobi (ADLJ) can be used. The linear two-level analy-
sis predicts a multigrid convergence rate At(u/c, v/c) <_ 0.526 for this scheme. The
relaxation operator is described by the product of line relaxation in the y-direction,
namely,

(4.1a) 1 I- [I{ILh, 1I gh + [A+(2F- + 1)- A-( + 1)],

and line relaxation in the x-direction:

(4.1b) 02 I-/)Lh,
1/2/2 ]_,h + [B+(- + 1)- B-(y + 1)1.
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1

0

FIG. 3. Multigrid convergence factor .for SLGS relaxation as a function of u and v (c 1).
Each point is computed for a 64 64 grid.

Note that the relaxation operators H1 and H2 are obtained by selecting the main-
diagonal (in terms of blocks) and two off-diagonals (in one direction) from the residual
operator. The damping is obtained by subtracting the two other off-diagonals in the
direction perpendicular to the line from the main-diagonal. Figure 4 shows the two-
level multigrid convergence rate for damped ADLJ relaxation.

5. Conclusions. SLGS relaxation is unstable if used for the implicit upwind
differenced Euler equations. The instability occurs for the long waves and, there-
fore, must be sensitive to the numerical boundary conditions and the precise form
of the spatial discretization. The instability is predicted by linear Fourier analysis,
which is not completely appropriate for this relaxation scheme. However, numerical
experiments on the nonlinear equations confirm the long-wave instability.

The instability can be suppressed by a multigrid scheme. However, in that case
damped Symmetric Point Gauss-Seidel is a better choice, because it is stable as a
single-grid scheme and can produce similar multigrid convergence factors at a much
lower cost [9]. This scheme, however, does not provide good convergence in cases of
strong alignment, the flow being aligned with the grid.

A uniformly good convergence rate can be obtained with damped Alternating
Direction Line Jacobi, which has about the same cost as SLGS. The two-level analysis
indicates a convergence factor that is at worst 0.562.

The use of SLGS has been recommended for the Navier-Stokes equations in [5].
Numerical experiments in [6] suggest grid-independent convergence rates. Because the
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FIG. 4. Multigrid convergence factor .for ADLJ relaxation as a function of u and v (c 1).
Each point is computed for 64 64 grid.

spatial discretization is essentially different in the long-wave regime, due to viscous
terms and a different form of flux-splitting, the present analysis does not automatically
carry over to this situation.

Finally, it should be noted that the results of two-level analysis tend to be too
pessimistic. If one considers a wave perpendicular to a streamline, i.e., uO. -vO,
and concentrates on the long waves (small 0 and ON) the coarse-grid correction
operator / can be approximated by if I- (2h)tLh, which has an eigenvalue- This value will dominate the results of two-level analysis, as can be seen in Fig. 4.2"
However, the eigenvalue corresponds to a wave for which the exact operator vanishes
and, therefore, describes convergence of the truncation error. If one is only interested
in convergence to a level where the iteration error is of the order of the truncation
error, this value is clearly not important. The reader is referred to [10], [11], [12] for
further details and applications.
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VORTEX METHODS FOR SLIGHTLY VISCOUS THREE-DIMENSIONAL
FLOW*

DALIA FISHELOV"

Abstract. Vortex methods for slightly viscous three-dimensional flow are presented. Vortex methods
have been used extensively for two-dimensional problems, though their most efficient extension to three-
dimensional problems is still under investigation. A method that evaluates the vorticity by exactly differentiat-
ing an approximate velocity field is applied. Numerical results are presented for a flow past a semi-infinite
plate, and they demonstrate three-dimensional features of the flow and transition to turbulence.

Key words, vortex methods, boundary layers, turbulent flow
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1. Introduction. Vortex methods as suggested by Chorin [12] were applied to
various problems to simulate incompressible flows (see [34] and [32] for a review).
These grid-free methods represent complicated flows by concentrating the computa-
tional elements in regions where small-scale phenomena predominate and few elements
elsewhere. In addition, vortex methods introduce no artificial viscosity, and therefore
they are adequate for solving the slightly viscous Navier-Stokes equation.

Vortex methods have been used extensively in the last 15 years, especially for
two-dimensional flows. Although three-dimensional vortex methods have been con-
sidered inherently difficult, we represent a scheme that involves no elaborate computa-
tions and is a natural extension of the two-dimensional schemes. We applied this
method to a three-dimensional flow past a semi-infinite plate at high Reynolds number.
The velocity far away from the plate is assumed to be uniform. If we assume that the
flow is independent ofthe spanwise variable, the problem is two-dimensional, otherwise
the flow is three-dimensional. Chorin [11]-[13] solved the two-dimensional problem
numerically; he used computational elements, called blobs, with a smoothed kernel.
This kernel is obtained by convolving the singular kernel, which connects vorticity and
velocity, with a smoothing function (called a cutoff function). The latter approximates
a delta function in the sense that a finite number of its moments are identical to those
of a delta function.

A numerical solution to a three-dimensional problem was introduced in 1980 by
Chorin [11] and by Leonard [32]-[34] using different vortex filament methods. In the
filament method we approximate the initial velocity and vorticity along vortex lines,
whose tangents are parallel to the vorticity vector. Since circulation is conserved along
vortex lines, there is no need to update vorticity. Both authors [11], [34] stepped the
Navier-Stokes equations in time by splitting them to the Euler and the heat equations.
In [33] Leonard introduces one of the earliest vortex methods to solve the inviscid
three-dimensional Euler equations numerically. In his computations he was able to
simulate the time development of spotlike disturbances in laminar three-dimensional
boundary layer. He suggested to split the velocity field into a sum of the velocity at
infinity and a perturbed one, and to track vortex lines and compute their curvatures.

* Received by the editors April 25, 1988; accepted for publication (in revised form) May 2, 1989. This
work was partially supported (at the Lawrence Berkeley Laboratory) by the Applied Mathematical Sciences

Subprogram of the Office of Energy Research, U.S. Department of Energy under contract DE-AC03-
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f Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley,
California 94720. Present address, Department of Applied Mathematics, The Weizmann Institute of Science,
P.O. Box 26, Rehovot 76100, Israel.
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He extended his method to the viscous case [34] using a core spreading technique, in
which the core of the filaments was changed every timestep to satisfy the heat equation.
This scheme was proved to approximate the wrong equations, rather than the Navier-
Stokes equations [22].

Chorin suggested a different filament method to solve the three-dimensional
problem. He approximates vortex lines by segments and then, using the Biot-Savart
law, he updates the endpoints of the segments for the Euler equation at every timestep.
The heat equation is approximated in the statistical sense via a random-walk algorithm.
Since Chorin uses segments to approximate vortex lines, his algorithm involves no
elaborate calculations, such as evaluation of curvatures. However it is not highly
accurate in space. The purpose of this paper is to modify Chorin’s scheme to gain
higher spatial accuracy.

Following Beale and Majda [4], [5] and Anderson and Greengard [1], [2], we
achieve higher spatial accuracy by generalizing the two-dimensional blobs to three-
dimensional ones. Vorticity as well as blob locations must be updated at every timestep.
Two versions of the three-dimensional blob extension were suggested. Beale and Majda
suggested approximating spatial derivatives with finite differences, whereas Anderson
explicitly differentiates the smoothed kernel mentioned above. We chose to apply the
method of Anderson, since it eliminates one source of error, associated with spatial
differentiation. The algorithm and its accuracy is then similar to the two-dimensional
one. The results shown here are the first attempt to apply this scheme numerically.
Convergence was proved in [3] and [10] for the Euler equations. Applying the
convergence proofs to our scheme, we show that for smooth cutoff functions second-
order accuracy in space is gained. Higher-order space accuracy can be achieved by
using cutoff functions, in which more moments agree with those of a delta function.
We were able to resolve three-dimensional features of the flow and transition to
turbulence. The numerical results are in agreement with experimental results shown
in [25], which suggest that at high Reynolds numbers there exist a large number of
small hairpins.

Spectral methods, which are highly accurate for smooth flows, were used for
turbulent flows by Orszag and Kells [35] and Orszag and Patera [36]. In [35] and [36]
periodic boundary conditions in the streamwise direction were assumed. Note that
nonperiodic boundary conditions in the streamwise direction might impose nonsmooth-
ness of the solution, such as that of the Blasius solution at the leading edge. This
nonsmoothness must be carefully treaded when using a spectral method. If we use a
finite-difference scheme, it requires a mesh that is inversely proportional to the square
root of the Reynolds number. However, a new finite-difference scheme with local mesh
refinement has recently been developed by Bell, Colella, and Glaz [7] and its application
for three-dimensional flows with transition to turbulence need to be tested.

The paper is organized as follows. In 2 we represent the fundamental equations,
in 3 the numerical scheme, and in 4 we describe the boundary conditions. In 5
we show that if we use a smooth cutoff function, second-order space accuracy is assured
for the Euler equations. The error from the viscous term is discussed as well. We also
suggest a new way for treating this term. Section 6 represents numerical results and
7 concludes the paper.

2. Representation of the problem. The flow is described by the Navier-Stokes
equations, formulated for the vorticity :

c,/ (u. V)-(:. V)u= R-A:,
(2.1)

div u 0,
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where : =curl u, u= (u, v, w) is the velocity vector, r= (x, y, z) is the position vector
and A V2 is the Laplace operator. R UL! u is the Reynolds number, where U and
L are typical velocity and length, respectively, and , is the viscosity.

We will solve the above equations for a flow past a semi-infinite flat plate located
at z =0, x->0. Far away from the plate (for zc) there is a uniform flow in the
positive x direction, i.e.,

u=(U,0,0) forz, t>0.

On the plate we impose the no-leak boundary condition u. n 0, where n is normal
to the plate. We also impose the no-slip boundary condition u. s=0, where s is
tangential to the plate. Initially, u (Uoo, 0, 0) at 0.

The Prandtl equations are known to approximate the Navier-Stokes equations
near the plate, and are used therefore in a thin layer 0<= z =< Zo. The Navier-Stokes
equations are employed in the region z-> Zo. In the Prandtl equations we assume that
sc (sol, :2,0), i.e., :3 is negligible in comparison to the other components (see, e.g.,
[39]). Thus

a,l + (u. V),

(2.2) Ot2-}- (U" V):2 R-lOZzzf2,

divu=0,

Ov Ou
(2.3) so’= Oz’ so2 zz’ u=(u, v, w).

The Pradtl equations admit the two-dimensional steady state solutionthe Blasius
solution. However, the three-dimensional Navier-Stokes equations are unstable at high
Reynolds numbers (R => 1000), i.e., small perturbations in the Blasius solution may
cause large perturbations in the solution as time progresses. Once the disturbances in
the Blasius solution begin to grow, spanwise vortices appear, the solution then depends
on the spanwise variable y, and there is a transition to turbulence.

Theoretical aspects of this instability are given in Benney and Lin [9] and Benney
[8]; they suggest that the secondary motions produced by the interaction of three-
dimensional modes with two-dimensional ones can produce profiles that are highly
unstable. Physical experiments done by Kline et al. [31], Klebanoff, Tidstrom, and
Sargent [30], and Head and Bandyapodhyay [25] showed that secondary motion,
caused by the production of longitudinal vorticity due to three-dimensional disturb-
ances, creates highly unstable profiles leading to turbulent spots. Klebanoff, Tidstrom,
and Sargent [30] suggested that the weak three-dimensional disturbances may control
the nonlinear development of the flow and its transition to turbulence.

Kinney and Paolino [28], Schmall and Kinney [43], and Kinney and Cielak [29]
suggested vorticity formulation along with a boundary condition for the vorticity on
the body. Recently, van der Vegt [44] performed two- and three-dimensional calcula-
tions using a vortex-spectral method. He simulated the flow over a cylinder and pointed
out the ability of the vortex model to describe typical viscous phenomena, such as
flow separation.

As the outcome of numerical and physical experiments two main models of the
turbulent boundary layer have emerged. One is the coherent structure with large
horseshoes [27], and the other is the uncorrelated hairpins 14], [42]. Using a numerical
simulation, Kim and Moin [27] found out that the bursting process is associated with
well-organized vortical structures described by large horseshoes. On the other hand,
Chorin [14], Siggia [42], Kerr [26], and Head and Bandyapodhyay [25] claim that the
structure is better described by uncorrelated small hairpins.
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The experiments of Head and Bandyapodhyay [25] for high Renyolds numbers
(R _-> 1,000) indicate the existence of large numbers of vortex pairs or hairpin vortices,
extending through at least a substantial part of the boundary-layer thickness; for the
most part they are inclined to the wall at a characteristic angle of 40 to 50. At low
Reynolds number (R-<_800) the hairpins are much less elongated and are better
described as horseshoe vortices or vortex loops. Head and Bandyapodhyay [25] note
that almost all investigators have used experimental techniques that limit the observa-
tions to relatively low Reynolds numbers, where the structure is markedly different
from that at high Reynolds numbers; vortex lines tend to appear as low aspect-ratio
loops rather than extended vortex pairs or hairpins. In our calculations, we found
support to the hairpins model, rather than to the horseshoe model.

One of the conclusions from the experimental data in [31] is that the flow is
periodic in the spanwise direction. We therefore solve (2.1) and (2.2) with the following
periodic boundary condition"

u(x,y+q,z)=u(x,y,z), (x,y+q,z)=(x,y,z).

As was noted in [11], q was found to be roughly 0.1.

3. The numerical scheme. We first describe the random-vortex method for the
Navier-Stokes equations and then the three-dimensional sheet method, called the tile
method, for the Prandtl equations.

3.1. Time discretization. We split the Navier-Stokes equations into the Euler
equations and the heat equation. The Euler equation (3.1) governs the flow of an
inviscid fluid"

(3.1) o,+ (u. v)-(. V)u o.
Note that for a two-dimensional case the last term in the left-hand side of (3.1) vanishes,
and therefore vorticity is a material property, i.e., D/Dt=O/Ot+(u. V):=0.
However, this is not necessarily true in three dimensions.

The heat equation is

(3.2) .e0_= R_ Z:ot

(it is also called the diffusion equation). Both (3.1) and (3.2) are easier to analyze than
the Navier-Stokes equations. We apply a Strang-type scheme to step the Navier-Stokes
equations in time, using (3.1) and (3.2). This is done in the following way: we represent
both problems above in the form

A().

For the first one

A() AI() (.

and for the second

A() A2(sc) R-1 A.
For both operators we apply the modified Euler scheme:

At
n+l n,,+/:z ,, +_._ a("), "+ Ata(n+l/2).
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Let L(At) be the operator that acts on sc" to yield Cn+, i.e.,

L(At)" "+ " + AtA (n +
At
--fA(

L(At), L2(At) are defined as L(At) with A1, A2 replacing A. We finally arrive at the
following scheme for discretizating (2.1) in time:

According to [21 ], this scheme is second-order accurate in time, is accurate up to order
two in the time variable, even in the nonlinear case. The same time discretization was
used also in 17] and 18].

3.2. Spatial discretization.
3.2.1. The Euler equations. For an incompressible fluid the following relation

((3.7) below) between vorticity and velocity holds [15]. Since divu--0, there exists a
function $, called a stream function, such that

(3.3) u=Vx$,

and we may choose such that div $ 0. By definition

(3.4) =Vu,

and therefore, from (3.3), we find that

(3.) a, -:.
Thus we may determine the velocity from the vorticity by first solving the Poisson

equation (3.5), and then applying (3.3).
If G is a fundamental solution of the Laplace equation, then

(3.6) 6 G * f G(x-x’)sC(x’) dx’,

where G(x)=-l/4rlxI, x=(x,y,z), and the integration is taken over the whole
three-dimensional space. Substituting (3.6) in (3.3), we find

(3.7) u(x, t)= f K(x-x’)(x’, t) dx’,

where

(3.8) K(x) II"rlxl
z 0

--y X

Note that (3.7) is a consequence of incompressibility only.
In vortex methods particle trajectories are followed. Let x(x, t) be the trajectory

of a particle in the fluid that is at the point z at 0. For fixed x the trajectory x(x, t)
is obtained from the velocity field u as a solution of the ordinary differential equation:

dx
(z, t)= u(x(ot, t) t), x(ot, 0)(3.9) d--
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Combining (3.7) and (3.8), we find

dX_dt I K(x(at, t)-x’(at, t))sC(x’, t) dx’

(3.10)

f K(x(at, t)-x(at’, t))sC(x(at’, t), t) dat’.

The last equality is true, since for an incompressible fluid the Jacobian ofthe transforma-
tion at(t) x(at, t) is the identity.

We must supply initial conditions to (3.10). We therefore set the initial velocity
and vorticity on a regular mesh:

ai (hi il h2i2, h3i3),

1 _--< il =< N1, =< i2=< N2,

and then track these particles in Lagrangian coordinates. To discretize the equations,
we set (= Yj , where the are functions of small support. Let Kj be the intensity of
the jth particle, i.e., K dx dy dz. Then we obtain the following set of ordinary
differential equations for the approximate locations of the particles

(3.11)
d:i
dt

(t)=a,(t)= K(i(t)-j(t))ffj(t),
j=l

where b :R3 R, b-- (1/3)b(x/) is the cutoff function, and K K 4’ is a
smoothed kernel. K replaces the kernel K (defined in (3.8)), which is singular at
x 0. Here Y(t), ,(t) approximate j(t) and xi(t), respectively, the exact intensity
and particle locations for the Euler equations.

We may write K in the following way:

(3.12) K(x) K(x)f (x),

where f(x)= (1/3)f(x/6). If f(x) is chosen to be radially symmetric, the relation
between b and f is b(r)=f’(r)/47rr (see [6]). We specify f(x)=f(r) below:

(3.13) f(r)= 5 3
r - r5, r < 1.

This function is continuous with its first derivative at r- 1. Substituting (3.8) and (3.13)
in (3.12) yields

’t o
K= 47rlxl

z 0 for]xl>6,
--y x

and

(3.14) K d.Trlxl3t
z 0 -- for Ixl <

--y X
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For a three-dimensional Euler equation vorticity is not a material quantity, and
therefore we must track vorticity as well as blob locations. We use the equation

d-(. V)u.
dt

Therefore, the evolution of vorticity along particle trajectories is described by the

equations

(3.15) d..__ (x(t, t) t)= ((x(et, t), t). Vx)U(X(t, t), t)
dt

where V,, is the gradient with respect to the Eulerian coordinates. Applying (3.11), we
find that the following equality holds for the approximated velocity fi

7xfi(x t)-

where V,,Ks is derived analytically in Eulerian coordinates using the definition of Ks
(3.15). Substitution of the last equality in (3.14) yields

dff_(3.16)
dt j--1

This can be written in the form

di(3.17)
dt

(;A(:i-j)j(t)+ ;/B(f,-);(t) + ;C(,-f7)j(t)),
j=l

where di (Ki’x, d/y, ff), and

0
A(x) 2---- Ks(x),

OX

0
B(x) _--- Ks(x),

oy
C(x) z-- K(x).

OZ

Or more explicitly,

Ki
XK, A(x);)- 4;1’ (-(IxlZ 3 ), 3xy, 3xz) x

(3.18) ;YB(x)ffj
4rlxl

(3yx, -(Ixl-3y), 3yz) x j,

;, c(x)# 411 (3zx, 3zy, -(Ixl=- 3z2)) x

for Ixl < , and

;A(x)ff) =4rr85 (-(2.582 1.51x[- 3x2), 3xy, 3xz) x ,
(3.19)

ff/
(3yx, -(2.562- 1 51xl=- 3y2), 3yz) x ,ff’B(x)j 47r6

,C(x)j’z
47r;5’ (3zx, 3zy,-(2.5t52 1.51xl=- 3z=)) x ,
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for ]xl > 3. To conclude, the semidiscrete three-dimensional scheme that we used for
the Euler equation is

di
dt

(t)=fii(t)= K(i(t)-j(t))j(t),
i----1

d;,
(;, V,,)K(,(t) (t));j(t)(3.20)

dt ./=1

i(O)=oi, /i(0) /?,

where Ks is defined in (3.14), and the second equation is given in more detail in
(3 17)-(3.19). Here, are initial values of the intensities of the computational elements
on the initial grid.

3.2.2. The heat equation. The second equation to solve is the heat equation:

0: R_A or R-Au
ot ot

Following Chorin ([11] and [13]) we use the random-walk method to step the heat
equation in time, i.e., we move the blobs according to

~n+l
Xi Xi +l(At),

where l(At)= (71(At), r/z(At), r/3(At)) and TI,T2 ’/3 are Gaussian random variables
with mean zero and variance 2At chosen independently of each other.

Note that we use the trapezoidal rule in (3.11) and (3.16) to approximate spatial
integrals. The error due to this approximation depends on the derivatives of the
integrands, and in particular on the voriticity, i.e., if the vorticity grows so does the
error. Therefore, if we find that the vorticity grows while using blobs for the Navier-
Stokes equations, we replace a blob that carries a high enough vorticity with several
blobs. The new blobs are placed at the same computational point, and share the same
total vorticity of the original blob. Since the random walk is used to simulate the heat
equation, these blobs will likely find themselves in different locations at the next
timestep. If we use filaments, growth in vorticity causes stretching of the filaments. In
this case we should split the vortex line into several short ones, and then use some
interpolation between the endpoints of the old filament to keep a desired accuracy.
This interpolation is an additional source of error, but it can be avoided if we adopt
the three-dimensional vortex blob method described above.

3.3. Prandtl equations. The Prandtl equations (2.2) used in a thin layer 0-< z-< z0
above the plate were solved numerically by the tile method, which is the three-
dimensional extension of the sheet method (see [11], [13]). This was done to evaluate
the boundary conditions on the plate, since it was found in [13] and [11] that blobs
did not accurately represent the velocity field near the boundary. We describe the tile
method for a region 0=< z =< o, noting that the boundary conditions at z z0 will be
viewed as those at infinity, seen from the plate.

In the tile method the computational elements are rectangles, parallel to the plate,
that represent a jump in the velocity components u, v. Thus (1, :_) is the intensity of
the tile, where 2 Uabove--Ubelow, :l Vabove--Vblow. Consider a collection of N tiles
T, with intensities (()i, (:2)i), 1,. ., N and centers xi (xi, Yi, Zi). The motions
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of these tiles are described by (2.3), i.e.,

Ov

Oz Oz

and if we integrate these equations with respect to z, we have

(3.2) u(x, y, z, )= u(x, y, )- (x, y, ’) ’,

(3.) v(x, y, , )= v(x, y, ) + (x, , z’) ’,

where u(x, y, t), v(x, y, t) are the velocity components u, v as z m. By incompressi-
bility and the boundary condition w(x, y, 0, t)=0, we have

(3.23) w(x, y, z, ) -Ox u(x, y, ’) dz’-O v(x, y, dz’) dz’.

Equations (3.21)-(3.23) provides a relation between the voicity and the velocity,
which replaces the one given by (3.7) for the interior region.

The above equations can be approximated by

1
(3.24) u (x, y, z, t) u(xi, y, t)- ()- ()d,

1
(3.5 v (x, y, z, v(x, , +(+ (,

where d 1-Ix- xl/h, and 1-lY-YI/h are smoothing functions, the summa-
tions in (2.24)-(2.25) are over all for which 0N d N 1, 0N N 1, and N z.

Similarly, from (3.23)

(x, , z, -(L -)/h (J+ J_)/h,

where

I+_ u(x, + h,/2, y,, t)z,-Y. (2)jaffz,

J+ l)(Xi, y, + hz/2, t)z, + EY (,)jdjf. z,
and

d. 1
Ix,+/-h/2-xl ly,+/-hz/2-yl

hi
fj=l-

hz z=min(zi, z).

The sums x/, yx are over all T, such that 0-<f < 1, and 0 < d- < 1, 0 < d- < 1,
respectively. Similarly, the sums ]+, YY__ are over all T, such that 0<-dj =< 1, and
0 <=ff -< 1, 0-<fj- =< 1, respectively. This is a thin vertical layer, and therefore the number
of operations to calculate the velocity fields for the tile method is O(N).

For simplicity, we describe the motion of a tile for a first-order timestepping Euler
scheme

X+I xi + At" ui, y+l y, + At. vi,

Z+I z + At. w + r/(At),
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where r/ is a Gaussian random variable with mean zero and variance 2At/R. Note
that r/appears only in the z component, since the Prandtl equation (2.2) assumes that
vorticity diffuses in the z direction only.

4. Boundary conditions. We first specify the boundary conditions for the region
z_>-Zo, in which the Navier-Stokes equations are used. At infinity the flow is uniform
and is in the x direction, i.e., u(x, y, z, t)- (U, 0, 0) as z oo. Boundary conditions
also have to be imposed at z Zo (see [39, p. 111]), and they link the two computational
regions. If a tile finds itself in the region z_-> Zo after taking a timestep, it turns into a
blob. Similarly, if a blob enters the thin layer in which the Prandtl equations are
employed, it becomes a tile. We assign the same circulation to a tile which turns into
a blob and vice versa. Thus Ki ihlh2, where K is the intensity of the blob, and s is
the intensity of the tile. In addition, we require continuity of u and v at z Zo.

The boundary conditions for the Prandtl equations are
(a) u(x, y, Zo, t) u(x, y, t), and v(x, y, Zo, t)= v(x, y, t), where uoo(x, y, t) and

voo(x, y, t) are calculated by the blobs, located at z-> Zo.
(b) u.n =0 at z 0, where n is normal to the plate. This is done by the method

of images, i.e., for each blob or tile at (x, y, z), carrying vorticity :(x, y, z) we add an
imaginary blob or tile at (x, y, z) with vorticity -(x, y, z).

(c) u s 0 at z 0, where s is tangential to the plate z 0. This is done by creating
tiles at the boundary, assigning vorticity to each of them (see [11]). In more detail:
we calculate Uo-- u(x, y, O) uoo(x, y, t)-o 2 dz and Vo v(x, y, O)= vow(x, y, t)+
o 1 dz, and replace the integrals Jo so2 dz and o :1 dz by the sums j=l ()jdjf
and j=l ()jdjf, respectively. The only tiles that contribute to these sums are those
located in the region {, )7[[-x1_-< h, ])7-y[_-< h2}. If (Uo, Vo) (0, 0), new tiles are
created at (x,y,O) with intensity := (:, :, 0), such that x/sc+_<-:max, where max
is a chosen small parameter. As a result the new values of Uo and Vo, denoted by to
and o, satisfy

(4.1) laol =< :max, Iol :max.
Periodic boundary conditions were imposed in the following way. For each blob

or tile located at (x, y, z) two other imaginary blobs or tiles were added at (x, y + q, z).
To save computational time, further blobs or tiles were not added, as their contribution
to the flow quantities became smaller the further they are from the computational
domain.

We restrict ourselves to the domain 0_-<x_< Xo, rather than 0_-<x_-<o. Thus we
remove any blob or tile whose x-component location exceeds Xo. This is reasonable,
since blobs and tiles located far away from the region of interest contribute little to
the overall flow. In addition, this procedure economized the cost of computation, for
otherwise a large number of computational elements became bunched near x- Xo.

5. Convergence. The first convergence proof for vortex methods was given by
Hald and Del Prete [24] for the two-dimensional Euler’s equations. Convergence for
the three-dimensional version ofvortex method that was suggested by Beale and Majda,
for which spatial derivatives are approximated by finite differences, was given in [4],
[5], [2]. For our scheme, in which explicit differentiation is applied to approximate
spatial derivatives, convergence was first proved by Beale [3 ], and then, using a different
approach, by Cottet [10]. We quote the theorem appearing in [10], since it applies to
a slightly more general case, i.e., the restriction d => 4, where d appears in (5.3)-(5.4)
below, is removed in [10].
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Let us first define for p [1, ) and m => 0 the Sobolev spaces

W"’P {f, Of LP(Rn), m}

and by II’ll , the norm

)II/llm, Y II0/ll o,
0<=ll_<-m

and for p the usual modification.
THEOREM. Convergence in 3D [10]. Assume that the initial vorticity o is smooth

enough and that the following conditions hold for the cutofffunction
(5.1) qb wm’(R3) Wm’l(g3) Vm>0,

(5.2) .fR b(X) dx 1,

(5.3)
R

(5.4)

and that there exist constants C and fl > 1 such that

(5.5) h <- C6 t3.

Then there exists a time - and a constant C, depending only on Co, such that for h and
6 small enough

11 7- ullo, --< p 6 (3/2, ],

We now apply this theorem to our scheme. Using the relation b(r)=f’(r)/47rr2

derived in [6], we find that

0,
th(r)

15. (1- rE)/87r,
It is easy to verify that b(r) satisfies (5.2) with d 2. In addition, if we choose the
cutoff function b to be infinitely smooth, second-order accuracy is achieved. We would
now like to view the importance condition (5.1), in the case where the latter is satisfied
for finite m only.

The error in vortex methods is usually estimated by bounding the part caused by
the regularization of the singular kernel separately, and from the one caused by the
discretization of the equations. We therefore write the error in the following form"

e u (u: u) + (fi u,) er + ed,

where er is the regularization error, caused by replacing the singular kernel K by a
smoothed one K, and ed is the discretization error.

It was proved in [3] and Lemma 5.5 of [10] that

Ilerllo,p --< Ca, p (3/2,

for some time 6 [0, r], provided that (5.2)-(5.4) hold. In addition, as was shown in 10],

(5.6) lie. IIo, -<- Ch"/6m-,
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in case that (5.1) holds for every m > 0. A generalization of this theorem for finite m
was given in [38, p. 315] for a two-dimensional problem. We must assume, in addition,
that

d/) E Wm-l’(g2) t") Wm-l’l(g2), m >_-. 3

or 4’ E Wr-I"(R2) for m >= 2 and has compact support. Then for all arbitrarily small
s > 0 there exist a constant Cs, such that

ullo, _<_ + hm/m-1),

provided that (5.5) is replaced by c6 <=h<=c6, with c->_/3> 1. Therefore, by
choosing ce, /3 appropriately we can balance the regularization error with the dis-
cretization error. Similar results were proven in [2] for the three-dimensional vortex
methods suggested by Beale and Majda. In our case 4 W’(R3) and has compact
support, and if we could apply similar results to a three-dimensional problem, the
discretization error would have been O(h/6), Therefore, for 6= Ch/3, the error is
at most of order h4/3. This can be improved by choosing an infinitely smooth cutoff
function.

It was observed in numerical experiments (e.g., [6]) that the formal accuracy of
the vortex-blob method might be degraded for a set of radially symmetric test problems.
This was understood as loss of accuracy due to the distortion of the initial grid. Beale
and Majda [6] suggested to rezone the grid as time evolves. Another way to overcome
this difficulty is to use a fixed grid for this set of problems. This method is discussed
and analyzed in [20]. It is most probable, however, that the grid is not as much distorted
for a flow past a plate, and therefore the vortex-blob method can be used on the
Lagrangian grid for this problem. A consideration of a fixed-grid vortex scheme for
this problem needs more extensive research.

We turn to the accuracy of the random walk used to model viscosity. It is well
known that in two dimensions the random walk approximates the heat equation, though
without high accuracy. More accurate error estimates were given in [23] for a one-
dimensional heat equation, using a random-walk method with creation of vorticity, i.e.,

u L
CR + k2

where

CR 1 + 1 +v/..j. + 1/R]’

N is the number of tiles, k is an arbitrary positive number, At is the timestep, and P
denotes probability. Note that CR is a decreasing function of R. A numerical study of
the vortex sheet method for the Prandtl equations was done by Puckett [37] together
with a spline smooth,ng of the velocity field. Convergence of this method was demon-
strated numerically, with consistency error of order (h + max)v/At/R. Here h is the
initial spacing in the streamwise direction and emax is the maximal vorticity of newly
created sheets.

In 19] we suggest a new way to discretize the viscous term. The idea is to convolve
the vorticity with a cutoff function, and approximate the Laplacian of the vorticity by
the convolution of the Laplacian of the cutoff function against the vorticity. Another
deterministic method was suggested by Degond and Mas-Gallic in [16].
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6. Numerical results. We must specify the following parameters for our numerical
scheme. The initial grid, with spacing h, h2, the timestep At, the maximum allowed
intensity of a newly created tile, :max, are parameters to be chosen. In addition, the
cutoff 6, the thickness of the layer for which the Prandtl equations are used Zo, and
the physical domain 0_-< x-<_ X0, in which we keep track of the motion of the compu-
tational elements, must be specified. We set Xo= 1.5 (as in [11]). We picked Zo-
Cx/2At/R, with C 1.5, x/2At/R being the standard deviation of the random walk.
We made this choice for Zo to ensure that a tile, located in the layer 0-< z-< Zo, will
have a high probability of moving out of the tile layer in a few timesteps, and will
then turn into a blob. We picked U L-1 and the viscosity v-10-4, so that the
Reynolds number R- UL/v- 104. This value was high enough to show the three-
dimensional effects and the transition to turbulence, as was also observed in the
experiments in [25]. Note that the local Reynolds number R, Ux/v depends on x
but R does not. Following Chorin [11] we picked h/Tr as the cutoff & This is in
agreement with the condition in the convergence theorem in 5, that the cutoff 6
should be larger than the typical distance between neighboring particles, the latter
being of order 1/ in our problem.

After fixing Xo, Zo, and choosing 6, we had to pick the initial spacing hi, h2, :max,
and the timestep At. To do this, we first ran the two-dimensional problem, in which
the independent variables are x, z, and whose steady-state solution is analytically
known to be the Blasius solution. We found out, as was also pointed out in [40], that
hi and :max have primary importance, since they control the number of newly created
sheets. The latter determines the number of blobs, and therefore the number of
computational elements. If larger numbers of computational elements are used, the
error in both interior and exterior regions decreases. We tried the following choices
for h, At, and :max"

(a) h At 0.20, SCmax 0.1.
(b) hi At 0.15, SCmax 0.075.
(C) h At 0.10, SCmax 0.050.
For these sets of parameters we checked the drag, given by the following formula

(see e.g., [41], [11]):

(6.1) D(xo) fo U(Xo, z)( u- U(Xo, z)) clz,

and compared it with the Blasius drag Do 0.6641x/xo/R. The integral in equation
(6.1) was discretized by the trapezoidal rule

Ocom ciu(Xo, Az)( U-U(Xo, Az)) Az,
i=0

where Co= c,, =0.5, and ci 1, for l<=j<-m-1. Here m’-Zmax/AZ, where Zma is the
maximal z, for which computational points were found in the region Ix- Xo[ =< hi, and
Az was chosen to be 0.004. The relative error in the drag I(D(xo)-Do(xo))/Do(xo)l for
Xo 1 is given in Table 1. In addition, to measure the intensity of the noise from the
statical process, we averaged the computed drag every 10 iterations, i.e.,

1 9

(6.2) Davg - Dcom(t rt At)
n=0

and calculated the variance of the instantaneous drag from the averaged one. The
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TABLE

Grid

(a)
(b)
(c)

Relative

drag error

0.52
0.21
0.14

Variance

0.061
0.024
0.016

No. of
sheets

95
139
344

No. of
blobs

76
151
415

Time

3 min.
13 min.

127 min.

variance of the drag is given by the following formula:

(6.3) V(D) E(ID- E(D)I),
where E(X) is the expected value of a random variable X. We approximated the
expected values E(X) in (6.3) Xavg, where the average is computed as in (6.2). We
would like to reduce the statistical noise, and therefore to decrease the variance by
choosing the appropriate parameters. The results for the drag and variance in the
two-dimensional problem are given in Table 1. The total computational time on a
VAX-VMS computer is given in this table as well.

The dominant term of the error, as seen by the convergence analysis, is the one
due to random walk. This error is of order 1/v/if, where n is the number of sheets or
blobs. When we refined grid (a) to (b), we approximately doubled the number of
computational elements, so that the error should decrease by a factor of x/. The
computational factor is found to be bigger than two. If we look at grid (c) compared
to (b), the number of sheets or blobs was increased by a factor of three approximately,
so that the error should decrease by a factor of x/, which is approximately 1.7. The
computed factor was found to be 1.5. From Table 1 we can learn that the finer the
grid, the smaller the relative error in the drag, and the smaller the variance. In addition,
much more time is required for grid (c) than for grid (b). To make our computations
affordable for a longer time in the three-dimensional problem, we chose the three-
dimensional grid (b). We also had to specify h2 for three-dimensional problems. We
chose h2 q/4 for grid (a), h2 q/6 for grid (b), and h2 q/8 for grid (c).

We examined the instability of the Blasius solution for high Reynolds numbers
in a three-dimensional problem. This was done as follows (see 11 ]). For 0 =< _-< T
we approximated the Prandtl equations, whose steady-state is the Blasius solution,
using only tiles. Note that instability does not occur for the Prandtl equations, whereas
it might occur for the Navier-Stokes equation. The numerical solution converges to
the Blasius solution as c and hi, h2 0, where hi, hz is the size of the initial grid.
We used the results of this scheme at T= 1 to be the initial conditions for the
Navier-Stokes equations. Instability for the Navier-Stokes equations is shown, i.e.,
small perturbations in the Blasius solution cause large changes in the solution. We
perturbed the Blasius solution by choosing the following initial condition at infinity"

u(x, y, , T)=
f( U, A, 0)
(u,0,0)

for 1/4q < y < q,
elsewhere,

where A 10-3. After T 1 we used the scheme described in 3 and 4, in which tiles
and blobs are present, and therefore instability might occur.

We display all the results at 22.5. Velocity and vorticity are shown in the
following two-dimensional planes: (a) y =1/2q, which describes the flow quantities as
a function of x and z; (b) at the two planes x 1, 1.4, which shows the velocity and
vorticity as a function of y and z. Note that as x increases the more apparent are the
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three-dimensional features, i.e., the dependence on y and the transition to turbulence.
This happens since the local Reynolds number Rx Ux/L increases for larger x.

In Figs. 1-3 we display velocity components computed at a regular mesh. Figure
1 shows the x, z components of the velocity at y q/2. In Figs. 2-3 the y, z components
of the velocity at x 1, 1.4, respectively, are displayed. These figures, as well as other

FG. 1. Velocity field in the x, z plane for y q/2.
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FG. 2. loci field in the y, z planer x 1.
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FIG. 3. Velocity field in the y, z plane for x 1.4.

figures represented for fixed x, show the three-dimensional features of the flow, i.e.,
the dependence on y. This is in accordance with results appearing in [35] and [36];
in the latter numerical results were performed for a periodic problem in both x and
y. They indicate the three-dimensional character of secondary instability, which is
consistent with the idea that turbulence is intrinsically three-dimensional. Vorticity is
represented in the Lagrangian computational grid points in Figs. 4-6. In Fig. 4 the x,
z components of vorticity at y-q/2 is displayed. We can see that for larger x the
intensity of the vorticity increases, which is one of the features of transition to
turbulence, i.e., vorticity is no longer preserved in the Lagrangian system as it is in a
two-dimensional problem.

In Figs. 5-6 we show the y, z components of vorticity at x- 1, 1.4, respectively.
Note that for larger x the vorticity is no longer directed in one direction. This is in
agreement with the results in [25], which indicate the appearance of small hairpins as
the flow develops in the streamwise direction. Figures 7-9 show contours of the
z-component of vorticity. These figures indicate that for larger x small scale phenomena
appear. Figures 10-12 show contours of the y-component of vorticity, in which the
results are similar to those of the z-component of vorticity.

In Tables 2 and 3 we show the averaged drag (multiplied by a factor of 100), the
thickness of the boundary layer and the drag variance for y q/2, x 1 and y q/2,
x 1.4, respectively, and for different time levels. The averaged drag and variance
were calculated in the same way as for the two-dimensional problem. The boundary
layer thickness is given by

Thickness (x, y) U- u(x, y, z)) dz,

and is computed for y q/2. The integral is discretized by the trapezoidal rule.
We notice that the drag grows until it reaches a certain level at about 6 and

then stabilizes. As time progresses the variance at x 1 also stabilizes and stays at a
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0.5 0.6 0.80.7

FIG. 4. Vorticity in the x, z plane for y q/2.

FIc,. 5. Vorticity in the y, z plane for x 1.
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0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O. I0

FIG. 6. Vorticity in the y, z plane for x 1.4.

OiO.O01. .2 01.3 014 01.5 01.8 0’.7 0’.8 01.9 |.0 1.| 11.2 11.3 11.4 11.5 1.6 1.7

FIG. 7. Contours of the z component of vorticity in the x, z plane for y q/2.
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FIG. 8. Contours of the z component of vorticity in the y, z plane for x 1.

o.oo o’.o o’.o o’.o o’.o o’.o olo o.o olo olo
FIG. 9. Contours of the z component of vorticity in the y, z plane for x 1.4.
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0.00.1 0.2 0.3 0. O.S 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.1 1.5 1.6 1.7

FIG. 10. Contours of the y component of vorticity in the x, z plane for y q/2.

0.00 o.ot 0.02 0.03 0.04 o.os 0.06 0.07 0.08 0.09 0.0

FIG. 11. Contours of the y component of vorticity in the y, z plane for x 1.
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0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O. I0

FIG. 12. Contours of the y component of vorticity in the y, z plane for x 1.4.

TABLE 2
Averaged drag, thickness, and variance at x 1.

Drag
Thickness
Variance

t= 1.5

0.2713
56.340
0.0376

t=3

0.4647
81.710
0.0283

t=6

0.5262
80.510
0.0128

0.5245
87.820
0.0098

=22.5

0.5718
100.491

0.0080

TABLE 3
Averaged drag, thickness, and variance at x 1.4.

Drag
Thickness
Variance

t= 1.5

0.2582
57.340
0.0348

t=3

0.4731
92.170
0.0188

t=6

0.5221
107.05

0.0194

t=12

0.5450
136.17
0.0400

22.5

0.4194
101.776

0.0527

level of about 0.01. However, the variance at x 1.4 changes in time and starts to grow
as time progresses. Therefore, we notice that the flow downstream is changing more
rapidly in time. The thickness of the boundary layer increases as time progresses until
it reaches a certain level and then starts to oscillate rapidly, especially at x 1.4. If
we compare the thickness of the boundary layer at x to the one at x 1.4, we notice
that this quantity grows as we proceed in the downstream direction.

In Figs. 13-15 we show the u component of the velocity as a function of the
similarity variables yx/U/x. In every graph we display the velocity at both x 1
and x 1.4. Figures 13, 14, and 15 correspond to =6, 12, and 22.5, respectively. We
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01.8 1.6 21.4 31.2 41.0 41.8 5.6 6’.4 7.2 8.0

FlG. 13. u-component of the velocity at 6, -- at x 1, O-- at x 1.4.

FIG. 14. u-component of the velocity at 12, -- at x 1, O at x 1.4.
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0.0 ll8 .3 2.4 3.2 4.0 4.1 61.4 . 3.L7

FIG. 15. u-component of the velocity at 22.5, (C)-- at x 1, (C)-- at x-- 1.4.

FIG. 16. u-component of the velocity at x 1, at =6, (2)-- at 12,/-- at 22.5.
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can learn from these figures that the velocity varies with x, whereas in Blasius’s solution
the solution is a function of r/ only. In Figs. 16-17 we show the same quantity u as a
function of r/, but now several time levels are shown in Fig. 16 for x 1 and in Fig.
17 for x 1.4. We can learn from Figs. 16-17 that the flow quantities oscillate more
in time when we proceed in the streamwise direction. This is explained by the growth
of the local Reynolds number.

0.0 0.8 1.6 2.4 3.2 4’.0 4’.8 5.6 6’.4 7.2 .0

FIG. 17. u-component of the velocity at x= 1.4, -- at =6, (C)n at 12,/-- at 22.5.

Table 4 gives the running times on a CRAY X-MP for the three different grids,
and for different time levels.

Tables 5 and 6 show the number of tiles and blobs, respectively, for various times
(t 3, 6, 9, 12, 22.5.) and grids (a, b, c).

We found that our numerical results agree with the experimental results of [25]
in a way that both results indicate the existence of small hairpins at high Reynolds
numbers. Note that in other experiments horseshoe vortices rather than small hairpins
were found. As was explained in [25], the reason for the different results was that the
experimental techniques of other investigators limited the results to low Reynolds
numbers.

7. Conclusions. The three-dimensional version of vortex methods used here were
capable of resolving the three-dimensionality of the flow and the transition to tur-

TABLE 4
Total computational time to reach 3, 6, 9, 12, 22.5.

Grid

(a)
(b)
(c)

t=3

0.5 min
7 min

2 h 30 min

t=6

min
25 min

t=9

2 min
43 min

t=12

3 min
h 7 min

=22.5

6 min
2 h 13 min
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Grid

(a)
(b)
(c)

TABLE 5
Number of tiles.

t=3

263
1,080
4,548

323
962

t=9

344
1,000

t=12

360
926

22.5

348
1,098

grid

(a)
(b)
(c)

TABLE 6
Number of blobs.

t=3

205
1,051
6,948

t=6

213
915

t=9

187
830

t=12

183
947

22.5

222
987

bulence. Away from the plate, we used a three-dimensional blob method, which is a
natural extension of two-dimensional vortex methods. These methods can have high
spatial accuracy, and they involve no elaborate calculation. Near the plate, the tile
method approximates a thin boundary layer, and is a straightforward extension of the
two-dimensional sheet method. Therefore the two-dimensional and the three-
dimensional problems can be similarly treated numerically.

Acknowledgments. I thank Professor Alexandre Chorin for many helpful dis-
cussions, Dr. Scott Baden for vectorizing the code, and the referees for their valuable
comments.
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ADAPTATION OF A TWO-POINT BOUNDARY VALUE PROBLEM SOLVER
TO A VECTOR-MULTIPROCESSOR ENVIRONMENT*

S. J. WRIGHT? AND V. PEREYRA:

Abstract. Systems of linear equations arising from finite-difference discretization of two-point boundary
value problems have coefficient matrices that are sparse, with most or all of the nonzeros clustered in blocks
near the main diagonal. Some efficiently vectorizable algorithms for factorizing these types of matrices and
solving the corresponding linear systems are described. The relative effectiveness of the different algorithms
varies according to the distribution of initial, final, and coupled end conditions. The techniques described
can be extended to handle linear systems arising from other methods for two-point boundary value problems,
such as multiple shooting and collocation. An application to seismic ray tracing is discussed.

Key words, two-point boundary value problems, finite-difference methods, vector processors, seismic
ray tracing
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1. Introduction. In this paper we describe new algorithms for solving a sparse
linear system of equations that arises in global discretization schemes for solving
two-point boundary value problems of the general form

z’(t)=f(t,z),
(1.1)

g(z(a),z(b))=O.

a<_t<_b,

Here f, z, g R’, R. These discretization schemes lead to a system of nonlinear
equations whose solution is a discrete approximation to the true solution of (1.1). If
Newton’s method (or some variant) is used to solve this nonlinear system, it is known
that for the "obvious" orderings of the equations and unknowns, the Jacobian will
have most of its nonzero elements clustered about the main diagonal (see [2], [7], [8]-
[10]). To find the Newton correction it is necessary to solve a linear system for which
the Jacobian is the coefficient matrix. This operation is carried out repeatedly and is
often the most time-consuming part of the solution process.

The particular linear systems that the algorithms of this paper are intended to
solve are those arising from the PASVAR series of codes (see [9], 10] and appropriate
sections of the IMSL, NAG and Harwell computer software libraries), but they also
have other applications. The basis of the PASVAR algorithms is a trapezoidal-rule
discretization of (1.1), with deferred corrections used to enhance the solution accuracy.
Similar systems arise in algorithms based on the one-step formulae described in Cash
[2]. Although we do not deal with linear systems arising from multistep, multiple
shooting, and collocation methods here, we note that linear equation solvers analogous
to those discussed in 3 could also be devised for these methods.
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For the trapezoidal-rule discretization of (1.1), a mesh {tl, t2,""" In} is chosen
such that

a < 2 ( ( tn b,

and the differential equation is replaced by a system of algebraic equations

hi(1.2a) Si_l(Zi_l,Zi)-"Zi--Zi_l--’[f(ti, zi)-l-f(ti+l,Zi+l)]--O, i=2,...,n

where hi ti-ti-1 and zi z(ti). Often, the boundary conditions in (1.1) are well
structured and can be separated into initial, coupled, and final conditions as follows:

gl(z(a))=O (gRP),

(1.2b) g2(z(a), z(b))=0 (g2 Rr),

g3(z(b))=O (g3 Rq).

Here p+q+ r= m. To complete the algebraic equations for the discrete solution
zl,...,z,,, we replace z(a) by z and z(b) by z, in (1.2b). A modified Newton’s
method is used to solve these equations.

Depending on the ordering of the equations in (1.2) and the unknowns z,. , z,,
the Jacobian is usually structured in one of the following ways"

(1) Block tridiagonal, where the off-diagonal blocks have some zero rows, and
the lower left block is partially filled if r > 0 (see Fig. 1). The ordering of equations
here is

(gl, S1, $2," ", Sn-1, g2, g3),

and the variables are ordered as

Zn).

q I m-p

FIG. 1. "Block-tridiagonal" structure used by method of 2. Shaded areas indicate possible nonzeros.
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(2) Block upper-bidiagonal, with a partially filled block in the lower left corner
(see Fig. 2). The ordering of the unknowns here is the same as in (1), but the equations
are ordered as follows:

(Sl," ,Sn-l,gl,g2, g3).
The total dimension of the matrix is (mn). In this paper we are interested in the
commonly occurring situation in which n is substantially larger than m, corresponding
to a fine mesh with a system of differential equations of relatively small dimension.

Existing codes that handle the case of separated end conditions (r 0) [3], [7], 10]
use the ordering of Fig. 1. Partial pivoting, involving both row and column swaps at
different stages, is used during the factorization. No fill-in occurs, and it is shown in
[7] that this pivot strategy ensures a valid factorization is produced whenever the
matrix is nonsingular. The algorithm of [10] (to be discussed in 2) can also handle
the case of coupled end conditions. Fill-in of approximately rn elements in the last
row of blocks in the L factor takes place. Elements in these blocks are not considered
as possible pivots until the final few steps of the elimination. This limitation on the
pivoting means that there are some nonsingular matrices for which this algorithm fails
to produce a valid factorization (see the example in the Appendix). However, the
analysis of Keller [8] can be applied to show that, when the matrix is a Jacobian that
arises from a one-step discretization scheme, the algorithm will work when the mesh
is sufficiently fine. This is shown in the Appendix.

Some disadvantages become clear when this method is implemented in a vector-
processing environment. Since it handles only a small number of blocks at a time
(proceeding sequentially down the diagonal in Fig. 1), vectorizable loops in the code
involve m or fewer elements.

The algorithms to be discussed here, which use the second ordering, start by
factorizing the first (n- 1) diagonal blocks concurrently. This allows vectorizable loops
of length (n- 1) to appear in the code. Similar loops arise in the factorization of the
above-diagonal blocks. Since we are assuming n > m here, there is clearly greater
potential for speedup in the new algorithms. However, there is a trade-off: the new
methods tend to produce more fill-in and have higher operation counts, and hence are
unsuitable for use in a scalar environment. A blocked ordering similar to that of
Fig. 2 was used originally in the first version of PASVAR [9], although of course it
was not then solved by a vectorized method.

m

m

m

p+r

FIG. 2. "Nearly block-bidiagonal" structure used by methods of 3.

q+r
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Since these algorithms essentially perform a block factorization, with row pivoting
allowed within blocks but not between blocks, they cannot factorize every nonsingular
matrix of the form of Fig. 2, except in the case p + r 0. The analysis of the Appendix
can be applied again, however, to show that they will succeed if the mesh is sufficiently
fine. Numerical experience suggests that in low precision environments (e.g., 4-byte
floating point wordlength), the new algorithms may not be as stable as the algorithm
in [10]. This is not surprising, since the p+ r rows at the bottom of the matrix are
always excluded from consideration as pivots, rather than just r rows in [10]. It may
therefore be wise to retain the existing codes as a "backup" in case the new methods
fail.

The new algorithms are discussed in 3. In 4, we present some timing com-
parisons between the new methods and the existing codes on the Alliant FX/8 vector
multiprocessor, the CRAYX-MP, and the CRAY-2. Application of the resulting
vectorized code to the problem of seismic ray tracing is discussed in the final section,
and some results from the CRAY-2 are given.

In [5], Goldmann considers vectorization of the multiple shooting method. He
notes that in many applications it is possible to vectorize the process of evaluating
derivatives of f at different points. That is, the (j, k) elements of the m m blocks
Of/Oz(ti, zi) can be evaluated concurrently for 1,..., n. Since this aspect of the
overall method is problem-dependent, we do not discuss it further. Goldmann also
considers a partially vectorizable method for solution of a linear system similar to that
of Fig. 2, but it depends strongly on the fact that the above-diagonal blocks are multiples
of the m rn identity matrix, and hence cannot be applied here.

2. The Routines DECOMP and SOLVE. The routine DECOMP in the PASVAR
codes takes the Jacobian matrix A (as ordered in Fig. 1) and produces two factors L
and U such that

(2.1) LU PAOT,

where P and Q are permutation matrices. The matrix U is only block upper triangular
and so (2.1) is not a true LU factorization; however, linear systems involving L and
U can be easily solved. The row and column interchanges (which are accounted for
in P and Q, respectively), are chosen so that there is no fill-in near the main diagonal.
If r > 0, then r dense rows will appear at the bottom of the L factor (see Fig. 3).

t. (j

FIG. 3. Structure ofthefactorsproduced by DECOMP. (L and Ui are the L and Ufactors ofthe i, i) block.)
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The partial pivoting strategy needs some explanation. For the factorization of the
first p rows of the matrix, column interchanges are used to ensure that the pivot element
has the largest magnitude of any element in its row. Clearly, only columns 1 through
m are candidates for the pivot column, since all other columns have zeros in rows 1
to p, and no fill-in occurs. For the factorization of the remaining rows in the (1, 1)
block, row interchanges involving rows p / 1 through m /p of the overall matrix are
allowed. Next, the nonzero rows in the (2, 1) and (n, 1) blocks are eliminated, and a
set of r dense rows is introduced into the (n, 2) block as a result. In addition, the first
p rows of the (2, 2) block need to be updated. The elements in the (1, 2) block are not
altered, except perhaps for some row interchanges.

Factorization of the (2, 2) through (n, n) blocks now proceeds similarly. At the
(n- 1)st stage, it is necessary to eliminate (p + r) dense rows in the (n, n- 1) block:
p rows from the original matrix, plus r rows introduced by the elimination at the
previous stage. For the (n, n) block, only column pivoting is used. The overall strategy
remains one of partial rather than complete pivoting, since at each step we choose a
pivot element from either the row or the column corresponding to the current pivot
position, rather than from some submatrix of the unfactored part of A. The choice
between a row and a column search is made according to which will avoid fill-in, as
we describe above. Further details on this type of pivoting strategy, and its extension
to more general matrices, can be found in [3] and [14].

Ignoring low-order terms, the algorithm takes

(2.2) n[1/2m + -m2p -mp2 + mr(2m -p)]

flops (where each flop consists of an addition and a multiplication). For p r 0 this
reduces to 1/2m3n; for r=O,p=rn it is (ll/6)m3n. The small operation count in the
former case arises from the fact that there are no subdiagonal blocks to be eliminated.
In the case of fully coupled boundary conditions (p =0, r= m) the flop count is
(7/3)rn3n, which reflects the work involved in "chasing" elements from the (n, 1) block
across the bottom of the matrix during factorization.

The SOLVE routine is relatively simple. Given a right-hand side y, the following
equations are solved in succession"

(2.3a) Lv Py for v,

(2.3b) Uw v for w,

(2.3c) u Qw for the final answer u.

The forward substitution (2.3a) requires about nm(p+ r) flops, while (2.3b) requires
about nm(2m-p), making a total of

(2.4) nm(2m+r)

operations for the whole process. For the case r 0 this reduces to 2nm2, and hence
requires between 12/1 l m and 6/rn of the execution time of DECOMP (depending on
the value of p). For small values of m, therefore, the SOLVE phase is a significant
part of the overall computation, particularly if p is also small. This effect becomes
even more important when it is necessary to call SOLVE more than once for each call
to DECOMP. This happens in PASVA4 for two reasons. First, a modified Newton’s
method is used to solve (1.2), in which the Jacobian is not necessarily updated at each
iteration, obviating a refactorization. Second, PASVA4 allows the differential system
(1.1) to be augmented by some algebraic equations and, correspondingly, some extra
parameters. The linear system therefore has a "border" of extra rows and columns,
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and a Schur-complement approach involving one extra call to SOLVE for each extra
parameter, is used to solve it. This occurs in the application to be discussed in 5, in
which SOLVE is called up to 10 times more often than DECOMP.

3. The new algorithms. In this section we report on four new algorithms for the
factorization of the Jacobian, all based on the equation and variable ordering of
Fig. 2. Three new methods that use the resulting L and U factors are also needed for
the solution phase. The common feature of the four factorization algorithms is that
the LU factorizations of blocks (1, 1) through (n- 1, n- 1) are formed concurrently.
Row partial pivoting is used within each block. The algorithms differ in how the fill-in
elements in the last row of blocks are computed, and also in whether, and how, the
superdiagonal blocks are altered by the factorization (as they are not, in the original
DECOMP).

In all the algorithms, the most significant parts of the computation take place in
loop constructs of one of the following forms:

(3.1) General triad- for 1, 2,

forj=l t__o

ai(j) - ai(j) + b(j) * ci(j)

(3.2) Inner product: for i= 1, 2,...

fo__y j 1 to

Oli <"- Oli "J- ai(j) * b(j)

(3.3) Saxpy: fo__.r 1, 2,

for j= 1 to

a(j) - a(j) + i * ci(j)

(3.4) Saxpy’: fo__r i= to

for j= 1 to

a(j) a(j) + [3i * ci(j)

Here a, b, ci are vectors whose jth components are ai(j), b(j), ci(j).
On a vector processor, the time required for the inner loop in each of the above

structures is comprised of
(a) The time to fetch the argument vectors from main (or cache) memory.
(b) The time required to initialize the pipeline.
(c) Processing time for each component of the result (typically, after the start-up

time, one component of the result appears at the end of the pipe at each clock cycle).
(d) The time required to store the result.
On register-based machines (including the Alliant and all CRAY machines), this

overhead may be incurred repeatedly as the vectors are processed in "strips" of 32 or
64 vector components. For the general triad (3.1), it is necessary to load two vectors
for each new value of (except for three vectors when 1), and store one result. For
the inner product in (3.2), it is usually only necessary to load one vector and store a
scalar result for each value of i. In (3.3) and (3.4), there is usually one vector load for
each i, and no store until the end.
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The operations (a)-(d) above are implemented quite differently on different
architectures. For example, on the CRAY X-MP and Y-MP machines, two vectors can
be loaded almost simultaneously, while on the CRAY 1 and CRAY 2, the second load
cannot start until the first is complete. Preparation of the arithmetic processing pipe
takes a different number of clock cycles on different machines. On the Alliant, the flop
at each inner iteration ofthe loops in (3.1)-(3.4) is performed by a single "add-multiply"
instruction; on the CRAYs, the add and multiply are done separately (although they
are "chained" to give the effect of a single command).

We use Tt, Rt, St, and S’, to denote the average time required for each iteration
of the inner loop in (3.1), (3.2), (3.3), and (3.4), respectively. Each of these quantities
could be expressed in terms of more fundamental parameters, such as clock-cycle time,
main/cache memory fetch time, vector-register length, etc., but the resulting expressions
would be nonlinear (and rather complex) functions of t. Although each of these
quantities is generally monotonically decreasing with t, there may be sharp increases
at certain values of (e.g., multiples of the vector register length). The relation
should hold in general.

For the purpose of the algorithm descriptions below, we introduce the following
notation for the various blocks:

Ai the (i, i) block,

Bi the (i, + 1) block,

D the (n, 1) block.

Using this notation, Fig. 2 can be rewritten as

A B
A2 B2

(3.5) A= .....
nn-1

D A,,

The first two algorithms produce a true LU factorization, that is,

(3.6a) LU PA,

where the L and U factors and the permutation matrix have the form

L U1 V1
u v

(3.6b) L= L2 U- "..
Oo o

Vn-
E1 En_ L U

P1

p= P

P
Here the Li are unit lower triangular, Ui are upper triangular, and P are m m
permutation matrices. The matrices E,-.., E,_ each have p+ r dense rows, the
positions of which depend on the permutation matrix P,. Relating (3.5) and (3.6), we
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find that equations for the submatrices are"

(3.7)

(3.8)

(3.9a)

(3.9b)

LiUi PiAi, 1," ", n- 1,

LiVi eiBi, 1," ", n- 1,

E, U, P,,D,

EiVi q- Ei+l Ui+l --0, 1, n- 2,

(3.9C)

If the matrix A in (3.5) is partitioned as

C

D 0 0 A,

it can be seen that the factorization (3.6) is obtained by finding an LU factorization
of C with (unrestricted) partial pivoting, then computing

[D O...O]C-’=[E, E
and finally computing an LU factorization of the Schur complement of C in A, namely,

A,-{[D O...O]C-’}

All our algorithms are based on the calculation of

[D 0...0]C-’
rather than

To obtain the latter, the solution of rn linear systems with coefficient matrix C are

required, while for the former, only p + r linear systems with coefficient matrix C T

need to be solved.
The first algorithm follows directly from (3.7)-(3.9).

ALGORITHM D 1.
(1) for i= 1 to n-1

factor LiUi PAi
(2) fori=lton-1

solve LiV PiBi for V
(3) solve E1 U1 D for E
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(4) for i= 1 t_0_o n-2
solve EiV + Ei+l Ui+ 0 for Ei+

(5) factor L, Un Pn(A E_I V,_I)
(6) setEi=PEi, i=l,...,n-1.

The computationally significant steps in this algorithm are steps (1), (2), and (4). Step
(1) requires about 1/2nm flops, step (2), about 1/2nm 3, and step (4) about nm2(p+ r)
flops. However, the factorizations in step (1) and backsolves in step (2) can be carried
out concurrently, that is, they can be coded in the form of (3.1), where the innermost
loop has n- 1 iterations. The iterations in step (4), on the other hand, must be carried
out in sequence. The only possibilities for vectorization in this step involve vectors of
length rn or less. The formation of EiV can be coded in the form (3.3). The back
substitution for E/ can be done in two ways: it can use either the structure (3.3),
with =p+ r, or the structure (3.4), with m. Which of these is faster obviously
depends on the value of p+ r. Since the "average" length of the loop in (3.4) is t/2
(i.e., rn/2 in our case), a simple switch in the code causes it to use (3.3) when p + r > m!2,
and (3.4) otherwise. The approximate time required for Algorithm D1 will thus be

(3.10) -nrn3T,,_l + nmZ(p+ r)S., + 1/2nm(p+ r) min (S’.,, Sp+r).

We note in passing that in the decoupled case (r 0), we can make the assumption
that p <= m/2. If this is not true, we can simply reverse the order of the unknowns and
rearrange the equations appropriately so that p and q are interchanged. This corre-
sponds to reversing the sign of the independent variable in (1.1).

The second algorithm is a variant of Algorithm D1, in which step (4) is partially
vectorized at the expense of an increased operation count. From (3.7)-(3.9) and step
(6) of Algorithm D1 we have by a simple inductive argument that

(3.11) /,V/= (-1)i+ID I-I W, where W U; Vj,
j=l

Given that (EiV) is known for 1, , n -2, it is possible to use forward substitution
to calculate the matrices Ei+ concurrently. The algorithm can be summarized as follows.

ALGORITHM D2.
(1) for i= 1 to n-1

factor LiUi PiAi
(2) fori=lton-1

solve LV PiBi for V
(3) fori=lton-1

solve UW/= V/for W/
(4) set Z D

fori=lton-1
set Zi+ -ZW

(5) fo___r i= 1 to n- 1
solve EiUi--Zi for E

(6) factor L,U, P,,(A,, + Z,)
(7) set Ei-- Pnei, 1,. ., n- 1.

The new steps in Algorithm D2 are (3), (4), and (5). Steps (3) and (5) are
"vectorizable" (i.e., contain operations involving vectors of length at least n- 1), with
flop counts of about 1/2nm and 1/2nm2(p + r), respectively. Step (4) is "sequential," but
noting that each Z has only (p + r) dense rows, we count about nm2(p + r) flops. The
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approximate execution time is thus

(3.12a) [nm3+1/2nm2(p+r)]Tn_+nm2(p+r)S,,

(3.12b) -nm3T,_, p+r=0.

p+ r>0,

(In the case (3.12b) steps (3), (4), and (5) are not necessary.) There is a trade-off in
Algorithm D2: the total operation count is increased, but the number of "sequential"
operations is decreased.

The solution phase corresponding to Algorithms D1 and D2 is the same, and
referring to (3.6), it can be stated as follows.

ALGORITHM S1. Given a right-hand side yr= [ylr,..., ynT].
(1) for i= 1 to n-1

solve Livi PiYi
n-1

Eivi(2) replace Yn by (PnYn--i=
(3) solve L,,vn Yn

solve Unun Vn
(4) fo__r i= n-1 to 1

replace vi by (vi- Vui+)
solve Uiui vi.

Here, steps (1) and (2) are vectorizable: step (1) requires about 1/2nm 2 flops, while
step (2) requires about nm(p + r) operations. In fact, step (2) consists of inner products
involving vectors of length (n- 1)m (if the matrices Ei are stored appropriately). The
other computationally significant step is step (4), which is sequential in nature and
requires about nm operations. The time required for Algorithm S1 is thus

(3.13) nm(p + r)R(n-1)m + 1/2nm2T.- + nm2S,. + 1/2nm2S’,..

Again we note that a comparison of (3.13) with (3.10) and (3.12), shows that the
solution phase is not insignificant in relation to the factorization phase unless m is
relatively large.

In the third algorithm,.a.block-LU factorization is performed. Matrices , , and
P are obtained such that LU PA, where

I B
A2 B

(3.14) = I

D1 Dn-1 I An- Bn-l~
An

and P is as in (3.6b). In (3.14), the matrices A,..., An are overwritten in storage by
their L and U factors. Comparing (3.14) and (3.5), we obtain the formulae

ti PiAi, 1," ", n- 1,

B PiB, i= 1," ", n- 1,

D1A PnD,

Diffi + Di+l,’i+l O, 1, n 2,

D,,_ B,,_ + An PnAn
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These suggest the following algorithm

ALGORITHM D3.
(1) fo_.yr i-1 to n-1

factor LiUi PiAi ,’
(2) solve DIAl D
(3) for i=1 to n-2

solve DiBi+ Di+IA+I =0 for Di+
(4) factor L,U, P,(A, D,_IB,-1)
(5) setD=P,D, i=l,...,n-1.

The only step that can be efficiently vectorized here is step (1), which requires
about nm operations. Step (3) is strictly sequential, requiring a matrix multiplication
DiB+I and two triangular solves using the L and U factors of A+I. (The L and U
factors of each diagonal block are the same as those computed in Algorithm D1, and
Algorithm D2, provided the same pivot strategy is used within each block.) The
workload for step (3) is 2nm-(p+ r) operations, and the approximate total time for
Algorithm D3 will thus be

(3.15) 1/2nm3T,_l + nmZ(p+ r)S,, + nmZ(p+ r) min (S’, Sp+r).

The solution phase of course differs from Algorithm S1, and can be stated as
follows.

ALGORITI-IM $3. Given a right-hand side y= [y(,..., y,]"
(1) fo__yr i= 1 to n

replace y by Py
n--1(2) replace Yn by (P,Yn-i=i Dyi)

(3) solve L, Unun Yn for un
(4) fo___yr 1 to n-1

solve LUiu y- Bu/I for u.
Only the second step (inner products with vectors of length (m(n-1))) can be

efficiently vectorized here. The approximate time required is therefore

(3.16) nm(p + r)R(n-1),, + nm2Srn + nm2S’,,.

A fourth combination of routines, suggested by a referee,,,is also based on a block
factorization. Here we find matrices L, U, and P such that LU PA, where P is as in
(3.6) and L and U have the form

Again, a comparison with (3.5) yields the formulae

Ai PiAi,

Ai Wi PiBi,

ZI PnD,

Z,+ Z, W,

Wn
I

i=1,..., n-2,

Zn-I Wn-I + An PnAn.
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Note that the W and i in the formulae above are the same as those in Algorithm
D2, while the Zi above are identical to PnZi from Algorithm D2. The resulting algorithm
is likewise very similar to Algorithm D2, the main different being omission of step (5)"

ALGORITHM D4.
(1) fo__ i= to n-1

factor LU PiAi
(2) for i= 1 to n-1

solve LV PiB for V
(3) for i-1 ton-1

solve UW/- V/for W
(4) set Z1 D

fori=l to n-1
set Z+I=-ZiWi

(5) factor LnU,, P,,(An + Z,,)
(6) set Z P,Z, i= 1,..., n-1.

The approximate run time is

(3.17) -nm3T_l + nme(p + r)S,.

Only steps (4) and (6) can be omitted when p+ r=0. The corresponding solution
phase follows.

ALGORITHM $4.

(1) for i= 1 to n-1
solve Liv Py

(2) fo_yr i= 1 to n- 1
solve Uiwi vi

n--1
Ziwi(3) replace y, by (P,y,

(4) solve L,U,u, y,
(5) fo.___r n -1 t__9_o 1

set u wi Wui+
Here steps (1), (2), and (3) are all vectorizable. The approximate execution time is thus

(3.18) rim(p+ r)R(,_+ nmT,_l + nm2S,.

When T_I < S, _<-Sin,, we see that none of the Algorithms DI-D4 is superior to
any one of the others in all situations. However when p + r 0, Algorithm D3 is clearly
fastest, followed by Algorithms D1 and D2 (which are identical in this case) and finally
Algorithm D4. For p + r > 0, it is clear by comparing (3.12a) and (3.17) that Algorithm
D4 will be faster than Algorithm D2, while for p + r m, Algorithm D4 will be the
fastest, and Algorithm D1 will be faster than Algorithm D3. All other relationships
between run times of the factorization algorithms will depend on the relative values
of p, r, rn and the execution times S’m, Sp+, and

For the solve algorithms, making the same assumption that T,_ < S,,, <- S,,,,
it is clear that Algorithm $4 is always fastest, followed by Algorithm S1 and then
Algorithm $3.

4. Computational comparisons. Here we report on computational experience with
the algorithms of the two preceding sections, on three computers with vectorization
capabilities. Matrices of the form (3.5) were generated in order to test Algorithms
D1-D4, and these same matrices were rearranged into the form of Fig. 1 to test the
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original DECOMP. In accordance with the purpose of the exercise, the form of these
matrices corresponds roughly to what would be obtained from a finite-difference
discretization of (1.1), that is,

A I + hAi, Bi -I + hBi, 1, n 1

where the elements of Ai and Bi are uniformly distributed in [-1, 1], and h =.1. The
nonzero elements of An and D are uniformly distributed in I-h, h].

The new factorization algorithms contain various checks for ill-conditioning. The
largest and smallest elements of the U blocks are monitored throughout the factoriz-
ation. In Algorithms D2 and D4, a comparison of the Frobenius norm of the matrices
An and Zn is made, to detect possible blowup as a result of the matrix multiplications
in step (4).

The three computers used were an Alliant FX/8 vector multiprocessor (at the
Advanced Computing Research Facility, Argonne National Laboratory), a CRAY
X-MP/48 (at the Pittsburgh Supercomputer Center), and a CRAY-2 (at Cray Research,
Mendota Heights, Minnesota).

The Alliant is a machine with eight processors (known as computational elements
or CEs), which share a main memory and a 512 Kbyte fast-access cache memory. Each
computational element can perform operations on vector registers that hold up to 32
double-precision (8-byte) words. The peak performance of each CE in single precision
is 11.7 Mflops. When a data element is referenced by a program, it is automatically
read into the cache, so that subsequent accesses to that element take substantially less
time. However if the data references in the program are not localized, the element may
be overwritten in cache, and will thus have to be fetched from main memory again
when next referenced. This occurrence is referred to as a "cache fault." Careful
management of the cache memory can lead to sharply reduced runtimes (see, for
example, [4]).

Only one processor of each CRAY is used. The Pittsburgh CRAY X-MP has a
clock-cycle time of 8.5 ns, and a common memory of 8 Mwords, arranged in 32 banks.
To load a word of data from main memory, 14 clock cycles are required; to store a
word takes somewhat less time. A set of 64-word vector registers is available, together
with a corresponding set of vector instructions. To illustrate the processing capabilities
of the X-MP, consider its performance in computing the general triad d(j)=
a(j) + b(j)c(j), j 1,. ., (the same as (3.1), except that three vector loads and one
store are required). For 10 the throughput is 25.2 Mflops, for 100 it is 73.7 Mflops,
and for 1000, 91.1 Mflops (see Sch/Snauer [13]). By comparison, the peak rates for
multiplication and addition in scalar mode are 15 Mflops and 17.5 Mflops, respectively.
On the CRAY-2, the cycle time is 4.1 ns, and the main memory consists of 256 Mwords
organized into 128 banks. To retrieve a word from main memory, 57 clock cycles are
required. However, data can be retrieved from each of the banks simultaneously, and
so components of a long vector are typically available for processing at the rate of
one per clock cycle after this initial delay (although problems of "section conflict"
can arise; see [13]). The long fetch time is also partially offset by the presence of
16 Kwords of local (cache) memory for each processor. Access time for this storage
is much shortermfour clock cycles. A set of eight 64-word vector registers can be used
by each processor.

Although the expressions for approximate execution times were derived in the
previous section with vectorization in mind, the algorithms were also run on the Alliant
in "scalar" and "parallel-vector" mode. In scalar mode with global optimization (i.e.,
the compiler optimizations -0g-DAS were used), the program runs on a single CE
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without using any vectorization capabilities. In parallel-vector mode (i.e., using the
compiler options-0-DAS-alt,), the compiler attempts to vectorize the innermost loop
of any nested loop structure, and to schedule different iterations of some outer loop
to execute concurrently on different CEs. This arrangement may be disturbed if later
iterations of a loop depend on the results of earlier iterations (i.e., data dependencies),
or if user-inserted compiler directives are present in the code. For details see [1]. In
some of the vectorizable steps of the algorithms in 3 (e.g., step (2) of Algorithm D1,
steps (2) and (3) of Algorithm D2) it is possible to arrange for the "parallelized" loop
to have length m, so that the step can take full advantage of the parallelism described
above.

Results are given for three problem sets. In the first, the values rn=7, r 0, n 20
are used; for the second, m 7, r 0, n 100. (These choices were motivated by the
application to be discussed in 5.) For the final problem set we use rn 32, r=0,
n 100. In all cases, the values of p and q were varied between 0 and rn and timings
are given for some of these values. Times were measured using the utility functions
second (on the CRAYs) and etime on the Alliant. Readings taken at different times
showed that they appeared to be relatively independent of the system load, and they
are almost certainly accurate to within 10 percent.

The codes for all machines were identical, except for the use of different timing
routines, and the insertion of different compiler directives. Single precision (24 bits of
accuracy on the Alliant, 53 bits of accuracy on the CRAYs) was used throughout. On
the CRAY machines, the cft77 compiler was used, with options -esaq-dp for the
vectorized versions, and-esaq-alp-o novector for the nonvectorized versions.

Tables 1-6 give timings obtained for the first data set. For the vectorized versions
of the codes on the Alliant (Tables 1 and 2), the results correspond closely to what
we might expect from the timing expressions of the previous section. When p=0 and
three or fewer solves are needed for each factorization, D3/$3 is the preferred

TABLE
Alliant. Scalar/vectorized/vector-concurrent times (in ms) for decomposition routines, m

7, n=20.

DECOMP

28./24./15.
47./41./27.
80./75./47.
89./85./51.

D1

34./22./14.
40./25./22.
70./50./24.
97./62./26.

D2

34./22./13.
72./33./18.
97./43./18.
122./55./20.

D3

20./16./11
30./24./24.
68./58./26.
99./68./29.

D4

52./28./14.
54./28./17.
73./39./18.
91./50./20.

TABLE 2
Alliant. Scalar/vectorized/vector-concurrent times (in ms) for solution

routines, m 7, n 20.

SOLVE

10./7.7/5.6
10./7.8/6.2
9.9/7.9/6.3
10./7.8/5.7

S1

11./6.9/5.2
11./7.2/5.5
12./7.4/5.5
13./7.7/5.6

$3

9.9/8.2/6.7
10./8.3/6.7
12./8.6/6.9
13./8.9/7.1

$4

12./5.4/3.4
12./5.6/3.5
13./5.9/3.6
15./6.1/3.6
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TABLE 3
CRAY X-MP. Scalar/vectorized times (in ms) for decomposition routines,

m=7, n=20.

DECOMP

2.4/1.2
4.1/3.2
7.0/8.1
8.3/9.6

D1

3.1/0.9
4.1/1.8
6.5/2.9
8.8/4.0

D2

3.o/1.o
6.3/1.8
8.7/2.7
11./3.6

D3

1.7/o.8
3.1/..1
6.2/3.3
8.9/4.5

D4

5.o/1.3
5.3/1.6
6.8/2.6
8.4/3.6

TABLE 4
CRAY X-MP. Scalar/vectorized times (in ms) for solution

routines m=7, n=20.

SOLVE

1.0/1.5
1.0/1.5
1.0/1.5
1.0/1.5

S1

1.0/0.5
1.1/0.5
1.1/0.5
1.2/0.5

$3

1.1/0.6
1.2/0.6
1.2/0.6
1.3/0.6

$4

0.9/0.3
0.9/0.3
1.0/0.3
1.1/0.3

TABLE 5
CRAY-2. Scalar/vectorized times (in ms) for decomposition routines, m 7,

n =20.

0

4
7

DECOMP

2.8/2.0
5.2/4.3
9.1/9.2
10./11.

D1

2.8/1.1
3.9/2.1
6.3/3.6
8.6/4.8

D2

2.8/1.3
6.0/2.3
8.4/3.5
11./4.7

D3

1.6/0.9
3.1/2.5
6.2/4.0
9.1/5.3

D4

4.1/1.5
5.0/1.9
6.7/3.1
8.5/4.2

TABLE 6
CRAY-2. Scalar/vectorized times (in ms) for solution

routines, m 7, n 20.

SOLVE

1.3/1.4
1.3/1.4
1.3/1.4
1.3/1.4

S1

1.3/0.7
1.3/0.7
1.4/0.8
1.5/0.8

$3

1.5/0.9
1.5/0.9
1.6/0.9
1.6/0.9

$4

1.1/0.4
1.1/0.5
1.2/0.5
1.3/0.5
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combination. In almost all other cases, D4/$4 will be fastest. The combination D4/$4
is always fastest in parallel-vector mode. Note that the speedups (defined as the ratio
of runtime for the vectorized implementation to runtime for the parallel-vector
implementation) are not impressive--nowhere greater than three on this 8-processor
machine. This is due to the fine-grained nature of the computation for this value of
n, and the fact that in step (1) of each factorization algorithm, the number of vector
operations that can be scheduled to run in parallel decreases from six to one during
the computation. The original combination of DECOMP and SOLVE only remains
competitive in scalar mode.

On the CRAY X-MP (Tables 3 and 4), the improvement due to vectorization is
seen to best advantage in Algorithms D2 and D4. In some cases, the vectorized
implementation of DECOMP and SOLVE is actually slower than the scalar
implementation, because the overhead associated with the vector instructions is not
worthwhile for vectors with seven elements. Among scalar implementations, there is
little to choose between the various possible combinations. For the vectorized
implementations, the combination D4/$4 is superior, except possibly when p 0.

Times for the scalar CRAY-2 codes (Tables 5 and 6), are similar to those for the
scalar CRAY X-MP codes, but the speedups due to vectorization are a little smaller.
Possibly this is because, on the CRAY-2, the longer memory cycle time means that
there is less difference between Rm(n-), T,__I, and S,.. For scalar implementations,
there is little to choose between D1/S2, D4/$4 and D3/$3 except for small p, when
the latter is best. For the vectorized codes, D4/$4 is superior.

Results for the second data set appear in Tables 7-12. Most of the comments for
the first data set apply again here, although for some algorithms (particularly the most
highly vectorized codes D2, D4, and $4) the improvement due to vectorization is more
pronounced. That is, T99 is substantially smaller than T19. The combination D4/$4 is
now best in almost all vectorized and parallel-vector implementations. Among scalar
implementations there is not much difference between the various possibilities. On the

TABLE 7
Alliant. Scalar/vectorized/vector-concurrent times (in s) for decomposition routines, m 7,

n 100.

DECOMP

.14/.11/.065
.24/.20/.13
.41/.39/.24
.46/.43/.26

D1

.14/.063/.052
.19/.11/.098
.35/.23/.11
.48/.29/.11

D2

.14/.064/.051
.34/.12/.072
.47/.17/.073
.59/.22/.076

D3

.072/.048/.071
.15/.11/.11
.34/.28/.12
.49/.33/.12

D4

.23/.085/.055
.25/.10/.073
.35/.16/.077
.44/.21/.080

TABLE 8
Alliant. Scalar/vectorized / vector-concurrent times (in ms)

for solution routines, m 7, n 100.

SOLVE

50/38/28
51/39/31
50/39/31
50/39/28

S1

53/33/25
55/34/26
61/35/26
67/36/26

51/41/33
53/41/33
59/43/33
64/44/34

$4

59/23/14
61/23/14
67/24/14
73/25/14
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TABLE 9
CRAY X-MP. Scalar/vectorized times (in ms) for decomposition routines,

m=7, n--100.

DECOMP

14./6.0
21./17.
36./43.
43./50.

D1

15./3.7
21./8.3
33./14.
45./19.

D2

15./4.1
30./6.9
42./12.
54./16.

D3

8.1/3.3
16./11.
31./16.
46./22.

D4

23./4.9
26./6.5
34./11.
42./16.

TABLE 10
CRAY X-MP. Scalar/vectorized times (in ms) for solution

routines m 7, n 100.

SOLVE

5.0/7.5
5.1/7.6
5.1/7.6
5.2/7.6

S1

5.3/2.4
5.3/2.4
5.6/2.5
5.9/2.5

$3

5.8/.8
5.9/2.8
6.2/2.9
6.4/2.9

$4

4.4/1.1
4.5/1.1
4.9/1.1
5.2/1.2

TABLE 11
CRAY-2. Scalar/vectorized times (in ms) for decomposition routines, m 7,

n 100.

DECOMP

14./10.
27./22.
47./48.
53./56.

D1

13./3.8
19./9.0
32./16.
43./22.

D2

13./4.5
28./8.3
40./14.
52./20.

D3

7.3/3.6
15./12.
31./20.
46./26.

D4

21./5.3
24./6.8
33./13.
42./19.

TABLE 12
CRAY-2. Scalar/vectorized times (in ms) for solution

routines m 7, n 100.

SOLVE

6.6/7.2
6.7/7.2
6.8/7.3
6.7/7.1

S1

6.4/3.4
6.6/3.5
6.8/3.5
7.1/3.6

$3

7.4/4.4
7.5/4.4
7.8/4.5
8.1/4.6

$4

5.1/1.9
5.3/1.9
5.6/1.9
5.9/2.0
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Alliant and X-MP, DECOMP/SOLVE is usually best, except when p is small, in which
case D3/$3 is competitive.

The results for the third data set (Tables 13-18) have a quite different character.
The value of m is now large enough that almost all operatio.ns in all the algorithms
vectorize efficiently. Tn-1, R,,,,-1), S,,, and S’ are now much closer together than for
previous data sets, and so the algorithms with the lower operation counts (most notably
D1) are more competitive. Overall speedups due to vectorization are quite impressive.
Among scalar implementations, the original combination DECOMP/SOLVE is clearly
best on all machines. Among vectorized implementations on the CRAY machines,
there is little difference between the new algorithms, either for factorization or solve,
although the combination D3/$3 has an advantage when p =0.

The results on the Alliant (Tables 13 and 14) are distorted by the hierarchical
memory structure of that machine. When rn 32 and n 100, the data structures that
store the Ai’s, the Bi’s, and the Ei’s occupy about 400 Kbytes each--substantially more
than the 256 Kbyte cache can handle. Since data references in the new algorithms tend
not to be localized, it is likely that many items of data will cause repeated cache faults
during execution of the program. Algorithm D2 (Table 13) is most seriously affected
by this phenomenon. For example, the data structure that contains the Ai’s (and, after
step (1), the L and Ui factors), is continually being overwritten in cache, and hence
needs to be fetched repeatedly. This occurs at the start of step (3), where the data
structure containing the W’s is initialized to the V’s. (This is not a problem in Algorithm
D4, since the V’s are not needed in the subsequent solution phase and hence can be
overwritten by the W’s.) It occurs again during step (4), and so the U blocks need
to be fetched again for step (5). Finally, note that the value rn 32 allows greater
scope for parallelism, and so the speedups in going from vector mode to parallel-vector
mode are better for this data set.

We conclude that the new algorithms, in particular Algorithms D4 and $4, can
under most circumstances execute significantly faster than DECOMP and SOLVE if
implemented in an appropriate way on machines with vectorization capabilities. The

TABLE 13
Alliant. Scalar/vectorized/vector-concurrent times (in s) for decomposition routines, m 32,

n 100.

0
2

16
32

DECOMP

5.0/2.2/.60
7.5/3.6/1.3
18./8.2/3.8
23./12./6.0

D1

12./3.4/.98
24./3.9/1.3
24./7.3/1.7
36./10./2.2

D2

12./3.6/1.0
27./17./3.2
37./24./3.8
49./32./4.9

D3

4.8/1.7/.62
6.8/2.4/1.0
20./6.7/1.6
34./10./2.2

D4

19./5.5/1.3
20./5.8/1.4
27./7.5/1.7
34./9.6/2.0

TABLE 14
Alliant. Scalar/vectorized/vector-concurrent times (in s) for solution

routines m 32, n 100.

P

0
2
16
32

SOLVE

.67/.41/.15

.67/.44/.16

.67/.44/.16

.67/.41/.16

S1

.84/.28/.20

.86/.29/.21

.99/.32/.21
1.1/.36/.22

$3

.72/.37/.25

.75/.38/.25

.88/.41/.26
1.0/.44/.27

$4

1.1/.28/.15
1.1/.29/.15
1.2/.32/.16
1.4/.36/.16
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TABLE 15
CRAY X-MP. Scalar/vectorized times (in s) for decomposition routines,

m=32. n 100.

0
2

16
32

DECOMP

.59/.089
.77/.18
1.6/.76
2.1/1.1

D1

1.2/.12
1.4/.15
2.3/.28
3.4/.41

D2

1.2/.12
2.2/.19
3.3/.30
4.6/.43

D3

.49/.073
.70/.17
1.9/.31
3.3/.47

D4

2.0/.18
2.1/.19
2.7/.29
3.3/.40

TABLE 16
CRAY X-MP. Scalar/vectorized times (in ms) for solution

routines

0
2
16
32

m=32, n=100.

SOLVE

55/36
55/35
55/36
55/36

S1

82/13
80/13
86/14
93/15

$3

79/12
79/12
86/13
93/14

$4

80/11
81/12
87/12
94/13

TABLE 17
CRAY-2. Scalar/vectorized times (in s) for decomposition routines,

m=32, n 100.

0
2
16
32

DECOMP

.54/.15

.82/.27

.0/.88
2.7/1.2

D1

1.1/.14
1.2/.19
2.2/.38
3.2/.55

D2

1.2/.17
2.1/.27
3.1/.43
4.3/.59

D3

.47/.081
.67/.21
1.9/.40
3.2/.59

D4

1.8/.21
1.9/.24
2.5/.38
3.2/.52

0
2
16
32

TABLE 18
CRAY-2. Scalar/vectorized times (in ms) for solution.

SOLVE

83/39
83/39
83/38
83/38

S1

101/24
102/25
108/25
115/27

$3

99/20
100/21
106/21
113/22

$4

91/27
92/27
97/28
104/29
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relative efficiency of the various codes varies with the values of m, n, the distribution
of the initial, coupled, and final boundary conditions, and the characteristics of the
computers on which they are implemented. However, as seen above, the timing
expressions derived in 3 provide a useful way of predicting the performance.

5. Application to seismic ray tracing. The two-point boundary value problem code
PASVA4 has been utilized as part of a program for tracing seismic rays through
heterogeneous three-dimensional media by Pereyra (see [ 11 ], 12]). The program takes
a seismic "event" (earthquake, explosion) at a given location, and traces rays from
this source to a network of receivers (e.g., an array of geophones on the earth’s surface).
The wave propagation properties of the earth in the vicinity of the source and receivers
are modeled by a set of blocks limited by surface patches. Parameters that define the
interfaces between the blocks, and the properties within each block (assumed to be
smoothly varying) are given. Initial estimates of the ray paths are obtained by shooting
rays from the source in a given set of directions. These paths are refined using PASVA4,
which attempts to trace all rays between a given source-receiver pair with a given
"signature." The signature is a list of interfaces, which the ray is assumed to contact
in a specified order.

PASVA4 is able to handle discontinuities in the material properties due to layer
interfaces, and to efficiently consider any additional algebraic parameters present in
the problem. Discontinuities are handled by forcing the interface intersections to be
repeated meshpoints. Extra conditions (continuity of the ray, laws of refraction) are
introduced to determine the additional unknowns. We mentioned in 2 that the
resulting differential-algebraic system can be solved by calling SOLVE more often than
DECOMP on each iteration. This is discussed in more detail in [10].

In order to test the effect of the new linear solvers on the overall speed of the ray
tracing program, the code was modified so that Algorithm D4 took the place of
DECOMP and Algorithm $4 took the place of SOLVE. The original DECOMP was
retained as a backup, because of its possibly better stability properties. An "interface"
routine was introduced to rearrange the rows of the Jacobian and produce the structure
of Fig. 2. This introduces a small overhead, which could be avoided by making
appropriate changes to the routines that fill in this matrix.

Comparative results for four problems are given in Table 19. In all problems, rays
were traced from a point on the surface to a rectangular network of receivers, also on
the surface. Rays with a number of different signatures were obtained. The simplest
rays were those which traveled from the source to the first interface, and then were
reflected back to a receiver. Other rays penetrated as far as eight interfaces below the
surface. Many ray paths were quite complex, because the three-dimensional geometries
modeled by the four examples were nontrivial. For example, the problem "fold"
contains an interface that literally folds back on itself, and so rays can pass through

TABLE 19
Runtimes in seconds on CRAY-2 for raytracing codes on

four problems.

fold
reverse fault
norf
mushroom

Original code

269
208
154

1124

Modified code

175
140
105
849
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the fold before or after reflecting from the interface. Similar ray paths can be found
in "mushroom," whose main feature is a subsurface salt dome. The original and
modified codes produced identical results.

Almost all the runtime for both codes is spent in either executing DECOMP and
SOLVE, or in evaluating functions and derivatives associated with the discretized
problem. The latter part of the program is not helped much by vectorization. It consists
of millions of calls to small routines that perform such tasks as evaluating the splines
that define the layer interfaces, or evaluating derivatives with respect to the spline
parameters of the point at which a ray contacts the interface. On the other hand, since
the values m 7, p 4 are always applicable for ray-tracing problems, and since n >= 18,
we would expect from Tables 1-12 that substantial improvements are possible. This
is indeed the case, as we see from the run profiles in Tables 20 and 21. Here, the fold
and reverse fault problems are profiled using the flowtrace utility on the CRAYo2.
Runtimes are given in absolute terms, and also as a proportion of the runtime for their
program. (A slight discrepancy can be detected between these times and those in the
relevant lines of Table 19; this is because of the overhead introduced by the flowtrace
utility.) In absolute terms, the time needed by DECOMP/SOLVE is reduced by a
factor of three, and as a proportion of the total runtime it drops from 45.8 percent to
20.9 percent in the case of the fold problem and 44.7 percent to 22.0 percent in the
case of the reverse fault. Note that the number of DECOMP and SOLVE calls is the
same for both codes--no problems of stability arose in the use of D4.

Appendix. Validity of the new factorization algorithms. Suppose the matrix con-
sidered in 3 is the Jacobian of a system of nonlinear equations, which arises from a
one-step global discretization scheme applied to the problem (1.1)-(1.2). Here we show
that if this Jacobian is evaluated in the vicinity of an isolated solution of the nonlinear
system, then under mild conditions, the factorization schemes described in 3 will
work, for a sufficiently fine mesh. This is done by referring to some of the results of
Keller [8], in particular, those results that prove that the factorization scheme of 2
is (asymptotically) valid.

TABLE 20
Run profile for fold problem.

calls to decomp
time in decomp
calls to solve
time in solve
time in interface

Original code

3776
60.2 secs (21.4%)

29681
68.7 secs (24.4%)

Modified code

3776
18.5 secs (9.3%

29681
23.1 secs (11.6%
1.5 secs (0.8%

TABLE 21
Run profile for reverse fault problem.

calls to decomp
time in decomp
calls to solve
time in solve
time in interface

Original code

3559
44.2 secs (19.2%

31772
58.7 secs (25.5%)

Modified code

3559
14.3 secs (9.0%)

31772
20.6 secs (13.0%)
1.4 secs (0.9%)
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For simplicity we start by considering a linear version of (1.1):

y’(t) A(t)y(t) =f(t), a =< _-< b,
(A1)

Bay(a)/ Bby(b)= fl,

where f, y, [3 R ", Ba, Bb, A R’’. In one-step discretization schemes for (A1), the
submatrices Ai and Bi in (3.5) have the form

A,(h) -h-11 /,z,(h)i+1

(A2)
B,(h) h -1,+11 +/,( h ), 1,... n 1,

where the mesh

a t < t2 <" "< tn b

is used, with

hi ti ti_l, h max

Here II,,(h)l[ and II,(h)ll are assumed to be uniformly bounded as functions of h.
The boundary condition matrices in (A1) are used to define the last row of blocks in
(3.5):

(A3) D Ba, A, Bb.

The approximate discretized solution of (A1) is then found by solving the following
system of linear equations"

(A4) Ahuh=Fh,
where Ah is the matrix from (3.5) and Fh has the form

Fl(f., h)

(AS) Fh

Each F is the right-hand side of the ith equation in the one-step discretization scheme,
and

tl
h

Un

contains the approximate discrete solution of (A1) at each meshpoint.
The following result is a direct consequence of Keller [8, Cor. 2.11] and Isaacson

and Keller [6, p. 396].
LEMA A1. If the one-step scheme (A2)-(A5) is consistent for the initial value

problem obtained by setting Ba I and Bb =0 in (A1), then it is stable and consistent

for all problems (A1) that have a unique solution.
By considering the special case of a result of Keller [8, Thm. 2.20], it can be

shown that a factorization similar to that produced by Algorithm D3 is valid.
THEOREM A2. Let (A1) have a unique solution, and let the one-step scheme

(A2)-(A3) be consistent for the initial value problem form of (A1) (with B, I, Bb =0).
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Then there is a small positive number h such that for all h <-h, the factorization

(A6)

I A1 B1

,4h o Oo Oo

I A_ Bn-1
G G_ I A.

is valid, with no need for pivoting.
Proof Set p 0 in Theorem 2.20 of [8], and note that in this case the partial

pivoting strategy defined in Theorem 2.17 of [8] (which is equivalent to the row partial
pivoting in DECOMP) is not needed.

The factorization (A6) is simply related to (3.14) by appropriate introduction of
permutation matrices; in particular, for the bottom row of blocks,

Di P.GiPf 1," ", n- 1,

The validity of the other factorizations (of Algorithms D1, D2, and D4) now follows
directly from the validity of (3.14), since the pivot sequence is the same in both cases.
Using the submatrices Li from (3.6) we can define

L= L2

Ln

Then (3.6) and (3.14) can be related by

Pa =
It remains to extend these results for the linear~ s.ystem (A1) to the nonlinear case

(1.1). This is done in [8, 2.3]. The matrices Ai(h), Bi(h), Ba, and Bb now arise from
derivatives of the functions f and g in (1.1) and (1.2). The partly separated nature of
the boundary conditions in (1.2) means that the first p rows of Bb and the last q rows
of Ba are always zero. The system (A4) is now solved iteratively, with the sequence
of vectors u h now (hopefully) converging to the discrete approximation of the true
solution. Basically, the analysis of [8] can be used to show that if the solution of
(1.1)-(1.2) is isolated, and the current iterate u h is sufficiently close to the discrete
solution, then the factorization schemes of 3 are valid.

Simple examples of discretizations for which the various factorization schemes
described here may fail on a coarse mesh are provided by the following problem:

(A7) y’(t) -2y(t), [0, T].

Here T> 1 is an integer. The trapezoidal rule discretization (1.2a) on the usual mesh
yields the equations

yi+(1 + h,+l) +y,(-1 + hi+l)=0, i=l,...,n-1.

Applying the boundary condition y(0)= A (for which the exact solution is y(t)=
A e-2t), setting hi 1, and using the ordering of Fig. 1, we obtain the following
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coefficient matrix:

2

2

This trivial matrix could clearly be factorized by any "reasonable" algorithm. However,
the ordering of Fig. 2 produces

0 2
0 2

0 2

0 0 0

and so D1-D4 would fail, since in the notation (3.5), Ai-=0. If instead we use the
coupled boundary condition

y(O) y( T) A

(for which the exact solution is y(t)= A e-2’/(1 + e-27)), Fig. and Fig. 2 orderings
are identical:

0 2
0 2

Oo o
0 2

1 0 0 1

All the factorization algorithms (including DECOMP) will fail on this matrix.
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Abstract. Several implementations of Newton-like iteration schemes based on Krylov subspace
projection methods for solving nonlinear equations are considered. The simplest such class of methods
is Newton’s algorithm in which a (linear) Kry]ov method is used to solve the Jacobian system
approximately. A method in this class is referred to as a Newton-Krylov algorithm. To improve the
global convergence properties of these basic algorithms, hybrid methods based on Powell’s dogleg
strategy are proposed, as well as linesearch backtracking procedures. The main advantage of the
class of methods considered in this paper is that the Jacobian matrix is never needed explicitly.

Key words, nonlinear systems, Krylov methods, inexact Newton methods, conjugate gradient
techniques

AMS(MOS) subject classification. 65H10

1. Introduction. We consider here several implementations of Newton-like it-
eration schemes for solving nonlinear systems of equations that we will refer to as
nonlinear Krylov subspace projection methods. All these methods are based upon the
idea of using a basic Newton iteration in which the Newton equations are solved ap-
proximately by an available Krylov method. The particular Krylov methods we will
consider are Arnoldi’s Method [22], and the Generalized Minimum Residual Method
(GMRES) [24]. The Krylov methods have the virtue of requiring almost no matrix
storage, resulting in a distinct advantage over direct methods for solving the Newton
equations.

To be more specific, consider the nonlinear system of equations

(1.1) F(u) =0,

where F is a nonlinear hlnction from RN to RN. Newton’s method applied to (1.1)
results in the following iteration:

1. Set u0 an initial guess.
2. For n 0, 1, 2,... until convergence do"

Solve J(un)Sn -F(un),
Set Un+ Un + Sn

where J(un) F’(Un) is the system Jacobian. For large problems, iterative methods
are frequently used to solve (1.2) only approximately, giving rise to methods that
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can be viewed as inexact-Newton methods [6]. We will refer to a Newton iteration
in which a Krylov method is used to solve (1.2) approximately as a nonlinear Krylov
method.

Typically, a Krylov method for solving (1.2) requires only the action of the Ja-
cobian matrix J times a vector v, and not J explicitly. In the nonlinear equations
setting, this action can be approximated by a difference quotient of the form

F(u + av) F(u),(1.3) J(u)v

where u is the current approximation to a root of (1.1) and a is a scalar. In [2],
Brown has given an analysis of the resulting Newton/Krylov algorithms when (1.3) is
used to approximate Jr, and has referred to them as inexact-Newton/finite-difference
projection methods. Sufficient conditions are given in [2] on the size of the a’s in the
finite-difference algorithms that guarantee the local convergence of the iteration. Here,
we will be concerned with modifications of the above algorithms that are intended
to guarantee the global convergence of the iteration to a local solution of (1.1). We
recall that Newton’s method converges only when the initial guess is close enough
to a solution, so a modification is needed to guarantee convergence for arbitrary
initial guesses. We refer to a method that converges for any initial guess as globally
convergent, as opposed to a locally convergent method such as the unmodified Newton
iteration. The first modification will add a linesearch backtrack procedure to the basic
algorithm, whereas the second will incorporate a local quadratic model of the function
f(u) 1/2F(u)TF(u) and will be a model trust region type algorithm.

We note that several authors have considered Krylov methods for solving the
Newton equations approximately inside a Newton algorithm in the context of systems
of ordinary differential equations [3]-[5],[11]. Also, Steihaug [25] and O’Leary [20]
have used the Conjugate Gradient method in the unconstrained optimization of a real-
valued function of several variables. Wigton, Yu, and Young [27] and more recently
Kerkhoven and Saad [16] have accelerated nonlinear fixed point iterations of the form
un+l M(Un) by applying this approach to solving the nonlinear system of equations
u-M(u) 0. Note that, as was observed by Chan and Jackson [5], the new system of
equations u- M(u) 0 can be viewed as a nonlinearly preconditioned version of the
original system of equations. This constitutes one way of preconditioning a nonlinear
system and we should stress that it retains the nice feature of not requiring explicit
Jacobians. A second approach for preconditioning a nonlinear system of equations
is to exploit the fact that often the system separates naturally into a simple linear
part, e.g., the Laplacian operator in partial differential equations, and the nonlinear
part. In many cases the linear part may constitute a good preconditioner to the whole
system, and fast direct solvers can be exploited to apply these preconditioners (e.g.,
see [1] and [26]). A more standard way of preconditioning a nonlinear system is to
use the usual incomplete factorization techniques such as the incomplete LU (ILU)
factorization. However, this approach requires the Jacobian matrix explicitly and thus
loses the main advantage of Jacobian-free Krylov subspace methods. Nevertheless,
we can easily imagine a procedure where the Jacobian is computed only occasionally,
i.e., much less frequently than with a standard Newton approach, in order to derive
a preconditioning.

In 2, we review the basic Krylov methods under consideration, and then in 3 we
present the linesearch backtracking modification of the nonlinear Krylov iteration. In
4, we present a model trust region algorithm in connection with the nonlinear GM-
RES method, in 5 we discuss scaling and preconditioning of the linear and nonlinear
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iterations, and then in 6 we present some numerical results on the above algorithms.
Finally, in 7 we make some concluding remarks.

2. Nonlinear Krylov algorithms. In this section we will review the Krylov
subspace methods under consideration, and discuss their main properties. We start
with a brief description of the Arnoldi and GMRES algorithms, and then present
their nonlinear versions, which combine them with a Newton iteration. Next, we
comment on some implementation details of Arnoldi and GMRES, and then briefly
discuss finite-difference versions and incomplete versions of the two methods.

Once again, we are interested in using a Newton-like iteration scheme to solve the
nonlinear system

(2.1) F(u) =0,

where F is a nonlinear function from RN to RN. As discussed in the Introduction,
at each iteration we must obtain an approximate solution of the linear system (1.2),
which we rewrite as

(2.z) -r,

where F and its Jacobian J are evaluated at the current iterate. If 5(0) is an initial
guess for the true solution of (2.2), then letting 5(0) + z, we have the equivalent
system

(2.3) Jz r(),

where r() -F- J5() is the initial residual. Let Km be the Krylov subspace

K, span{r(), Jr(), Jm-lr()}.

Arnoldi’s method and GMRES both find an approximate solution

(2.4) 5(,) 5(0) + z(,) with z(m) E Kin,

such that either

(2.5) (-F- J6(m)) _k Km (equivalently (r() Jz(m)) _k Km)

for Arnoldi’s method, or

(2.6) [IF + JS(m)lle min I[F + Ji[[2 (= min IIr() Jzll2)
5E6()+Km zEKm

for GMRES. Here, I]" 112 denotes the Euclidean norm on RN and orthogonality is
meant in the usual Euclidean sense.

The following algorithm is a nonlinear version of the Arnoldi (GMRES) algorithm,
which at every outer iteration generates an orthonormal system of vectors vi (i
1, 2,..., m) of the subspace Km and then builds the vector 5(m) that satisfies (2.5)
(or (2.6) for GMRES). In both algorithms, vl is obtained by normalizing r().

Algorithm: Newton-Arnoldi (Newton-GMRES)
(1) Start: Choose u0 and compute F(uo). Set n 0. Choose a tolerance e0.
(2) Aruoldi process:
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For an initial guess 5(0), form r() -F- jh(0), where F F(un) and
g J(un).
Compute IIr()l12 and vl -r()/.
For j 1,2,..., do:
(a) Form Jvj and orthogonalize it against the previous vl,..., vj via

hi,j (Jvj, vi), 1, 2,..., j,
J

)j+ Jvj hi,jvi
i--1

hj+,j II)j+l12, and

Vj+ )j+i/hj+,j.

(b) Compute the residual norm pj IIF + Jh(J)ll2, of the solution
that would be obtained if we stopped at this step.

(c) If pj _< en set m j and go to (3).
(3) Form the approximate solution:

Arnoldi Define Hm to be the m m (Hessenberg) matrix whose nonzero
entries are the coefficients hj, 1 _< _< j, 1 _< j _< m and define Vm =-

Find the vector Ym that solves the linear system Hmy e, where
e [1,0,...,0]T.
Compute i(m) i() / z(m) where z(m) VmYm, and un+ Un -t-(m)

GMRES: Define Hm to be the (m + 1) x m (Hessenberg) matrix whose
nonzero entries are the coefficients hj, 1 _< <_ j / 1, 1 _< j _< m and define

o,
Find the vector Ym that minimizes I[Zel- gmYll2 over all vectors y in
Rm, where e [1, 0,. ., 0]T.
Compute i(m) i() / z(m) where z(m) VmYm, and Un+ Un / (m).

(4) Stopping test: If Un+ is determined to be a good enough approximation to
a root of (2.1), then stop, else set Un Un+ n n-t- 1, choose a new
tolerance n, and go to (2).

Therefore, in both Arnoldi and GMRES the outer iteration is of the form u,,+l

un / i(m) where i(m) i() / z(m), with

z(m) Vmym,

and Ym is either the solution of an m x m linear system, for Arnoldi, or the solution
of an (m / 1) x m least squares problem for GMRES.

Steps (2) and (3) of the above algorithm are precisely the Arnoldi (GMRES)
method for solving the linear system Ji -F (see [22] and [24]). Each outer loop
of the above algorithm, consisting of steps (2), (3), and (4), is divided into two main
stages. The first stage is an Arnoldi process, which builds an orthonormal basis
Vm Ivy,v2,"., Vm] of the Krylov subspace Km. If we denote by V the N x j
matrix with column vectors v, v2,"., vj, then it follows immediately from (2.7) that
(see also [22] and [24])

T(2.8) JVm VmHm + )m+lem,

where em= [0,..., 0, 1]T E am. This relation, which can be rewritten as

(2.9) JVm Vm+Hm,
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is crucial in the development of the Arnoldi and GMRES methods.
Step (3) of Newton-GMRES computes the approximate solution

that solves (2.6). This is accomplished by first letting z Vmy for y E Rm. Then
[[ r(0) Jzl[2 -IIVl JVmylI2. Using (2.9), we have

since Vm+ has orthonormal columns. We denote by YGM the solution of the min-
imization problem

(2.10) min [[el Hmy[12.
yR

Then the optimal 5 is given by 5(m) 5() + VmYM. Note that (2.10) is a least
squares problem of size m / 1, and its coefficient matrix is upper Hessenberg. The
next iterate Un+ is then computed at the end of step (3), by adding 5(m). Finally,
the stopping criteria in step (4) will be discussed in the numerical testing section.

For simplicity, we have omitted several details on the practical implementation of
the above methods, which are discussed at length in [22], [4], and [24]. For example,
the residual norm pj referred to in step (2) of the algorithms does not require the
computation of the approximate solution 5(j) at every step. Instead an inexpensive
formula, which evaluates pj, is updated at each step while the factorization of the
Hessenberg matrix Um or Um is updated (see [4] and [24] for details).

The Arnoldi algorithm is theoretically equivalent to the Conjugate Gradient
method when J is symmetric and positive definite, and to the Lanczos method for
solving linear systems when J is symmetric [22]. The GMRES algorithm is theoreti-
cally equivalent to GCR [8] and to ORTHODIR [15] but is less costly both in terms
of storage and arithmetic [24]. For a synthesis and general description of available
conjugate gradient type methods see [23]. A comparison of the cost of each step of
these algorithms shows that for large enough m, GMRES costs about 1/3 less than
GCR/ORTHOMIN in arithmetic, whereas storage is roughly divided by a factor of
two. Another appealing property of GMRES is that in exact arithmetic, the method
does not break down or, to be more accurate, it can only break down when it delivers
the exact solution [24].

We note that if either algorithm solves the linear system J5 -F(u) exactly, or
rather with sufficient accuracy by taking (for example) m sufficiently large, then it
is clear that the resulting algorithm is nothing but Newton’s method, in which the
Jacobian linear systems are solved by either Arnoldi or GMRES.

Perhaps one of the most important aspects of the above Krylov methods is that the
Jacobian matrix J is never needed explicitly. The only operations with the Jacobian
matrix J that are required from the Arnoldi process are matrix-vector multiplications
w Jv, which can be approximated by

F(u + av) F(u)(2.11) g(u)v

where u is the point at which the Jacobian is being evaluated and a is some carefully
chosen small scalar. The idea of exploiting the above approximation is not new and
was extensively used in the context of ODE methods [3]-[5], [11], [17], in eigenvalue
calculations [9], [16] and is quite common in nonlinear equation solution methods and
optimization methods (see, for example, [12],[19],[27]).
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Another aspect of the above algorithms we have not yet considered is the ability
to use restarting in the (linear) Krylov methods. In a typical implementation of the
above Krylov methods, a maximum value of m is dictated by storage considerations.
If we let mmx be this value, then it is possible that m mmax in the Arnoldi
process, and yet Pm is still greater than n. In this case, we can set 5(0) equal to
5(m) and restart the Arnoldi process, effectively restarting the Krylov method. The
convergence of such a procedure is not always guaranteed, but the idea seems to work
well in practice. We note that for lack of a better initial guess we use 5(o) 0 on
the first (and possibly only) pass through the Arnoldi process at each stage of the
Newton iteration. It is only when restarting that 5(0) will be nonzero. As will be seen
below, it will also be important to choose the tolerance n at each step of the Newton
iteration.

Finally, we note that as m becomes large, a considerable amount of the work
involved is in making the vector vj+ orthogonal to all the previous vectors v,..., vj.
Shad [22] and Brown and Hindmarsh [4] have proposed incomplete versions of Arnoldi
and GMRES, respectively, in which the vector vj+ is only required to be orthogonal
to the previous p vectors, Vy_p+,..., vj. Equations (2.8) and (2.9) still hold in this
case but the basis Vm+ Ivy,... ,Vm+] is only partially orthogonal in the sense
defined above. These algorithms are referred to as the Incomplete Orthogonalization
Method (IOM) and IGMRES, respectively, and can be more cost effective than the
complete methods on some problems. See [22] and [4] for details.

3. Linesearch backtracking techniques. Newton’s method by itself may of-
ten fail to converge if the initial guess uo is far away from a root of (1.1). To enhance
the robustness of the nonlinear Krylov algorithms considered in the previous section
we will consider two modifications of these methods. In this section, we will consider
a global strategy based on a linesearch backtracking procedure, and then in the next
section we will investigate a model trust region approach.

Dennis and Schnabel [7] suggest using a global strategy for finding a root u. of
(1.1) that is based upon a globally convergent method for the problem

(3.1) min f(u)= 1F(u)TF(u).
uR 2

A descent direction for f at the current approximation u is any vector p such that

vj(u)p < 0,

where Vf(u) (Of/Ou(u),..., Of/OuN(u))T. An easy calculation shows that

V/(u) J(u)TF(u),
and so p is a descent direction for f at u if

F(u)Tg(u)p < O.

For such a direction, one can show that there exists a certain A0 > 0 such that
f(u + p) < f(u) for all 0 <

_
o.

If 5 is an approximate solution of (2.2), with F F(u) and J J(u), then

(3.2) FTJ -FTF FT,
where -F- J5 is the residual associated with 5. Thus, 5 will be a descent
direction for f at u whenever IFTI < FTF. In particular, if 11112 < ]IFII2, then is
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a descent direction. We have the following results regarding the existence of descent
directions when using the Arnoldi and GMRES methods.

PROPOSITION 3.1. Let u be the current Newton-Arnoldi iterate, F =_ F(u) and
J =_ J(u). Assume J is nonsingular. Let 5(m) _VmHnlVTm F be the direction
provided by the Arnoldi method assuming the initial guess (o) O. If 5(m) exists,
then it is a descent direction for f at u, and

(3.3) FTJ5(m) -FTF,

for any m 1,...,N.
Proof. (See Brown [2, Thm. 3.5]). This result follows from the equality (3.2)

and the fact that the residual vector in Arnoldi’s method is orthogonal to the Krylov
subspace, and in particular to its first basis vector, which is F up to a constant
factor. [:]

PROPOSITION 3.2. Let u be the current Newton-GMRES iterate, F F(u) and
J J(u). Assume J is nonsingular. Let 5(m) VmYGM be the direction provided by
the GMRES method assuming the initial guess (o) O. If (m) O, then (m) is a
descent direction for f at u, and

(3.4) FTJS(m) -FTF + p2m,

for any m 1,..., N, where Pm is the residual norm achieved at the mth step of the
GMRES algorithm.

Proof. We first prove (3.4). According to (3.2) we only have to show that p2m
--FTr(m) with r(m) -F- js(m). By definition (see (2.6)), GMRES minimizes

IIF + Jzl]2 for z in the Krylov subspace Km. It is known in this case that the
residual vector corresponding to the minimizer is orthogonal to JKm (see, e.g., [23]).
Therefore, we have

(r F)= (r -r

which establishes (3.4). The fact that 5(m) is a descent direction in this case, has been
shown in Theorem 3.7 of [2]. It can also be shown from (3.4) and the definition (2.6),
from which we get that Pm <: P0 IIFII2, since 5(m) O. D

We also have the following result regarding the existence of descent directions in
the subspace Km for f at u.

PROPOSITION 3.3. Let u be the current Newton-GMRES iterate, F F(u) and
J J(u). Assume J is nousingular. Let 5(m) VmYGM be the direction provided
by the GMRES method assuming the initial guess (o) O. Then there exist descent
directions in the subspace Km for the function f at u if and only if

holds.
Proof. This result is clear from Proposition 3.2 and from the fact that the GMRES

iterate solves the minimization problem (2.6).
The assumption that J is nonsingular in the above propositions is necessary,

since Arnoldi and GMRES are only guaranteed to converge for nonsingular systems.
When J is singular, the Arnoldi process can break down before providing any useful
information, since Jvi might vanish for some i. Furthermore, while Arnoldi’s method
will converge in at most N iterations for any nonsingular J, the Hessenberg matrix
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Hm may be singular for some m < N, and the mth Arnoldi iterate may not exist as
a result, i.e., there may be no solution to the system Hmy e. See [4], [22], and
[24] for more details.

Condition (3.5) means that the residual norm in GMRES must be reduced strictly.
It holds whenever the Jacobian matrix is positive real and at least one step of GMRES
is performed, i.e., m _> 1 (see Brown [2] and Elman [8]). The condition that J be
positive real at every step is too strong a condition to require. A milder condition is
to assume that the dimension m in Arnoldi or GMRES is large enough to ensure that
the final residual is reduced by a factor of at least /, where r/is a scalar < 1. In other
words,

(3.6) IlJ6 + FJI _<

where r/< 1, and 5 is the Arnoldi or GMRES iterate.
The practicality of the assumption that m can be chosen as large as necessary to

guarantee that (3.6) holds is questionable. It is known that as m gets large, (3.6) will
eventually be fulfilled. The problem is that with m too large, computational cost and
storage become too high. An alternative would be to perform restarting within the
(linear) Arnoldi or GMRES algorithm itself. In this case, however, the above results
(3.3) and (3.4) do not hold, since their proofs rely on the assumption that 5(0) 0,
while restarting has the same effect as making the initial guess nonzero in Arnoldi or
GMRES. To derive similar results, we go back to (3.2), which becomes

(3.7) Vf(u)Th(m) _FTF FTr(m).

Thus, for both GMRES and Arnoldi, it suffices that 5(m) will be a descent direction
whenever IIr(m)ll2 < IIFII2, a condition that has already been seen at the beginning of
this section.

We also need to obtain alternative expressions for Vf(u)T5(m) for computational
purposes. It is easy to show (see, e.g., [22]) that for Arnoldi’s method the residual
vector satisfies

r(m) -F- jS(m) _(eTym)Om+,

which yields from (3.7),

eT(3.8) Vf(u)T5(m) -FTF +( mYm)FTom+.
Note that when 6(o) 0 the last term in the above expression vanishes, since then
F -/v, and the columns of Vm are orthogonal to Om+. For GMRES we may use
(3.7) but we need to compute r(m). We have,

r(m) -F- J5(m)

r() JVmym
(3.9) Vm+l(el HmYGM),

which does not involve function evaluations. It can also be shown that (see [4] for
details)

el [-ImYGM T eqm+lqm+l

where qm+ is the last column of the Q matrix in the QR factorization of m.
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Our backtracking procedure will be based upon the ideas presented by Dennis
and Schnabel [7]. Given the current Newton iterate u un and a descent direction p,
we want to take a step in the direction of p that yields an acceptable un+l. We will
define a step 5 Ap to be acceptable if the following Goldstein-Armijo [7] conditions
are met:

f(u + )p)

_
f(u) + aAVf(u)Tp, and

f(u + )p) >_ f (u) + )Vf(u)Tp,

for given scalars a, fl satisfying 0 < a < < 1. These two conditions are commonly
referred to as the c- and -conditions, respectively. For a given descent direction p,
the next result shows that there exist points u + Ap satisfying (3.10) and (3.11).

THEOREM 3.4. Let F ag --+ Ry be continuously differentiable on Ry. Let
f(u) 5F(u)TF(u), and u, p in Rg such that Vf(u)Tp < O. Then given 0 < <
< 1, there exist )u > ) > 0 such that u + )p satisfies (3.10) and (3.11) for any
e

Proof. This is essentially Theorem 6.3.2 of Dennis and Schnabel [7, p. 120]. [3

We next present the particular backtracking algorithm we have chosen to use.
The selection procedure for A is modeled after that in [7].

(1)
(2)

(3)

(4)

Algorithm: Linesearch Backtrack
Choose a e (0, 3) and fl e (1/2, 1).
Given Un the current Newton iterate, calculate p 5(m), where 5(m) (0) +
z(m), and z(m) YmYm. Here, Ym is calculated using either the Arnoldi or
GMRES method (with or without restarting), and it is assumed that (3.6)
holds with i 5(m).
Calculate Vf(un)Tp using the appropriate choice(s) from equations (3.3),
(3.4), (3.7), (3.8), and (3.9).
Find an acceptable new iterate Un+l un + Ap. First, set 1. Define
U() Un 2_ )p.
(a) If u(A) satisfies (3.10) and (3.11), then exit. If not, then continue.
(b) If u(A) satisfies (3.10), but not (3.11), and >_ 1, set 2, and go to

(c) If u(A) satisfies (3.10) only and A < 1, or u(A) does not satisfy (3.10)
and A > 1, then

(c.1) If A < 1, define Alo A and )hi last previously attempted value
of A. If A > 1, define Alo last previously attempted value of and
Ahi A. In both cases, u(,to) satisfies (3.10) but not (3.11), U(Ahi)
does not satisfy (3.10), and Ato < )hi.

(c.2) Find A E (Ato, Ahi) such that u(A) satisfies (3.10) and (3.11) using
successive linear interpolation.

(d) Otherwise (u(A) does not satisfy (3.10) and A <_ 1), decrease A by a
factor between 0.1 and 0.5 as follows:

(d.1) Select the new such that u(A) is the minimizer of the one-dimen-
sional quadratic interpolant passing through f(Un), f’(u,)
Vf(un)Tp and f(u, + Ap). Then take the maximum of this new
A and 0.1 as the actual value used. (One can show theoretically
that the new A value so chosen will be less than or equal to one-half
the previous value.)

(d.2) Go to step (b).
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We note that the current algorithm will likely break down if the Jacobian J is singular.
For now, all that can be done in this case is to restart the iteration with a different
initial guess u0.

It remains to discuss the choice of en. From the results in [6], choosing en
rl]F(un)]12, where 0 < r < 1, guarantees the linear convergence of the Newton-
Krylov iteration for a good enough initial guess. If r is replaced by a sequence y,
decreasing to zero and satisfying 0

_
rn < 1 for all n, then the iteration converges

superlinearly. It is possible to show that for this second choice of en the full Arnoldi
or GMRES step will be admissible near a root (i.e., that conditions (3.10) and (3.11)
will be satisfied with 1). However, a finer analysis may indicate that the looser
tolerance may in fact give convergence of the iteration.

4. Model trust region techniques. In this section we will propose a model
trust region strategy in connection with the Newton-GMRES algorithm. In particu-
lar, we will consider a dogleg strategy based on Powell’s hybrid method [21].

Let u be the current approximate solution of (1.1). The effect of using a Krylov
method to solve the Newton equations (1.2) approximately is to take a step from u
of the form u / 5, where 5 is in the affine subspace 5(0) / Kin. If Vm Iv1,’", Vm] is
an orthonormal basis for Kin, and the initial guess 5(0) 0, then Vmy, for some
y E Rm, and we have a step of the form u + Vmy. Hence, we are effectively restricting
our search directions from u to be in the subspace Kin.

4.1. Global strategy with restriction to a subspace. Our global strategy
will again be based upon finding a local minimum of the real-valued function f(u)
1/2F(u)TF(u). Thus, we want to solve the minimization problem

min f(u -t- Vmy).
yER

Letting g(y) f(u / Vmy), we then have

Vg(y) (J(u + Vmy)V,)TF(u + Vmy),

and in particular that

Vg(O) -(JVm)TF,
where F- F(u) and g- J(u).

If we use F + JVmy as a linear model of F(u + Vmy), then a natural quadratic
model for g is

1 2(4.1) (y) 5IIF + JY,yll.
Letting Bm VTm JTJVm, we have

+ +

where Bm is symmetric and positive semidefinite, and V(0) Vg(0). If J is non-
singular, then Bm is positive definite, since Vm has orthonormal columns. Our model
trust region approach will be based upon trying to find a solution of the problem

(4.2) min 9(y), y e Rm
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where T is an estimate of the maximum length of a successful step we are likely to be
able to take from u. It is also a measure of the size of the region in which the local
quadratic model 0(Y) closely agrees with the function g(y). The solution to (4.2) is
given in the next lemma.

LEMMA 4.1. Let O(Y) be defined by (4.1), and assume that J is nonsingular. Then
problem (4.2) is solved by

Ym(#) (Bm + #I)-ldm,

where dm -Vt)(0), for the unique # such that IlYm(#)ll2 T, unless Ilym(0)ll2 _<
T, in which case ym(O) Bnldm is the solution. Furthermore, for any it >_ O,
(#) VmYm(#) defines a descent direction .for f(u) -as dm 7 O.

Proof. Since J being nonsingular implies that Bm is positive definite, (4.3) follows
from Lemma 6.4.1 of Dennis and Schnabel [7, p. 131] and Ym (#) is the unique solution
to (4.2). It therefore only remains to show that 5(#) VmYm (#) is a descent direction
for f(u) at u, for all # _> 0 Recall that p is a descent direction for f at u if

or since Vf(u) jTF, if

v/( )rp < 0,

FTjp < O.

For p 5(#), we have

FTjh(#) FTJVm(Bm + #I)- dm
((JVm)TF)T(Bm + #I)-dm
-dTm(Bm + #I)-ldm

< O,

since dm -V(0) Vg(0) 7 0, and since Bm + #I is positive definite for all
#>_0.

Since there is no finite method of determining # such that IlYm(#)ll2 7 when
T < IIBdmll2, we only approximately solve (4.2). The dogleg strategy of Powell [21]
makes a piecewise linear approximation to the curve Ym(#), and takes )m as the point
on this curve for which ]l)ml12 " We then define u,+l Un + , where Vmf/m.
If the iterate Un+l is acceptable, in the sense that some a-condition (3.10) is satisfied,
we proceed to the next step, while if not, a new value of the trust region size - is
chosen, and the procedure is repeated.

4.2. Global strategies for GMRES. The preceding discussion is independent
of the choice of the subspace Km, i.e., the results are valid for any subspace Km of
dimension rn with orthonormal basis given by the columns of Vm. In fact, the basis
vectors vi (i 1,..., m) need not even form an orthogonal basis for Km. We next
turn our attention to the case in which Km and Vm are generated using the GMRES
algorithm. Here, the relation (2.9) allows an easy reformulation of the minimization
problem (4.2). First, note that when the initial guess is 5(0) 0 and m steps of the
Arnoldi process have been taken in the Newton-GMRES algorithm we have

(4.4) dm -V0(0) -(JVm)TF --lTmel.



HYBRID KRYLOV METHODS 461

This direction is referred to as the steepest descent direction for (y) at y 0, and is
the same as that for g(y). Next,

(4.5)

Bm (JVm)TJVm
(Ym+lm)Tym+lXm
-THmHm.

Here we have used the relation (2.9), which is satisfied by the Arnoldi vectors
Thus, t(Y) can be rewritten as

(4.6)
1 l_TT[imy"+ +

Furthermore, the fact that J is of full rank implies that Hm is also of full rank by (2.9)
and the orthogonality of Vm and Vm+l. Note that this is true even when hm+l,m O,
because in this case the relation (2.9) reduces to JVm VmHm, with Hm nonsingular
and/mT/m THmHm.

Minimizing t(Y) in the steepest descent direction amounts to minimizing

1
t(odm) FTF

The optimal value for a is

o2
2/ eTmdm / -- II/md.ll2.

Ildmll 2
opt--

which is defined as long as dm 7 O, since/m has full column rank. We refer to the
point where (cdm) assumes its minimum value as the Cauchy Point, and write

(4.7) ycP aoptdm - ilI:imdmll 2.
We note that GMRES gives the global minimizer of (y), and we write

(4.8) YaM (Tm[Im)-lHme (Tmm)-idm.

Note that in practice the above formula will never be used explicitly. Numerically,
it is more satisfactory to compute YGM as the solution of the the least squares problem
min IIHmy+ell2 over the variable y. We should point out here that when hm+,m 0
the deterinination of YGM in this manner does not cause any difficulty. In fact, in
this situation we will have what is called a happy breakdown in GMRES, in that

VmYGM becomes the exact solution to the linear system J5 -F, i.e., we obtain
a full Newton step instead of an inexact Newton step. The GMRES solution and the
Arnoldi solution are then identical.

In order to use the dogleg strategy, we have seen that the vector dm must be
nonzero. Since dm is the steepest descent direction within the Krylov subspace, a
null value would indicate that there are no descent directions from f at u within the
subspace Kin. Note that (4.8) implies YGM 0 : dm O. Hence, if we require m to
be large enough so that condition (3.6) holds, then necessarily YGM will be nonzero,
and the dogleg strategy can be used. This will be assumed in the dogleg algorithm
presented below.
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We next describe the dogleg algorithm for (y). Suppose we are in a situation
where the full GMRES step is unsatisfactory. This indicates that the quadratic model
(y) does not adequately model g(y) in a region containing the full GMRES step. The
linesearch algorithm of the previous section would take a step in the same direction,
but of shorter length. In the dogleg strategy, we first choose a shorter steplength, and
then use the full m-dimensional quadratic model (y) to choose the new direction.
The curve Ym(#) given by (4.3) is approximated by the piecewise linear curve from
zero to YcP, and from ycP to YGM. As indicated above, given a trust region size -,
we then find the point m on the dogleg curve with IIml12 T.

The only remaining parts of the algorithm to discuss are the decision process for
an acceptable new iterate u,,+l and the selection of the trust region size T. We will
again base our strategy on the ideas presented in [7]. The condition for accepting
un+l is (3.10), namely,

where Vmgm. In this case, the relations (3.3) and (3.4) do not apply, since is
not necessarily the Arnoldi or GMRES direction. However, for any Vmy, we have

Vf(un)T5 FTj5 FTJVmy FTVm+lmy --eT my.
Hence, it will be easy to determine if (3.10) is satisfied for any un+ of the form u,, /
without even computing the direction .

The trust region size will be adjusted based upon a comparison of the two values

Af
_
f(un+) f(un) g(flm) g(0),

which is the actual reduction in the function f, and

Afpred (gm)- g(0),

which is the predicted reduction in the function f. Our dogleg algorithm is then as
follows.

(1)
(2)

(3)

(4)

Algorithm: Dogleg
Choose a E (O, 1/2).
Given un, the current Newton iterate, calculate CM VmYGM. Here, YGM
is calculated using the GMRES method (without restarting) with initial guess
(0) 0, and it is assumed m is large enough so that (3.6) holds with GM.
Given T, the current trust region size, calculate 9m, the point on the dogleg
curve for which ]19m]12 T. Then calculate un+ u,, + Vmf]m. If u,,+ is
acceptable, then go to step (5).
If un+l is not acceptable, then do one of the following:
(a) If - has been doubled during this iteration, then set u,,+ equal to its

last accepted value and set T ’/2. Then continue to the next Newton
iteration. If not"

(b) Determine a new T by using the minimizer of the one-dimensional quadratic
interpolating f(un), f(un+), and the directional derivative of
in the direction Vmfm. Letting A be the value for which u,
is this minimizer, set T +-- AIIII2 but constraining it to be between 0.1
and 0.5 of the old T. Then go to step (3).
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(5) For an acceptable Un+l, calculate Af and Afpred. Then do one of the follow-
ing:
(a) If Af and Afpred agree to within relative error 0.1, and T has not been

decreased during this iteration, set T 2 T, and go to step (3). If not:
(b) If Af > 0.1 Afpred set T T/2, or if Af < 0.75, Afpred, set T 2 * T.

Otherwise, do not change -. Then continue to the next Newton iteration.
(Note that here both Af and Afpred are negative.)

We note that this algorithm will also likely break down if the Jacobian J is
singular. As with the linesearch technique, all that can be done for now is to restart
the iteration with a different initial guess u0. We also set en nllF(un)ll2 as before.

Although we have based our trust region algorithm on the dogleg strategy outlined
in [7], we could alternatively have based our approach on one of the related algorithms
for unconstrained optimization presented by Mor4 [18] and Gay [10]. In general, for
unconstrained optimization problems the matrix Bm can have negative eigenvalues.
In this case, Gay [10] has shown that the solution of (4.2) is still a y, value satisfying
(Bm + #I)y, dm for some # > 0 such that Bm+ #I is positive semidefinite.

4.3. Restarting procedures. One can allow restarting in the (linear) Krylov
method in the above algorithm. Equivalently, we would like to show how to use a
nonzero initial vector 5(0) in the algorithm. In this case, the step 5 from u would
normally have the form 5 5(0) + Vmy. However, with this choice g(y) f(u + 5)
f(u + 5() + Vmy) would not necessarily be close to f(u) for small y, as it should be.
That is, g(0) f(u) in general. For this reason, the contribution to the step from the
initial guess must also be variable. This has the effect of enlarging the dimension of the
minimization problem (4.2). For 5(0) a nonzero initial guess, let (y, t)T 6 Rm+l
and try taking a step from u of the form u+5, where 5 [Vm, 5()]. (Here, we assume

Vm [vl,..., Vm] has been generated by taking rn steps of the Arnoldi process.) Then
we have

F(u + 5) F + J[Vm, 5()].

Letting W [Vm,5()], the local quadratic model for g() f(u + W) 1/211F(u +
W)[[2 is now given by

1
2"

Since r() -F- J5(), we can write

F + JW9 (1 t)F- tr() + Vm+mY,

using the fact that JVm Vm+l[-Im. This then makes it possible to evaluate
without the need for the Jacobian matrix J.

For this modified quadratic model, the steepest descent direction is given by

-V0(0) --(JW)TF
-[JVm, J6()]TF
-[Vm+Im, JS()]TF

m+l Rm+l
(F + r())TF 6
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Next, the approximate Newton step is found using a relationship between the New-
ton step and the steepest descent direction similar to the situation earlier without
restarting, namely,

s= B-ld,

where B V2t(0) is the Hessian of t. An easy calculation gives

B= (jw)T(jw)= Hm m V

VT a

letting v --/mT _vmT+I(F / r()) and a liE / r()l122._ To calculate s, first note that
we already have Hm QR, the QR-factorization of Hm. Hence,

B
vT a

Letting

R-
0...0

where/ 6 Rrem, we have RTR TI, which is essentially a Cholesky decompo-
sition of/mT/m. Note that the matrix/ is always nonsingular for J nonsingular,
regardless of the value of hm+l,m in the Arnoldi process. The Cholesky decomposition
of B is then easily obtained as

(4.10) B wT b 0 b C,

where w (T)-v and b- x/’a- wTw.
The factorization (4.10) is possible as long as B is positive semidefinite. This

follows immediately from its definition, since when J is nonsingular the matrix B
(JW)TJW is nonsingular if and only if the columns of JW are linearly independent,
or equivalently if and only if the columns of W are linearly independent. This will be
the case if and only if 5(0) does not belong to Kin. In the situation where 5(0) does
belong to Kin, () has an infinite number of global minimizers, and B is singular.

To handle the problem of an ill-conditioned or singular B, we use a technique
similar to that done in the full N-dimensional quadratic approximation. If C is
singular, or its condition number is greater than 1/Vr, where - is the machine epsilon,
then we perturb the quadratic model () to

h()
1

() + -r
I_TFTF + FT(jwI) + -y (B + #I)

I_TFTF-dT+-y (B+#I),

where # x/N" IIBII. The condition number of B + #I is roughly l/v/ (see
p. 151 in [7] for a justification of this fact). Lemma 4.1 implies that the Newton step
to the global minimizer of h(l), s -(B / #I)-d, solves the minimization problem

min h(), R"+,
I1#11_"
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for some T > 0. It follows easily that this step will also be a descent direction for
f(u).

The above procedure is similar to choosing the approximate Newton step s by
making it the minimum 2-norm solution of

(4.11) min lIF + JWll2.

To see this, let (JW)+ be the pseudo-inverse of JW. Then the solution of (4.11) is

SLS -(JW)+F. For # small, the step -(B / #I)-(jW)TF is similar to 8LS
in that SLS as # 0, and both are orthogonal to the null space of JW for any
# > 0. Again, see [7] for more details.

5. Scaling and preconditioning. The linear Krylov methods discussed in 2
need to be enhanced in order to improve their efficiency and robustness. Two ways of
accomplishing this is by using scaling and preconditioning. Scaling is also of particular
importance in solving systems of nonlinear equations, as Dennis and Schnabel note
[7]. In this section we first discuss scaling of the nonlinear system, its effect on the
linear systems to be solved, and then the use of preconditioning in solving the linear
systems.

We will allow scaling of both the nonlinear function F and the unknown u in our
algorithms. This will be accomplished by using two diagonal scaling matrices DR and
Du with positive diagonal entries, where the scaled version of (1.1) is

(5.1) /() DFF(Dt) O.

Here, F DFF and t Duu are the scaled versions of F and u. The resulting
scaled Jacobian ] of/ is

() ’() DFJ(Dt)D.
The scaled Newton equations are then

-k,

with Du6. Since we will primarily be using finite-difference versions of the Krylov
algorithms, the matrix J will not be available, and hence an explicit scaling of it
cannot be performed. However, we will effectively perform an explicit scaling of the
Newton equations without ever scaling J. For details of implementing scaling in this
way using Krylov methods, see Brown and Hindmarsh [3].

The global strategies discussed in the previous two sections will work with the
scaled problem (5.1). However, the scaling will be implemented in an implicit way as
follows. Only the diagonal entries of DR and Du will be stored, and whenever one of
the norms IIFII2 or 11112 is needed, a call will be made to a routine which computes
the scaled norm. The scaled function ] 1/2/T/ will be the one used in determining
the step from the current iterate to the next.

Without some form of preconditioning, the Krylov methods discussed in 2 are of
limited use. Generally, by preconditioning here we mean applying the Krylov method
to the equivalent system

(5.2) (PJP-)(P25) P-b or ? ,
where b -F. The matrices P and P2 are chosen in advance so that the precondi-
tioned problem will be easier to solve than the original one. Since linear systems of
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the form PlX c and P2x c need to be solved, it is necessary that these additional
linear systems be much easier to solve than the original problem. Also, precondition-
ing makes sense only if the convergence rate of the Krylov method applied to (5.2) is
much better than that for the unpreconditioned problem.

The linear system (5.2) is said to be preconditioned on both sides, with P1 and
P2 referred to as the left and right preconditioners, respectively. If one of these is the
identity, then the system is said to be preconditioned on the left or right only.

Incorporating both scaling and preconditioning into the linear system, we then
have the scaled preconditioned system

(5.3) (DFIDI)(Du) (DF) or ) .
In our case, however, we will need to restrict P1 to be the identity matrix. The norm
of the residual associated with (5.3) is

and for general P1 this is not directly related to the quantity II ll II - in
which we are really interested. Furthermore, our global strategy is based upon the
function ] 1/2/T/. Hence, the equations (3.3), (3.4) and the similar result used in
the dogleg strategy will only hold when P1 is the identity matrix. Letting P1 I and
P2 P, our scaled preconditioned linear system is then

(DFJP-1DI)(DuPS) DFb.

The scaled preconditioned Arnoldi and GMRES algorithms are then as follows.

Algorithm: SP-Arnoldi (SP-GMRES)
(1) Arnoldi process:

Choose a tolerance e.
For an initial guess 5(), form r() -F- jS(o), where F F(u) and
J=g(u).
Form (0) DFr(). Compute/ 11()112 and 1 (0)//.
For j 1,2,..., do:
(a) Compute ]j DF(J(P-I(DIj))).
(b) i,j (]j, i), 1, 2,...,j.
(C) )j-t- Jj J

(d) hj+l,j IIy+1112, and
(e) j+l )j+l/j+l,j.
(f) Compute the residual norm j I1 / ()112, of the solution (J)

that would be obtained if we stopped at this step.
(g) If tSj _< e set rn j and go to (2).

(2) Form the approximate solution:
Arnoldi: Define Hm to be the rn x rn (Hessenberg) matrix whose nonzero
entries are the coefficients j, 1 <_ <_ j, 1 <_ j _< m and l)m [1,’", m].

Find the vector )m which solves the linear system
Compute 5(m) 5(0) + p-iDOlS(m) where 5(m)

GMRES: Define H, to be the (rn_ + 1) x rn (Hessenberg) matrix whose
nonzero entries are the coefficients hij, 1 <_ <_ j + 1, 1 <_ j <_ m and

?m [l,’’’,m].
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Find the vector ),, which minimizes II/el- m)l12 over all vectors in
am
Compute 6(’) 6 (0) + P-ID5(m), where 5(m) /mm.

In this formulation, we have elected to precondition first and scale second. Alter-
natively, one could do these in the opposite order. The parentheses in the calculation
of Jj indicate that this product is found by first forming Dj, then solving the
system Pw Dd, multiplying w by J, and then finally multiplying the result by
DR. Recall that the matrix J here is never formed, and so each operation must be
done separately.

6. Numerical testing. In this section, we discuss the relevant implementation
details of the methods developed in the previous sections, and then present some
results of testing the methods on several problems. We have implemented both global
strategies in one solver, the format of which was based upon the overall design of such
a package presented in Dennis and Schnabel [7].

6.1. An experimental solver. A solver package called NKSOL (Nonlinear
Krylov SOLver for nonlinear systems of equations) has been developed which im-
plements the above methods. NKSOL allows the user to select from among three
basic options:

Arnoldi/IOM as the linear Krylov method with the linesearch backtracking
global strategy,
GMRES/IGMRES as the linear Krylov method with the linesearch back-
tracking global strategy, and
GMRES as the linear Krylov method with the dogleg global strategy.

The driver routine, NKSOL, checks for valid input, handles the initial startup of
the iteration, and calls a routine NKSTOP to decide when to stop the iteration. It
also calls routines MODEL, LNSRCH, and DOGDRV, which perform the following
functions. MODEL calls SLVS, which in turn calls either SPIOM or SPIGMR to
solve the Newton equations approximately using Arnoldi or GMRES, respectively.
LNSRCH determines an acceptable step in the direction provided by MODEL using
the linesearch backtracking strategy of 3. DOGDRV is the dogleg strategy driver. It
calls DOGSTP, which computes the point on the dogleg curve corresponding to the
current trust region size, and TRGUPD, which determines if the step provided by
DOGSTP is acceptable and adjusts the trust region size accordingly. See Fig. 6.1.

The user must supply a routine for calculating F(u), and may optionally sup-
ply any or all of three additional routines. By default, finite-differences are used to
calculate Jv. However, the user may also supply a routine JAC to perform this mul-
tiplication. The other user-supplied routines are PSET and PSOL which involve the
preconditioner matrix P. Routine PSOL solves the linear system Pw c, and PSET
is called once per Newton iterate to set up any matrix data associated with P.

One detail of particular importance is the selection of a in the difference quotient
approximation (2.11). When using finite differences to form an approximate Jacobian
matrix in the context of Newton’s method, Dennis and Schnabel [7] suggest a stepsize
of the form

(6.1) h max{lull, typu} sign(uj),
in the difference quotient

F(u + hjej) F(u)
hj
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FIG. 6.1. Simplified Block Structure of NKSOL.

Here, represents the relative error in computing F(u), ej is the jth standard basis
vector in RN, and typuj > 0 is a typical size of uj provided by the user. The size of

r depends upon how much work is needed to calculate F(u). In the absence of any
information, a value of equal to machine epsilon is appropriate. The above formula
gives an approximation for the jth column of the Jacobian matrix J(u).

In our setting we need only approximate the operation Jv, for a given vector v,
and not J itself. To modify (6.1), first note that it can be rewritten as

hj v max{luTejl, typuTej} sign(uTej),

where typu [typul,... ,typuN]T. Note also that I[eylle 1. If we ignore scaling for
the moment, and for a given vector v let w v/llvll2, then an analogous choice for #
in the difference quotient

gw F(u + Ow) r(u)

v/max{IuTw[,typuTIw[} sign(uTw)

maX{[uTvl,typuTIvl} sign(uTv),

where Iw[ [Iwll,..., IWN[]T, with a similar definition for Ivl. Choosing a o/llvll
gives us an appropriate value to use in (2.11). If we include scaling, then II" 112 and
its associated dot product should be replaced by the scaled norm IID. 11 and its dot
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product (Du.,D,.). Hence, for a given v, letting w v/llDvll2 leads to

max{l(Duu)TDuwl, (D typu)TDulwl} sign((Duu)TDuw)

max{l(Duu)TDuvl, (Dutypu)TDulvl} sign((Duu)TD v),

and a olllD,,vll.
The entries of the diagonal scaling matrix D are chosen so as to make the com-

ponents of the scaled vector Duu all roughly equal in magnitude. Hence, if
Du diag{d11,... ,dNN}, then one should use djj typu}-1 for each j. A similar
choice for the entries of the DF matrix can be made.

The stopping criteria used are those described in Chapter 7 of [7], and are repeated
here for convenience. The first test determines whether u, solves the problem (1.1),
i.e., whether F(u,) , O. This is accomplished by using

(6.2) IIDFF(Un)Iloo < FTOL,

where a typical value for FTOL is around 10-5. The next test determines whether
the algorithm has converged or stalled at Un. It is of the form

(6.3) Ilrelulloo < STPTOL,

where relu is a vector of length N, which measures the relative change in u from one
step to the next. Its components are defined by

I(Un+l)j --(Un)jl
reluj

max {l(un+l)jl, typuj}
for j 1,...,N. If t significant digits are desired in the solution, then STPTOL
should be set to 10-t. (Alternatively, the user can supply his own routines for cal-
culating the size of F(u,) and the relative change in u that appears in (6.2) and
(6.3).) A maximum steplength STPMX is imposed in both the linesearch and dogleg
strategies, and if five consecutive steps are this long, then the algorithm is terminated.
There is also a maximum number ITMAX of iterations that can be performed on any
one call to NKSOL. Currently, this value is 200, but it can optionally be set by the
user.

In the test results of the remainder of this section, the following counters and a
return flag will be helpful. These are defined as follows:

NFE number of F evaluations
NNI number of nonlinear iterations
NLI number of linear iterations within the Krylov method
NB number of backtracks within the linesearch algorithm,

and number of extra F evaluations used by the dogleg
strategy

NCFL number of times that the linear solver failed to reduce the
residual norm by a factor n in mmax steps

ITERM termination flag (=1 if (6.2) holds, =2 if (6.3) holds,
and =3 if (3.10) fails to hold).

1) forn=l,2,.., andF=F(u,).For en we use en TnllFII2, where rn (7
A default value of mmax 10 is used with the full orthogonalization version of each
Krylov method. If m mmax, but IIr<’ >l12 >   llFII2, we simply go ahead and use
the last computed GMRES or Arnoldi step. The counter NCFL equals the number
of Newton iteration steps for which this happened.
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TABLE 6.1
Results for the Bratu problem, A 1.

No Preconditioning Laplacian Preconditioning
MF= 1 MF=2 MF=3 MF=I MF=2 MF=3

NFE 151 205 150 28 28 27
NNI 15 20 15 6 6 6
NLI 134 184 134 20 21 20
NCFL 13 18 13 0 0 0
NB 1 0 0 1 0 0
ITERM 1 1 1 1 1 1

6.2. Test problem 1. Solution of a Bratu problem. As a first test problem
we chose to solve the nonlinear partial differential equation

Au+ cu + e f
over the unit square of R2 with Dirichlet boundary conditions. This is a standard
problem, a simplified form of which is known as the Bratu problem [13]. After dis-
cretization by 5-point finite differencing, we obtain a large system of nonlinear equa-
tions of size N, where N nx 2 and nx is the number of meshpoints in each direction.
The right-hand side f is chosen so that the solution of the discretized problem is
known to be the constant unity. As a result, the equation will always have at least
one solution. In fact, it is known that for A >_ 0 there is always a unique solution to
the problem (see [13]). In this test we took nx 32, yielding a nonlinear system of
N 1024 unknowns, and a 10.0, A 1.0. It is possible to precondition this prob-
lem by the Laplacian operator. To this end we can use a fast Poisson solver such as
the subroutine HWSCRT from FISHPACK [26]. We tested the three basic methods
from NKSOL, each of them with and then without this preconditioning. The three
methods correspond to the following method flags:
MF 1 The dogleg technique using GMRES as a linear solver.
MF 2 The backtracking linesearch technique using Arnoldi’s method

as a linear solver.
MF 3 The backtracking linesearch technique using the GMRES method

as a linear solver.
For Arnoldi and GMRES the default value of mmax 10 was used, and the

values of FTOL and STPTOL were 10-7 and 10-1, respectively. No scaling was
used and the initial guess was always taken to be zero. Table 6.1 shows the results
for all three methods with and without preconditioning, while the graph of Fig. 6.2
plots the value of f 1/2FTF on a logarithmic scale in powers of 10 as a function of
NFE, the number of function evaluations consumed to reach that value of f. Here,
the performances of the three basic methods MF=l,2,3 differ very little as is shown
in Table 6.1 and in the plot of Fig. 6.2, with the exception that MF=I and 3 have a
slight edge over MF-2. On the other hand, preconditioning was extremely helpful.
Note that both the number of nonlinear iterations and the total number of linear steps
is much reduced by the use of the preconditioner. We should mention that for this
problem it is possible to take advantage of other subroutines from FISHPACK. For
example, instead of preconditioning with the Laplacian we could have used BLCKTRI
to precondition by the discrete version of the partial differential operator A + O/Ox
or even of A + n + O/Ox where n could be, for example, some average of eun-1 over
the domain.
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FIG. 6.2. Results for the Bratu problem, 1. Solid line: MF 1; dashed line: MF 2;
dotted line: MF 3. Lower curves: with preconditioning; upper curves: no preconditioning.

In our second experiment with this test problem, we took a negative value for/
to make the problem more difficult to solve. When/ < 0 the Jacobians in Newton’s
method may not be positive real and this is a source of difficulty for the linear system
solvers. With A -5 we obtain the results of Table 6.2 and the plot of Fig. 6.3. We
observe again that there is little difference between the three methods, again with the
exception that MF-1 and 3 appear to have a slight edge over MF=2 when there is
no preconditioning.

6.3. Test problem 2. The driven cavity problem. This second test prob-
lem is the classical driven cavity problem from incompressible fluid flow. In stream
function-vorticity formulation the equations are

(6.8)

uAw + (x2wxl Cxlw2) 0 in

-A w in ,
0 on

0 [ 1 if X2 1,
0--- xl’ x)la 0 if 0 _< x2 < 1.

Here, f2 {(xl,z2)" 0 < zl < 1,0 < x2 < 1}, and the viscosity u is the reciprocal of
the Reynolds number Re. In terms of alone, (6.5) and (6.6) are replaced by

(6.9) vA2 + (x2 (A)x (A)x2) 0 in a,

subject to the boundary conditions (6.7) and (6.8). For more details on the problem
definition see [13].
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TABLE 6.2
Results ]or the Bratu problem, A -5.

No Preconditioning Laplacian Preconditioning
MF= 1 MF=2 MF=3 MF=I MF=2 MF=3

NFE 195 230 216 30 29 29
NNI 19 22 21 6 6 6
NLI 174 204 194 22 22 22
NCFL 17 20 19 0 0 0
NB 1 3 0 1 0 0
ITERM 1 1 1 1 1 1

Function evaluations

FIG. 6.3. Results .for the Bratu problem, A -5. Solid line: MF 1; dashed line: MF 2;
dotted line: MF 3. Lower curves: with preconditioning; upper curves: no preconditioning.
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TABLE 6.3
Results for the driven cavity problem (Re 500).

BIHAR Cholesky Decomposition
MF-- 1 MF--2 MF---3

NFE 146 308 145
NNI 14 27 14
NLI 130 261 130
NCFL 11 26 11
NB 1 19 0
ITERM 1 1 1

TABLE 6.4
Results for the driven cavity problem (Re 1500 and 2000).

Re 1500 Re 2000
MF-- 1 MF=2 MF=3 MF= 1 MF=3

NFE 484 393 472 552 567
NNI 31 16 30 35 36
NLI 451 226 436 512 527
NCFL 30 15 29 34 35
NB 1 150 5 4 3
ITERM 1 3 1 1 1

Equation (6.9) was discretized using piecewise linear finite elements in a manner
similar to that for the biharmonic problem A2 f outlined in 3 of [14]. This
discretization is also equivalent to that obtained using standard finite differences.
The resulting nonlinear system has N 632 3969 unknowns. For a preconditioner,
we use the discretized version of P pA2. For a uniform mesh, systems of the
form Pw c can be solved very efficiently using a fast solver, for example BIHAR
developed by Bjorstad [1]. This preconditioner should be very effective for small
Reynolds numbers, with decreasing effectiveness as the Reynolds number grows. For
comparison, we considered Re 500, 1500, 2000, 3000, and 5000. All runs were
made on a CRAY-1 at LLNL, with FTOL 10-7, STPTOL 10-s, and the scaling
matrices DR and Du both equal to the identity (i.e., no scaling). The initial guess 0
was simply the zero vector.

The results for Re 500 are given in Table 6.3. We used the Cholesky decom-
position option in BIHAR for the solution of the biharmonic problem. This option
computes an exact solution with a minimal storage requirement. For this Reynolds
number, the preconditioner is very effective and the two GMRES method options per-
form similarly, whereas the Arnoldi/Linesearch option takes more nonlinear iterations
but still achieves convergence. See Fig. 6.4 for a plot of function evaluations versus
values of f 1/2FTF, and Fig. 6.5 for a contour plot of the stream function values in
this case. The contour levels plotted are

-0.1, -0.08, -0.06,-0.04,-0.02, 0.0,

0.0025, 0.001, 0.0005, 0.0001, 0.00005.

The results for Re 1500 and 2000 are given in Table 6.4. For these higher
Reynolds numbers the preconditioner is less effective, and the original runs (using
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:,___

’,- --
Function evaluations

FIG. 6.4. Reynolds number 500. Solid line: MF 1; dashed line: MF 2; dotted line:
MF 3. Cholesky preconditioning.

o.o 1.o

FIG. 6.5. Reynolds number 500.
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TABLE 6.5
Results for the driven cavity problem (Re 3000 and 5000).

Re 3000 5000
MF- 1 MF--- 1

NFE 904 1407
NNI 57 88
NLI 845 1315
NCFL 56 87
NB 1 3
ITERM 1 1

the default value of mmax 10) failed to converge for all MF values. Increasing
mnax to 15 yielded the results in the table. A possible reason for the convergence
failures is that since the preconditioner is less effective, the default Krylov subspace
dimension is not large enough to generate sufficiently good descent directions for the
nonlinear iteration. In addition, the Arnoldi/Linesearch combination performed very
poorly, and the high number of backtracks suggest that Arnoldi is producing very
poor descent directions (even with the higher mmx value). We say more about this
below. See Figs. 6.6 and 6.7 for function evaluations versus f, and Figs. 6.8 and 6.9
for contour plots. Table 6.5 contains the results for Reynolds numbers 3000 and 5000.
We elected to test only the dogleg strategy for these higher Reynolds numbers. While
GMRES is having difficulty solving the linear systems for high Reynolds numbers the
nonlinear iteration is still achieving convergence. (See Figs. 6.10-6.13.)

Finally, we note that the Arnoldi/Linesearch option in general performs very
poorly for the large Reynolds number cases. This may be partly due to the fact that
the Jacobian matrix J() becomes nearly skew-symmetric for small p. While it is
not surprising that both Arnoldi and GMRES may perform poorly in this case, the
directions each computes can be vastly different. It follows from (3.3) and (3.4) that
the derivative vfT5 is independent of the residual associated with the Arnoldi step
5 5A, whereas this is not the case for the GMRES step 5 5VM. If we use the norm
of the residual as a measure of how good an approximation is to the full Newton
step, then it appears that the GMRES step GM may in general be preferable. In
other words, a poor GMRES step is in general better than a poor Arnoldi step.

7. Conclusion. Krylov subspace methods for linear systems can be combined
with Newton iteration and globally convergent strategies to obtain effective algorithms
for general nonlinear systems of equations. We have shown how the Arnoldi and
GMRES methods can be fitted into such a combination and have discussed some
of the relevant implementation details. We have also implemented these algorithms
in an experimental solver NKSOL. The test problems we have considered show that
these methods (with suitable preconditioning) can be quite effective for some classes of
problems. Propositions 3.1 and 3.2 and the remarks at the end of the previous section
indicate that GMRES may be slightly better than other available Krylov methods, at
least in the nonlinear equations setting. Similar to the situation in linear equations,
one observes that the choice of a preconditioner is more important than that of the
Krylov subspace method. In many instances, nonlinear preconditioners can be built
from linear parts of the nonlinear equations as was shown in the examples of 6.
Another way of preconditioning is to transform the initial nonlinear equation, for
example, by solving u- M(u) 0 where the operator comes from some known fixed
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-12

Function evaluations

FIG. 6.6. Reynolds number 1500. Solid line: MF 1; dashed line: MF 2; dotted line:
MF 3. Cholesky preconditioning.
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Function evaluations
FIG. 6.7. Reynolds number 2000. Solid line: MF 1; dotted line: ME 3. Cholesky precon-

ditioning.
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FIG. 6.8. Reynolds number 1500.
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FIG. 6.9. Reynolds number 2000.
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Function evaluations

FIG. 6.10. Reynolds number 3000. Solid line: MF 1. Cholesky preconditioning.

f
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-12

Function evaluations

FIG. 6.11. Reynolds number 5000. Solid line: MF 1. Cholesky preconditioning.
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FIG. 6.12. Reynolds number 3000.
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FIG. 6.13. Reynolds number 5000.
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point iteration un+l M(Un). This opens up many possibilities for using Krylov
subspace methods as accelerators of existing codes based on nonlinear stationary
iterations. There are many issues that remain to be investigated. Among them is the
possibility of exploiting information gathered during the previous nonlinear steps, such
as previous Krylov subspaces and the corresponding Jacobian in that space. Another
interesting question, related to the fluid dynamics problem of 6.2, is whether solving
the stationary problen directly is more effective than solving the time-dependent
problem over a large enough time period. This second approach would in effect
constitute a sort of continuation technique with continuation parameter the time t,
and it might very well be the case that for very hard problems a combination of the
methods described in this paper and a form of continuation will be the most robust
approach.

Finally, this paper has focused on presenting a general purpose nonlinear equation
solver based on nonlinear Krylov subspace techniques, enhanced by global convergence
strategies. The algorithms we have implemented are all based on extrapolations of
globally convergent methods for full N-dimensional quadratic models. In future work,
we intend to study the convergence properties of these combined global/Newton-
Krylov methods.
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SMOOTHING PERIODIC CURVES BY A METHOD OF REGULARIZATION*
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Abstract. The present work develops an extension of the theory of polynomial smoothing splines for
the statistical problem of estimating a periodic curve based on discrete and noisy observations of the curve
itself or of a convolution functional of the curve. These estimates, called periodic a-splines, are still of the
method of regularization type, with a penalty involving Fourier coefficients. The questions of asymptotic
rate of convergence of the integrated mean square error and the relationships with kernel estimates in the
case of equispaced design points are addressed.

Key words, smoothing splines, method of regularization, kernels, nonparametric regression, Fourier
series
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1. Introduction. The problem of estimating a periodic curve given incomplete and
noisy observations arises naturally in a variety of experimental situations, including,
for example, the estimation of log-spectral density in time-series analysis (see Wahba
and Wold [12]). We consider the following model. Let f( be an unknown function,
from R to R, periodic with period 1, and let the observations (yl, Y2,""", yn)n be
related to f(. by

(1) Yi Lif+ ei, i= 1,. ., n

where the errors ei are realizations of n random variables with mean zero and
covariances E(eiej)=r26, and Li, i= 1,..., n, are n continuous linear functionals
on a topological vector space of functions to which f( is assumed to belong.

We will first specialize to the evaluation case when the functionals Li are merely
observations of the function f(. at n design points tl, tn, which we may assume
to lie in [0, 1] without loss of generality:

(2) Lif--f(ti), 1,’" ", n.

A least squares estimate is often used when the space g contains elements that
can be entirely determined by a finite number of real parameters ("parametric" method)
and is obtained by minimizing

(3) LS (g)=1__ (g(ti)_Yi)
ni=l

over g(. ) .
When we do not want to make such a strong assumption on a natural generaliz-

ation is the penalized least square estimate" to avoid simple interpolation of the data,
we add a penalty term to LS penalizing highly irregular or physically less plausible
curves. This is the case for periodic smoothing splines where we use for the periodic
Sobolev spaces: wP2r(o, 1) of periodic real-valued functions with absolutely continuous
kth derivative, O-< k <-m- 1, and square integrable mth derivative, and the penalty

(4) J(g) A Igm)(t) dt

* Received by the editors December 30, 1987; accepted for publication (in revised form) June 20, 1989.

" Laboratoire de Statistique et Probabilit6s, UA-CNRS 745, Universit6 Paul Sabatier, 118, route de
Narbonne, 31062 Toulouse Cedex, France. Present address, 7 rue des Saules, 31400 Toulouse, France.
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where A determines the balance between fit and smoothness (see Wahba [13]). The
fitting of a function f(. to discrete data yi by minimization of a functional such as
LS (g)+ J(g) is also called the method of regularization.

Our approach is to look at such a method with a penalty based on the Fourier
coefficients of the function g(. ), which are defined for g(. L2(0, 1) by

(5) gk g(u) e-2riku due C, k e Z.

The motivation for this is that the smoothness of a periodic function g(. is determined
by the asymptotic behaviour of the sequence gk. For example, a function g(.) with
derivatives g(. absolutely integrable and absolutely continuous on [0, 1] for 0-< q
m has a sequence of Fourier coefficients gk satisfying gk o(1/n"+l) Conversely, if
the Fourier coefficients of g(. are bounded by O(1/rim+E), then the derivatives g(.
exist and are continuous on [0, 1] for all q with 0 <_- q _-< m. The family of Poisson kernels

--2,1-e
gV(x)

1 -2 e-v cos 2rx + e-2

with Fourier coefficients g e-vlkl emphasizes the relationship between the decay of
the Fourier coefficients and the "global smoothness" of the curve since here, the larger
y is, the flatter g V gets.

It is then natural to look at penalties of the form

(6) J(g)= E o(k)2lgkl 2

where t is a map from R to R, which we will refer to as the weight function. Since,
for a real-valued function g(. ), we have g-k --g*k (where z* is the complex conjugate
of a complex number z), we assume

(A1) ce(-k)2 ce(k)2

Then let ’ be the vector space of real-valued periodic functions g(. with period 1,
square integrable on [0, 1] and such that

(E) J(g) < oo.

It is then easy to see that (4) is a particular case of (6). For g(. in W(0, 1), we
have the following relationship between the Fourier coefficients of g(. and those of
the qth derivative, for 0 q -< m

(7) g(kq 2 "a’ik q
gk

Using the Plancherel formula and (7), we obtain

Ig")(t)12dt [g’)l- Y, 127rk12mlgk
0 k k

We can do the same transformation for a linear differential operator with constant
coefficients, and find that the weight a (.) is the modulus of its characteristic polynomial.

2. Construction of t-Slflines.
2.1. The slmees 8,,. We first describe in more detail the spaces g’. In order to

allow low frequencies to be nonpenalized, we assume

(A2) a(k)=0 , Ikl<h
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for a fixed integer h. Note that h 1 for (4). Moreover, we assume that

(A3)
1

k=h tx(k)2 < 0

to obtain continuity of evaluation functionals (2) on . Lemma 2.1 shows that the
local smoothness of elements of ’ is related to the growth rate of the sequence
(a(k))kN.

LEMMA 2.1. If,kh kP/ a( k)2 < for some nonnegative integerp, then any element
of is equivalent to a continuous function with p continuous derivatives.

Proof. The sequences IklP/a(k) and a(k)lgkl being square summable, we have
that the sequence IklPIgkl is absolutely summable, therefore k- kPgk ek’ is an
absolutely convergent series that defines a continuous function. Consequently, h(x)----
k=-o gk ek is a continuous function with p continuous derivatives and has Fourier
coefficients gk. We conclude that h(x)= g(x) almost everywhere, i.e., h and g are
L2-equivalent.

For p 0, using (A3), we conclude that for any element f(. in , the sequence
(fk) is absolutely summable and the continuous function k=-fk e2ikx is equal almost
everywhere to f(x). From now on, we will drop the distinction between the two.

We also conclude from Lemma 2.1 that, if a(. increases exponentially, then the
elements of are infinitely ditterentiable functions.

It is clear that, if a(.)>/3(.) from some point on, then c . By letting
a(k) ea(kb/b), we obtain a variety of spaces between the usual Sobolev spaces and
the finite-dimensional ("parametric") spaces of trigonometric polynomials of order
less or equal than some integer p, which can be seen as a degenerate case where a(-)
is set to be from some point on.

Note that, for any a(. ), the set of restrictions to [0, 1] of functions of is dense
in L2 norm, since ’ always contains the space of trigonometric polynomials of all
orders.

A reproducing kernel Hilbert space H is a Hilbert space in which evaluation
functionals (2) are continuous for any ti. Then, by Riesz representation theorem, for
each t, there exists an element It H, called representer of evaluation at t, such that

VhH Lth=(It, h)n

where (.,.)u denotes the inner product in H.
LEMMA 2.2. With assumptions (A1), (A2), and (A3), is a reproducing kernel

Hilbert space equipped with the inner product

(8) (U("), V(’)), Ukl)k "q" Ol.(k)2tlkV*k
Ikl<h Ikl>=h

and the representer of evaluation at is given by

(9) lt(s)=lo(s-t)

where lo is given by its Fourier coefficients

1 forlkl<h,
(10) (/O)k

1/a(k) forlkl>=h.
Proof. It is clear that (8) defines an inner product in , which can be decomposed

into the orthogonal sum of the following two subspaces"
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o is the space of trigonometric polynomials of order less than or equal to
h 1, generated by 1, cos 2rkx, sin 2rkx, for 1 -_< k-< h- 1.

g,l is the space of elements f(. in g’ such that fk 0 for Ikl < h.
g,l is isomorphic to 12, the space of square summable sequences, by the map

T

(11)
f(" )-* (fk)k>--h,

and hence is complete, and so is go as a finite-dimensional subspace. By (A3), the
elements It defined by (9) and (10) belong to g, and we have

(lt)k=e-2"’k’(lo)k
therefore, for any f(.) in , using (8) we have that

(f(. ), 1,(. )) . fk e2"’kt =f(t).

2.2. Definition of the estimates. We now define the periodic smoothing a-spline
relative to the data Yl,"" ", Y,, to be the minimizer of

(12) LS (g) + J(g)
over g(.)e g. The existence and uniqueness of the minimizer is guaranteed if n
2h- 1, by a theorem of Anselone and Laurent [1] provided we check the following
points:

(i) The range of the map T, defined by (11), is closed, which is clearly satisfied.
(ii) If g(ti) 0 for 1,. ., n and if Tg -0, then g(. is a trigonometric poly-

nomial of order less than or equal to h 1, vanishing at n points with n -> 2h- 1, hence
g(.)=0.

(iii) For any set of distinct points tl,. ., t,, the reproducing kernels
are linearly independent. To see this, it is enough to check that the matrix 5; with
elements /t,(t) is nonsingular. Using (9), we see that this follows from the fact that
lo(" is a function of positive type, i.e., for any complex numbers Z,. , Z,,

2

Zlo(t,-t)Z: (lo)k Ze:’k’’
i=1 i=1 k=-eo i=1

is greater than or equal to zero by positivity of the Fourier coefficients of lo given by
(10). We then obtain a one-parameter (A) family of estimates by fixing a weight function
ao and considering either

(13) a(k)=Aao(k)

or

(14) c (k) Co(Ak).

These two ways coincide in the homogeneous case.
Theoretical formulas for the determination ofthese minimizers are formally similar

to those for ordinary splines (see Kimeldorf and Wahba [5]).

3. Asymptotic bias and variance. The results of this section will be derived in the
case when the design points ti are equispaced:

i-1
(15) ti- i- 1,..., n.
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We make explicit the solution of the minimization problem and find closed formulas
for the Fourier coefficients of the estimates, which we will use for the theoretical study
of asymptotic bias and variance, as well as for the computations of 6. We apply the
classical techniques for this kind of problem, nicely reviewed for the case of ordinary
periodic splines in Eubank [3]. Let g"X denote the estimates obtained using the
one-parameter family defined by (13) with observations at ti defined by (15).

3.1. Computation of the estimates. For this computation, we momentarily drop
the upper indices in g"X, and simply call it g.

The following notation will be used:
--For a sequence Pk and a given integer n, let p") be the periodic sequence

defined by

(16) P(k")= Y Pk+,..

Let W (the finite Fourier transform) denote the matrix with elements

Wr --/1-1/2 e2Zri(rs/n), r=0,...,n-1, s=0,...,n-1.

It is easy to check that W is a unitary matrix, i.e., WtW* L
Let G, denote the vector with components g(ti,), for i= 1,. ., n.
Let Y denote the vector of data yi, for 1,. , n.

The role of W is explained by the following important equation:

g( tl) E g

(17) , gk+s, exp 27ri(k+sn)
1

k=O s=-oo

E gk" exp 27ri =v/-ff E Wk(l-1)"
k =o n k =o

The complex numbers gk") are called aliased Fourier coefficients of g(. ). Note that
g(. being real-valued, we have g-k g*k and hence gk gk)*. SO if we denote by
(, the vector of aliased Fourier coefficients gk") for k 0,. .,/1-1, from (16) we have

1

or equivalently

1 tW,dn=n Gn.

This motivates the introduction of the random vector Y, (with complex components)
defined by

1
Y" ’w* g..

Y, will represent the vector of noisy measurements of the aliased Fourier coefficients.
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Using the fact that W is unitary, we have- On--n Yn

(18)
1
/] I=1 1=1

This formula is a discrete version of Plancherel.
We can now reformulate the minimization of (12) into the minimization of

(19) F(g)=
1=1 [l[=h

over g(. in . Let us introduce the notation a

a: for [/I h,
0 for lll<h.

Using the calculus of variations, a solution g(. will satisfy

lim F(g + e F(g)] 0
e0 E

for any (. ) . Since

/=1

l=

we must have for all (. ) "
l=l 1=--

hence
n--1

k=O

Since (.) is arbitrary in (in paicular, can be any trigonometric polynomial),
we conclude that

(20) g")- + a+,g+ =0 Vk=0,..., n- 1 Vs.
If we first take k such that kl < h, then ak O, hence

g")=k and gk+ O Vs O

SO

(21) gk g(k fik
If now In k[ < h, then ak-. 0, hence

g(k) fik and gk+s =O VS --I

SO

(22) gk-n gk)=) V[n k[ < h.

Note that, if n 2h 1, for all k 1,. , n, we have either [k[ < h or In k[ < h and
hence in that case, g(. is a trigonometric polynomial.
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For all other k, i.e., h _-< k =< n h, there is no s such that k + ns (-h, h) so that
ak/s, # 0 for all s and

g+ a - l+ (.k gk"(23)
Sum on s to get

and hence

Replacing in (20) gives

X ak+.(k--g")),
S=--O0

-1

gk,)_ E ak+,,
Yk

-1
ak+ns

-1 k, h<-k<=n-h.(24)
q= ak+qn

Equations (21)-(23) describe entirely the unique solution in terms of its Fourier
coefficients.

Denoting by bl a-{ for Ill => h, we can write

bk+sn(25) gk+sn
1 + bk"- .k

and with the conventions that bl for [l < h and / 1 and bt+, 0 for s # 0
and Ill < h, the formula is true for all indices.

3.2. Eigenvalue analysis. Let Iy denote the interpolating (A 0) a-spline relative
to the data Y. J(Iy) is a quadratic form in the data vector Y, whose matrix we denote
by 1. Easy algebraic arguments show that the estimate g"a(. is then the interpolating
spline relative to the fitted vector I (I + nAl’)- Y. If we denote by/k, k 1, , n,
the eigenvalues of
then we can rewrite the estimate as

(26) g,X(.)= 1Tklvk(’) for Y= ykVk
k=l 1 + nAk k=l

This formula emphasizes the "tapered Fourier series" aspect of the estimate. In the
equispaced design points case, explicit formulas for k and Iv are available, and they
relate the damping factor 1/(1+ nAk) to the weight function

1
hkn,k--nb,,

(27)
k 0, 1 k h,

Ivk t) n-1/2 e2ikt ( bk+sn e2iust)
3.3. Bias. The first issue in the assessment of these estimates is to determine

whether they are asymptotically unbiased, i.e., whether the pointwise bias

(28) b" (t) Eg" (t) -f(t)
converges to zero when n converges to , in some norm and for some sequence of
smoothing parameters.

li[per g nAThe following theorem proves that, when = 2 (.) is asymptotically
unbiased in the norm of if the true function f(. belongs to , for an appropriate
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sequence of smoothing parameters A,, and furthermore that if we overestimate a priori
the actual smoothness of the true function by using a sequence of weights a, increasing
too fast for f(.), then the estimate is still asymptotically unbiased in wer-norm

l’12"per and ’ c ll/"perprovided f(.) 2 2

THEOREM 3.1. Assuming that A 0 and n2A o as n c, and that ak >---- yk for
all k, for some positive y, we have the following:

(i) Iff(.) , then IlEg"X(.)-f(.)llO as nc.
|w,P nA(ii) Iff(. ,, then g " -f(" 11 o-, o -, .

Proof. Let

(29)

(30)

1 2 2T,,(g):=- (g(ti.)-f(ti.))2+A Y’.
n i= Ipl >-h

T(g) := (g(t)-f(t))2 at + A aplgp
IPl>=h

f"x E(g) is the minimizer of T,(g) over g(. , by linearity of expectation and
linearity of the solution of such a minimization problem. Moreover, the calculus of
variations shows that, forf( L2(O, 1), there exists a unique elementf (.) minimizing
T(g) over g(.) , and it is given by its Fourier coefficients"

(31)
f, =fk forlkl<h,

1

1 + Aafk fr Ikl ->h.

A first step in comparing f(. to f"a(-) is to compare f(. to fa.
LEMMA 3.1. (i) Iff(’) W then II/X(’)--f(’)llWor0 as A 0.
(ii) Iff then IIf (.) f )11 - 0 as A - O.
Proof We will take

IIf(" )11W (1 + Ikla)lAI =

as a norm in I’l/’per
2 Using (31), we see that

[l/x(’)-f(’)llver-- k=-oo2 \l+Aa,,] (l+[kl4)lfkl2"
Ikl>-m

Then (i) results from the dominated convergence theorem and the argument is clearly
similar for (ii). V]

Now it remains to compare fx(. to fx(. ).
LEMMA 3.2. For any g(. ) and A <-1,

[ig(.)_f(.)ll
1,, <=- T(g) T(f’ )).

Proof.
0<= T(g)- T(f)

([gk --fl If --AI /

{gkg’ f*k (gk f,) fk(g*k f,*)

fakf;* + Aak(gkg*k f,f,*)}
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and using (31)

X {gkg* --(1 + Aak)f(g* --f*)--(1 + Aak)f*(gk--f)

ff,* + Aak(gkg* ff*)}

E (1 +Aak)(gkg*--f(g*--f*)--f*(gk--f)--f{f*}

X (1 + Aak)lgk --f2l 2 > A IIg(’)-fx(’)ll =

Before proving Theorem 3.1, we also need to compare T,,(g) to T(g) for g(. .
Ill’perNote that for (i) and (ii), f(. belongs to 2 We will use the classical quadrature

approximation:

iM’per(3) vh(.)e ,,_ 1
h(ti.)2 Io h(1)2 dt

C< IIh(’)ll =W

from which we conclude that there exists a constant C such that, for any g(. in

(33)
C

[T.(g)- T(g)[ <- ]lg( )-f(" )11 -W
Lemma 3.1 compares f(. to fx (.) in the appropriate norms, so it remains to compare
fa(. to f"a(. ). Using the optimality of fa, we have

(34) T,, (f"’ T(f’’ <= T,, (f"’ T(f’ ).

Using the optimality of f"a, we have

(35) T.(f" )- T(fx <= T.(f T(f ).

Hence, combining this with (33)"

(36)
T,,(f"’) T(f’)l < sup (I T,,(f"a) T(f"a)l, T.(f) T(f’)l),

C
IT,,(f’’ )- T(f’ )l =-7 sup (llf -fll = =< Wer, Ilf -fll w2er)

Since the -norm dominates the w2per-norm, we get

Ilf "’-fll = _<-21-llf "’ 2 2
W -f ,, + ]Ifa -fll W2er]

2

A
[IT(f) T,,(f"")l+lZ,,(f"")- T(f")l]+211f"-fll-- wler

Using (36) and (33) again, we have

4C
Ilf’-fll = <[sup ([[f";’-fl[ =W An2 W [[fx-fll2wper)]+2llfX-f[[ 2

W

Therefore, for n large enough,

2

1_4ClAn IIf -fller.
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Thus (i) results from this inequality and Lemma 3.1. For (ii), the argument is similar
but requires the application of (i).

A corollary to this proof is, by (33) and (i), that

r(f") r(f 0 -Therefore the integrated square bias

(37) b(A) (Eg"(t)-f(t)) dt

can be approximated by a discrete version

(38) c(A) =1 (f(t)-f(ti))
i=1

and the error of approximation is

(a)-b()= r(f") r(f")= o(39) c

Moreover, using (18) and N =f, we get

2 (A) E lEg(40) c.
=o =o A +b lf")12"

3.4. Mean square error. The bias is clearly an increasing function of A, whereas
the variance is a decreasing function of . Hence the choice of A, which reflects the
balance between fit to the data and smoothness, will determine the trade-off between
bias and variance if we wish to minimize the mean square error:

(41) R(1) N(g(t)-f(t)) dt b(1)+ var g(t) dr.

The integrated variance v(1) can be approximated by a discrete version

21 (bn) 2varg (t)(42) "(A)
n =, n =o

and the following lemma evaluates the approximation error.
LEMMA 3.3. If a(k) yk2 for some y asymptoticalG then

+0

Proo v(1) can be easily computed using (26)

v()=
k=O A + b"} IIIv(t)l 2 dt.

Therefore, using (32), we have

[v-(A)- ,(A)I
k=O
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Speckman [10], [11] established that Dm-splines reach an (optimal) rate of conver-
gence, i.e., if ak=k", m being a positive integer, and An=O(n2m/(2m+l)), then
IMSE, (A) O(n2m/(2"/l)). We prove here that for an exponentially growing sequence
of weights a, we obtain faster rates of convergence when the true function belongs to
the corresponding space

THEOREM 3.2. If the weights ak are asymptotically equivalent to 3’ ek for k
for some positive reals and v, then there exists a sequence of smoothing parameters
such that IMSE (h)= O((log n)//n).

(A): when f(. belongsProof. Using (39), we first need to evaluate the size of c,
to ’, using the optimality of f"x, we can write

c.2(A)<= T,,(f")_-< T.(f)= A =
Ikl_->h

hence if f(. ) , then c(A)= O(A), we conclude that

(44)

Turning to variance, by symmetry (bk") b(nn)_k), we can consider only those k between
0 and In/2]. Since b")/(A + bk")) is always bounded by 1, any finite fixed number of
terms will contribute for O(1/n), so if for k > K we have A eek" <= Ck <- B eeke, we can
concentrate on the terms for which K < k-< In/2].

We claim that there exists a constant M and an integer N such that for all n >= N
and K =< k _-< n/2] we have

(45) bk <= bk <- Mbk.
It is clear that b(k")>= bk. For k>=K, we have (1/B2) e-2ek< bk <(1/A2) e-2ek Hence

b(k")- bk B2

e2k
bk --A2 e

so

-2lk+snl"

<=
A2

e-2([(k+sn)-k"]+ e-2:[( k)"-k"]

s=l s=l

since

(sn+k)-k>-n(s-(1/2)) and (sn-k)-k>-n((s-1/2)-(1/2)) for O<-k/n<-1/2,

(bk"--bk)/bk <_ BZ/A e-2"(s-1/2))+ e-2,((s-/2)-(/2))

choose a/3 such that vfl > 1, and choose n large enough so that

b(kn)--bk
<__

B2 {sl 1 s2 -bk -A2(2:)n (s -(1/2))
+ (s-(1/2)) -((1/2)) +

1

which proves that this quantity is bounded by a constant M independent of k and n.

Returning to the theorem, we have
.2 { b(k.) 2 2 1-- e2kn Kk[n/2] A + b")J n Kk[n/2] (1 + AA2 /M)2"

Now divide this sum into two pas according to k:
In the first pa, we take all k’s such that k < log (l/A), and we bound each

summand by one so that the first sum is bounded by

1
log
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In the second part, each k satisfies h e2k ) ek, hence the second sum is
bounded by

o.2 1

n =1 (I+A2 eek/M)2’

which is O(1/n). If we now take the sequence of smoothing parameters A,
(log n)l//n, we get that the first part is O((log n)l//n). Using (44) this concludes
the proof since all other contributions to the IMSE are either faster, such as O(1! n),
O(1/n2)O(1/n2A), O(1/n3), or similar like O(A). Iq

Note that this statement only gives a bound for the rate and there is no optimality
property.

4. Equivalence with kernel estimation. As a linear estimate, we can rewrite g"X(.

(46) g"X(t)=l yiG(t, ti)
ni=l

and compare the impulse response functions G(., ti) to those corresponding to kernel
estimates

1
o(t, t,)=-g K

for a kernel K and a bandwidth b.
Several connections between splines and kernels have been established by Cogburn

and Davis [2] for periodic L-splines and Silverman [9] for D’-splines.
Silverman shows that, by blowing up the t-axis near to, and properly renormalizing

to obtain a nondegenerate limit, it is possible to approximate asymptotically G(t, ti)
by a kernel-type impulse response with a known kernel K,,, and bandwidth depending
on the smoothing parameter A and the limiting local density of design points. If, for
simplicity, we specialize his result to the equispaced data points case, the precise
statement is that h 1/2, G(t + h l/2m to, t) converges to Kin(to) when n- o and h - 0 and
r/2mh --> (30.

Cogburn and Davis [2] give bounds for the norms (, 1, 2) of the difference
between G(t, ti) and - (1/)t I/2m),,((t-- t)/A 1/2,.) in the periodic equispaced case.

We will generalize Cogburn and Davis’s result to the case of periodic a-splines.
Here we combine (13) and (14) in

(47) a(k) ,a(/xk)

for k _-> h and a (k) 0 for k < h. The first goal is to give explicitly the impulse response
functions G(t, ti). By shift invariance property of the estimator, they only depend on
the difference t-t, so let

G( t, ti) G, ti).

Using (25), we can write

bk+stx e27ri(k+2n)t

where b(/x) 1/a2(/xl) for k + sn, kl >-- h and bl(p) oo for Ill < h, bl(lX) 0 for
k + sn, s 0 and Ill < h. Replacing I7" in terms of the original data Y (y, , y,)’,
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we obtain

n--1 n--1 1 e_2i(kl/ng"(t)= -el e2ri(k+sn)t
k=0 s=-oo !=0 n

bk+,,()

n =o k=O s=-o X + b(k’)(/x)
This establishes the fact, with G,x, being defined by its Fourier coefficients"

bk+
h + b(k,,)"

In an attempt to get an asymptotic expression for G,x,, it is natural to consider the
continuous version of the minimization problem (see (31)), whose solution can be
seen to be the convolution of f(. by Gx, given by

1
(G)

1 + ha2(/xl)
for I11 > h, and (Ga,)l 1 for I/I h.

THEOREM 4.1. Assuming the function a(.) satisfies t(x)>= yx" for Ixl> A and
y>0, v>1/2, we have

( 1 ).,,(.)- ,,(.)11oo o
a/./, 2 ,n2._

and

5’2(0,1) 0
A2,4’n4’-I

when n -> c, Alz2n2"-I --> , and
Proof We can rewrite

bt(,u,) bt(,u,)
(G;’")’=A +b,(/z)

and (G.;),=

where l=lmodnifl>0and =-lmodnifl<0. Then

.,, (’) ,(’)11oo--< E bt(/x) bt(,u,)
,=-oo a+bt(/x) a+b?)()

b,( b")( b,( )1 b,(
2

1>[./2] X + bl()

we choose n large enough so that for l> [n/2], a(l) (l)", which is possible because
n , then we have

The second sum is bounded by (l/A)>,/=] (1/a=(l)), which is easily seen
to be O( 1/A="n"- ).

--The first sum is bounded by (l/A)2h==t,/] [b")()-b()[ but

1 1 1I"()- ’()1 = r=
and hence the first sum is seen to be O(1/A="n="-). The argument is similar for the
2(0, 1)-norm.
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For a function K (.) on R define its "folded-back" version KY(. to be the periodic
function:

E K(x- s).

Then there is a relationship between the Fourier transform of K and the Fourier
coefficients of Ky given by

/ (n) K for any integer n

and if h denotes the periodic extension of a function h on (0, 1) to , then

K(x-s)ff(s) ds= Kf(x-s)h(s) ds

and similarly for discrete convolution (when t i/n for i= 0,. ., n)

K(x-h)(tl)= 1 Kf(x _t,)h(ti).
n 1=- n i=1

By examining the Fourier coecients (GX,)l of Gx,, we conclude that they agree (at
least for I/I h), with those of the "folded-back" version of (1/)Kx (. /) where Ka
is the inverse Fourier transform of 1/(1 + Aa(o)). If h 1, they agree for all I. If h # 1,
and a(.) vanish in an interval (-8, 8), then they agree for all if is suciently
small ( < 8/h). If h 1 and a (.) vanish only at zero, the difference between Ga, (.)
and the folded-back version of (1/)Kx (./) is easily seen to converge to zero when
0.

Hence the previous theorem shows that the impulse response function for a-splines
are well approximated for large sample size by a kernel-type impulse function, when
we use the "folded-back" version of the kernel (i.e., apply the chosen kernel to the
periodic extension of the data points), which seems to be the reasonable thing to do
in the periodic case. Moreover, we can prove that, for small bandwidth (i.e., here),
there is very little difference between the original kernel and its "folded-back" version,
at least for nice kernels, as the next lemma shows.

LEMMA 4.1. If a(’) is such that 1/(1 +Aa2(.)) has p integrable and absolutely
continuous derivatives p 2), then

sup G(x) ---1 K (] 0 as O.
t-,

Proo By the assumption on a, we know that IxPKx(x)l Ax for some constant
Ax(xPKx(x) can be written as the Fourier transform of an integrable function Kp)

and therefore is bounded). Hence

=+
sO

1 A
I(x-

sO

by symmetry it is enough to look at x [0, 1/2]

[o,1 /x 1)
which concludes the argument.
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We can check that Kx agrees with K, for the choice a(to)= tom. Some other
examples are:

For h 1 and a2(to) =cosh (to/2)- 1, then Ka(x)= 7r/cosh 2r2x. Since Ka and
a are related by

1
(48) K(to)=

1 +ha2(to)

we thus get all kernels K (.) whose Fourier transform/ (.) satisfy 0 <_-/ (to) _<- 1. They
have the characteristics of "low-pass filters." The normalization /(0)= l(a(0)=0)
corresponds to K(t) dt 1. The number of finite moments of K corresponds to the
number of times a is differentiable at zero, and the order of the kernel is determined
by the number of derivatives of 1/(1 + ha2(to)) which vanish at zero.

5. Extensions. The construction of a-splines can be extended to more general
inverse problems.

5.1. Convolution. Quite often in experimental situations, rather than measuring
the value of the unknown function at a design point, a physical device can only measure
a weighted average of the function in a neighborhood of this point. This leads us to
consider convolution functionals Li of the form

(49) Lf=(w *f)(ti) w(u)f(t-u) du

where the kernel w is square integrable on (0, 1). But, evaluation and differentiation
can be considered of the same type if we broaden the framework and work with
generalized periodic functions: evaluation is then convolution with o and differenti-
ation is convolution by derivatives of o. A trigonometric series

(50) Cn e2rint

with complex coefficients c, is a periodic generalized function f (a periodic tempered
distribution in the Schwartz sense; see [8]) if and only if the coefficients c are slowly
increasing at oo, i.e.,

(51) :laiR, :lvX: [c.[<-_a[n[

The c. are the generalized Fourier coefficients off If=_oo Ic.[ 2 < co, then (50) defines
an 2(0, 1) function and the c. coincide with the usual Fourier coefficients. If c. and
d. both satisfy condition (51), it is easy to see that c.d. also satisfies (51) and hence
n=_oo cnd e2rint defines a periodic generalized function, which is, by definition, the
convolution product of f(t) ,=-o c, e2rint by g(t) Y,=_ d. e2rint, and which
we denote by f, g. This definition coincides with the classical one (49) when f and
g are both ordinary continuous functions in the sense that f, g is equivalent to
lof(.-s)g(s ds. Then evaluation corresponds to convolution by the periodic 6o
function defined by (o). -= 1 since

f. lf =>f(t) (f 8o)(t).

Similarly, differentiation of order k corresponds to convolution with a kernel to defined
by to. (2rin) k.
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We will consider spaces ’ defined as in 2.1. Remember that a requirement for
the regression problem (1.1) is that the functionals Li be continuous. Hence for the
convolution problem, we do not need, in general, that evaluation be continuous (i.e.,

be a RKHS). This requirement will correspond to conditions involving both c

and the kernel to, which, for a given kernel, determine a range of compatible penalties
(the smoother the kernel, the "larger" the spaces in this range).

Let to be a fixed kernel (a periodic generalized function). Let a be a real-valued
positive even function such that: (J-l) the sequence 1/a(n) is bounded by P(n) for
some polynomial P (J-2) "k (l’[/c(k))<--. These assumptions replace (A3). (J-l)
is a very mild condition preventing the weights a(n) from being too small, and is
technically needed for the map T (see (11)) to be an isomorphism. (J-2) will guarantee
continuity of the convolution functionals (see Lemma 5.1 below). In the evaluation
case, (J-l) is a consequence of (J-2). Note that for smooth kernels, (J-l) and (J-2) are
less restrictive than (A3).

Let ’ be the space of periodic generalized functions such that (E) is satisfied.
The arguments of Lemma 2.1 are still valid. The only difference is that now, having
removed assumption (A3), continuity of the elements of is no longer a corollary
of this lemma for all a. Formula (8) defines a scalar product in ’ and the fact that
this scalar product confers to a structure of Hilbert space is similar to the correspond-
ing argument in Lemma 2.2 where we replace "(r,) 12" by "(r,) slowly increasing to
c," and "(1/a(n)) bounded" by "(1/a(n)) bounded by some polynomial."

LEMMA 5.1. Under the above assumptions, Jbr eachfixed t, the convolutionfunctional
f--) w * f) (t) is a continuous linear functional.

Proof It is first easy to check that for a fixedf , -) (w f)(t) is a continuous
function: this follows from the fact that Y (Iwl/(k)) < and Y [a(k)fkl 2 < cx3 implies
Y IwAI <. This gives a meaning to to f evaluated at t. To prove that f--) (to f)(t)
is continuous, we will make explicit the Riesz representer k’(. ofthis linear functional.
By arguments similar to 2 again, it is defined by its Fourier coefficients"

(52)
(k) w e-2zrint for Inl < h,

Wn -2"rrint(k’). =- e forlnl=> h.
O

Given noisy measurements Yi of (w f)(ti), for 1, , n, the proposed estimate
off will minimize

(53)
1

((w. g)(ti)-y,)2+ c(n)lg,,I
n i=1

over g i’. For this problem to have a unique solution, we need an additional
assumption on w, because if w was, for example, a trigonometric polynomial of order
q < n, then the representers of convolution k,’,..., k,w. would be linearly dependent.
A convenient way of ruling this out is to assume, for example, that Wk 0 for k
0,...,n-1.

LEMMA 5.2. Under the above assumptions, and if n >-2h- 1, the functional (53)
has a unique minimizer in .

Proof. The proof is similar to the proof of Lemma 2.2 with the additional arguments
that if g is a trigonometric polynomial of order _-< h- 1, then so is w. g, and that if

2

2 (k)p z, e2zript 0,
p=--cx i=1
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then since (k)p 0 for p =0,. , n 1, we have i= zi e2ipt, ---0 for p =0,. , n 1,
which implies that all the z are zero.

Note that, in the case when Wp is always nonzero, the procedure amounts to
computing an evaluation fl-spline g, for/3(p) o(p)/Iw,l based on the data yi, and
then deconvolve g. For a prescribed smoothness on f, the procedure is adapting the
suitable weight on g w f.

5.2. Multidimensional aspect. It is not difficult to generalize to periodic functions
of several variables, using penalties of the form

(54) J,(f)=
Td

where

f,,...,,,e f(x,, Xd) exp -2zri E Xll]l dXl dXd.
/=1

But there is an extra condition on the design points to ensure uniqueness of the solution
to the minimization problem, which is that any function with a zero penalty and
vanishing on the design points must vanish everywhere.

This class of penalties includes

(55) J(f) Ox’ -Ox’ dx dxa

with
d

c2(Pl, "’’, Pal)-- I-I (2"n’Pl)2m
i=1

and also "thin plate splines" penalties"

(.56) J(f)
,...,V

where a2(v,. ., va) vii TM is homogeneous in frequency space.

6. Numerical evaluation for the choice of penalty. Asymptotic theory predicts that,
if the unknown functionf is very smooth, then the integrated mean square error should
be smaller for an exponentially growing weight function a than for a polynomially
growing weight function such as the one cubic splines use. It is then interesting to see
whether this shows numerically for reasonable sample sizes and, moreover, to test how
sensitive the method is to the actual smoothness of the true function.

We concentrate on two one-parameter families of estimates"

(F1) g is the periodic a-spline for a2(w) A e’’(h 1).

(F2) g2 is the cubic spline for a2(w)= Aw4(h 1).
We choose the parameter 3’ =4 log 2 so that the weights behave similarly for low
frequencies.

The assessment of an estimate ga of the true functionf is based on the discrete risk

(57) R(ga c2,,(A )+ I.,,,,(A
and the criteria we use for evaluating a one-parameter family of estimates ga is

C min R(ga).
A [R

Let C and C2 denote the values of C for families (F1) and (F2), respectively. We
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TABLE

Frequency 3 N= 50 N= 100

cl/ Co c2/ Co c2/ Cl cl/ Co c/ Co c/ cl

S/N 100 5.21 12.44 2.39 4.89 12.24 2.50
S/N 20 4.63 8.62 1.86 4.36 8.54 1.96
S/N 5 4.15 6.29 1.51 3.92 6.24 1.59
S/N 3.00 3.62 1.20 3.36 4.27 1.27

TABLE 2

SN 100 N 50 N 100

C1/ Co C2/Co C2/Cl C1/ Co C2/Co C2/C

k 3.86 5.48 1.42 3.60 5.34 1.48
k 3 5.21 12.43 2.39 4.89 12.24 2.50
k 5 9.13 24.82 2.72 6.85 19.89 2.90
k 10 12.69 25.53 2.01 11.00 35.77 3.16

measure the signal-to-noise ratio by the following quantity:

S 1
f(t) f(s) as at(58) N-tr

where tr is the deviation of the error distribution.

6.1. Tables 1 aad 2. In this section, the true function f is of the form

(59) f(t)- a sin (2kt)

where k is a positive integer, and (0, 1). Let gO be the parametric estimate given by
a nonlinear regression of the form (59), which is the best method we could apply in
this situation, and let Co be R(g). By a simulation of size 100, we get an approximation
to Co for each of the functions considered. In Tables 1 and 2, we repo the values of
C/Co, C/Co and the relative eciency C/C1, for a sample size of n 50 and n 100.
In Table 1, the frequency k is fixed to k 3 and the signal-to-noise ratio takes values
100, 20, 5, and 1. In Table 2, the signal-to-noise ratio is fixed to SIN 100 and the
frequency takes values k 1, 3, 5, 10.

We observe that the relative eciency decreases toward one as increases: in
presence of a lot of noise, all the methods (i.e., choice of weight) tend to be equivalent.
The difference between polynomial weight and exponential weight gets emphasized
by larger sample sizes, and also for higher frequencies.

6.2. Tales 3, 4, aa 5. When we use a periodic a-spline, the true function f
should satisfy (E) that, in the case of family (1) is

and in case of family (2)

(II) Inl41AI = <
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TABLE 3

Functionf N 50 N 100 N 500

(F1) (F2) C2/C1 (F1) (F2) Cz/CI (F1) (F2) C2/Ct

S/N= 100

S/N=20

S/N=5

S/N=I

p .049 .11 .049 .11
NP 6.7 9.6 1.42 6.9 10.3
NO 7.4 5.2 14.3 9.66

p .068 .10 .066 .11
NP 5.6 6.7 1.20 5.8 7.2
NO 8.9 7.5 17.18 13.82

p .074 .10 .07 .10
NP 4.6 4.9 1.06 4.8 5.3
NO 10.9 10.19 20.7 18.85

p .11 .11 .10 .11
NP 3.4 3.4 1.00 3.6 3.7
NO 14.9 14.8 27.6 27.23

.047 .11
1.48 7.5 12.4 1.64

66.2 40.4

.06 .11
1.24 6.4 8.7 1.35

77.8 57.7

0.69 .11
1.10 5.4 6.3 1.18

92.8 78.7

.093 .022
1.01 4.2 4.8 1.15

117.7 102.36

TABLE 4

Function g N 50 N 100 N 500

(F1) (F2) C2/C (F1) (F2) C2/C, (F1) (F2) C2/C,

p .15 .16 .55 .27
S/N 100 NP 35.5 32.8 .92 78.1 56.7 .72

NO 1.4 1.52 1.28 1.76

p .26 .21 .31 .27
S/N 20 NP 19.2 17.5 .91 26.1 23.1 .89

NO 2.6 2.9 3.8 4.3

p .31 .24 .21 .26
S/N 5 NP 9.5 9.1 .97 12.1 11.2 .92

NO 5.2 5.5 8.24 8.93

p .24 .23 .33 .28
S/N NP 4.0 3.9 .98 4.9 4.7 .96

NO 12.4 12.6 20.2 21.0

.73 .25
144.3 75.6

3.46 6.6

.32 .25
38.5 33.2
12.9 15.0

.52

.86

.24 .25
18.2 16.6 .90
27.4 30.2

.22 .25
7.6 7.4 .98

65.8 67.3

We choose three functions f(. ), g(. ), h(. ), with the same signal-to-noise ratio, so that:
(1) f(’) satisfies (I) and (II).
(2) g(.) satisfies neither (I) nor (II).
(3) h(.) satisfies (II) but not (I).

They are given by
f(x) x/ sin (27rx)

g(x) 4,/x

4V(x 1)

x [0, 1],
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TABLE 5

Function h N 50 N 100 N 500

(F1) (F2) C2/C (F1) (F2) C2/C, (F1) (F2) C2/C

s/N= lOO

S/N=20

S/N=5

S/N=1

p
NP
NO

P
NP
NO

P
NP
NO

p
NP
NO

.13 .16 .20 .15
20.2 20.3 1.00 22.9 22.7
2.5 2.5 4.4 4.4

.14 .15 .19 .15
11.7 12.5 1.07 13.1 13.9
4.27 3.4 7.6 7.2

.12 .16 .16 .15
7.6 8.3 1.09 8.4 9.2
6.6 6.0 11.9 10.8

.31 .28 .40 .33
4.0 3.9 .98 5.1 4.8

12.4 12.7 19.4 20.5

.26 .16
.99 31.5 29.4 .93

15.8 16.9

.17 .16
1.06 17.3 17.8 1.03

28.9 28.1

.12 .15
1.10 11.0 11.7 1.06

45.3 42.7

.09 .17
.95 6.9 7.2 1.03

72.5 69.7

2
h(x) =sin

2 (27rx)

-2

-sin
2 (27rx)

Since the value of the criteria C depends on the sample size, the variance of the noise,
etc., we think it is quite difficult to visualize how good a procedure is by just looking
at C. For this reason, we report instead the following two quantities:

nC
(60) NP- 2,

(61) NO-
2

C

To interpret NP and NO, remember that for a parametric least squares estimate, using
p parameters, the variance component of the risk would be o’2p/n. Hence we can think
of NP as being roughly the "number of parameters" that a parametric method with
the same risk would use (assuming it would have no bias). NP is a convenient multiple
of C. For the same reason, we can think of NO as being the number of observations
used per parameter estimated.

In Tables 3, 4, and 5, we report the values of NP, NO, and C:z/Ca for function f
(respectively, g and h), for sample sizes n 50, 100, and 500, and the same choices
of signal-to-noise ratio as previously. We also report the ratio p of bias-to-risk in the
risk corresponding to the optimal choice of h.

We observe again that, as expected, the difference between exponential and
polynomial weight measured by C2! Ca, increases with the sample size and with the
signal-to-noise ratio. For function f, the most favorable case for exponential weight,
C:/Ca goes as high as 1.64 for a sample size of 500 and a signal-to-noise ratio of 100.
Even though function h violates assumption (I), we see that C2!Ca is very close to
one in most cases, and the lowest it gets is .93. This seems to indicate that overestimating
a priori the smoothness of the function does not hurt too much. For function g,
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polynomial weights perform better as expected, and C2/C1 gets as low as .52 for
n 500 and S/N 100, but is still fairly close to one for small sample size.

Another important issue in nonparametric regression is the choice ofthe smoothing
parameter. Two important methods for that purpose are that of Mallows [7] and the
generalized cross validation method (Golub, Heath, and Wahba [4]). The asymptotic
optimality of these two methods when using D"-splines is established by Li [6]. It is
easy to see that this can be extended to exponential weights. The argument relies on
the fact that the coefficient of variation of the eigenvalues of the information matrix
(reciprocals of eigenvalues of f) converges to zero when n converges to infinity.

Acknowledgments. I thank my advisor Ker Chau Li for his advice and support
during this work, and the referees for their very useful comments.
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TRUNCATED SINGULAR VALUE DECOMPOSITION SOLUTIONS TO
DISCRETE ILL-POSED PROBLEMS WITH
ILL-DETERMINED NUMERICAL RANK*

PER CHRISTIAN HANSEN"

Abstract. Tikhonov regularization is a standard method for obtaining smooth solutions to discrete
ill-posed problems. A more recent method, based on the singular value decomposition (SVD), is the truncated
SVD method. The purpose of this paper is to show, under mild conditions, that the success of both truncated
SVD and Tikhonov regularization depends on satisfaction of a discrete Picard condition, involving both
the matrix and the right-hand side. When this condition is satisfied, then both methods are guaranteed to
produce smooth solutions that are very similar.

Key words, ill-posed problems, truncated SVD, regularization in standard form, perturbation theory

AMS(MOS) subject classifications. 65F20, 65R20

1. Introduction. This paper is concerned with the linear least squares problem:

(1) min Ax b ll2, A R ", m >= n,

where the matrix A is ill-conditioned and has ill-determined numerical rank (i.e., its
singular values decay gradually towards zero without any particular gap in the spec-
trum). Such problems typically arise in connection with the numerical solution of
Fredholm integral equations of the first kind,

(2) I K(s, x)f(x) dx g(s),

which are classical examples of ill-posed problems. The following discussion is par-
ticularly focused on ill-conditioned least squares problems arising from the discretiz-
ation of (2), but we stress that the results hold for discrete ill-posed problems in general.
Throughout the paper, we shall assume for the sake of simplicity that the matrix A
has full rank.

The singular value decomposition (SVD) is an invaluable tool for analysis of
problems with ill-conditioned matrices, and the truncated SVD (TSVD) method has
been used successfully to solve a variety of discrete ill-posed problems of the form
(1). In spite of this, the method still lacks some theoretical background. Our aim here
is to develop a theory for the TSVD and thus provide insight into its behavior. To do
this, we find it useful to compare the method with another widely used method for
ill-posed problems, namely, Tikhonov regularization. This method is theoretically better
understood than the TSVD, but there seems to be no general criteria by which these
methods can be compared [14]. In [9], Hansen showed that if there is a distinct gap
in the singular value spectrum, then TSVD is equivalent to Tikhonov regularization.
The present work continues this investigation, with attention primarily focused on
matrices with ill-determined numerical rank. We show that the existence of a satisfactory
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approximate solution primarily depends on satisfaction of a discrete Picard condition
and in fact (even for matrices with well-determined numerical rank) has little to do
with finding the numerical rank of a matrix. We also show that once the discrete Picard
condition is satisfied, then TSVD and Tikhonov regularization always yield very similar
solutions. The work was inspired by the "trilogy" of papers by Varah [22]-[24] and
the paper by Aulick and Gallie 1 ].

The paper is organized as follows. In 2 we introduce the methods of truncated
SVD and Tikhonov regularization. In 3 we show that the convergence ofboth methods
largely depends on the behavior of the right-hand side, and we formulate the discrete
Picard condition. Section 4 presents perturbation bounds for the methods, and in 5
we further characterize the behavior of the solutions under the influence of errors.
Finally, in 6 we give two numerical examples.

2. Truncated SVD and Tikhonov regularization. Our investigation takes its basis
in the singular value expansion (SVE), which is a mean convergent expansion of the
kernel K in the form

K(s, x)= Z Ixi ui(s)vi(x),
i=l

where both {ui} and {vi} are sequences of orthonormal functions, and all /z>-0. In
terms of the SVE, the solution f to (2) can be written as

(3) f(x) ., (u, g)
v,(x),

i=1

where (u, g) denotes the usual inner product. See, e.g., [8, 1.2] for more details. The
ill-posed nature of (2) is reflected in the facts that the sequence {/xi} has zero as its
only limit point, and the "smoother" the kernel the faster the /zi decay to zero [5,
Thm. 3.2]. Hence, a square integrable solution f can exist only if the coefficients (u, g)
decay to zero faster than the/z, such that

(4) E <.
i=1 i

This is the well-known Picard condition [8, Thm. 1.2.6].
Corresponding to the SVE of K, the matrix A has a singular value decomposition

(SVD) in the form [2, 3]

A=UZVr= 0-iu/v/r
i=1

where the left and right singular vectors u and vi are the orthonormal columns of the
matrices U ,n and V Rn", and the singular values 0- are the diagonal elements
of Z R". They satisfy 0-1 -> o’2->’" => 0", and, since A is assumed to have full rank,
0"n > 0. The relationship between the ill-posedness of (2) and the large condition number
0"1/0", of the matrix A in (1) was studied by Richter [17] and Wing [25]. Recently,
Hansen [10] elaborated on this by showing that whenever (2) is discretized by an
expansion method with orthonormal basis functions, the SVD of A is closely related
to the SVE of K in the sense that the 0" and urb are approximations to the/x and
(u, g), respectively. This means that if g satisfies the Picard condition (4) and is
unaffected by errors, and if the order n of the discretization is sufficiently large, then
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the exact least squares solution Xo to the unperturbed discretized problem (1), given by

(5) Xo----- A+b
u/b
Vi

i= 10"i

yields an approximation to the solution f given in (3). See also [8, Thm. 4.1.6].
When g and, equivalently, b are perturbed by errors, then the solution to the

perturbed problem is very likely to be dominated by errors that are "blown up" by
the small singular values i or tri in the denominators of (3) or (5). It is therefore
necessary to apply some sort of regularization to either (2) or (1) to compute a solution
that is less sensitive to the perturbations and that approximates the exact solution to
the unperturbed problem, f (3) or Xo (5). Due to the close relationship between the
SVD and the SVE, applying a certain regularization method to (1) is equivalent to
applying the same regularization method to (2) [10], and the convergence of the
regularized algebraic solutions to (1) carries over to the corresponding approximate
solutions to (2) [8, 4.2].

A highly regarded regularization method, due to Tikhonov [20], amounts to
defining the regularized solution x as the unique solution to the following least squares
problem with a quadratic constraint:

(6) min

Here, the regularization parameter A controls the "smoothness" of the regularized
solution. We remind the reader that x can always be written in terms of the SVD as

2
O’i u/Tb

(7) X 2 2 Vi"
i:10"i -- A O"

if we compare this equation with (5), we see that the role ofthe regularization parameter
A is to dampen or filter the terms in the sum corresponding to singular values smaller
than about A. Hence, in any practical application, A will always satisfy
An alternative method for regularization of (1) is the truncated SVD (TSVD) method,
in which we discard the smallest singular values simply by truncating the sum in (5)
at some k < n [22]. Thus, the TSVD solution Xk is defined by

(8) Xk V U ,+ 4-kVTb, Ek -=diag(tr-1, "’,trk ,0,’’’,0).
i:1 O’i

The integer k is called the truncation parameter, and it plays a role similar to the A in
(7). Note that Xo is identical to x with A =0 and Xk with k n. We stress that the
TSVD solution can be computed at least as efficiently as the regularized solution,
without the large computational effort involved in a complete SVD computation (cf.
the survey of methods in 11 ]). For more details, computational aspects, and examples
of the application of these methods, see, e.g., [2], [3], [5], [6], [8], [22]-[24].

The use of Tikhonov regularization as well as TSVD is based on the following
heuristic"

HEURISTIC 2.1. The number of oscillations in the left and right singular vectors ui
and vi tends to increase with increasing i.

When this is true (which is the case, e.g., if the matrix A is totally positive), it is
obvious that the TSVD solution Xk as well as the regularized solution x tend to be
smoother than the least squares solution Xo. We are aware that in some applications
Heuristic 2.1 is not satisfied or Xo is simply not the solution we are interested in (even
without noise being present) because the sought solution f does not have a nice
representation in terms of the right singular functions vi. In these cases, we should
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replace the term [[x[[2 in (6) by another appropriate regularization term such as, e.g.,
[]Lx[[2, as pointed out in [23]. We are also aware that this corresponds to an expansion
of the solution in terms of the generalized SVD of the matrix pair (A, L) [12], [23].
However, we feel that a fundamental understanding of the simpler case (6), as provided
in this paper, is necessary before we can proceed to perform an analysis of the general
case.

3. The convergence of the methods. Before starting our discussion, we make the
assumption that k and A are chosen such that the solutions x and xk are not too
different--otherwise, there will be no point in making a comparison between them.
From the expression (7) for x we see that this is the case where A O’k, since then
the damping of the terms in (7) sets in for singular values smaller than about rk. It
can actually be proved [9, Thm. 5.2] that A chosen somewhere in the range (ttrk/l) 1/4, (O’kO’k+l) 1/2 brings Xk and x as close as possible. In 5 we return to the actual
choice of k and A.

The main goal of this section is to show how the behavior of the right-hand side
b in (1) influences the convergence ofthe TSVD solution Xk and the regularized solution
x. For this purpose we set up, in terms of the SVD of A, the following "model" of
a right-hand side"

(9) i U b o" 1," ", n, a _-> 0,

where the nonnegative real constant a determines the decay of the ji relative to the
ch (when a > 1, the fl decay faster than the h). According to (9), we can write b= UEf
with f= [1, 1,. , 1] r. Although (9) is a crude "model" of the right-hand sides as they
appear in practical applications, it is sufficiently realistic to clearly illustrate the
importance of the decay of the /3rather than the particular shape of the singular
values spectrum of A.

First, we investigate the convergence of the solutions Xk and x; i.e., we shall
determine how well they approximate the exact least squares solution Xo (5) to the
unperturbed problem. Following 1 ], the differences Xo- Xk and Xo-x are called the
TSVD error and the regularization error, respectively. The closeness of Xk and x to
xo is illustrated in the following theorem.

THEOREM 3.1. Let Xk and x denote the solutions (8) and (7), and let Xo denote
the exact least squares solution (5). Further, let the right-hand side b satisfy (9). Then
the norms of the TSVD error Xo- Xk and the regularization error Xo-x satisfy

(10a) IIxo-x ll _< fx/, 0 -< a < 1

Ilxoll _ [(o-k+l/Ol)’-lx/-, 1-< a

fx/,
(lOb) IIx x’ I1_-< ,i (,t / o-1)<’-’v’-, 1-<a<3

Ilxoll t (, / (y.l)2.,%/-, 3__<a.

Proof. To simplify the notation, we introduce the quantities

(11) o Vrxo, k VrXk, Vrx.
We shall first derive a lower bound on Ilxol[2. According to (5),

--1 c-l]TXo A+b V --1U’U2,’f V2, if= V[trl ,’’’, o’,,

Ilxoll _ I1 o11 > max {o" 1} o- 0 a < 1

tr7 -1, l<a.
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Concerning the norm of the TSVD error, we have

Ilxo-x I1= I1o- II=--<,/-dllo- I1

max {0-7-1} x/if= { 0--lv/-ff’ 0 =< a < 1

a-lv/-, 1 <k+l<=i<__n O’k+ O.

These relations immediately lead to (10a). To obtain a bound on the norm of the
regularization error, we have, in analogy with above, Ilxo-X I1 <--
,/-fflldia (;t2/(r + x-))-lfll x max {0--1/(0- + A2)}. Define the function b(0-)=
0--1/(0-2+A). For 0<=a < 1, 4 is a decreasing function with maximum attained for
0- o’n, implying that Ilxo x I1=--< ( + A < 0-n Similarly, for a -> 3, b is
an increasing function with maximum attained for 0- 0-1, implying that Ilxo-x I1= <--

2 20.7 -3A20.7-1/(0.21+A2)-< A20--1/0-1 A Finally, for l<=a<3, 4 attains its maximum
for 0.= 8=A2(a-1)(3-a), and

These relations, together with the bound for Ilxoll=, yield (10b).
Remark. The results for 0 < a =< 3 in (10b) could also be proved using the technique

from [8, Chap. 2]; but this theory does not hold for a > 3.
Theorem 3.1 shows that as long as a is larger than 1, and provided that 0-k and

A are small compared to 0-1 IIAII=, both the TSVD solution xk and the regularized
solution xa are guaranteed to approximate Xo, and the larger a the better approximation.
Usually, the truncation parameter k and the regularization parameter are determined
by the errors in (1) in such a way that larger errors lead to a smaller k and a larger
A. Hence, Theorem 3.1 shows that if errors are present in (1), then xk and xa can only
yield satisfactory approximations to Xo if the coefficients/3i of the unperturbed right-
hand side b decay to zero somewhat faster than the singular values 0-i. And the larger
the errors, the faster the decay must be to ensure convergence.

Next, let us consider the similarity between the TSVD solution and the regularized
solution by considering their difference xk-xa and also the difference between their
residuals (b-Axk)-(b-Axa)=-A(xk-xa). We assume that 0-k/l--<A <--0-k and that
the right-hand side b satisfies the "model" (9). A convenient way to measure the
difference between xk and xa, as a function of a, is to define the following relative
difference function:

Similarly, we can measure the difference between the residuals by means ofthe function

(12b) pk(a) =- min IIA(,-x,,)ll=/ll
O’k+l A o"

The distance function tk(O was briefly analyzed in [9, Thm. 6.1], and the analysis is
extended in the following theorem.

THEOREM 3.2. Let Xk and xa denote the solutions (8) and (7), and let the right-hand
side I satisfy (9). Then upper boundsfor the functions ik a and pg(a) defined in (12a)
and (12b) are given by

v/-ff (0.k/0.1)-1 a <3
(13a) 8k(a)<-- [v/h (0-k/0-1)2, a-->3
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j/r" (O.k/O.1)a, <2
(13b) pk(a) <

4- (/1), ->_ 2.

Proof. First, we notice that IIx-x II- IIk- II =< vllk II(R), whre k and
are defined in (11). From [9, Thm. 6.1] (in particular, the third column of Table 1)

it follows that

6k(a <-- (o.kl o.,)’-’(o.kl O’k) ’/2(3-’> (o.k/ o.1)-’ for

8k(a) <--(o.k/O’,)2[1 + (O.k/O.k)2]-I <--(O.k/O.1)2 for

For a in the interval [2, 3], a careful analysis of the norm

,f<-la, -,a +,+1
I1-.11 =max L+a,’" ’+;t’+,+a

shows that its maximum value, for O’k+ / O’k, is given by

(14)

where F 1/2(a 1) ’/2("-’)(3 a 1/2(3-a). Since a 2/(0".12 + a 2) increases with A, it follows
that the minimum of (14) for er+ -< a _-< er satisfies

1/2

- for all a > O, we obtain

(o.k/o.1)2[ 1 J- (o.k/O’l)2]-1 0"1 </ < 0"k-

Here, F_-<I and [1--(O.k/O.1)2]-I 1, and since (O’k/0,.’)’-’>(o.k/o.,)2 for 2=<a-<3,
an upper bound for 6k(a) is (O.k/O.1) ’-1. This establishes (13a). To prove (13b), we
note that ul12 ; and that IIa(x -x)ll=--II UA(x, -x)ll=--I1( -)11=--<
4-ffll(-)ll. Hence, pk(a)=k(a--1), and (13b)therefore follows from (13a)
with a replaced by a + 1. VI

Theorem 3.2 shows that when k is fixed by the errors present in (1) and o.k+l is
small compared to o.1, there exists a a e [O.k+I, 0’.] such that Xk and xa, as well as the
corresponding residuals, are guaranteed to be close whenever a is larger than 1. And
the larger a the closer the solutions and the residuals. This means that whenever the
coefficients fl of the unperturbed right-hand side b decay to zero somewhat faster than
the singular values o., then TSVD and Tikhonov regularization will produce approxi-
mately the same solutions and residuals, and according to Theorem 3.1 both of the
solutions will approximate the unperturbed least squares solution Xo.

Inserting this result into the expression (12a) for ak(C ), and noting that IIAII/II ublloo
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We conclude this section by giving a more rigorous definition of the requirement
on b. Of course, the decay of the fli-coefficients need not be monotonic, as long as the

in average decay to zero faster than the o-i. We can formulate this requirement as
follows.

DEFINITION 3.3. The discrete Picard condition (DPC). Let b denote an unper-
turbed right-hand side in (1). Then b satisfies the DPC if, for all numerically nonzero
singular values tri, the coefficients [ufb[ in average decay to zero faster than the r.

We remark that if the discrete problem (1) is obtained from the integral equation
(2) by means of an expansion method with orthonormal basis functions, and if the
integral equation satisfies the Picard condition (4), then the DPC is also satisfied due
to the relationship between the SVE and the SVD [10].

It should be stressed that while the convergence of Xk and x depends on the DPC,
the smoothness of these solutions depends on Heuristic 2.1. Thus, both vectors Xk and
x may be smooth even if the DPC is not satisfied, but in that case they will not
approximate the vector Xo. Although such solutions may still be acceptable in certain
cases, it would be more correct to use the general formulation of regularization as
mentioned in the last paragraph of 2.

4. Perturbation bounds and condition numbers. In many discrete ill-posed prob-
lems, the errors are restricted to the right-hand side only. For example, this is the case
if (1) is derived from an integral equation (2) whose kernel K is given exactly, e.g.,
from some mathematical model of a physical problem, whereas the right-hand side
consists of measured quantities contaminated by errors. These errors transform directly
into a perturbation of the right-hand side b in (1). Examples of such problems are
inverse problems in observational astronomy [3], the inverse problem of electrocar-
diography [4], deconvolution problems such as inverse Radon and inverse Laplace
transforms [15], [24], and inverse problems in computational physics (see [21] for an
overview and [6] for a specific example). It is therefore appropriate to derive bounds
on the perturbations of Xk and x solely due to a perturbation e of b.

THEOREM 4.1. Let Xk and x denote the solutions (8) and (7), and let k and
denote the solutions when the right-hand side b of (1) is perturbed by e. Assuming that
O" <: , 0"1, the relative perturbations are bounded as

(15a) IIXk--:kll2 < 0"1

IIx, I1 o-, IIb,

IIx[l= -2x IIbll=
where bk AXk and bx Axx.

Proofi It is elementary to derive (15a) from the inequalities
v +k Urell= =< IIZIIIlelI rlllell= and IIb I1 IIAxll <--IIAIl=llx I1 ,llxll. Fur-

ther, it follows that IIx IIv re ll2=< II llell and assuming that tr <= A <
cr we obtain

I1 -I1= max 2
l--in O.i..[_h2

< max o.2+h2-1/(2A)tr_<

These two relations, together with IIbll-< llxll, lead directly to (15b).
Remark. The bound in (15a) can also be derived from Lemma 2.3.2 of[8]. Applying

the same lemma to Tikhonov regularization, we obtain a factor trl/h instead of the
factor cr/(2h) in (15b). If the error norms are bounded relative to [IXo[[2 instead of
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Ilxll= and IIxll=, the right-hand sides simply change to /llell=/llboll= and
r/(2A)llell/llboll, where bo Axo.

Theorem 4.1 confirms what has been observed experimentally and used in a
number of applications, namely, that it is possible to choose k and A such that the
approximate perturbed solutions ik and ix are fairly insensitive to the perturbations
in b. The theorem also shows that when A , as we assumed in the previous section,
then both methods are approximately equally sensitive to the peurbations. Note that
there is always a trade-off between Theorem 4.1 and Theorem 3.1 in the choice of k
and : when k is small and is large then the peurbation bounds are small, whereas
the TSVD and regularization errors may be large, and vice versa.

The results in Theorem 4.1 can also be used to derive expressions for the condition
numbers associated with TSVD and Tikhonov regularization. Here, we shall use the
following definitions.

DEFINITION 4.2. The condition numbers Kk and a, associated with TSVD and
Tikhonov regularization, respectively, are defined as

IIx -  ll= IIx (16) lim sup lim sup

where x and xa are the unpeurbed TSVD and regularized solutions, and
are the solutions when the right-hand side is peRurbed by e.
This definition, together with Theorem 4.1, immediately leads to:

COROllaRy 4.3. e condition numbers (16) associated with TSVD and Tikhonov
regularization are

(17) K =, K

Remark. Schock 18] recently derived another condition number x A / =, associ-
ated with Tikhonov regularization, based on the usual condition number of the matrix
A=(ArA+A:I)-A which is the unique matrix that produces the regularized
solution: xx Ab. The result A/=, is, however, not correct. Instead it should be

(18) ff a/q,,

which is easily derived from the proof of [18, Thm. 2]. We feel that our condition
number a (18) is more correct than Y, since the matrix A should not be used to
compute x numerically.

Next, we shall give the general peurbation bounds for x and xx when both the
matrix A and the right-hand side b are peurbed. The peurbation of A may, e.g.,
arise from the approximations used to derive A from the kernel K in the numerical
treatment of the integral equation (2).

THZORZM 4.4. Let E and e denote the perturbations ofA and b, respectively, and
that .na II ll:<x. the pert.rbatio. of a.a

bounded by

(19b) Ilallz [2 I]E[I2+

where  b-dx ,  b-dx , and
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Proof. Equation (19a) follows immediately from [9, Thm. 3.4] together with the
relation

E IIU IIAII= E I1= E I1= IIAII: ( O’k/, I1=
1 IIEIIUo,< o-,<+,/o-,<-o-,< IIEIl ,< IIAIl-o,< IIEIlIt, l+ .o "/IIAII-"

To prove (19b), we remind the reader that x is the unique least squares solution to
the problem min Ilfx-dll=, where C [] and d [0b]. The matrix C has full rank for
all A > 0, and we can apply the standard perturbation bound for least squares solutions
[2, Thm. 5.5] to get

IIx-ll"--<l-IIEIl:llC-II= All: IIAIl: IIAIl:
From the definitions of C and d we get IIc/ll== (c)- < A-l, ilall=llx i1=__> ilax i1=

--< IIr I1+’ IIx I1 such thatIIbll= and I1- Cxll= Ax

These relations then yield (19b). D
Although the bound in (19b) is not tight, it does illustrate our major point, namely,

that the general perturbation bounds for xk and xa are very similar whenever A rk
(which we have already assumed), provided that k and A are chosen such that
IIEIl < O’k--O’k+l and IIEIl <X. We see from (19a) that truncation of the sum in (8) at
a nearly multiple singular value r should be avoided; but apart from this, the results
in Theorem 4.1 do not impose any particular requirement on the singular value
spectrum. That is, we can actually truncate the expression (8) for x at any value of
k, as long as r is not nearly multiple.

The main conclusion to be drawn from Theorems 3.1, 3.2, 4.1, and 4.4 is therefore
that the success of TSVD (as well as Tikhonov regularization) primarily depends on
satisfaction of the DPC and, in fact, has little to do with the existence of a gap in the
singular value spectrum of A. If, for some k, there is a large gap between r and rk/l

(i.e., A has well-determined numerical rank), then this k is usually identical to the
numerical rank of A and it is therefore often convenient to truncate the expression
for x at this k [9]. In this case, it is natural to require the DPC satisfied for the first
k coefficients /3i only, and to consider the remaining /3i-coefficients associated with
the residual. If, on the other hand, A has ill-determined numerical rank, then there is
no point in trying to find A’s numerical rank. Instead, one should choose k in order
to suppress, as much as possible, the influence of the perturbations while, at the same
time, keeping the TSVD error as small as possible. In the next section, we shall discuss
this in more detail.

5. Characterization of the solutions. In this section we are mainly interested in
the TSVD solution and the regularized solution when they are influenced by perturba-
tions of the right-hand side. In order to understand the influence of such perturbations
and to be able to select a proper truncation parameter k and regularization parameter
A, we therefore seek to characterize the behavior of the perturbed solutions i and ia
as functions of/ and A. A convenient way to characterize any solution to the least
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squares problem (1) is to plot its norm versus the norm of the corresponding residual,
as suggested in [13, Chap. 26]. Since we are only interested in that component of the
residual which lies in the column space of A, we define the residuals rk and ra
corresponding to Xk and xa by

(20) r bo-Ax u/b Ui, ra --bo-Axa
= r+A u/b u.

It can be proved that for regularization Ilxa is a decreasing function of IIr I1 , while
for TSVD IIxll is a decreasing function of IIrll on a finite set [10, Thm. 5.3], and
that the points (llrll, IIxll), k 1,. , n 1 always lie above the curve ([[r
[13, Thm. (25.49)]. The distance between these points and the curve was already
analyzed in Theorem 3.2. Here, we shall give a more detailed (although not strictly
rigorous) description of the curve and the set of points.

First, let us consider the behavior of the curve (lira [12, Ilxa !12), with xa and ra given
by (7) and (20). Obviously, xa --> 0 and ra --> bo as A --> , whereas xa --> Xo and ra -->0 as
A--> 0. For A << o-n, we have

and r/2/(/2 + h -) 1 ==>xa Xo; i.e., for small h the curve (lira I1=, IIx [1=) is approximately
a horizontal line at ]lxa I1= Ilxoll=. When h increases, we see that IIx I1= starts to decrease
while IIr 11= still grows towards Ilboll=, and thus the curve must bend down towards the
abscissa axis. The value of h for which [[xa I1= markedly starts to bend down depends
on the cri as well as the ufb. If the DPC is satisfied, such that the sum in the expression
(7) for xa is dominated by its first terms, then obviously h must be comparable with
the largest singular values O" to significantly influence xa. For such values of A, IIr I1=
will be somewhat smaller than Ilboll2 because the coefficients to the first terms in the
expression (20) for ra will be less than one. If the DPC is not satisfied, we can assume
that most of the terms in the expression for xa actually contribute to this vector, and
the influence of A can be felt for much smaller values of A than before. Thus, the
curve also starts to bend down for smaller values of IIr 112 than before.

Next, we consider the points (llr[[=, IIxl12). If the DPC is satisfied, Theorem 3.2
guarantees that for large k there always exists a A [O’k+l, rk] such that the points are
close to the curve (llr 112, [Ix I1=), whereas for small k we cannot guarantee this. However,
we can see from the expressions (8) and (20) for Xk and rk that their norms must
behave quantitatively like IIx I1= and lira 112. That is, if the DPC is satisfied, then for
large k the points will approximately be on the same horizontal line as the curve, and
as k gets smaller the points will eventually start to bend down, always lying strictly
above the curve. If the DPC is not satisfied, the points will also deviate from the curve
for large k.

If we make more assumptions about the case when the right-hand side does not
satisfy the DPC, we can also say more about the curve and the points. This is particularly
relevant for the perturbation e of b. An interesting case (see below) is when all the
coefficients lu/el of the perturbation are approximately of the same size,

The corresponding "solution" xe and "residual" re> are given by

(21) O’ix(Ae) Eo 2 i
i=10"i + h
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The vector xe is called the "noise amplification error" in 1]. In particular, the norm
of xoe=A+e satisfies o/o< IIxoe>ll=<o/, We see from (21)that for A in the
range tr, -< A < o, IIrell2 varies in the quite small range from approximately eo to qeo.
Concerning xe, the sum in (21) is dominated by just a few, say p, of the terms, namely,
those for which tr,=A and o’i/(t+ A2) 1/(2A)such that IIXe>ll=p" o/(2;)
Thus, as -, the curve (llre>ll=, IIx?>ll=) soon becomes amost a vertical line at

IIre>ll=4-do. Exactly the same conclusions hold for the points (llrkell2, IIx?>ll=)
obtained when applying TSVD to e.

Typical examples of both curves (llrll=, IIxll=), with the DPC satisfied, and
(llre)ll2, IIxe[12), with the DPC not satisfied, are shown in Fig. 1 for the situation

Ilell < Ilbo[l. Note that the latter curve starts to bend down towards the abscissa axis
before the first curve does (e.g., for smaller A). Also note that the level IIoll
x/-ffeo/tr, lies over the level Ilxoll.

We are now ready to describe the behavior of the solutions x +xe and
k =Xk+Xk under the influence of errors e in the right-hand side. We make the
following assumptions in order to be able to carry out a meaningful analysis.

ASSUMPTION 5.1. Let e be a perturbation of the right-hand side b in (1). We assume
the following:

1. The unperturbed right-hand side b satisfies the DPC.
2. The perturbation e is a random vector of zero mean and covariance matrix eoI.
3. The norm of e satisfies Ilell2 <

The first assumption is necessary for the convergence of the methods. The second
assumption is very common in least squares problems. If it is not satisfied, we should
either scale the equations (if the covariance matrix is diagonal) or use the general
Gauss-Markoff linear model for a general covariance matrix (cf., e.g., [2, 14] and
[26]). As a consequence of this assumption, the expected value of all lluell=
independently of i. Assumption 3 is simply a requirement that the signal-to-noise ratio

E

comparable with
the largest i

/

Ilrxll2le 112

FIG. 1. Typical behavior of the regularized solution x for a right-hand side b that satisfies the
discrete Picard condition, and the regularized solution e for a right-hand side e that does not.
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in the given right-hand side is not too large to let one retrieve a satisfactory approximate
solution.

With these assumptions it then follows from the above analysis that the curve
(11 I1=, I1 I1=) and the set of points (11  11=, 11112) will appear as shown in Fig. 2. For
A << tr,, the curve is almost horizontal at the level I1 I1= IIx?>ll= since the
regularized solution is dominated by the term xee) Increasing A, the curve soon
starts to bend down due to the influence of A in the term xe), which still dominates. This part of the curve therefore resembles the dashed line in Fig. 1. Increasing A
further, the other term x will start to dominate at some point such that the curve
now stays at a new level at I1= Ilxoll=. until it eventually starts to bend down again
for A comparable with the largest singular values. This part of the curve is therefore
similar to the solid line in Fig. 1. As long as Assumption 5.1 is satisfied, there will
always be a more or less distinct "corner" somewhere in the middle of the curve, where
the dominating term in switches from x to xe) The set of points corresponding
to the TSVD solution k behaves in exactly the same way, also exhibiting a "corner"
when the dominating term in k switches from Xk to Xe). At this corner, and to its
right, the component Xk dominates and Theorem 3.2 ensures that the points will be
close to the solid curve (except for the smallest k). To the left, xe) dominates, and as
k increases the points will deviate from the solid curve. We can summarize the main
result as follows.

CHARACTERIZATION 5.2. IfAssumption 5.1 is satisfied, then the curve (11 I1=, I1 I1=)
as well as the set of points (ll  ll=, I1  11=) exhibit a "corner" behavior as functions of
their parameters A and k. Both "corners" occur approximately at (v/-ffeo, Ilxol12). The
larger the difference between the decay rates of lul and lu,%l, the more distinct the
"corners" will appear.

The plots in Fig. 2 provide a natural choice of the regularization parameter A and
the truncation parameter k that must be selected. It is obvious that the optimal values
of A and k are those that yield solutions near the "corners" of the curve and the point
set, respectively, since these solutions approximate Xo as closely as possible without
being dominated by the contributions from the perturbation e. In the case of the TSVD

(_small k)
/
I111=, I1 I1=

FIG. 2. Comparison of TSVD solutions ,k and
right-hand side b + e.

regularized solutions corresponding to a perturbed
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solution k, we can also say that k should be chosen as large as possible, but with the
constraint that the k coefficients uf(b+e), i= 1,..., k in the truncated sum for k
satisfy the DPC. The optimal solutions, produced by these optimal values of h and k,
satisfy II II= -II ]12 IIxo 112 and II 112 II 112 [lell2; i.e., they are reasonable solutions
in the terminology of Varah [24]. We stress that whenever Assumption 5.1 is satisfied,
and A and k are chosen as described above, then both TSVD and Tikhonov regulariz-
ation are guaranteed to produce very similar reasonable solutions that converge to Xo
as e->0.

We shall not go into a detailed description of numerical methods for determining
A and k according to the above criteria. Suffice it to say that the key idea in most of
these methods is actually to locate the "corners" of the curve and the point set as
illustrated in Fig. 2. This is clearly the case in methods based on the discrepancy principle
[8, 3.3] where we increase k or decrease A until the residual norm (or some function
of this norm) is of the same size as the norm of the errors Ilell=4-o. Generalized
cross-validation [7] is a promising alternative method which, in the case of TSVD,
simply amounts to choosing k so as to minimize the function IIll/(m- n)=. This k
is identical to the k for which IIll/(m- n), as a function of k, starts to level off and
become an estimate of the variance Ile]l/m of the noise, and the corresponding point
(ll  ll=, II  ll=) is therefore near the "corner" of the point set. The same holds for
Tikhonov regularization (cf. the discussion in [11]).

6. Numerical examples. This section includes two examples of the numerical
solution of first kind Fredholm integral equations (2), illustrating the discussion in the
previous sections. In both examples we choose m n, and we discretize by means of
the method of moments with simple orthonormal basis functions ()i chosen to give a
piecewise constant approximation to f:

-1/2 a+(i_l)h<x<a+ih
i(x)=

0, otherwise
i=l,...,n

where h (b- a)/n and [a, b] is the integration interval. The elements of A and b in
the least squares problem (1) are then given by the integrals

fa+ihfa+jh a+ih(22) aij h -1 K(s, x) dx ds, bi h -1/2 g(s) ds.
d a+(i-1)h l a+(j-1)h .I a+(i-1)h

For more details on this method see, e.g., [10] where it is shown that the singular
values tri of A, when computed by (22), are O(n-2)-approximations to the/xi in the
SVE of K.

The first example is a classical example by Phillips [16]. The integral equation is
given by the following K and g:

l/cos[’tr(s-x)/3], Is-xl_-<3
K(s,x)-

O, Is-xl> 3

g(s)=(6-1s[) l+cos +--sin
with [a, b] =[-6, 6]. The solution is f(x)= 1 +cos (rx/3). The explicit formulas for
A and b, evaluated by means of (22), are given in 10]. We used n 64 and perturbed
the right-hand side b by random numbers from a normal distribution with zero mean
and standard deviation 10-4 such that Ilell2 8.10-4. The condition number of A is
o’1/r, 2.8 10s, and we know that Assumption 5.1 is satisfied. For -<_ 13 the computed
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quantities r,, [ufb] and [ufb[/, (not shown here) all decay as expected. For i=> 13
the singular values ri continue to decrease while the coefficients [ufb[ settle at the
error level about 10-4. Hence, the [ubl/ri increase almost monotonically with for
i>= 13. Fig. 3 shows the curve (llxll2, IIxll2) and some of the points
note the likeness with Fig. 2. It is clear, both from these plots and from plots of
[u fb[/tri, that we should truncate the TSVD solution Xk at about k 12. The approximate
solution, computed from k, agrees with the true f within a maximum deviation of
about 10-2, which is largely due to the TSVD error Xo- Xk.

The second example is a real problem from observational astronomy, where the
right-hand side g is the probability density function of observed stellar parallaxes,
whereas f is the true probability density function of these parallaxes. Assuming that
the measurement errors are normally distributed, it is easy to show that f is related to
g by a first kind Fredholm integral equation (2) with

K(s, x)=
1 ( 1 (s x)’pexp- 95 /.

The factor p reflects the accuracy of the measurements. As a case study we used a
standard set of observations from [19, Table 4, p. 30] defining g in the form of a
piecewise constant function and with /9=0.014234. We used the interval [a,b]=
[-0.03, 0.10], and the elements of A (22) were calculated using the two-dimensional
9-point Simpson quadrature rule. The computed values of ri and ]ubl/tr are shown

2

10-6

I111=, Ik 112

k =60
X

40
\ /-k 12

k=8

10-5 10-4 10-3 10-2

FIG. 3. Plot of TSVD and regularized solutions for Phillips’s example.
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in Fig. 4. Note that the [ufb[/tri initially decay slightly with i, and that they soon start
to increase dramatically. It is evident from this figure that the TSVD should be truncated
at k equal to 6 or 7. Fig. 5 shows plots of (llll, IIll) and (llll, IIll), and the
similarity with the idealized plot in Fig. 2 indicates that Assumption 5.1 is actually
satisfied. We see from Fig. 5 that the error level is about [[e[[2 10-3, that there is a
distinct "corner" on the curve, and that the TSVD solutions Xk with k 5, 6, 7, 8 are

10-1

10-2
X

\ /

10-3
0 5 10 15

FIG. 4. The computed singular values O" and coefficients u/Tbl/o-i for the second example with observed
stellar parallaxes.

’k 14

10-1
ik 12

k=lO

-8Lk=6vk=4 k=2 k-1

10_3_ 11112., I! 112 !
10-3 10-2

FIG. 5. Plot of TSVD and regularized solutions for the second example with observed stellar parallaxes.
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close to this "corner." The computed solution corresponding to k 6 turned out to
give the best results.

Acknowledgment. I would like to thank Professor Leslie Foster for discussions
that led my investigations in the direction presented here.
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COMPUTING TRUNCATED SINGULAR VALUE DECOMPOSITION LEAST
SQUARES SOLUTIONS BY RANK REVEALING QR-FACTORIZATIONS*
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Abstract. Solutions to rank deficient least squares problems are conveniently expressed in terms of the
singular value decomposition (SVD) of the coefficient matrix. When the matrix is nearly rank deficient, a
common procedure is to neglect its smallest singular values, which leads to the truncated SVD (TSVD)
solution. In this paper, an efficient method is presented for computing the TSVD solution via a QR-
factorization, without the need for computing a complete SVD. The numerical rank ofthe matrix is determined
by means of a rank revealing QR-factorization, which provides upper and lower bounds on the small singular
values and approximations to the corresponding singular vectors, which are then refined by inverse subspace
iteration and used in conjunction with the QR factors to compute the TSVD solution.

Key words, least squares problems, truncated singular value decomposition, nearly rank deficiency,
numerical rank, rank revealing QR-factorization, inverse subspace iteration, subset selection

AMS(MOS) subject classifications. 65F25, 65F20

1. Introduction. In this paper, we consider an efficient and reliable numerical
method for solving the linear least squares problem

1.1 min Ax b 112, A ’, m > n

with the matrix A ill-conditioned and possibly rank deficient. This method is the
truncated SVD (TSVD) method, which is based on the singular value decomposition
(SVD) [10, 2.3] of A:

(1.2a) A U VT
U O’iVilT,

i=l

where the left and right singular vectors ui and vi are the columns of the matrices U
and V, respectively, and o- are the singular values of A. They are nonnegative and
appear in nonincreasing order,

(1.2b)

The number of strictly positive singular values is the rank of A.
It is well known that the minimum norm least squares solution to (1.1) can be

written in terms of the SVD of A as:

rank (A) U/b
(1.3) x=

O’i

The ill-posed nature of (1.1), associated with the ill-conditioned matrix A, is caused
by the appearance of one or more small singular values in the denominators of the
sum in (1.3). Therefore, the basic idea of the TSVD method is to truncate the sums in
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Foundation grant DCR 8412314 and by a Fulbright supplementary grant.
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(1.2a) and (1.3) at a value k <rank (A) such that all the small singular values are
discarded. This corresponds to defining a new matrix Ak by

k

(1.4) Ak E Ui O’iV/T k < rank (A)
i=1

and substituting this matrix for A in (1.1), leading to a new least squares problem:

(1.5) min IIax- 11=,
The minimum norm solution 10, 6.1] to this new problem is termed the TSVD solution

Xk to the problem (1.1), and it is obviously obtained from (1.3) by truncation of the
sum at k:

(1.6) Xk Vi-- E Vi O’-1 U b Ab.
i= 10"i i=l

We refer to [11] and [12] for a discussion of the properties of the TSVD solution.
The matrix A defined in (1.6) is the pseudoinverse of the matrix Ak in (1.4) and

(1.5) (while it is an outer inverse of A). Therefore the problem of computing Xk is
related, at least in theory, to the problem of computing the matrix A. Although we
need not compute A{ explicitly, (1.6) does emphasize the two quantities required to
compute the TSVD solution, namely, the number n-k of small singular values
Ok+l,’’" O" to be discarded and the subspace spanned by the corresponding right
singular vectors Vk+l,""", Vn, to which the TSVD solution must be orthogonal. These
two quantities also distinguish the TSVD solution from the standard QR-factorization-
based procedure for rank deficient problems, such as HFTI by Lawson and Hanson
[15], which relies on the heuristic procedure of column pivoting for identifying the
numerical rank from the appearance of small elements in the bottom part of the
computed R matrix. In 2, we return to the problem of choosing the truncation
parameter and describe a method, based on the singular value spectrum of A, for
selecting a proper value of k.

While we can compute Xk from the SVD via (1.6), this is an expensive procedure.
Computation of and V in the SVD (1.2a) of A involves about (m+ 17/3n)n2 flops
[10, Table 6.5-1]. In this paper we demonstrate how to compute the TSVD solution
from any QR-factorization of A with much less computational effort: approximately
(m +p)n2 flops, where p is a small integer. Column pivoting during the QR-factorization
of A is not required, thus making our algorithm particularly suited for sparse matrices.
An outline of our algorithm is as follows. From any QR-factorization of A, we compute
a rank-revealing QR-factorization (RRQR) [2], from which upper and lower bounds
for the small singular values are easily obtained. This is used to compute the numerical
rank k of A. The RRQR also yields approximations to the last n- k singular vectors,
which are then improved by means of inverse subspace iteration. Finally, these vectors
and the above RRQR are both used to compute the TSVD solution.

It may seem surprising, compared to the work involved in a complete SVD
computation, that we can compute Xk much more "cheaply." It is possible to avoid
most of the computational effort in computing the complete SVD of A because only
a part of the information, provided by the complete SVD, is actually required to
compute the TSVD solution: namely, the n-k smallest singular values and the
corresponding singular vectors. And this information can, as we shall see, be extracted
from a QR-factorization of A.

The TSVD solution is related to some other solutions to (1.1) obtained by other
methods. For example, it is similar to the so-called "deflated solutions" as defined by
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Chan [1], as well as the solution obtained by "regularization in standard form" as
shown by Hansen 11], 12]. It is, however, generally different from the so-called basic
solution (cf., e.g., 10, 6.4]) computed by the’ above-mentioned HFTI procedure and
also different from the solution obtained by "subset selection" as described by Golub,
Klema, and Stewart [9], although the present algorithm may also be used as a first
step in performing subset selection (see 6). We stress that the purpose of this paper
is to present an efficient method for computing the TSVD solution, but not to emphasize
the comparison of this solution to other solutions.

2. The numerical rank and the general least squares solution. In this section we
consider the selection of a proper value of the truncation parameter k in the truncated
SVD expansion (1.3). The usual approach is to let k be equal to the numerical rank
of A, defined as the number of singular values of A strictly larger than a certain
threshold ’:

(2.1) tr o"k > 7" O’k+

This is a reasonable approach as long as there is a well-defined gap between the
singular values trk and trk+a, since in this case the numerical rank k is well determined
with respect to ’. If, however, trk rk+, then the numerical rank is not well determined
with respect to z. This problem is also reflected in the perturbation theory for the
TSVD. Let E be a perturbation of A in (1.1) such that IIEIl=<-/. Then it is
shown in 11 that the perturbed pseudoinverse (A + E) satisfies

112 __< 3(2.2a)
IIA2-(A+E)+

IIall (1 )(1 o)’
where we have defined

(2.2b) r/k
E I1=

(-Ok
O’k O’k

From this result it is seen that a small upper bound on the perturbation of the
pseudoinverse A (and thus on the TSVD solution Xk) depends not only on a small
r/k, but also on a small tOk, which means that there must be a distinct gap in the singular
value spectrum between O’k and O-k/. As we shall see in 4, this requirement on tOk
also enters into our algorithm. We will therefore make the assumption that the numerical
rank k is well defined.

Since we have discarded n- k singular values of A, such that the matrix Ak (1.4)
has exact rank k, there are exactly n-k linearly independent solutions to the
homogeneous problem associated with (1.5), and these are linear combinations of the
last n k right singular vectors of A. Therefore, the general solution to (1.5) can formally
be written as

(2.3) XGs Xk "Jl- CiVi, C arbitrary,
i=k+l

in which Vk+, ", V are the last n k right singular vectors of the matrix V in (1.2).
The TSVD solution x (1.6) is the unique solution to (1.5), among all Xs, which
minimizes [IXsl[_ (hence the name "minimum norm solution"). Define the matrix
Vo [V+l v] <,-k). From (2.1) it immediately follows that

(2.4) IIAVoll= < .
Hence, the subspace spanned by these vectors will be termed the numerical null-space
N ofA.
(2.5) Nk=Span{vk+, , V}.
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The general solution Xs is completely specified once Xk and the matrix Vo have been
computed. This general solution is required in a number of applications such as total
linear least squares (TLLS) [10, 12.3], solution of nonlinear equations by Gauss-
Newton with a rank deficient Jacobian [8, 4.7.5], and the study of Fredholm integral
equations of the first kind [6], [12], [13]. These examples satisfy the above assumption
that the numerical rank is well defined, and they require the explicit computation of
the TSVD solution (and none of the related solutions mentioned in 1).

3. The rank revealing QR-factorization. The first step of our algorithm is to
determine the numerical rank k of the matrix A. Of course, we could compute the
complete SVD and examine the singular values. However, this technique is quite
expensive, so instead we want to extract the information from a QR-factorization of
A. To be precise, we want a QR-factorization of A in the particular form

Rll Rl:z] k numerical rank
(3.1) AH QR Q

0 R12J n k

with IIR22112 small such that the QR-factorization (3.1) exhibits any numerical rank
deficiency in A. This particular form is termed the rank revealing QR-factorization
(RRQR) of A [2]. The problem of computing the RRQR is equivalent to determining
a column permutation II such that IIR==II= is small. It is emphasized that the usual
column pivoting strategy does not guarantee this [10, p. 167]. Recently, Chan [2] has
described an algorithm for choosing a permutation II that guarantees IIR==II= to be
small. The permutation turns out to be identical to one proposed by Foster [7] for
subset selection. In addition, Chan’s algorithm also gives upper and lower bounds for
the singular values of A plus an approximate null space.

To motivate the strategy used in [2], consider the following lemma.
LEMMA 3.1. Given any column permutation II and an X Rnx(n-k) such that

(3.2) Ilmxll=-- e,

the QR-factorization (3.1) ofA II yields an R22 that satisfies
(3.3) IIR[[= ell
where the matrix Y2 is defined by

(3.4) IITX=
Y2 n-k"

Proof Using (3.1), (3.2), and (3.4), we immediately obtain

The above lemma shows that if we can identify an approximate null space of A
of dimension n- k, represented by a matrix X that gives a small e in (3.2), then the
near rank-deficiency of A is revealed by a small R22 Rn-k)n-k) in the QR-factoriz-
ation (3.1), provided that we use a permutation II such that I1YII is not large. The
strategy in computing the RRQR is therefore to find a matrix X such that e is small
and to find a permutation II of the rows of X such that YII= is as small as possible.
For the special case k n- 1, one can take X vn and II the permutation that brings
the largest element in absolute value of vn to the last position [9]. The vector vn can
be estimated as in the LINPACK condition estimator [5] or variants thereof [4], or
computed by inverse iteration [16]. In the general case k-< n- 1, one approach is to
take X Vo giving e O’k+ and II determined in such a way that the bottom (n k) x
(n- k) submatrix of IITVo is as well conditioned as possible, as proposed in [9]. The
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idea of the RRQR algorithm in [2] is to devise a more efficient algorithm based on
the QR-factorization by repeated application of the k- n- 1 procedure. Essentially,
the matrices X and II are constructed from the right singular vectors corresponding
to the smallest singular value of appropriately chosen, increasingly smaller subsets of
columns of A.

ALGORITHM RRQR:
1. Compute any QR-factorization of A" AYI QR and set k - n.
2. Loop to identify the small singular values of A.

2a. Partition R--[Rll R12Jk0 R:2 n-k.

2b. Get an initial guess k of the smallest singular value and the corresponding
right singular vector #k of Rll e.g., by using the LINPACK condition estimator
[5] or variants thereof [4].

2c. If the initial guess tk is numerically nonzero, then improve k and ’k by
means of inverse iteration applied implicitly to RrllRll.

2d. If tk ) 7’ then k is the numerical rank of A (see (3.6) below)" goto 3.
2e. Determine a permutation/ such that I(P’*k)kl
2f. Compute the QR-factorization: R11P-QRll.

0
R2g. Update , Q, and R"

0 I_ 0 R

2h. Assign to the kth column of W, and compute: W
0

2i. Let kk-1.
3. End.

In step 2c we accept a singular value as numerically nonzero if it exceeds ne,
where e is the machine precision. Steps 2e and 2f should be implemented as described
by [7] and [2] to reduce the computational effo to O((n k)n) flops. The dominating
effo is therefore the backsubstitutions in step 2c, which means that the numerical
rank k of A can be determined in O(p(n k)n) flops, where p is the average number
of iterations used.

From the definition of in steps 2b-2c of RRQR, it follows that and W satisfy

(3.5) IIAHWII= .
i=k+l

Since the 8’s are the smallest singular values of increasingly smaller subsets of columns
of A, it immediately follows from the interlacing inequalities for singular values 10,
Cor. 8.3-3] that the 8 are nonincreasing for increasing values of and that

(3.6) 8i gi, k n.

Therefore, the RRQR algorithm can be viewed as a method for identifying an approxi-
mate null space of A represented by the matrix X H

The following theorem gives upper and lower bounds on the smallest singular
values of A, which are by-products of algorithm RRQR.

THEOREM 3.2. Let the quantities be computed by means of Algorithm RRQR
above. Also, let the matrix W ,(,-k be partitioned as

(3.7) W=
W n-k
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and let W2 and Ri22 denote the bottom (n i) x (n i)-blocks of W2 and R22 for k < <

n- 1, respectively. Then

(3.8) O’i+ =< i+1 < O’i+1 < IIR’=II= =< ’i+14n -ill( W)-1112

Also, we have the a priori bound"

(3.9) I1( w’)-’ = < 4-2-’.
Proof. We shall prove each of the four inequalities in (3.8), starting from the right.

The first follows from Lemma 3.1 if we let IIrX W consist of the last n- columns
of W such that Y2=W and e-Ilaxll=-IlarIw’ll,_<-_llarIw’ll<=4n-i,/ <
/n io’i+l (where we have used (3.5) and (3.6)). The second follows from the perturba-
tion theorem for singular values [10, Cor. 8.3-2], and the next one is simply (3.6). The
last one follows from the second inequality from the right in (3.8) and the relation
immediately above.

To prove (3.9) we use the same technique as in [7], but here applying the norm

I1 II=. Define Z W. Due to the construction of W, it has the following properties"
its columns have unit norm; it is upper trapezoidal; and the maximum element (in
modulus) in each column is on the diagonal of W2. If 7 n- i, then we have

n-"/= Izl 1, 1 =<j<- r/,

0 Izcl n -’/=, 1 <-j, < rl, j # .
Now let y Zx with Ilyll=- 1 lyl 1. Then, from the equation

xj= zjj yj- zjcxc l<-_j<-_n,
’=j+

we get

Ixl + 2 Ixcl, 1 _--<j =< n.
=j+l

It is easy to show by induction that Ixl _<-x/2’-, so that

4n-1
IIxll [4+ 41 +’’" +4-] n<n4

-1
and therefore lxH2 <2. From the definition of the matrix 2-norm it then follows that

I1( w)-’ll= IIz-’ll= min IlZx min=min ]]xll2 <2.
11112

Theorem 3.2 implies that, as long as the numerical rank k n such that the term
2-’ in (3.9) is small, the quantities 8 and IIR2II are guaranteed to be tight upper
and lower bounds of the singular values . This means that Algorithm RRQR will
determine the correct numerical rank k as long as there is a well-defined gap between
singular values and +.

4. Determination of the numerical null space. Algorithm RRQR gives the numerical
rank k and an approximate null space, represented by the matrix W. However, the
TSVD solution requires the true numerical null space Nk of A. In this section, we
show how to refine matrix W to obtain an accurate basis for Nk. Before we give the
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refinement procedure, we first study how good an approximation W is. From (3.5)
and (3.6) it immediately follows that

IIAn Wll--< IIArI wll %- =, <
i=k+l i---k+l

and therefore

(4.1) IIAH W[12 <= x/n kwk,

where (.Ok is defined in (2.2a). This result suggests that the range of HW is a good
approximation to the numerical null space Nk, provided that (.Ok is small. That this is
true follows from the following theorem.

THEOREM 4.1. Let the matrix W be partitioned as in (3.7). Then the subspace angle
0 between the range of I1 W and the numerical null space Nk ofA is bounded as

(4.2) sin 0 -<_ (1 +x/n k[I Wy’ [[),o,
where Wk rk+/Crk, and where WII2 <--x/-ff2"-k due to (3.9).

Proof First, we define a QR-factorization of II W VoRw and obtain the bound

(4.3) IlRll-- llw+I-t’f/oll llw+ll_-- O.mn(W)-’<=O-mi,,(w.)-’= llw;’l[.
In terms of the SVD (1.2) of A, we then define the matrices

Ek diag (trl, irk),

(4.4) Uk [Ul’’" Uk],

Eo diag (O’k+l, ",

Uo= [u+, u.],

v Iv, v], Vo= Ivy+,

and write AlT"o UkEkV[/O+ UoEoV/o. Then, from [10, Cor. 2.4-2]"

sin 0 w f’oll= I1 uZuvUo112
I1’ 11211 ull=ll uv[o11= ’11uvo11=

’IIAo- Uo ovo11 ’(11Uo ovo11: + IIA o11=)
’(11Uoll:llollll V o11= + IIAoRwRll)

Here we have used (4.3) and Voll
Theorem 4.1 means that if Wk is small (corresponding to a large gap in the singular

value spectrum of A) and k n, then the range of HW is a good approximation to
the numerical null space Nk, since wll= cannot be large, cf. (3.9). Hence, W is a
good staaing matrix for simultaneous inverse iteration with R rR in order to determine
an accurate basis for N, guaranteeing fast convergence within a few steps. This leads
to the following algorithm SPIT (subspace iteration), based on an algorithm in [3], to
determine a matrix Vo whose columns are orthonormal basis vectors for Nk.
ALGORITHM SPIT:
1. Let - 0.
2. Set 17"(o)_ W and orthonormalize its columns.
3. Subspace iteration. Repeat until sin < e"

3a. - i+ 1, O(i) R-Tg,(i-), 9,(i) ,. R-1 j(i). Scaling is necessary to avoid overflow!
3b. Orthonormalize the columns of I7"(i).
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3c. Estimate sin , where is the subspace angle between range(l?(i-1)) and
range

4. Orthonormalize the columns of () to get 0o.
5. Let l?oIIl?
6. End.

If R has zero or nearly zero diagonal elements, simply insert a small multiple of
the machine precision. The quantity e in step 3 determines the accuracy ofthe computed
Vo, and should be set according to the required accuracy of the computed TSVD
solution Xk. In step 3c, notice that sin p is given by

(4.5) sin tp -= [[(In gr(i)/r(i)T) (i-1)[[2 liP(i) r(i-1)[[2
in which /3() is the projection matrix for orthogonal projection onto the orthogonal
complement of range (i3()). Hence, the matrix/5() i?(i-1) can be computed simply by
orthonormalizing the columns of I7"(-1) with respect to the columns of I?() (e.g., by
the modified Gram-Schmidt procedure). The quantity sin ff can then easily be estimated
by a simple estimate of [1/5(i) 17"(-1)112. The computational effort is therefore dominated
by the subspace iterations in step 3a. Hence, 17"o is determined in O(p2(n k)n) flops,
where p is the number of iterations.

5. Determination of the TSVD solution. The remaining problem now is to compute
the TSVD solution xk (2.3) from the quantities already obtained from RRQR and
SPIT. Suppose that the matrix R in (3.1) has no exact zero singular values. In theory,
one could then compute the vector R-QTb, which is a member of the general solution
Xs in (2.3), and then deflate this solution; i.e., orthogonalize with respect to the
numerical null space Nk. In practice, however, the matrix R may be highly ill-
conditioned which will completely destroy the accuracy of the computed TSVD
solution. This is because the computed vector R-1QTb, which theoretically should be
given by (1.3), will be dominated by those contributions, corresponding to the small
singular values rk/,"" ", rn, that are to be removed again in the deflation process.
Therefore, the rounding errors associated with this component will contaminate the
computed solution.

The problem is overcome by also deflating the right-hand side b with respect to
the subspace span{uk+,..., un}, where u are the columns of U in the SVD (1.2) of
A. This idea is similar to those used in 1] and 16]. To deflate with respect to the left
singular vectors {Uk/l, ", U,}, deflate Qb with respect to the columns of 0o provided
by step 4 of SPIT. The algorithm TSOL for computing the TSVD solution Xk then
becomes

ALGORITHM TSOL"
1. Compute I <-- Qrb.
2. Compute <- R-(I-/o t)or)l, where o is defined in 4 of SPIT.
3. Compute the TSVD solution Xk (In- Vo l?o)II, where Qo is defined in step 5 of

SPIT.
4. End.

This algorithm involves one backsubstitution such that xk is determined in 1/2n: flops.
Notice that if A has q numerically zero singular values, then the corresponding left
singular vectors of A are given with sufficient accuracy by

(5.1) [lln_q+l Un] Q[q] n-
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which means that deflation with respect to the associated subspace simply corresponds
to neglection of the last q elements of QTI.

Summarizing, the operations count for computing the TSVD solution Xk via RRQR,
SPIT, and TSOL can be shown to be bounded by

(5.2) [m+(n-k)(pl+P2+1/2)+Pl+1/2]n2 flops,

where Pl is the average number of inverse iterations per singular value in RRQR, and
P2 is the number of inverse subspace iterations used in SPIT. Thus, if the numerical
rank k n, then the RRQR-SPIT-TSOL procedure does not cost much more computa-
tional effort than the cost of computing one QR-factorization.

6. Extensions. Although the above algorithm is designed for problems with m -> n,
it can easily be extended to the underdetermined case B R with m < n. In this
case, first compute a QR-factorization of B T"

(6.1) BT--[Q1, Q2][R1] m

0 n-rn

and then apply our algorithm to A Rr. Let X(ks, !(0s and X(kA, I(0A represent the
general solutions associated with B and A R, respectively. Obviously, the TSVD
solution X(k lies in the range of Q1, and the columns of Q2 span an exact null space
of B. Hence, X(ks and 9o are obtained from the results X(kA and I(oA of the
RRQR-SPIT-TSOL algorithm by setting

(6.2) Xk) Q,X(kA) (o) <-" 9(oA) Q2]"

We notice that our algorithm may also be used for subset selection as described
by Golub, Klema, and Stewart [9]. In their method, the column pivoting for subset
selection is determined from examining the matrix Vo in (4.4) obtained from a complete
SVD of A. Since this matrix Vo and the matrix Vo computed by SPIT span the same
subspace Nk, we can apply the same procedure to Vo and obtain a similar subset
selection procedure. This permutation is, in general, different from the one obtained
from the procedure in [9] as well as the permutation provided by the method of Foster
[7]. However, they should all produce residuals of the same size.

Finally, we stress that we have made no a priori assumption about the pivoting
in the initial QR-factorization of A. Hence, if A is sparse, this QR-factorization can
be computed with pivoting for sparsity. Also, the QR-factorization in step 2f of RRQR
can be performed by taking advantage of the sparsity of R as described by Heath 14].
This means that our algorithm is also suited for sparse matrices as long as the numerical
rank k n (since the matrices 0() and 9(i) are full matrices).

7. Numerical examples. In this section we give a few illustrative examples of the
application of our algorithm. The first four examples are constructed to illustrate the
features and properties of the algorithm; the fifth example is a practical example from
the application of integral equations in two-dimensional potential theory.

For examples 1-4, we generated four small matrices of dimensions m 25, n 10
with numerical rank k 7 and different values of tOg. All matrices were generated by
replacing the singular values in the SVD of randomly generated matrices. The first
seven singular values are fixed at

(7.1) 0- 1, 0-2 0.5, 0" 0.2, 0"4 0.1, 0"5 0.05, 0"6 0.02, 0"7 0.01,

whereas the last singular values 0"8, 0"9, and 0"10 are varied. In Table 1 we tabulate, for
each of the small singular values 0"i, the upper and lower bounds i and R’==II= from
Algorithm RRQR and the number of inverse iterations used in RRQR to obtain it.
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TABLE
Comparison of the smallest singular values ofA with the upper and lower boundsfrom RRQR. The number

of iterations used in RRQR is also given.

RRQR
Example i cri IIR=II= iterations

7 8.28 10-3 1.00 10-2 2.08 10-2 3
8 5.27’ 10-18 9.71" 10-18 1.89" 10-17 2
9 5.85’ 10-18 7.38" 10-18 1.43" 10-17 0
10 8.95" 10-18 4.48.10-18 9.87" 10-18 0

7 7.79.10-3 1.00" 10-2 2.14" 10-2 5
8 9.86 10-6 1.00" 10-5 1.92 10-5 2
9 9.15" 10-7 1.00" 10-6 1.81" 10-6 2
10 1.00 10-7 1.00 10-7 1.75 10-7 2

7 7.81.10-3 1.00" 10-2 2.14" 10-2 5
8 9.86 10-4 1.00 10-3 1.91 10-3 2
9 9.15" 10-5 1.00" 10-4 1.81" 10-4 2
10 1.00 10-5 1.00 10-5 1.75 10-5 2

7 8.30" 10-3 1.00" 10-2 2.15" 10-2 5
8 4.94" 10-3 5.00 10-3 9.00 10-3 3
9 1.87 10-3 2.00 10-3 3.60 10-3 2
10 1.00" 10-3 1.00" 10-3 1.71 10-3 2

Consider first the quality of the bounds on the singular values. In all four examples,
these bounds are very tight, and the numerical rank k is easily identified as k 7.
Moreover, the number of inverse iterations needed is very small (although the number
of iterations required to estimate 0-k 0"7 increases with increasing tOg).

In Table 2 we tabulate results associated with the null-space computation and the
TSVD solutions. The first part of the table compares the angle 0 between the approxi-
mate null space, as computed by RRQR, and the exact Nk, with the bound given in
(4.2). Notice that the columns of the matrix II W indeed give an approximate basis

TABLE 2
Results associated with the null-space computation" (,Ok, the bound in (4.2), the angle 0 between range (II W)

and Nk, the number of iterations in SPIT, and the angle 0 between range (Qo) and Nk. Also shown are the
relative errors in k and k.

Example 2 3 4

(.O --O’k+l/O" 9.71" 10-16 1.00’ 10-3 1.00" 10-1 5.00" 10-1

(1 /vll wfll=) 9.63.10-15 5.05.10-3 5.00.10-1 2.52.10
sin 0 {range (I/W), Nk} 7.43. 10-16 4.27. 10-8 4.28. 10-4 1.15. 10-2

Iterations in SPIT 2 5 14
sin 0 (range (’o), Nk} 6.05. 10-16 1.20. 10-15 1.91. 10-14 2.44. 10-11

5.45" 10-15 1.22’ 10-15 4.78.10-11 4.78" 10-11

8.70" 10-2 3.01.10-12 4.78" 10-11 4.78" 10-11
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for Nk, and that the quality (as expected) depends on the quantity tOk. The upper
bound for sin 0 is overly pessimistic, but it indicates the general behavior of sin 0.

The second part of Table 2 shows the performance of Algorithm SPIT. We see
that as long as there is a large gap between trk and rk+l then the simultaneous inverse
iterations converge fast. In example 4, the gap is very small, and the iterations converge
very slowly. The accuracy of the computed I7"o reflects the stopping criteria e 10-1

used in step 3 of SPIT.
In the last part of Table 2 we give the results from solving the least squares problem

(1.1) by means of Algorithm TSOL. Right-hand sides b were generated by the formula

(7.2) b= 2 u,
i=1

such that b has large components in both the range ofAk and its orthogonal complement.
We computed two solutions"

k" computed by TSOL,
Xk’computed by TSOL without deflation of the right-hand side b.

These two solutions are compared with the true solution Xk. We see that the relative
accuracy of k is the same as the accuracy of Vo. We also see that deflation of b is in
fact necessary when very small singular values are present in the matrix R.

The conclusion to be drawn from these numerical examples is that our algorithm
performs well as long as the assumption Wk << 1 is satisfied. In fact, even when Wk is
not small, our algorithm is able to give good results at the cost of the larger computa-
tional effort involved in the large number of simultaneous inverse iterations.

The practical example comes from the numerical analysis of linear algebraic
equations derived from first kind integral equations in two-dimensional potential theory
[12]. In particular, we consider the homogeneous Fredholm integral equations of the
first kind"

(7.3) ln[s-xlf(s) ds=O, x e [0, 2].

The solution to this equation has a physical interpretation, for example, as the steady-
state charge distribution on a line segment form s =-2 to s 2. Due to symmetry it
is only necessary to consider the interval x [0, 2]. Choosing rn n 10 and discretizing
(7.3) as described in [12], we are led to a matrix A, which is then processed by RRQR
and SPIT, and the results are shown in Table 3. The results guarantee that the numerical
rank of A is k 9 (i.e., one small singular value). The solution f(s) to (7.3) can then
be computed from the numerical null space of A; i.e., from I7"o R TM produced by
SPIT, and the such computed f(s) agrees with the true TSVD solution as computed
in [12]. Hence, we have shown that the study of the integral equation (7.3) can be
performed perfectly well by means of our algorithm, thus avoiding the large computa-
tional effort of computing the complete SVD of A.

TABLE 3
Results associated with the discretization of the integral equation (7.3)

RRQR
Example 6, o’, R21[2 iterations

2.09.10
9 4.60.10-2 6.01.10-2 6.33.10-2 2
10 2.61.10-6 2.61.10-6 3.72.10-6 2
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8. Conclusion. The TSVD solution to a rank deficient least squares problem usually
requires computation of the singular value decomposition (SVD) of the matrix, which
involves a large amount of computational effort compared to a QR-factorization. In
this paper we have shown that the TSVD solution can be computed much more
efficiently from a rank revealing QR-factorization (RRQR) of the matrix, followed by
inverse subspace iterations to improve the estimated null space of the matrix. Unlike
methods based on heuristic procedures for rank determination, our algorithm is
guaranteed to perform reliably when the matrix has a well-determined numerical rank,
as is the case in a number of practical applications. This suggests the TSVD method
as a favorable alternative to regularization for such problems.
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THE PROBABILITY OF LARGE DIAGONAL ELEMENTS IN THE
QR FACTORIZATION*

LESLIE V. FOSTER

Abstract. In theory the minimum diagonal element d in a QR factorization of an m x n matrix
A can be much larger than the smallest singular value sn of A. However, in practice d is often the
same magnitude as Sn and some packages rely on this to test for approximate singularity. We develop
sufficient conditions and separate necessary conditions, involving A’s nth singular vector, for d > > Sn.
For a natural class of random matrices these conditions are used to obtain bounds on the probability
that d/sn

_
B. In certain cases for large B this probability is not insignificant. This suggests that

tests for approximate singularity which are based on the size of d should be used with caution. In
estimating some of our probabilities we introduce techniques that lead to an enormous reduction in
the required sample size.

Key words. QR-decomposition, rank deficiency, condition

AMS(MOS) subject classification. 15, 65F

1. Introduction. The detection of rank deficiency or near rank deficiency in a
linear system of equations is important in many applications [AG], [AH], [E], [EM],
[HaC], [Han], [Ke], [Ka], [LH], [LN], [ML], [MR], IN], [P], [TA], IS1], [TK], [VD], IV].
Consequently, there is a variety of techniques including the singular value decom-
position [GVL] and condition estimators [CMWS], [CR], [ZWS] that can be used in
practice to detect near rank deficiency. One of the simpler tools that has sometimes
been successfully used to detect near rank deficiency in an m n matrix A, with
m >_ n, is the following: form a QR factorization A QR of A, where Q is orthogonal
and R is upper right triangular and examine the diagonal entries of R for "small"
entries. In this paper we will examine conditions under which this simple scheme will
work and, for certain classes of matrices A, determine the probability that it fails.

Our motivation for this study is twofold. First as noted in [CR] "empirical evi-
dence suggests that there is a large class of matrices whose conditioning is predicted
by examination of the diagonal of the upper triangular factor" in a related decomposi-
tion. Indeed, based on such empirical evidence for the QR decomposition, the widely
distributed SPARSPAK package [B], [Heal, [GN] makes use of the scheme that we
outlined above to detect rank deficiencies in least squares problems. Since this scheme
is successful often enough to be used in practice, it is important to know when it fails
and to have some sense of the probability that it fails.

Our second motivation is more general: there are several important unresolved
questions concerning rare phenomena in matrix decompositions. These relate to the
numerical stability of the LU decomposition with partial pivoting [Ka], IT] and the
reliability of condition estimators such as those based on the QR decomposition with
column interchanges [Hill, [$2], [DBMS, p. 9.25] or on the technique of Cline, Moler,
Stewart, and Wilkinson [CMSW]. In our analysis we will explicitly determine the
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1989. The work was partially supported by the National Science Foundation under grant DMS8505783
and by the San Diego Supercomputer Center.

CDepartment of Mathematics and Computer Science, San Jose State University, San Jose, Cal-
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probabilities of some rare (we calculate probabilities down to 10-16 events related
to the QR decomposition without column interchanges. We hope that some of the
ideas we introduce will be helpful in resolving these other questions relating to rare
phenomena in matrix decomposition.

One might hope for small diagonal entries in R when A is almost rank deficient,
since if A is exactly rank deficient, then R has at least one zero diagonal entry. How-
ever, this hope is not always realized, since it is known [C1], [GW] that the minimal
magnitude diagonal entry in R, d mini=l,... ,n Iriil is bounded by the singular values
si, 1,... ,n, sl >_ 82 ’’" 8n, of A by

(1.1) Sn d 8n(81/Sn)(1-1/n)
and these are, in general, the best possible bounds. For example, the class of matrices
illustrated for n 3 by

R3 0 e -1
0 0 e

has d e, 81 l+O(e), and sn en +o(n). Thus for e .1 and n 10, say, Sn << d.
Since a small singular value (for Sl 1, as above), is generally considered the best
indicator of near rank deficiency [GKS], [GVL], in this example d fails to reflect this
near rank deficiency. However, in view of the empirical evidence that usually d - Sn,
it is important to ask under what conditions is d/sn large and what is the probability
that this occurs.

In 2 of this paper we will derive necessary conditions that d/sn is large and
separate sufficient conditions. These conditions involve the components of the nth
right singular vector Vn of A and, to briefly preview one of our results, we show that
if d/sn is sufficiently large, then the last few components of vn must be small (see
Theorem 2.8). In 3 we examine a natural class of random matrices A and determine
upper bounds and estimates of lower bounds on the probability that d/s is large. To
preview these results we show that in certain cases the probability P(d/sn >_ B) that
d/sn >_ B is approximately v/2n/Tr/B. For example, in such cases if n 50, then
P(d/sn >_ 100) 5.6 percent and P(d/sn >_ 1000) .56 percent. Therefore, although
d is usually of the same magnitude as Sn, the probability that d is substantially larger
than Sn is not insignificant. These results suggest that one should be cautious in using
d for detection of near rank deficiency. Section 4 of the paper summarizes our results
and discusses potential extensions.

Here we might say a few words about our methods in relation to other unresolved
questions concerning matrix decomposition. Perhaps the most striking result of our
work is that in estimating some probabilities we are able, by use of appropriate nec-
essary conditions, to achieve an enormous reduction in the sample size required. In
some cases we reduced this sample size by a factor of 10-14. Perhaps techniques like
ours will be useful in resolving other open questions relating to rare events in matrix
decomposition.

Literature relating to our results will be discussed in the body of the paper.
However, here we should mention that [F] and [C2] present alternatives to the standard
QR factorization without column pivoting that can guarantee that d sn and which
incur little extra cost. One motivation for this current work is to demonstrate the need
for these new "rank-revealing" QR factorizations. Also we should mention that in [C1]
Chan discusses the detection of near rank deficiency by looking for a small diagonal
entry in the upper triangular portion of an LU factorization. This is closely related to,
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although different from our QR-based scheme. Our results are more general than those
of Chan in that our results relate to the minimal diagonal entry of the triangular factor,
whereas Chan considers only the nth diagonal entry; and we calculate probabilities,
whereas Chan does not.

Also, we should mention here that although our results are developed in relation
to the QR algorithm without column interchanges they have wider applicability. When
applied to AP where P is a permutation matrix, the necessary and sufficient conditions
of 2 are applicable to the QR algorithm with colunn interchanges, QR AP. Also,
many of the probabilistic results of 3 are also applicable to the QR algorithm with
column interchanges if P is chosen in a manner that is independent of the numerical
values in A.

2. Conditions for large diagonal entries. In this section we begin by deriving
in Theorem 2.6 upper and lower bounds on the diagonal entries in R in terms of the
singular values of A and the components of the nth right singular vector. These bounds
will lead to necessary conditions (Theorem 2.8) and sufficient conditions (Theorem
2.11) that d/s, is large. Later, in 3, we will see that these necessary conditions
can be used to obtain an enormous reduction in the sample size required to estimate
certain probabilities. The necessary conditions involve the condition number C
C(A) sl/s,, of A and our sufficient conditions involve s,_I/s, G(A) G (for

We will need a variety of known results, which we describe first. The singular
value decomposition (SVD) of an m n matrix A is A UDVT, where T indicates
transpose, U is an m m orthogonal matrix, V is an n n orthogonal matrix, and
D is an rn n diagonal matrix whose diagonal entries, the singular values of A, are
s >_ s2 >_ >_ Sn (assuming m >_ n). The right (left) singular vectors of A are the
columns of V(U). If x E Rn Euclidean n dimension space, then we will define and
use Ilxll (-]in__ x)/2 and IIAII maxx0 IIAxll/llxll. If ak e Rm is column k of the
rn n matrix A of full column rank, if the m (k- 1) matrix Ak-1 is the first k- 1
columns of A and if A QR, then it follows easily by standard results [GVL] that
the (k, k) component, rkk rkk(A) of R, satisfies

(2.1) rkk2 min Ilak Ak_lXll 2.
xERk-1

Furthermore, for such a matrix A there is a unique QR factorization if the diagonal
entries of R are selected to be positive [DBMS]. In the following discussion we will use
"QR factorization" to denote such a factorization.

We now present three useful lemmas.
LEMMA 2.2. If D and 9 are m x m diagonal matrices with positive entries, A

is an m x n matrix of full column rank, D >_ [9, DA QR, and DA d)t, then
r >_ /, k l,... ,n.

Proof. rkk minxeRk-1 IID(ak- Ak-x)[[. Let x* be an x where the minimum is
achieved. Then rkk [ID(ak- Ak-lX*)l[ _> [[/)(ak- Ak-lx*)l[ _> minxeRk-1 ][/)(ak-
Ak- )x[I /kk.

LEMMA 2.3. If an m n matrix A has an SVD A UDVT and the m n matrix
fi has the SVD ft UDVT with D > D > O, then rkk >_ Pkk, k 1,2,... ,n.

Proof. If A QR and QR=, then DYT (UTQ)R and DVT (UTQ).
The result then follows from Lemma 2.2.

LEMMA 2.4. Suppose the m n matrix A, with m >_ n, has an SVD, A UDVT
such that the first n- 1 singular values of A are identical, s
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0 and let wa in__k Vn, Wn+l O. Thegn the diagonal entries of a QR factorization
of A satisfy

2 8 Wk+l -b (8n/81)2(1 Wk+l)
k 1 2 n.(2.5) rkk

Wk + (salsa)2(1 Wk)
Proof. Let ui ]m, 1, n, and vi Rn, 1, n, respectively, be

columns of U and V. (For 1,...,n- 1, ui and vi are not unique. However,- vT impliesthis does not affect the proof.) Note that A sj= ujv + SUn n

that ATA sI + (s s)vv. Let v (vT, p, zT), where v e R-, and let
0 (salsa) 1. Then by (2.1)

(x)rk min I1 1 I mins(x(I + Ovv)x + 20vx + O + 1).
x

0
x

The quadratic function on the right is minimized at

x -o(I + 0vv)-v -Ov/( + Ovrv).
Substituting his value into he quadratic function we ge r s(l+OvWv+O2)/(l+
OvWv), which reduces o expression (2.5) using vWv 1 -w and vYv + 2
1 w+.

Now we can derive the following very useful bounds on rkk(A).
THEOREM 2.6. Suppose the m n matrix A is of full column rank and has an

n 2SVD A UDVT. Let wk =kv Wn+ O, C S/Sn and G Sn-/Sn.
Then, for k 1,... n,

[+ + (- +)/] < r(A)< [+ + (1- +)/C]8n--1
[ + (1 )/] [ + (1 )/c]

Proof. Let D* be an m x n diagonal matrix with diagonal entries (s,... ,s,sn)
and let D, be an m n diagonal matrix with diagonal entries (Sn-,"" ,Sn-,S).
The result follows immediately by applying Lemmas 2.3-2.4 to A, UD,VT and
A* UD*VT.

A valuable corollary follows.
COROLLARY 2.7. For A, wk, and G as in Theorem 2.6, and any l k n, it

follows that
2 [wk++(1 )/G2] 2 (A) j=l k8n_ Wk+ rjj

Proof. By the definition of wj+, Wk+ wj+ for 1 j k and therefore
Wk+ + (1- wk+)/G2 wj+ + (1- wj+)/G2. Furthermore, since wj 1 and
G 1, then wj + (1 wj)/G2 1. Therefore Wk+ + (1 Wk+) G2 [wj+ + (1
wj+)/G2]/[wj + (1 wj)/G2] and by Theorem 2.6 the result follows.

We are now ready to state necessary condition that d/s, be large. Detection of
rank deficiency by checking the size of diagonal entries of R will fail only as indicated
in the following theorem.

THEOREM 2.8. For A, d, and wk as defined earlier, and for I B C s/sn,
if d/sn B, then for any k 1

(C/B)-(2.9) Wn-k+ C2 1

Pro@ If B diSh, then B rk(A)/sn, k 1,... n. Therefore by Theorem., B C[+I + (1- +)/C]/[ + (1- )/C] or (C/B)+ +
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[(C/B) 1]/(C2 1). Since Wn+l 0, the inequality in the theorem follows by
induction. We might note here that the inequality (2.9) is trivial for k > InC ln(C/B)
since, for such k, [(C/B)2k 1]/(62 1) >_ 1 and by definition wk <_ 1. rn

The conclusion of the theorem may become clearer if we consider B CI-1/B,
1 <_ p _< n. The theorem asserts for 1 _< k _< p that

(2.10) d/sn > CI-I/P = 2 < Wn-k+ < (C/B)2 1 < C2(k/p_Vn-k+l,n C2 1

where, for 1 _< k _< p, the last inequality follows by algebra. Qualitatively, inequalities
(2.10) state that if C is large and d/s, >_ C-/P, then the last p- 1 components of
Vn must be small.

The condition (2.9) is not a sufficient condition that d/sn >_ B, as is illustrated
by

e<l.

In this case vn (1, 0)T, d=e, Sn=e, andC-1/e. If we chooseB=l/v/-,
then w2 0 _< [(C/B)2 -1]/[C2 -1] and Wl 1 [(C/B)4 -1]/[C2 -1] satisfy (2.9)
but, of course, d/sn 1

_
B. Therefore, we wish to consider sufficient conditions that

d/sn is large. Such conditions are important, since they can be viewed as describing
conditions for which it is guaranteed that detection of rank deficiency by examining
d will be difficult or impossible.

THEOREM 2.11. Let A, d, and wk be as defined earlier and let G 8n-1/Sn. For
some k, 2 <_ k <_ n, suppose 1 <_ B <_ GI-/(n-k+2) and let 2 [(G/B)2_I]/(G2_I).
If

(2.12)
Wn <_ [32,wj <_ (G/B)2wj+ + 2, j k,... ,n-1,

and wk >_ (B/G)2(1-2)

then d/sn >_ B.
Proof. The first inequality in (2.12) is equivalent to B2 _< 1/[w, + (1 Wn)/G2]

and therefore by Theorem 2.6, B2 _< r2nn/S2n. The second set of inequalities in (2.12) is
equivalent to B2 <_ G2[wj++(1-wj+)/G2]/[wj +(1-wj)/G2], j k,... ,n-1

2and therefore by Theorem 2.6, B2 <_ rjj/S2n, j k,..-, n- 1. The third inequality
in (2.12) is equivalent to B2 _< G2[wk + (1 -wk)/G2]. Therefore by Corollary 2.7

/s j=l.., k-1B2 <_ rjj
The requirement that B <_ G-I/(n-k+2) is included, since (2.12) is inconsistent

otherwise, rn

The meaning of this theorem becomes clearer if we look at the special case where
k n. Then (2.12) implies for 1 <_ B _< that

(2.13) (B/a)(1-/2)/2 _< IVnn <_ 13 = d/sn >_ B.

In the case that 1 << B << vf’, then lIB and 1 2
_

1 and so qualitatively
(2.13) means for matrices with a large "gap" G that if Ivnnl is small, but not too small,
then it follows that d will be much larger than sn Therefore in this case detection of
rank deficiency by examination of d will be difficult or impossible.

Finally, in this section we wish to present a corollary to Theorem 2.11 that is
simpler although somewhat weaker.
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COROLLARY 2.14. Let A and d be as defined earlier and G sn-1/Sn. For some
k, 2

_
k

_
n, suppose 1

_
B

_
GI-I/(n-k+2) and let 2 [(G/B)2 1]/(G2 1). /f

(2.15) IVnnl

_
Z, IVjnl

_
(G/B)Ivj+,nl, j k,’" ,n-1, and

then d/sn >_ B.
Proof. Inequalities 2.15 imply that (B/G)2 <_ 2 2 jVkn, (B/G)2vyn

_
Vj+l,n,

k,..., n- 1, and (B/G)2v2nn <_ (B/G)2. Adding these inequalities and noting that
2

wk Vkn +’" "+Vn, we obtain (B/G)2(1 +wk) <_ Wk +(B/G)2 or (B/G)2(1-2)
(1 B2/G2)wk <_ wk. This is the last inequality in (2.12). For k _< j _< n, adding
[(B/G)vin] 2 <_ V+l,n, j,...,n- 1, and [(B/G)vn,]2 <_ (fiB/G) 2, we obtain
(B/G)2wj <_ wj+ + (/B/G)2 or wj <_ (G/B)2wj+I +/2, j k,... ,n. Recalling
that w,+ 0, these are the remaining inequalities in (2.11). Therefore by Theorem
2.11 d/sn

_
B. ["1

To help clarify the meaning of this corollary, let us assume that 1 << B _< G.
Then fl lIB and (2.15) asserts that if IV,nl is small, if the components IVjnl,j
n- 1, n- 2,... k are bounded by an exponential growth with factor G/B >_ 1, and
if IVknl is not too small, then d/sn will be large. Smaller k values imply results for
larger values of B.

3. The probability of large diagonal entries. There are two major diffi-
culties in estimating the probability of rare events related to a matrix decomposition
such as the QR decomposition: (1) if A is an m n dense matrix, then the cost
of determining the factorization is proportional to mn2 and for moderate or large n
this cost can be nontrivial; and (2) if one attempts to determine such a probability by
direct simulation the sample size must be very large if the event is indeed rare. This
combination can make direct simulation too costly to be practical: the calculations for
each sample point are nontrivial and the sample size must be huge. This, in part, is
the reason that unresolved problems relating to rare events in matrix decomposition
remain.

With the aid of the results for 2 we overcome both the above difficulties for our
problem. For the first difficulty we can use Theorem 2.6 and Corollary 2.7 to calculate
upper and lower bounds on d. As we will see, these bounds can usually be generated in
O(1) not O(mn2) operations and they lead to upper and lower bounds on the desired
probability. To overcome the second difficulty, we will generate only sample matrices
A that correspond to necessary conditions similar to (2.9). This leads to a dramatic
reduction in the sample size needed for accurate calculation of probabilities.

To develop this scheme, we will first describe the class of random matrices A to
be examined. We then discuss efficient ways to generate these matrices and to test
that d/sn >_ B. Finally, we present the results of our computer simulations.

In order to have some sense of how often a certain algorithm will fail to work,
one could test the algorithm on matrices arising from "real world" problems or on
analytically generated matrices. In this paper we have chosen the latter approach,
since it is difficult to collect and test large sets of real world matrices (see the above
comments) and since there exists a natural class of analytically generated matrices
that has been used elsewhere. Our class of random matrices will be a generalization
of that described by Stewart [$2]. In order to describe this class, we first introduce
a class of random orthogonal matrices as follows: let X be an rn n matrix whose
entries xij are chosen so that xi2 belongs to a gamma distribution with parameters
a and b; a, b > 0 (and so has a density function xa-ex/b/[baF(a)]). The sign of xij
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should be chosen positive or negative with equal probability. Let X )/ so that is
the Gram-Schmidt orthonormalization of the columns of X. Let P be the permutation
matrix with ones down the skew diagonal (i.e., Pi,n-i+l 1) and, finally, define the
random orthogonal n x n matrix V (P. We now define our class of random rn x n
general matrices by A UDVT, where D is an rn x n diagonal matrix with specified
diagonal entries Sl _> s2 _>... _> sn and U is an arbitrary rn x m orthogonal matrix.

In the case that a 1/2 the n x n orthogonal matrices V follows the distribu-
tion corresponding to Haar measure [Hall. Thus in this case V is from the natural
or uniform distribution of orthogonal matrices in that the measure of a set of such
matrices is invariant under multiplication by an orthogonal matrix [Hal], [$2]. This
is the class of matrices discussed in [$2]. A very similar class was used in [Hi2] and
matrices V from the Haar distribution have been used by [BM], [Hei], and [JW]. Also
in this case the permutation matrix P is irrelevant, since the distribution is invariant
under orthogonal transformations. Although for a 1/2 we could omit P without loss
of generality, as we will see for a 1/2 we need P for technical reasons. We consider
cases where a 1/2 for generality. For example, for a < 1/2 the probability that
certain elements of V are small is substantially increased. Thus for n 50 our results
will show that for a .5, the median of IVn,l is .096 and P(lvnl < .0018) .01 where
as for a .1 the nedian of Ivnl is .011 and P(Ivnl _< -.01. We should
also note that U above is arbitrary, since its selection does not affect our results. We
select D deterministically in order to control the spectrum of A.

Our first theorem of this section follows.
THEOREM 3.1. If xii, 1,’’’ n, are the elements of the first column of the ma-

2 k-2 n, thenzk, k-2,...,trix X described earlier and zk X2kl/ Eitl Xil, It

are mutually independent and zk has a beta distribution with parameters a and k-1)a.
Proof. Since xi21 follows a gamma distribution with parameters a and b, then by

JR, Thm. 4, p. 208], }-=ik-1 xi2 is a gamma distribution with parameters (k- 1)a
and b. By JR, Thin. 15, p. 214] we may conclude that zk is a beta distribution
with density function f(z) F(ka)z-l(1 z)(-)-/[r(ka- a)r(a)]. By standard
techniques ([HoC, pp. 129-134]) it can then be shown that the joint probability density
function of z2, z3, Zn is the product of the individual density functions and so
zk, k 2,3,... n are independent. O

nCOROLLARY 3.2. Let zk be as above and let wk i=k Vn where V is the random
orthogonal matrix described earlier. Then for each k, 2 <_ k <_ n, zk is independent of
wj,j-k+l,...,n,andifwn+ =O, thenwk--Wk+l+Zk(1--Wk+l), k=2,...,n.

Proof. Since V (P, where P is the permutation matrix with ones down
the skew diagonal, the last column of V is the first column of ). However, since
X )R, the first column of ( is the first column of X after normalization. There-

n 2 nfore Vn X2kl/ Ei=ln Xil2 and wk i=k Xil/ 2 k- 1... n. SinceEi=I Xil
2 kEi=I Xil, +1 Wk+lzk Xkl/ 2 then Wk Wk +Zk(1 follows by algebra. Also it follows

by algebra that, for j 2,..., n, wj 1 I-Iin=j (1 zi). Since zj, j k,..., n are
mutually independent, it then follows that zk is independent of

wj,j k+l,... n. []

Our first theorem concerning the probability of large diagonal entries in a QR
factorization is given in Theorem 3.3.

THEOREM 3.3. For random rn x n matrices A, generated as above, let C
Sl/Sn, let B satisfy 1 <_ B <_ C, and let be equal to the largest integer less than



538 LESLIE V. FOSTER

min{lnB/(lnC-lnB),n-1}. If random variables zk are as in Theorem3.1, then

(3.4) P(d/sn >_ B) <_ H P{Zn-k <_ [(C/B)2 1](C/B)2k/[C2 -(C/B)2k]}.
k:0

Proof. By Corollary 3.2 zk (w- w+1)/(1- w+l), k 2,... ,n and, as
shown in the proof of Theorem 2.8, if d/sn >_ B, then wk <_ (C/B)2wk+ + [(C/B)2

1]/C 1),k 1,... ,n. These results imply that z <_ [(C2/B2 1)/(C2 1)][1 +
(C2 1)w+]/(1- w+), k 2,..., n. However, by Theorem 2.8, d/sn >_ B implies
that Wn-k+l [(C/B)2k 1]/(C2 1). Since [1 + (C2 1)Wk+]/(1 Wk+) is an
increasing function of Wk+l for 0 < Wk+l < 1, and since the bound on Wn-k+ in (2.9)
is less than 1 for k < ln C/ln(C/B), it follows after some algebra that if d/sn >_ B,
then

(3.5) zn-k <_ [(C/B)2 1](C/B)2k/[C2 -(C/B)2k], 0 <_ k < lnC/ln(C/B).

The theorem now follows, since by Theorem 3.1 the zk, k 2,... n, are independent.
Note that the restriction < n- 1 is in the theorem statement, since z _= 1 (see
Theorem 3.1) is not a random variable.

Since the random variables Zk, k 2,3,..., n, follow beta distributions, it is
elementary to calculate the probabilities in (3.4) via an appropriate IMSL routine
or CACM Algorithm 179. Equation (3.4) provides the following upper bounds on

P(d/sn >_ B) for the case that a 1/2 (so the orthogonal matrices are from the Haar
distribution).

TABLE 3.6

Upper bounds on P(d/sn >_ B) for m n matrices with condition number C. The random
matrices A have parameter a 1/2.

n 10 10 50 50 1000 1000

B \ C 104 106 104 106 104 106

10
100
1000
104
10

.230 .230
2.3xi0-2 2.3x 10-2

1.0x i0-5 2.3x 10-3

5.1xi0-6
3.2xi0-14

.515 .515
5.610-2 5.610-2
1.5x10-4 5.6x 10-3

3.1x10-5
4.3x10-2

.998 .998

.248 .248
6.2x 10-3 2.5x 10-2

6.2xi0-4
3.9xi0-9

From this table it is clear that the probability that d/s is close to the condition
number C is very small. (For example, when n 10 and C 106, then P(d/sn >_
105) _< 3.20 10-14)! However, we would like estimates of both upper and lower
bounds on P(d/sn >_ B) for B substantially smaller than C, and we would like to get
asymptotic estimates of P(d/s >_ B). The latter is provided by the following result.

THEOREM 3.7. For random matrices A as above with gap G Sn- /Sn then

lim P(d/sn >_ B)= P(Zn <_ l/B2).

Proof. Let 2 (G2/B2 1)/(G2 1) as in Theorem 2.11. Then by (2.12), and
since Zn w V2n, it follows that if B <_ v, then P[(B2/G2)(1-2) <_ Zn <_/2] <_
P(d/sn >_ B). Due to (2.9), and since for 1 <_ B

_
C, (C2/B2 1)/(C2 1)

_
lIB2,

it follows that P(d/su >_ B)

_
P(zn <_ (C2/B2 1)/(C2 1)) <_ P(Zn <_ 1/B2). By
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algebra it follows that as G oc, (B2/G2)(1-/2) 0 and 2 __, lIB2. Since zn
has a continuous density function the result follows.

Since z, is distributed as a beta distribution with parameters a and (n- 1)a (The-
orem 3.1), it follows easily that for sufficiently large B, P(zn <_ liBe) F(an)(1/B2)/
[F(a + 1)F(na a)]. Therefore by Theorem 3.7 if G is also large, then

(3.8) P(d/sn >_ B) - F(an)(1/B2)a/[F(a + 1)r(na- a)].
If we make the natural selection a 1/2 (see our earlier discussion) and assume that
1 << n (10 _< n, say), then (3.8) reduces to

(3.9) P(d/sn >_ B) - v/2n/r(1/B).
For example, for n 50, B 100, and G >> 104 it follows that P(d/sn >_ B) - 5.6
percent.

In order to obtain estimates of upper bounds on P(d/sn >_ B) that are sharper
than the results of Table 3.6, and to obtain estimates of lower bounds on P(d/s >_ B),
we carried out a simulation as follows. For any spectrum sl >_ s2 >_ >_ Sn and the
corresponding random matrix A UDVT, as above, consider the diagonal matrices
D, diag(s_l,Sn_,... ,Sn-,Sn) and D* diag(s,s,... ,sl,Sn), the random
matrices A, UD,VT and A* UD*VT and the minimum diagonal entries d, and
d*, respectively, in QR factorizations of A, and A*. By Lemma 2.3 d, _< d <_ d* and
so

(3.10) P(d,/sn >_ B)

_
P(d/sn >_ B)_ P(d*/sn >_ B).

However, P(d,/s >_ B) and P(d*/sn >_ B) can be estimated very efficiently in a
similar manner.

We will describe the technique for calculating these probabilities in terms of
P(d*/s >_ B). Lemma 2.4, Corollary 2.7, Theorem 3.1, and Corollary 3.2 imply
that the following algorithm will generate a sample from the distribution of d*’s"

(1) Let k=n.
(2) Generate zk from a beta distribution with parameters a and (k- 1)a.
(3) Calculate wk wk+ + zk(1- Wk+l) and rkk using (2.5) and let dk
mink<i<n rii.

(4) Test if dk

_
min_<j<_k rjj by using Corollary 2.7. If so, accept d* dk and

stop, else let k k- 1 and go to step 2.
The calculations involved in steps 2, 3, and 4 can each be done in a few operations.

Furthermore, in our experiments typically the test in step 4 was passed for k close to
n. In most of our runs n- k was less than 5. Therefore a sample value of d* can be
generated in a number of operations largely independent of n.

Using this algorithm, we carried out a simulation to estimate P(d*/sn >_ B). In
order to reduce the number of samples required for a given B, the only Zk’S generated
were those corresponding to the necessary conditions (3.5). To see how this is done,
let $2 be the set of random matrices A* that come from zk’s restricted by (3.5) and
let S be all random matrices A* with d*/sn

_
B. Then since S C_ $2 (see Theorem

3.3 and its proof), it follows that P(d*/sn

_
B) P(SI) P(SIS2)P(S2), where

"1" is used to indicate conditional probability. However, P(S2) is equal to the right
hand side of (3.4), and P(SIS2 was estimated via a simulation by calculating the
relative frequency of success (i.e., d*/sn >_ B) of samples chosen from $2. Such a
procedure reduces the number of samples required to accurately estimate P(S1) by
factors equal to the probabilities listed in Table 3.6, a reduction of up to a factor of
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10-14! We should add that the generation of random samples from a beta distribution
with the restriction (3.5) can be done with a straightforward, efficient modification of
the rejection method for generation of random numbers.

The number of samples in each simulation was chosen large enough so that an
estimate ap of the standard deviation of the relative frequency of success was less
than some preset tolerance. (See pp. 201-202 of [HoC] for the usual estimate of
such a standard deviation.) In all our runs the sample size was sufficiently large so
that the estimated value of ap/P(d*/s >_ B) was less than 5 percent. Thus (see
[HoC]) our estimated values of g(d*/s, >_ B) are correct to within 4-20 percent with
approximately a .99994 confidence level.

The above algorithm is also directly applicable to calculate P(d,/sn >_ B). The
sole change is that the gap and the condition number of A* are both Sl/S,, whereas
the gap and the condition number of A, are sn-1/s,.

We carried out the simulations described above and the results are contained
in Table 3.11. If, as earlier, for A UDVT we let G G(A) S,-l/Sn and
C C(A) Sl/S,, then entries in the table below provide estimates of upper bounds
on P(d/sn >_ B) if A has the indicated condition number and lower bounds if A has
the indicated gap. For example, in the following table if a 50 x 50 matrix has a gap
of 104 and condition number of 106 and if the estimated probabilities are exact, then
.049 _< P(d/sn >_ B) <_ .055 for B 100. Since the uncertainties in the estimated
probabilities are less than 20 percent (with a .99994 confidence level), we may conclude
that .039 _< P(d/sn >_ B) <_ .066. Table 3.11 is for random matrices generated with
parameter a 1/2 so that the orthogonal matrices used to generate A are from the
natural or Haar distribution.

TABLE 3.11

Estimates of lower bounds on P(d/sn >_ B) for m x n matrices with gap G and upper bounds
on P(d/sn >_ B) .for matrices with a condition number C. The random matrices A have parameter
a= 1/2.

n 10 10 10 50 50 50

B \ G or C 104 106 101 104 106 101

10

100
1000
104
105

.23 .23 .23

.017 .023 .023
6.7x10-7 1.7xlO-3 2x10-3

1.3x I0-6 2xi0-4
5.3x i0-16 2xi0-5

.51 .51 .51

.049 .055 .055
2x 10.5 4.9x 10-3 5.5 x 10-3

1.2xi0-5 5.5xi0-4

2.1110-14 4.9x I0-5

n 1000 1000 1000

B \ G or C 104 106 101

10
100
1000
104
105

.998 .998 .998

.24 .25 .25
1.8xlO-3 2.5xi0-2 2.5x10-2

3.2x i0-4 2.5xi0-3

6.1x i0-11 2.5 x I0-4
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These results clearly support our earlier comment that d/sn is large with a significant
probability for a natural class of random matrices. For example, for 50 50 matrices
with a gap of 104 an estimate for the lower bound on the probability that d/sn >_ 100
is .049. In such cases it would be very difficult to detect rank deficiency using d.

In this section we would also like to present some results for a different selection
of the parameter a defining the random orthogonal matrix used to construct A. For
a .1 we obtain the following results.

TABLE 3.12

Estimates of lower bounds on P(d/sn >_ B) for m n matrices with gap G and upper bounds

for matrices with condition number C. The random matrices A have parameter a .1.

n 50 50 50

B\GorC 104 106 10l

10
100
1000
104
105
107

.71

.25
3.810-3

.75 .76

.41 .48

.15 .29
1.510-2 .16
1.2 10-6 6.910-2

7.510-4

Comparing Table 3.11 and Table 3.12, it is clear that reducing a can substantially
increase the probability that d is much larger than Sn. In more general terms this shows
that if the last components of nth singular vector of A are for some reason likely to be
small, then it becomes more likely that rank detection by examining diagonal entries
of R in A QR factors will fail. Conversely, if these last components of v, are not
likely to be small, then it is more probable the d - Sn.

Finally, in this section we would like to present some results for matrices with
a cluster of small singular values, since the sufficient conditions in 2 and the lower
probability bounds in this section produce trivial results if Sn-1/sn is not large. In
the interests of space, we will summarize our results but not present the details of our
development for matrices with several small singular values. It can be shown that for
a matrix A with a large condition number C and with _> 1 small singular values, if
d/sn is sufficiently large, then the last few components of the last singular vectors
of A must be small. Furthermore, one can show that for a matrix with a cluster of
small singular values (and whose other singular values are not small) if the the last
components of the last singular vectors are small and if the smallest singular value
of the matrix formed by these components is not too small, then it follows that
d/sn is large.

The above conditions are more stringent for > 1 than for 1 and therefore
for > 1 it would appear less likely that d/sn would be large. This can be verified
by simulations for > 1 similar to those detailed earlier for 1. Some of our
results for 2 are illustrated in Table 3.13. In the table if the indicated singular
value ratio (SVR) is interpreted as Sn-2/Sn, then the table provides lower bounds on
P(d/s, >_ B) and if SVR is interpreted as sl/sn-1, then upper bounds are provided.

For matrices with a single small singular value (1 1) the above calculations were
done on a Sequent Balance 8000 computer. For these matrices the calculation of each
probability in the tables typically required a few seconds of CPU time. For matrices
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with several small singular values the computations were more difficult, since the
necessary conditions used were not as tight and since the technique used to generate
samples for > 1 required O(n), not O(1), operations per sample. The calculations for
these matrices were done on a CRAY-XMP/48 computer and the CPU times required
ranged up to four minutes to calculate some of the probabilities. Also we should
note here that for smaller matrices (n _< 10, say) and probabilities that are not too
small (P > .01, say) it is possible to compare the calculations outlined above with
direct simulation based on forming QR factorizations of random matrices A. Such
comparisons agreed in all cases tested.

TABLE 3.13

Estimates of lower bounds on P(d/sn >_ B) for m n matrices when SVR is interpreted as

8n-2/Sn and upper bounds when SVR is interpreted as 81/8n-1. The random matrices A have
parameter a 1/2 and n 50.

B \ SVR 104 106 101

10 .11 .11 .11
100 3.2x10-5 1.1x10-4 1.3x10-4

4. Conclusions and extensions. For any matrix A we have provided rela-
tively simple necessary conditions and separate sufficient conditions that the smallest
diagonal entry d in a QR factorization of A is much larger than the smallest diagonal
entry of A. From these conditions it then followed for certain natural random matri-
ces with an isolated small singular value that the probability that d is much bigger
than sn is not insignificant. If the distribution of random matrices is chosen so that
the probability of having small entries in the nth singular vector of A is increased,
then the probability that d/sn is large also increases. Finally, we showed that if the
matrices A have several small singular values, then the probability that d/s, is large
substantially decreases in comparison to matrices with a single small singular value.

The results summarized above suggest that in practice one should be cautious
in using d for the determination of rank deficiency. Of course, our results in 3 are
based on a study of a natural class of analytically generated matrices. Additional
work with matrices from "real world" problems would be a useful extension of our
work. We should note that some experimentation with real world matrices has been
briefly described elsewhere. Heath [He, p. 228] mentions that an algorithm for testing
rank deficiency based on the size of d worked well in practice, whereas Golub and
Wilkinson [GW, p. 593] reported that "almost invariably some of the R were such
that they had no small rii" when using QR factorizations to check for rank deficiency
as part of a calculation of Jordan canonical form. Our work in 3 with analytically
generated matrices is of independent interest. In addition, we should note that the
necessary and sufficient conditions of Chapter 2 apply to any matrix whether it is
analytically generated or from the "real world."

Some of the ideas and tools introduced to determine the probabilities included
using necessary conditions to restrict the sample size in a simulation and the use of an
efficient technique to generate samples. These tools allowed calculation of exceedingly
rare events (probabilities as small as 10-16 for matrices that were quite large (up to
1000 x 1000). We hope that some of the ideas introduced will be helpful in solving
other open problems relating to rare events in matrix decomposition.
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POLYNOMIAL ITERATIVE METHODS*
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Abstract. Preconditionings based on incomplete block odd-even cyclic reduction for the Chebyshev
and conjugate gradient polynomial iterative methods have been shown to be effective for accelerating the
convergence of the solution of linear systems that arise from discrete approximations of elliptic partial
differential equations. The main contribution of this paper is to extend these methods to the important case
of red/black partitioning of equations and unknowns and to demonstrate that a significant reduction in
computations can be realized by applying preconditioned polynomial methods to the "reduced systems"
obtained from the original systems by eliminating approximately half of the unknowns.

This paper also compares the performance of several preconditioned polynomial methods for solving
a two-dimensional elliptic equation on the CYBER 205 vector computer. The most effective methods tested
are shown to be (i) the new reduced system conjugate gradient method with preconditioner based on
incomplete block odd-even cyclic reduction, and (ii) the classical reduced system conjugate gradient method
with preconditioner De, the tridiagonal matrix associated with the black unknowns. Of these methods, the
former is better in most cases, especially for some slowly converging problems.

Key words conjugate gradient method, preconditioning, block tridiagonal systems, red/black ordering,
odd-even cyclic reduction, incomplete factorization, Chebyshev method
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1. Introduction. Consider the block tridiagonal linear system

A1 BI Xl I b. ]B AE BE XE b
(1) ax= BT "’""’’’.. Bll_ J= / =b

BT AllJ bn--1

where the matrix A is symmetric positive definite. The transformation

(2). XRB Ux, bRB Ub, A,s.= UAUT

where U is the permutation matrix that separates the odd-numbered (red) and even-
numbered (black) unknowns, renders (1) into the red/black form

(3) ARnXRn

AI
A3

B4

All1

nl

A2

B3

A4

"X "b
X3 b3

bRB
x2 bE
x4 b4

Nil,, b
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or the condensed form

(4) Annxnn H7" Dn xn bn
Eliminating the red unknowns XR in (4) yields the "reduced system"

(5) Anxn=- (Dn-HrDlH)xn bn-HrDlbR =- cn.
Once the black unknowns xn are solved for, the red unknowns XR can be obtained
from (4).

The following theorem [5], [9], [20] states the relationship between the coefficient
matrices A and An of (1)-(5).

THEOREM A. Let A and An be matrices related as in (1)-(5). Then the reduced
system coefficient matrix An satisfies the following: (a) An is nonsingular whenever A is
nonsingular; (b) An is symmetricpositive definite wheneverA is symmetricpositive definite;
(c) An is strictly diagonally dominant whenever A is strictly diagonally dominant; and
(d) An is a Stieltjes matrix whenever A is a Stieltjes matrix.

See Varga [20] for definitions of strictly diagonally dominant, and Stieltjes matrices.
This paper is concerned with the application of preconditioned polynomial itera-

tive methods [3]-[8], [14]-[16], [18] to the linear systems in (1), (3)-(5). The main
idea of preconditioned methods (see 2 below) is to obtain a good approximation to
the coefficient matrix and to use this approximation as a splitting matrix [19] or
preconditioner to construct rapidly converging polynomial iterative methods. Of inter-
est here is preconditioning by incomplete block odd-even cyclic reduction [3], [14],
18]. An examination of this successful methods reveals that a significant reduction in
computations can be achieved by applying this method to the "reduced system" of
(5). Application of preconditioned polynomial acceleration methods to the reduced
system is the main focus of this paper.

A special case reduced system that received considerable attention twenty-five to
thirty years ago [9], 11], [20] is that corresponding to point red/black partitioning of
the system of equations that arises from the standard five-point difference approxima-
tion of the two-dimensional elliptic diffusion equation -V. DVu + cru S over rec-
tangular mesh subdivisions. In this case, DR and D in (4) and (5) are diagonal
matrices and the reduced system coefficient matrix An in (5) is sparse and can be
constructed explicitly. Application of preconditioned polynomial iterative methods to
such reduced systems is also straightforward.

We are interested in this paper in the more general case when DR is not a diagonal
matrix and when, as a consequence, it is not practical to construct An explicitly. It is
easily seen that the reduced system coefficient matrix An in (5) for the black unknowns
has a block tridiagonal structure similar to (1). However, the individual block matrices
of the reduced system coefficient matrix An are, in general, dense matrices and their
explicit construction for large systems would require considerable computer storage.
Fortunately, the polynomial iterative methods of interest here require matrix vector
multiplications Anv=(Dn-HT"D1H)v, which can be implemented using the
individual matrices Dn and H, and the Cholesky factorization of DR, without the need
to explicitly construct An and D.

Several other preconditioned polynomial iterative solution methods have been
successfully applied to the block tridiagonal system (1). Because of the complexity
involved in constructing or approximating An Dn HrDIH, these previous applica-
tions focused on the choice of preconditioner Qn Dn and on forming An implicitly.
This is the case for the classical reduced system Chebyshev and conjugate gradient
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methods [12]. Hageman, Luk, and Young [10] have shown that the Chebyshev and
conjugate gradient methods applied to the reduced system of (5) converge twice as
fast as these methods applied to the systems of (1) and (4). This has led Abu-Shumays
[2] to use variants of the incomplete Cholesky factorization to construct new precondi-
tioners QB to further improve the convergence ofthe Chebyshev and conjugate gradient
methods applied to this reduced system. The variant of incomplete Cholesky of interest
here is incomplete block odd-even cyclic reduction. Below it is shown that this method
applied to the block tridiagonal system of (1) leads to a preconditioner QB for the
reduced system.

One objective of this paper is to assess the effectiveness of preconditioners based
on incomplete odd-even cyclic reduction for solving the reduced system. A second
objective is to perform numerical experiments and comparisons with other methods
on the CYBER 205 vector computer. Elman [7] shares the first objective. He does a
good job presenting the details and important computational issues concerning incom-
plete block cyclic reduction [3], [14], [18]. Elman treats the general case of nonlinear
systems and uses a conjugate-gradient like method to solve the preconditioned
equations. He performs a comparison on a VAX-8600 in double precision Fortran
(55-bit mantissa) and is also concerned with efficient implementation on parallel
computers. Axelsson [3], on the other hand, shares the second objective of designing
and comparing methods of the one-step Chebyshev type with preconditioners based
on incomplete odd-even cyclic reduction as applied to block tridiagonal systems. In
contrast to the work of Elman and to the present work, Axelsson, Brinkkemper, and
II’in [3], [4] do not deal with the reduced system.

Section 2 reviews preconditioned Chebyshev and conjugate gradient iterative
methods. The algorithms treated here are of the two-step (three-term recursion [12])
Chebyshev type in contrast to the one-step Chebyshev type used by Axelsson and the
conjugate gradient formulation heavily used in practice [5], [7], [14], [18]. Section 3
relates preconditioners for the reduced system, the block tridiagonal system and the
red/black system. Section 3 then derives equivalence results that generalize the work
of Hageman, Luk, and Young [10]. Section 4 reviews the incomplete odd-even cyclic
reduction procedure. Section 5 presents two main algorithms for constructing precon-
ditioners based on incomplete block factorization. This section is intended to supple-
ment the fine treatment of Concus, Golub, and Meurant [5]. Finally, 6 is devoted to
numerical experiments.

2. Review of preconditioned polynomial iterative methods. Consider the linear
system

(6) Ax b

where the coefficient matrix A is symmetric positive definite. Here, this system stands
for any of (1), (3)-(5) and is not to be confused with or restricted to (1). It is assumed
that direct methods are not practical. Let Q be a splitting matrix 19] or preconditioner
having the same order as A but which is easier to invert than A. It is preferable to
select Q to be a good approximation to A. Equation (6) yields

(7) x Gx + k, G= I- Q-A, k= Q-b.
A "basic iterative method" can now be defined from (7) as follows:

(8) Xl= Gxl-l + k.

This paper focuses on using polynomial methods (called semi-iterative (SI) methods
by Varga [20]) to accelerate the basic iterative method of (8). The iteration matrix G
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is assumed to be "symmetrizable" in the sense [12] that for some nonsingular matrix
W, the matrix W(I-G)W-1 is symmetric positive definite. A sufficient but not
necessary condition for G to be symmetrizable 12] is that A and Q both be symmetric
positive definite. This assumption assures that all eigenvalues/zi of G are real and less
than unity (/xi < 1). The polynomial methods of interest here include (i) the conjugate
gradient (CG) method and (ii) the Chebyshev method, both given by [12]

xn+l Pn+l[ ’)/n+l Gxn -JI- k) + (1 ")/n+l)X -Jl- (1 Pn+l)Xn-1

(9) pn+l[3,n+lQ-l{b-Ax"}+ xn] + (1 p,+l)Xn-1

P,+I[ 2’+1 t" + x] + 1 pn+l)X"-1,

where t" and r" are pseudoresidual and residual vectors related by

(10a) 8=- Gxn+ k-x"= Q-l(b-Ax")=- Q-lr, r=- b-Ax,
(10b) r"+l=p,+l[r-),,+lAS"]+(1-p,,+l)r-l.

The p, and 3’, in (9) are acceleration parameters. For the conjugate gradient method,
the preconditioning matrix Q must be symmetric positive definite, and the acceleration
parameters are given by

(11) pl=l, p,+l=l/[1 7,.__+_ (8,rn) 1 (8, r)
.p (8.--1, r-l) 7+1 (8,A8)

For the Chcbyshcv polynomial method, the acceleration parameters satisfy

1
(12a) pl 1, p2 1_2/2 Pn+l--l_2pn/4 n2,

2 M(G)-m(G)
(leb) ,+1

2 M(G) m(G)’ 2 M(G) m(G)

where M(G) and m(G) are, respectively, the algebraically largest and smallest eigen-
values of G. Note that y and are independent of n.

3. Choice of related preconditioners and equivalence results. Let Q be any precon-
ditioner for the reduced system (5). Correspondingly, select a preconditioner QRn for
the red/black system (4) as follows"

(13) QR HTD I Q

and select a preconditioner Q for the original system (1) by

(14) Q= UTQRnU (QRn UQUT).

Remark 1. Except for the work of Elman in [7], previous Chebyshev and conjugate
gradient methods for solving block tridiagonal systems with preconditioners based on
incomplete block odd-even cyclic reduction [3], [14], [18] involve preconditioners Q
for (1) that satisfy (13) and (14). These methods yield preconditioners Q for the
reduced system.

Remark 2. Implementation of Chebyshev and conjugate gradient methods for
(1), (3)-(5) with preconditioning by block odd-even cyclic reduction is based, in this
work, on (9)-(12). This implementation involves matrix vector multiplications A8"
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and solution of systems Q6" r", where A stands for the coefficient matrix in (1)-(5),
and Q stands for the corresponding preconditioner. There is no need to construct Q-l,
Q-1A, or An explicitly.

Remark 3. It will become evident below that when applying the Chebyshev and
conjugate gradient methods to the large systems in (1) and (4) with preconditoners Q
and QRB of (13) and (14), the iterates {x/} for the black unknowns remain independent
of the iterates {x} for the red unknowns at all stages of the iteration. In essence, the
computation of the X/R iterates is wasteful. Furthermore, with a proper choice of initial
guess, approximately half of the residuals involved in such computations are zeros
and need not be computed. This suggests that a significant reduction in computations
can be realized by applying the Chebyshev and conjugate gradient methods with
preconditioner QB to the reduced system (5).

The objective now is to establish some equivalence results.
THEOREM 1. The preconditioners Q and QRB of (13) and (14) are symmetricpositive

definite if and only if the reduced system preconditioner Q of (13) is symmetric positive
definite.

Proof The proof concerning QR and Q follows directly from (13) and the fact
that OR in this equation is symmetric positive definite. The desired result for Q and
Q then follows from (14).

THEOREM 2. Consider any polynomial iterative method applied to the block
tridiagonal system in (1) and to the red/black system of (2)-(4). LetA in be symmetric
positive definite. en the choice ofpreconditioners Q and QR, given by (13) and (14)
leads to a decoupling of iterates of the black unknowns {x} from iterates of the red
unknowns {x} in the sense that {x} can be constructed independently of {x} throughout
the iteration.

Proof Consider first the preconditioner QR of (13). Its inverse is given by

-HrD I

Consequently, the iteration matrix for (4) is

0 (I-QSA) 0 G J’
and the corresponding basic iterative method "+xn Gnxn+ kn is

(17) R 0 -DIHG XR +n+l 0 G J x k

which implies that

n+l(18) x Gx+k.
n+lThus, for the basic iterative method of (18), the black iterates x remain independent

of the red iterates x. Since any polynomial iterative method [12], [20] generates
iterates that are linear combinations of those in (17) and (18), it follows from (18)
that linear combinations of {x} remain independent of linear combinations of {x}.
This proves that Theorem 2 is valid for any polynomial method applied to the red/black
systems in (4), with preconditioner QR given by (13). The fact that AR and QR are
related to A and Q by a permutation or reordering of the unknowns implies that the
theorem also holds for any polynomial method applied to (1) with preconditioner Q
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of (13) and (14). Note from (1)-(4) that xB is the vector of even-numbered (black)
unknowns in x in (1). [3

Theorem 2 and the expression for the iteration matrix in (17) and (18) suggest
that computational economy can be realized by applying polynomial iterative methods
to the reduced system with preconditioner QB in preference to applying such methods,
as in [3], [14], [18], with preconditioner Q of (13) and (14) to the larger system of
(1). Once x is solved for, the solution XR can be obtained from (4). Additional
equivalence results are presented in the balance of this section for the sake of com-
pleteness.

LEMMA 1. Let Q, QR, and Q be as given in (13) and (14). Then the spectrum
of eigenvalues of the red/black system iteration matrix GRn-’-I- QARB is the same
as the spectrum of eigenvalues of the full system iteration matrix G I- Q-1A. This
spectrum includes, as a subset, the spectrum ofeigenvalues of the reduced system iteration
matrix Gn I Q An.

Proof. Since ARn UAUT, QR UQUT, and UUT= I, I the identity matrix, it
is straightforward to show that

(19) GnB UGUT, G UTGnn U.

Since U is an orthogonal matrix, it follows that the matrices GR and G have identical
eigenvalues. The expression for GRn in (16) implies that all eigenvalues of the reduced
system iteration matrix Gn are necessarily eigenvalues of the red/black system iteration
matrix GRB of this equation. This completes the proof. D

Equation (16) implies that GRB has a set of zero eigenvalues that corresponds to
the zero diagonal block. G need not have zero eigenvalues. To ensure that the
eigenvalues of G and GRB are real, it is assumed that the splitting matrices Q and
QRB are symmetric positive definite and thus G and GRZ are symmetrizable. This
assumption is possible because of Theorem 1.

The equivalence results given in Theorems 3-5 below (see also [2]) generalize the
work of Hageman, Luk, and Young [10].

THEOREM 3. Let QRB and Qz of (13) be symmetric positive definite preconditioners.
Also let (xB)T= ([x,] , [x]) denote the conjugate gradient iterates for red/black
system (4) with preconditioner QRB’, and let {} denote the conjugate gradient iterates

for the reduced system (5) with preconditioner Qz. If the initial iterates satisfy x o,
XR DlbR DH where o is arbitrary, then x for all n. However, ifx o
but XR # Dflbg-DIH, then x and need no longer be identical.

The proof is omitted for brevity. One step in the proof [2] shows that whenever
x- and XR=DbR-DfIH, the residual vector for the red/black system
satisfies

rR r"
r cB Anx for alln.

Thus, in this case at each step of the iteration approximately half of the elements of
the residual r must vanish and need not be computed.

A weaker result holds for Chebyshev iterations.
THEOREM 4. Let Q, QR, and Q of (13) and (14) be symmetric positive definite

preconditioners, respectively, for the block tridiagonal system (1), the corresponding
red/black system (4), and the reduced system (5). Assume further that the coefficient
matrix A of (1) is symmetric positive definite. Then the rate ofconvergence ofthe optimum
Chebyshev polynomial method applied to the reduced system is at least as fast as the rate
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of convergence of the optimum Chebyshev method applied to either the block tridiagonal
system or the red/black system.

Proof. Theorem A and (2) imply that ARn and As are necessarily symmetric
positive definite. Since Q, QRn, Qn, A, ARn, and As are all symmetric positive definite,
it follows that all eigenvalues of the iteration matrices G=I-Q-1A, GRn
I-QARn, and Gn I-Q-IAn are real and less than unity [12]. Lemma 1 and its
proof established that (a) G and GRn have identical eigenvalues, (b) the nonzero
eigenvalues of the iteration matrices G, GRn, and GB are identical, and (c) that G and
GRn must have a zero eigenvalue of multiplicity at least equal to the order of the red
unknowns. Since zero may or may not be in the range of eigenvalues of Gn, it follows
that the ranges of eigenvalues of Gn, GRn, and G satisfy

(21) m(Gn), M(Gn)] c [m(GRn), M(GRn)] [m(G), M(G)].

It then follows from (21), (9), (12a), (12b), and from Hageman and Young [12] that
the rates of convergence of the optimal Chebyshev method applied to the block
tridiagonal system and applied to the red/black system are identical. Furthermore,
these rates of convergence are at best as fast as the rates of convergence of the optimal
Chebyshev method applied to the reduced system. U

For most practical problems, the ranges of eigenvalues of Gn, GRn, and G in
(21) are expected to be the same. For such problems, the Chebyshev iterates x for
the black unknowns of the block tridiagonal system are identical to the Chebyshev
iterates for the reduced system provided that x

4. Exact and approximate block odd-even cyclic reduction. Odd-even cyclic reduc-
tion is an effective method for factoring and solving relatively small block tridiagonal
systems on a vector computer. The method is not practical for very large block
tridiagonal systems because of its excessive storage requirements. On the other hand,
approximate or so-called "incomplete" odd-even cyclic reduction has been shown to
be effective [3], [14], [18] for constructing preconditioners for accelerating the conver-
gence of the polynomial iterative solution of such systems. The basic steps of complete
and incomplete odd-even cyclic reduction are summarized in this section. Additional
details are supplied in [1], [3], [7], [13], [14], [18], and in 5 below.

Complete odd-even cyclic reduction of a block tridiagonal symmetric positive
definite matrix A, as in (1), is a global factorization represented symbolically by 1, p. 36]

A= P,AnP P,L,D,LP= P,L,PLDLPLpT
(22)

P, LIP2L2"’" PrL,.DrLfPf’’’ LPLTpT, P, UT,
and obtained by a sequence of permutation P and factorization LDLT steps. The
first step consists of (a) applying the transformation AaB-- UAUT to A to obtain the
red/black form Aan shown in (4), and (b) factoring Ann as follows:

HT Dn HTD-R I An
=- L1D1L(’

where As, the lower diagonal block part of D, is the coefficient matrix of the reduced
system.

It can be shown that As is approximately half the size of and has the same block
tridiagonal form as the matrix A in (1). Thus the process of permutation in (2) and
the first part of (22) to transform the matrix A to the red/black ARn form of (4),
followed by factorization as in (23), can be applied to the lower diagonal block As
of D as indicated symbolically in the top part of (22). The matrices L2 and D2 in (22)



552 I.K. ABU-SHUMAYS

that result from this process have the form

r- I - D2 Dr2 -(24) L2
HfD I Zl(2)

L z-xB _1

where DR, DR2 are block diagonal matrices. Here DR2 is approximately half the size
of DR, A is a block tridiagonal second stage reduced system matrix approximately
one fourth the size of the matrix A, and Hf is a matrix having the same block structure
of the matrix Hr in (3) and (4), except that H2r is approximately half the size of Hr.
The permutation and factorization process can now be applied to the lower block
diagonal partA ofD2 and to further smaller and smaller block tridiagonal submatrices
A until a final single block matrix Ar is obtained. In other words, the process above
can be continued for r steps whereby Dr in (22) is a block diagonal matrix whose
blocks have the same size as the diagonal blocks of A. This is a brief description of
complete block odd-even cycle reduction. Once the factorization in (22) is completed,
the solution of (1) for different right-hand sides can be obtained by a series of
permutation and forward elimination steps to obtain smaller and smaller reduced
systems, followed by a solution of a single block equation for the smallest reduced
system, and finally followed by successive permutation and backward elimination steps
to recover the remaining unknowns.

As mentioned above, block odd-even cyclic reduction applied to (1) is not practical
for very large systems because of excessive storage requirements. For example, although
the initial block matrices Ai and Bi in (1) are often sparse, subsequent block matrices
of the reduced systems are, in general, dense matrices that must be stored in order to
complete the above factorization and solution procedure. Consequently, we are led to
incomplete odd-even cyclic reduction, in which the factorization is only approximately
carried out. Such approximations, which yield preconditioning matrices, can be con-
structed within moderate storage requirements based on the following: Heller [13]
proved that under conditions of diagonal dominance, the off-diagonal blocks of the
successively smaller reduced systems decay quadratically to zero. Consequently, a
reasonable approximation to the matrix A can be obtained by early termination of
block odd-even cyclic reduction procedure by carrying out only a few J (J 1, 2,
permutations and factorization steps, and by ignoring the last set of off-diagonal blocks.
In other words, r in (22) is set equal to J and the off-diagonal blocks of Dj (of A))
are ignored.

A second approximation of block odd-even cyclic reduction can be obtained by
imposing a preselected sparsity pattern on the successive individual tridiagonal blocks
of Di (of A) in (22) by neither computing nor storing matrix elements outside the
selected pattern [3], [7], [14], [18]. Rodrigue and Wolitzer [18] have generalized the
results of Heller [13] to the special case when the matrix A of (1) is a Stieltjes matrix.
They have proved that in this case, the resulting reduced system matrices are also
Stieltjes matrices and that the off-diagonal blocks of the successively smaller reduced
systems for this incomplete odd-even reduction also decay quadratically to zero.
The fact that the reduced matrices A are Stieltjes matrices and thus are positive
definite implies numerical stability of the incomplete block odd-even cyclic reduction
factorization.

Kershaw 14] was the first to combine both aspects of incomplete block odd-even
cyclic reduction: (i) imposing a sparsity pattern, and (ii) early termination of the
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procedure. He applied his algorithms to block tridiagonal systems where the coefficient
matrices are positive definite but are not Stieltjes matrices. In this more general situation,
a modification of the diagonal elements of the reduced systems may be necessary to
ensure positive definiteness and numerical stability [8], [14].

5. Algorithms for incomplete block odd-even cyclic reduction. The incomplete block
odd-even cyclic reduction of interest here involves both termination of the cyclic
reduction process after J reduction steps and at each step imposing a prescribed
sparsity pattern and approximating the resulting reduced system matrix A). For the
rest of this paper, it is assumed for illustration that each block of the initial block
tridiagonal matrix A of (1) is a tridiagonal matrix. It is also assumed that each block
of a successive block tridiagonal reduced system matrix A is approximated by a
tridiagonal matrix. Elman [7] approximates the block tridiagonal matrix A for the
last reduction step by an incomplete LU-type factorization. The treatment in [7] is
advantageous but requires additional computer storage. The off-diagonal blocks of the
last reduced system matrix A are ignored here as in [14], [18]. The incomplete block
odd-even cyclic reduction described there leads to the following preconditioner
approximating (22):

(25) Q= P,QRP= P,L,P.f_,. Pf_DyPy

L and L in (22), (23), and (25) are not approximated here. Moreover, these matrices
are not constructed explicitly. Instead H and a factored form of DR (either LDLT" or
odd-even cyclic reduction of DR as in [1]) are retained (cf. (23)). Similarly, the i are
not constructed explicitly but their components /-)i and factored forms of/i’s (see
(24)) are retained. Note that each block of A, and of subsequent approximations to
the reduced system matrices A), is a tridiagonal matrix. It follows from (1)-(4) and
similar transformations that the matrices H and /-)i are block bidiago,nal matrices
where each block is itself a tridiagonal matrix. Furthermore, the size of is approxi-
mately 1/2 times the size of H.

Total computer storage required for H,/-)2, , J is approximately 6N(1 1/2j)
where N is the order of the initial system of (1) (values of N of interest vary between
40,000 and 250,000; N -60,000 is used for the numerical experiments reported below).
Approximately 3N storage locations are required for Dn, and the LDLr factorization
of DR, DR2,’"", DRy. An additional N storage locations would be needed for odd-
even cyclic reduction of the tridiagonal matrices DR, DR2,’’’, DRj. (See [1] for
vectorization and the results of factorizing independent tridiagonal systems on the
CYBER 205.) Additional working storage to accomplish the global incomplete block
odd-even cyclic reduction is neglected here in view of other storage requirements of
the polynomial methods of interest.

Equations (25) and (13) combined with the expression for L1 in (23) yield the
preconditioner Qn for the reduced system.

The form An Dn-HrD-IH of (5) is typical of the form of the successively
smaller reduced systems matrices A), and approximating each essentially involves a
term analogous to

(26) HrDIH HrL-rD-1L-1H,
where LDLr is the Cholesky factorization ofthe tridiagonal matrix DR. The approxima-
tions of interest affect the entries of, but not the structure or sparsity of, various factors
in (25); thus, such approximations do not affect the cost per iteration of any precondi-
tioned polynomial iterative method. Such approximations would, however, affect the
number of iterations needed to achieve a desired accuracy. The approximation of the
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terms in (26) can be accomplished by several algorithms described in [5] by first
approximating D or L-1. In particular, the polynomial approximations in [5] can
be considerably improved by exploiting matrix symmetry and properties of eigenvalues
of corresponding iteration matrices [2]. The approximations favored by us are given
below.

5.1. Approximation from Cholesky factors. Rodrigue and Wolitzer [18] suggest
starting from the Cholesky factorization

(27) Dn LDLT, D1= L-TD-1L-1,
where D is a diagonal matrix and where L is a unit lower bidiagonal matrix. Note
that L can be written as

(28) L=I+l,

where I is the identity matrix and is a matrix having zero elements everywhere except
for its lower diagonal elements l+l, that coincide with the corresponding elements of
L. It follows [18, Appendix II] that

(29) L-l= Y (-l) ,
i=0

where n is the order of L. The desired approximation to L-1 is readily obtained by
truncating the series in (29). Keeping two or three terms in the right-hand side of (29)
is sufficient for the present work [5], [18]. The procedure adopted in this work to
implement the above approximation is as follows. The Cholesky factorization of the
tridiagonal matrix Dn (of order ---N/2) is obtained by the parallel line vector method
in [1] and requires N words of storage plus N/2 words of work storage. For the
numerical results reported below, the series in (29) is truncated to three terms. The
matrix product D-1/ZL-1H is accomplished in two steps by first multiplying D-1/ZL-1

by the block diagonal part of H and then by the lower block subdiagonal part of H.
Note that these separate parts of H can be viewed as tridiagonal matrices. The
multiplication of each part of H by D-1/2L-1 requires approximately 5(N/2) storage
locations (for a total of 5N additional storage locations), is vectorizable by multiplica-
tion by diagonals, and requires nine vector multiplies and two vector adds, each of
vector length approximately N/2. A vector square root of length N/2 is also applied
to D-1. Construction of the sparse block tridiagonal approximation to AB is then
accomplished by the matrix multiplication (D-1/ZL-1H) TD-1/2L-1H with L-1 replaced
by the first three terms in (29). This matrix multiplication involves an additional 16
vector multiplies and 16 vector adds for the block diagonal part, and 12 vector multiplies
and nine vector adds for the block subdiagonal part; each vector being of length N/2.
In summary, given the LDL Cholesky factorization of DR, the above sparse approxi-
mation to the first reduced system matrix An requires 46 vector multiplies, 29 vector
adds, and one vector square root each of length N/2. The vector length decreases by
a factor of two for each subsequent stage of the incomplete reduction. During the first
few stages of the reduction, N/2 -30,000, and so the operations are carried out at
near optimal vector speed.

Other implementations [3], [7] first construct a banded approximation to D-1R
and then evaluate HrDIH. Elman [7] constructs an approximation to D] that
involves seven diagonals.

5.2. New approximations. The objective here is to approximaate D]IH of (5) and
(26) directly without first approximating D or its Cholesky factor L-1. This is in
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contrast to the treatment above and in [3], [5], [7], [14], and [18]. The concepts
involved will be illustrated by a simple example based on approximating DT where
T is tridiagonal. It is convenient to introduce the following definition.

DEFINITION 1. Let A (aij) be a square matrix. Sp/(A) is defined as the sparse
matrix whose elements are the same as those of A for i-Jl <-- and are zero otherwise.

Thus, irrespective of the structure of A, Spt(A) is a banded matrix. In particular
Spl(A) is the tridiagonal matrix that is equal to the tridiagonal part of A. Clearly,
A-= Spn_I(A) for any n by n matrix A.

Consider now this simplified problem. Find the banded matrix solution to the
matrix equation

(30) Sp(D) T

where DR and T are tridiagonal matrices and DR is symmetric positive definite. The
matrix @ is regarded as an approximation to D-fiT.

Equation (30) is not a standard equation. For illustration it suffices to consider
the special case of being a tridiagonal matrix. In this case, (30) may be written
explicitly as follows"

dl c B
Cl d2 c2 Yl

Sp c2 "’. "’.

cn_l d,
(31)

o2

o

S l"

$2 r2

2 Oo Ooo

o
tn Sn

which is equivalent to the following coupled system:

(32a) di_lOli_ d- Ci_l I’i_l i=2,. , n,

(32b) Ci_lai_l -t- difli d- ci,)/i si, i=l,...,n,

(32c) cii + di+ Yi ti, 1, , n 1.

Eliminating the a and y unknowns in (32a)-(32c) yields

(33)

2 2 ! ri- ci tici
di

ci_ ci
fli= si--- i= l,

di-1 di+l J di_l di+l

Co=C,=0 and do= d,+ --1.

/I,

The assumption that DR is strictly diagonally dominant ensures the numerical stability
of evaluating/3 from (33), and of evaluating a and 3’i from/3i and (32a), (32c). Note
that these computations are vectorizable with vector length n or n- 1. Specifically the
right-hand sides of (33) require one vector divide to evaluate 1/di, two vector multiplies
to evaluate c/d and c/d+ (1/d, c/d, and ci/d+l are temporarily saved for the
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balance of the computations), two vector multiplies (by ri and ti), and two vector adds
(subtracts). The coefficients of/3 on the left-hand side of (33) can be evaluated with
two additional vector multiplies and two additional vector adds. The/3 can then be
computed by one final vector divide. Subsequent evaluation of a and y requires two
vector multiplies and one vector add. In summary, the computation of @ requires (in
the present case) a total of 10 vector multiplies, six vector adds, and two vector divides.

While the discussion above centered on a tridiagonal part of H, it is straightforward
to deduce from (3) that DlH can be approximated by first letting T stand for the
odd tridiagonal blocks B1, B3, etc., comprising the diagonal blocks of H, and then
letting T stand for the even tridiagonal blocks B’, B4r, etc., comprising the lower
subdiagonal blocks of H. Once DlH is approximated, (5) and (26) yield an approxima-
tion to AB. This computation for the more general case of as a pentadiagonal matrix
can be shown to require 45 vector multiplies, 21 vector adds, and four vector divides,
each of length n/2. Thus this computation compares favorably with the approximation
of 5.1 based on the Cholesky factors. The latter approximation requires 46 vector
multiplies, 29 vector adds, and one vector square root in addition to requiring the
evaluation of the Cholesky factorization DR LDLr. The new approximations require
less storage to implement and are preferred to those in 5.1 for larger problems where
conserving computer storage is vital.

6. Numerical comparison. Several preconditioned Chebyshev and conjugate
gradient methods were implemented on a CYBER 205 using the experimental program
DXY [1], [2], which solves the following Diffusion equation in XY rectangular
geometry

(34) -V DVu + o’u S,

with Dirichlet or Neumann boundary conditions. Here u is particle density, D is a
diffusion coefficient, r is a cross section, and S is a source term. A finite-difference
approximation of this diffusion equation over triangulated parallelogram mesh sub-
divisions leads to a block tridiagonal linear system of the form of (1), where the
diagonal blocks A are tridiagonal matrices and the off-diagonal blocks B are lower
bidiagonal matrices. Here each diagonal block describes the couplings between the
unknowns on a mesh line along the x-direction.

Vectorization of the various solution method options in the DXY program is
achieved (a) by applying CYBER 205 vector syntax where possible; (b) by implementing
the hyperline concept [1], [2] of combining all the red (odd-numbered) lines into a
single red hyperline and all the black (even-numbered) lines into a black hyperline;
and (c) by repeatedly using a vectorized odd-even cyclic reduction algorithm [1] to
solve the tridiagonal systems for the hyperlines associated with the application of the
Chebyshev and conjugate gradient methods to (1) and (5). The hyperline approach
for solving sets of independent tridiagonal systems is used throughout this study for
consistency. An alternative vectorization in which independent tridiagonal systems are
solved in parallel 1] may be more efficient for large problems, but is not expected to
alter the relative performance of the various methods and so is not considered here.

In the present work, the following relative error measure [12, p. 71] is used as a
stopping criterion"

1
max [’/x’[ < "(35)

1-M

where r is the prescribed error tolerance and Me is an estimate of M(G) obtained
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by one of the adaptive procedures of Hageman and Young [12, Appendices A and
B]. Here ,i is the ith element of the vector 6 defined by (10a).

The implementation of the Chebyshev method in DXY relies on subroutines CCSI
and CHEBY of Hageman and Young [12] to adaptively generate and update the
acceleration parameters in (9). These subroutines also check for convergence and
provide a stopping criterion satisfying (35). In contrast, the conjugate gradient method
as implemented in DXY requires the user to put Me for application in the stopping
criterion of (35). For the problems considered here, the Chebyshev method was applied
first and estimates Me obtained from this method were then passed to the conjugate
gradient method. It is noted that the stopping criterion specified in (35) is conservative
for the conjugate gradient method. It is also noted that the conjugate gradient algorithm
is capable of computing Me on its own in view of the connection with the Lanczos
method. The actual computation is not expected to affect the relative performance of
the various methods.

Construction ofpreconditioners based on incomplete block odd-even cyclic reduc-
tion was described in 4 and 5 above. In particular, two ways to approximate the
reduced system coefficient matrix are given in 5.1 and 5.2. These approximations
are repeated at each step of the block odd-even cyclic reduction algorithm. The
odd-even cyclic reduction algorithm is terminated after J reduction steps to yield an
incomplete factorization approximating the first reduced system coefficient matrix AR.
The approximations in 5.1 and 5.2 were numerically tested. These approximations
led to comparable run times on the CYBER 205 for the preconditioned conjugate
gradient and Chebyshev methods whenever the number ofterms retained for the inverse
of the Cholesky factor L in (29) was the same as the bandwidth of the matrix defined
above. Results using the approximation of 5.2 are omitted for brevity. The approxima-
tions based on 5.1 are used in the numerical examples reported below for possible
comparison with work of other authors [14], [18].

The methods compared in this paper are designated as follows:
CG The standard conjugate gradient method [12] applied to (1).
PT-SI Chebyshev method of (9) applied to (1) with a preconditioner

Q D, the diagonal matrix whose elements are the diagonal ele-
ments of the coefficient matrix A of (1).

PT-CG Same as PT-SI but with the conjugate gradient method instead of
the Chebyshev polynomial method.

P-SI-J Chebyshev method of (9) applied to (1) with a preconditioner based
on a J-step, J 1, 2,. ., incomplete block odd-even cyclic reduc-
tion algorithm as in (25). The diagonal and off-diagonal blocks of
the resulting reduced system coefficient matrix at each step of the
factorization are chosen to be tridiagonal matrices.

P-CG-J Same as P-SI-J but with the conjugate gradient method instead of
the Chebyshev method.

CCSI-H Red/black line cyclic Chebyshev (semi-iterative) method [1], [12]
applied to the red/black system (4) with the hyperline method 1]
used for inverting the diagonal blocks DR and

RS-SI Chebyshev method of (9) applied to the reduced system (5) with
a preconditioner QR DR corresponding to the black unknowns in
(4).

RS-CG Same as RS-SI but with the conjugate gradient method instead of
the Chebyshev method.

P-RS-SI-J Chebyshev method of (9) applied to the reduced system (5) with
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a preconditioner Qn based on a J-step incomplete block odd-even
cyclic reduction algorithm applied to the original block tridiagonal
system (1). The diagonal and off-diagonal blocks of the reduced
system coefficient matrices that result at each step of the factoriza-
tion are selected here to be tridiagonal matrices.

P-RS-CG-J Same as P-RS-SI-J but with the conjugate gradient method instead
of the Chebyshev method.

The various methods were tested for several problems including those illustrated
in Tables 1-4 and in Fig. 1.

Numerical results summarized in part in the various tables indicate the following:
(i) The time ratios for P-SI-J over P-RS-SI-J and P-CG-J over P-RS-CG-J are

shown in Tables 1-4 to lie between 1.51 and 2.10. These results suggest that precondi-
tioned reduced system polymonial methods with preconditioners based on incomplete
block odd-even cyclic reduction are computationally superior to the corresponding

1.0

TABLE
CYBER 205 run time (sec) for various methods applied to the model problem

with 90 angle. 0.0 1.0

D .01, r 1.0, S 1.0

Uniform mesh

Method

PT-SI
P-SI-1
P-SI-2
P-SI-3

CG
PT-CG
P-CG-1
P-CG-2
P-CG-3

CCSI-H
RS-SI
P-RS-SI-2
P-RS-SI-3
P-RS-SI-4

RS-CG
P-RS-CG-2
P-RS-CG-3
P-RS-CG-4

Ratios
P-SI-J/P-RS-SI-J

P-CG-J/P-RS-CG-J

160 x 400

Iter Me Time

379 .9997 7.63
177 .9985 8.42
94 .9946 5.33
61 .9855 3.78

379 .99997 9.68
331 .9997 8.26
158 .9985 8.45
71 .9946 4.68
35 .9862 2.40

183 .9996 4.02
174 .9993 3.88
98 .9946 3.25
54 .9862 2.07
58 .9805 2.35

171 .9993 4.52
74 .9946 2.66
38 .9862 1.59
30 .9805 1.35

J 2 1.64
J 3 1.83
J=2 1.76
J =3 1.51

256x250

Iter Me Time

337 .9995 6.76
119 .9966 5.70
75 .9918 4.29
66 .9893 4.09

317 .99997 8.08
263 .9995 6.54
94 .9966 5.05
48 .9918 3.04
42 .9893 2.87

118 .9990 2.60
109 .9981 2.44
75 .9918 2.50
64 .9893 2.44
62 .9892 2.52

101 .9981 2.68
47 .9918 1.73
40 .9893 1.68
40 .9892 1.79

1.72
1.68
1.76
1.71

lter

379
85
69
69

379
331
61
42
42

82
70
56
55
55

400 x 160

ME

.9997

.9935

.9902

.9900

.99997

.9997

.9935

.9902

.9900

.9977

.9953

.9902

.99O0

.9900

Time

7.58
4.08
3.94
4.25

9.63
8.22
3.28
2.65
2.85

1.81
1.58
1.88
2.10
2.23

2.10
2.02
1.75
1.60

66
41
43
43

.9953

.9902

.9900

.9900

1.76
1.51
1.78
1.88
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TABLE 2
CYBER 205 run times (sec) for various methods applied to the L-shaped domain

with 60 angle. 0.0 1.0

D .01, tr 1.0, S 1.0

Uniform mesh

Method

PT-CG
P-CG-1
P-CG-2
P-CG-3

CCSI-H
RS-CG
P-RS-CG-2
P-RS-CG-3
P-RS-CG-4

Ratios
P-CG-J/P-RS-CG-J

160 x 400

Iter Me Time

459 .9997 11.51
215 .9988 11.35
106 .9956 6.55
56 .9897 3.76

208 .9997 4.54
228 .9994 6.03
106 .9956 3.77
56 .9897 2.29
50 .9870 2.18

J 2 1.74
J 3 1.64

256 x 250

Iter Me Time

303 .9995 7.61
136 .9972 7.20
80 .9945 4.96
73 .9939 4.87

129 .9992 2.83
135 .9985 3.58
80 .9945 2.87
74 .9939 3.00
74 .9938 3.18

1.73
1.62

Iter

459
87
78
78

400 x 160

Me Time

.9997

.9945

.9939

.9938

11.45
4.61
4.82
5.17

85 .9981 1.87
94 .9963 2.49
79 .9939 2.82
81 .9939 3.25
81 .9939 3.43

1.71
1.59

TABLE 3
CYBER 205 run time (sec) for various methods applied to a four region problem

with 60 angle.

1.0

0.0 1.0

tr S 1.0 throughout. D .0025, D ---.025, D .25, D4 2.5

Uniform mesh

Method

PT-CG
P-CG-1
P-CG-2
P-CG-3

CCSI-H
RS-CG
P-RS-CG-2
P-RS-CG-3
P-RS-CG-4

Ratios
P-CG-J/P-RS-CG-J

160 x 400

Iter Me Time

791 .9999 19.78
363 .9997 19.12
177 .9990 10.87
92 .9976 6.10

583 .9999 12.62
405 .9999 10.66
180 .9990 6.34
92 .9976 3.70
82 .9970 3.50

J =2 1.71
J=3 1.65

256x250

Iter Me Time

527 .9999 13.18
224 .9994 11.82
133 .9987 8.19
123 .9986 8.12

373 .9998 8.08
238 .9996 6.27
132 .9987 4.67
127 .9986 5.06
124 .9985 5.24

1.75
1.60

400 x 160

Iter Me Time

802 .9999 19.96
142 .9987 7.49
126 .9984 7.73
126 .9984 8.29

245
152
133
130
130

.9996

.9991

.9986

.9986

.9986

5.31
4.00
4.68
5.14
5.44

1.65
1.61
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TABLE 4
CYBER 205 run time (sec) for various methods applied to the modified Wachspress problem for group 1.

Uniform mesh

Method

CG
PT-CG
P-CG-1
P-CG-2
P-CG-3

CCSI-H
RS-CG
P-RS-CG-2
P-RS-CG-3
P-RS-CG-4

Ratios

P-CG-J/P-RS-CG-J

90

Iter Me Time

1366 .9999 31.64
1034 .9999 23.36
355 .9991 16.93
184 .9978 10.24
152 .9972 9.09

496 .9997 9.70
358 .9995 8.56
181 .9978 5.85
153 .9972 5.53
151 .9971 5.60

J 2 1.75
J 3 1.64

60

Iter Me Time

1375 .9999 31.83
1033 .9999 23.34
432 .9993 20.16
248 .9987 13.79
216 .9985 12.89

551 .9998 10.77
442 .9996 10.57
248 .9987 7.90
216 .9985 7.76
221 .9985 8.41

1.75
1.66

30

lter Me Time

2000+ .9999
1694 .9999 38.24
767 .9980 36.53
595 .9997 32.96
583 .9997 34.81

1019 .9999 19.91
781 .9934 18.65
595 .9997 18.84
583 .9997 20.78
583 .9997 22.68

1.75
1.68

240 u 0

0u
--0
On

88 =0
80_ / / !

// //
0 8’16 72180 192 240

0u/On 0 Mesh Number
AX AS 0.125 cm

D 1.4, 0-1 .04, S 1.0, D 1.5, 0-2 .08, $2 0.0.

0 3.0, 0" .01, S 0.0 (see Ref. 1).
FIG. 1. Modified Wachspress problem.

methods applied to the original block tridiagonal systems. In practice, the improvement
possible using the reduced system methods will be a function of the problem, the
number of incomplete cyclic reduction steps applied, and the computer under con-
sideration.

(ii) Numerical results demonstrate that the most effective methods are the P-RS-
CG-J reduced system conjugate gradient method with preconditioner based on incom-
plete block odd-even cyclic reduction and the RS-CG reduced system conjugate
gradient method with preconditioner DB. Of these methods, P-RS-CG-J is best for
problems with strong coupling in the y (traverse) direction.



INCOMPLETE BLOCK CYCLIC REDUCTION PRECONDITIONERS 561

(iii) Preconditioning based on incomplete block odd-even cyclic reduction is very
effective for reducing computational cost for most of the problems considered.

(iv) The DXY program solves two-dimensional problems that fit in the CYBER
205 central memory. For larger two-dimensional problems or for three-dimensional
problems, the cyclic Chebyshev and reduced system Chebyshev methods are expected
to be more competitive because of their ability to perform concurrent iterations [12],
reducing data transfer costs. For these methods, iterations n + 1, n + 2,..., n + k for
some k can be initiated while iteration n is in progress and k iterations can be completed
during a single sweep of the data through central memory [17].

(v) As expected [10], the results obtained for the cyclic Chebyshev method
CCSI-H applied to the red/black system (3) and (4), and the reduced system Chebyshev
method RS-SI applied to (5) corresponding to the choice of preconditioner DB, are
essentially identical. These methods are competitive with other preconditioned methods
applied to block tridiagonal systems.

Finally, the main advantage of preconditioning is realized when the spectrum of
eigenvalues of the iteration matrices is constricted. For convenience, me =-1.0 was
used as an initial estimate of the algebraically smallest eigenvalue of the iteration
matrices for the P-SI-J and P-RS-SI-J entries reported in Table 1 corresponding to the
Chebyshev method. The CCSI-H and RS-SI methods do not require an estimate me
12]. The main point here is that the choice ofacceleration parameters for the Chebyshev
method can always be fine-tuned for special classes of problems and this leads to
improved convergence and reduced computational cost.
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OPTIMIZING TRIDIAGONAL SOLVERS FOR ALTERNATING DIRECTION
METHODS ON BOOLEAN CUBE MULTIPROCESSORS*

CHING-TIEN HOt AND S. LENNART JOHNSSON$

Abstract. Sets of tridiagonal systems occur in many applications. Fast Poisson solvers and Alternate
Direction Methods make use of tridiagonal system solvers. Network-based multiprocessors provide a
cost-effective alternative to traditional supercomputer architectures. The complexity of concurrent algorithms
for the solution of multiple tridiagonal systems on Boolean-cube-configured multiprocessors with distributed
memory are investigated. Variations of odd-even cyclic reduction, parallel cyclic reduction, and algorithms
making use of data transposition with or without substructuring and local elimination, or pipelined elimina-
tion, are considered. A simple performance model is used for algorithm comparison, and the validity of the
model is verified on an Intel iPSC/1. For many combinations of machine and system parameters, pipelined
elimination, or equation transposition with or without substructuring is optimum. Hybrid algorithms that
at any stage choose the best algorithm among the considered ones for the remainder of the problem are
presented.

It is shown that the optimum partitioning of a set of independent tridiagonal systems among a set of
processors yields the embarrassingly parallel case. If the systems originate from a lattice and solutions are
computed in alternating directions, then to first order the aspect ratio of a computational lattice shall be
the same as that of the lattice forming the base for the equations.

The experiments presented here demonstrate the importance of combining in the communication system
for architectures with a relatively high communications start-up time.

Key words, tridiagonal systems, Boolean cubes, pipelined Gaussian elimination, transposition, substruc-
turing, balanced cyclic reduction

AMS(MOS) subject classifications. 15A06, 65F05, 65N05, 68Q25

1. Introduction. Tridiagonal systems of equations occur in many methods used
for the solution of partial differential equations. In the Alternating Direction Method
(ADM), tridiagonal matrices arise from one-directional central difference approxima-
tions of partial derivatives. In so-called fast Poisson solvers a Fast Fourier Transform
(FFT) in one dimension decouples the system into a number ofindependent tridiagonal
systems. Tridiagonal systems are also used as preconditioners for the conjugate gradient
method.

In parallel architectures with distributed memory, the communication is a critical
issue with respect to performance, in particular, if the number of processors approaches
the number of unknowns [25], [23], [24], [3], [11], [21]. The communication time for
a given computation on a given architecture depends on the data allocation to the
distributed memory, the choice of numerical algorithm, and the communication
algorithms. These issues are the focal points of this work. The target architectures have
processors interconnected as a Boolean n-cube, which has N 2 nodes. One- and
multidimensional lattices can be embedded in Boolean cubes with one array node per
cube node preserving adjacency by a binary-reflected Gray code [22], [18]. This
embedding uses all cube nodes when the lattice sides are powers of two. For other
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Yale. edu; Johnsson @ think, com).
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side lengths, other embeddings may be more effective [7], [2]. In our analysis the time
for the communication of one byte between a pair of processors is denoted to, the time
for the communication overhead (start-up) is denoted -, the time for an arithmetic
operation ta, and the maximum packet size imposed by a limited buffer size B,,.
Moreover, we assume that communication can take place only on one port per processor
at a time, one-port communication. The time for the solution of the systems of equations
is denoted Tag(P Q; N, t,,, t,., ’, B,,), where alg identifies the algorithm, the first argu-
ment is the size (P) of a tridiagonal system and the second the number of systems
(Q). The third parameter is the number of Boolean cube processors to which the P Q
equations are allocated. When necessary, other parameters may be added or omitted.

For the solution of a single tridiagonal system we consider:
Substructuring followed by odd-even cyclic reduction, CR, [1] for the reduced
system, as described in [18] and [10].
Substructuring followed by parallel cyclic reduction, PCR [9].
The gathering ofthe equations to 2"- processors by steps of a data transposition
algorithm such that each processor holds (P/N)2 equations, followed by
two-way elimination, and a final phase in which the results are distributed to
the set of processors originally holding the equations; algorithm TGET (i) for
/-step data gathering by Transposition, Gaussian elimination, and /-step data
scattering by Transposition. With substructuring algorithm TGET (i) becomes
algorithm SS/TGET (i).
The broadcasting of equations from every node to every other node within
/-dimensional subcubes such that the system is evenly distributed across 2"-

processors and there are 2 copies of the same system. No distribution of the
solution is needed between the (n -/)-dimensional subcubes. With substructur-
ing, algorithm BCGE (i) becomes algorithm SS/BCGE (i).
A set of hybrid algorithms obtained by combining substructuring, odd-even
cyclic reduction, and the TGET (i) algorithm.

The first transpose operation in TGET (i) is a gather operation, and the second
a scatter operation. We refer to both as transpose operations since each gather, or
scatter, operation is equivalent to a vector transpose. Furthermore, in the case of
multiple tridiagonal systems the multiple gather, or scatter, operations are transpose
operations. In the TGET (i) algorithm only two processors are used for the elimination.
The purpose of the transpose operation is to reduce the number of communication
start-ups compared to a direct two-way elimination. The reduction is accomplished by
using a transpose algorithm that requires steps in moving the equations to an
(n-/)-cube. With one-port communication a doubling algorithm such as a spanning
binomial tree algorithm is optimal [15]. The data transfer time increases for every step
of the transpose algorithm, and is proportional to PN(2- 1) for P equations and a
spanning binomial tree algorithm. In the case of concurrent communication on all
ports of every processor, n-port communication, the data-transfer time can be reduced
by a factor of by using communication according to balanced trees 15], [8]. Depending
on the ratio of the data-transfer time to the start-up time there may exist a nontrivial,
optimum value of i.

Cyclic reduction algorithms make use of many processors for the elimination, and
yield a lower, parallel, arithmetic complexity for N_>- 16 (see Table 1). But the lower
bound for the number of start-ups for a vector transposition is approximately half of
the minimum number of start-ups for odd-even cyclic reduction with communications
restricted to one send or one receive operation at a time. A lower bound of n start-ups



TRIDIAGONAL SOLVERS ON BOOLEAN CUBES 565

for the transposition is shown in [17]. Although the number of start-ups for cyclic
reduction is higher in the case of unlimited buffer sizes, it has a lower data-transfer
time than the transpose algorithm, and possibly also fewer start-ups in the case of
buffers of limited size. These different characteristics give rise to some interesting
optimization problems that we investigate in the context of hybrid algorithms.

For the solution of multiple tridiagonal systems we consider:
Pipelined two-way Gaussian elimination.
Gathering of equations and separation of systems into subcubes by equation
transposition, solution of systems by pipelined two-way Gaussian elimination,
and scattering of the solution. This algorithm is the multiple systems version of
algorithms TGET (i). With initial substructuring, it becomes SS/TGET (i).
Substructuring followed by Balanced Cyclic Reduction [14] for the reduced
system solver, SS/BCR.
Combinations of the above three algorithms.

We have verified our analytical complexity models on a medium scale, parallel
architecture: the Intel iPSC/1. A binary-reflected Gray code was used for the data
mapping. The Intel iPSC/1 effectively only supports one send or one receive operation
per processor at a time, and most of our complexity estimates are specialized to this
case. Because of the high copying time on the Intel iPSC! 1 there exists a packet size
Bcp < B,, above which it is beneficial for sending data directly rather than combining
several packets into one, in order to minimize the number of start-ups [17]. For the
system software available at the time of the experiments Bcp-- 256 ’/tcp bytes, where
the time for copying one byte is tcp. The copy time is sufficiently large to affect the
choice of algorithm. The start-up time for communication is also significant on the
Intel iPSC/1, and we demonstrate the effectiveness of message combining to reduce
communications overhead.

2. Solving a single tridiagonal system on an n-cube. We assume that the equations
are assigned to processors by dividing the system into blocks, or by applying incomplete
nested dissection [5] and suitably associating separator nodes with adjacent partitions.
The partitioned tridiagonal system of equations has the following form:

X

X X

X X

X X

The horizontal lines indicate the partitioning/substructuring. For each partition we
apply Gauss-Jordan elimination as described in [10] and [26]. One communication
is needed for the first and the last equations in each partition. By a suitable allocation
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of matrix coefficients to processors it is not necessary to transfer an entire equation,
and some element transfers [19] can be saved. The execution time is approximately

(1) Tss(P, 1; N, t, t, r)= 17([]-1)t.+2(16t+’)+2(4t+’), Bm>=16,

where it is assumed that a processor can perform one send or one receive operation
at a time, that the system is real, and that floating-point numbers are represented by
four bytes (single-precision). The form of the system after the substructured elimination
is shown below. Note that the elimination of the last block is done in reverse order
such that the reduced system formed by the last equation of each block, but the last,
is of order 2n-1.

X X

X

X

2.1. Cyclic Reduction (CR). Odd-even cyclic reduction requires 17 operations per
unknown, the same as substructured Gaussian elimination. Substructuring is always
preferable when using odd-even cyclic reduction, since only four communications are
needed for the substructuring with one send or one receive at a time.

In [10] and [14] an exchange algorithm, and an in-place algorithm are proposed
for the solution of tridiagonal systems distributed with one equation per processor in
a Boolean n-cube. In the exchange algorithm the active set of equations are recursively
moved into an easily identified subcube of one less dimension for each elimination
step. Communication is needed for both the elimination step (Fig. l(a)) and the
reallocation to the subcubes (Fig. l(b)). The reallocation can be performed with only
one communication, such that with the communication restricted to one send or receive
operation at a time, 3(n-l) communications suffice for the elimination and the
reallocation. The same number of communications is required in the back substitution
phase. We refer to this algorithm as SS/CR-1. Note that in Fig. l(a), the processor
holding equation 3 (0) needs to store the equation received from the preceding processor
(2()) to avoid using O(n) memory per processor. The number of communications per
step can be reduced from three to two at the expense of O(n) memory per processor,
instead of constant memory. By performing a partial elimination (Fig. l(c)), then
moving the equation subject to elimination to the processor for the next elimination
step, and completing the elimination there (Fig. l(d)), one communication is saved.
A total of 4(n- 1) communications are needed. This algorithm is called SS/CR-2. For
the in-place algorithm, SS/CR-IR, we simply use the routing software of the Intel iPSC.
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FIG. 1. One forward elimination step of CR-1 and CR-2 algorithms on a 3-cube.

The time to solve a single tridiagonal system of P 2"-1 real equations on an
n-cube by the SS/CR-2 algorithm [10], [14] is given by

(2)
TCR.2(N-1, 1; N, ta, tc, 7.) (log N-2)(16to+2(16+4)te+2x27.)

+ (14+3)to +2(16+4)tc +2 x 27., Bm>-16.

For P > N substructuring is applied and the estimated time is given by

(3) Tss/cR_2(P, 1; N, to, te, 7.)= Tss(P, 1; N, ta, tc, 7")+ TCR.2(N-1, 1; N, to, t, 7.).

In equation (2) we assume that the division normally carried out in the back
substitution phase is performed concurrently for all equations after the elimination
phase. With real coefficients, one right-hand side, and one processor per equation, a
time of 3to is required. The arithmetic complexity can be reduced to 11 [14] sequential
operations per step (instead of 16) without an increase in the communication complexity
by dividing the arithmetic operations for the elimination and backsubstitution phases
among pairs of processors. A further reduction to nine operations is possible at the
expense of additional communication. For complex coefficients the number of arith-
metic operations per step is 82, 47, and 43, respectively [13]. The techniques for lower
parallel arithmetic complexity are not applicable to the case of multiple tridiagonal
systems. The complexity estimates in this paper apply to algorithms using 16 arithmetic
operations in sequence for each equation, and a compatible communication scheme.
The predicted and measured times agree well for the Intel iPSC/1 [16].

2.2. Parallel Cyclic Reduction (PCR). Parallel Cyclic Reduction [9] performs an
elimination on every equation in every step. With one equation per processor all
processors are active throughout the computation, which completes in n steps. After
each step the problem is transformed such that the number of equations per tridiagonal
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system is halved, and the number of systems doubled:
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No backsubstitution is needed. The total arithmetic complexity of the PCR
algorithm is 12n2n, the parallel complexity 12n. Substructuring is always preferable.
The total number of messages is 2n2n- 2n + 1, and the number of parallel communica-
tions in sequence 4n (two exchanges) with one send or one receive operation at a
time. During step j, 0-<j < n, the ith row of the reduced system exchanges its data
with the (i-2)th and the (i+2)th rows (if i-2>-0, and i+2-<P-1). With a
binary-reflected Gray code encoding and i+ 2 are at most a distance two apart in
the cube [10]. In implementing the SS/PCR algorithm on a Boolean cube, we can:

(1) Perform an exchange operation after each step of PCR to move each subset
of equations into the same subcube, such that communications for the next
step remains nearest-neighbor for each subset, with no interference between
communication for different subsets. This is algorithm SS/PCR-1.

(2) Combine exchange communications with communications for elimination, as
in the SS/CR-2 algorithm, and arrive at a SS/PCR-2 algorithm.

(3) Decompose and combine the two distance-two sends and receives into three
exchanges, i.e., six "nearest-neighbor" sends or receives. This is algorithm
SS/PCR-3.

(4) Use a static allocation and the routing logic, SS/PCR-IR.
In SS/PCR-1, 6n 2 start-ups are required. In the SS/PCR-2 algorithm the number

of start-ups is reduced to 4n by splitting the elimination on the row into two parts;
one equation is received and the associated elimination performed, then the partially
modified row is sent to the "after-exchanged" processor, and the elimination completed
using the row in the new processor. The allocation of equations to processors is changed.
The solution variables are allocated according to binary code encoding of the indices.
To move the solution of the reduced system back to the corresponding partition, a
binary code to Gray code conversion is required. Such a conversion requires 2n-2
start-ups [12]. The total number of start-ups is 8n-4 for SS/PCR-1 and 6n-2 for
SS/PCR-2. In the SS/PCR-3 algorithm, the distance-two sends or receives are decom-
posed into two "nearest-neighbor" communications performed concurrently for all

X X
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nodes such that there is no edge conflict [12]. Moreover, since the data sent to both
distance-two neighbors in each SS/PCR step are the same, and the two paths to the
distance-two neighbors can be arranged such that they share the first edge, the number
of start-ups can be reduced from 8n-4 to 6n-2, i.e., the same as for the SS/PCR-2
algorithm. Note that the SS/PCR-3 algorithm is an in-place algorithm and therefore
does not require the binary code to Gray code conversion at the end. In the SS/PCR-IR
algorithm the communication time depends entirely on the routing logic. A routing
discipline, such as the one used in the Intel iPSC, that routes the dimensions that need
to be routed in increasing order yields a conflict-free routing for the SS/PCR-IR
algorithm 10].

For the analysis we use the following estimated time for PCR-2 (and PCR-3)"

(4) TpcR.2,3(N 1; N, ta, to, 7.)=logN(12ta+616tc+6r)-2(16tc+r), B,,, -> 16,

and for the substructured version:

(5) Tss/r,CR-2,3(P, 1; N, t, t,., z)= Tss(P, 1; N, t, to, 7")+ TpcR_2.3(N, 1; N, t,, t, 7").

The predicted times for algorithms PCR-3 and PCR-IR are significantly lower
than the measured times, and also significantly higher than the measured times for the
odd-even cyclic reduction algorithms [16]. We attribute the difference between the
measured and predicted times for the PCR algorithms to synchronization delays.
The PCR algorithm is not of interest for multiple systems per processor due to its
higher arithmetic complexity compared to odd-even cyclic reduction.

2.3. Equation transposition and Gaussian elimination. Conventional Gaussian
elimination only requires eight operations per unknown, but substructured elimination
requires 17 operations per unknown. Two-way elimination allows two processors to
be used for the same tridiagonal system (almost) without an increase in total arithmetic
complexity. With respect to arithmetic complexity substructuring shall be used if
N> 17/4. Note that the start-up time of TGET (n-2) is the same as that of TGET (n-
1) in the event of one start-up per communication (unbounded buffers). When the
equations are gathered by a doubling algorithm, such as a spanning binomial tree
algorithm [6], the number of communication start-ups is reduced compared to a direct
two-way elimination for a sufficiently large buffer size. After gathering the equations
by an/-step transpose algorithm the equations are allocated in an (n-/)-dimensional
subcube with (P/N)2 equations per processor, if no substructuring was applied
initially; otherwise there are 2 equations per processor. After the steps of equation
gathering the set of equations can either be solved by two-way elimination, or by
substructuring followed by the solution of a system with 2n-- 1 equations distributed
with one equation per processor in an (n /)-cube.

The time for steps of equation gathering and steps of scattering of the solution
from an (n-/)-cube to an n-cube is

i]([ 16PX2i] r4Px2q) P
2(6) Tsbt(P, 1;N,t,SBm, i)= --mr- /

+
BraN / 7"+20-( -1)tc.

j=0

We refer to the algorithm that performs "i steps of gathering, two-way elimination
for the solution of the systems of equations, and/-steps of scattering of the solutions"
as a TGET (i) algorithm. However, for an optimum combination of substructuring
and Gaussian elimination the choice of continuing the gathering of equations, or
solving the system by two-way elimination, or performing a substructuring operation
should be reevaluated for each step. We consider such algorithms in the section about
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hybrid algorithms. Let T2GE(P, 1; N, ta, to, r) be the time for two-way Gaussian elimina-
tion performed on P equations distributed across N > 1 processors. Then,

(7) T2E(P, 1; N, t,, re, 7.) (4P-2)t + Nr+(8N+8)t.

In this expression it is assumed that both processors involved in the elimination
of the "middle" 2 x 2 system solve for one variable after an exchange of the coupling
equations. It is possible to save two element transfers at the expense of an increased
arithmetic complexity of two operations by having one processor send one equation
to the other, which on the solution of a 2 x 2 system returns one of the solution variables.

For P > N =4, T2E(P, 1; 4, t, t, 7.)< Tss(P, 1; 4, t,, t, 7.)+ T2E(4, 1; 4, ta, tc, 7").
Hence, with P equations spread across four processors, substructuring should never
be applied. Two-way Gaussian elimination has a processor efficiency of 50 percent
with eight floating-point operations per equation, whereas substructuring has 100
percent efficiency, but requires 17 floating-point operations per equation. Furthermore,
two-way Gaussian elimination has the same communication time regardless of the
number of equations per processor. Substructuring needs an additional time of 47" + 40t.

The gathering of equations to a subset of processors, all-to-one personalized
communication [15] in subcubes, can either be carried out by a send operation using
the general router of the Intel iPSC/1, or by a user coded spanning binomial tree

algorithm with combining (which is optimal for one-port communication [6]). The
router also uses a binomial tree routing, but does not perform message combining.
For the scatter operation, one-to-all personalized communication, there is the additional
possibility of a one-to-all broadcasting of the entire solution vector. More data than
necessary is communicated, no splitting of packets is required, and many architectures
have efficient implementations of data broadcast. In order to evaluate the different

algorithms for gathering and scattering equations on the Intel iPSC/1, we implemented:
All-to-one personalized communication using the router (no combining) followed
by router broadcast.
All-to-one personalized communication with combining and one-to-all personal-
ized communication with splitting, both based on the spanning binomial tree

routing 15].
All-to-one personalized communication with combining followed by router
broadcast.

We implemented three different communication algorithms for the SS/TGET (n)
algorithm. The measured times compare as shown in Fig. 2. The substructuring part
is the same for all alternatives and is not included. We refer to the three communication
algorithms with the postfix-sb,-cc, and-cb. The measured times for the SS/TGET (n)-sb
algorithm increase exponentially due to the lack of message combining. The
implementation using combining and broadcasting is more efficient than the
implementation using combining for both phases of the transposition. The latter is
about 10 percent slower than the former. The arithmetic times are less than 50 percent
ofthe total times for cubes of less than five dimensions. Since the number ofcommunica-
tions in the case of an unlimited buffer size increases linearly with the number of
dimensions of the cube, but the data volume and arithmetic time increases exponen-
tially, the time for data transfer and arithmetic will eventually dominate the total time
as the number of cube dimensions increases. With a limited package size, the number
of start-ups will eventually also increase exponentially in the number of cube
dimensions.
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FiG. 2. Measured values of TTGET(n)(N 1; N, ta, to, z) using routing with combining (-cc), the routing
logic of the Intel iPSC/1 (no combining), and broadcasting (-sb), and combining and broadcasting (-cb).

2.4. Broadcasting and concurrent two-way Gaussian elimination. In the TGET (i)
algorithm, only one (n-i)-dimensional subcube is active. It is possible to avoid
distributing the results of the two-way elimination to the processors storing the
equations, if all processors send their equation(s) to every other processor, all-to-all
broadcasting [15]. If the broadcasting from every processor is restricted to an/-cube,
then the original problem is transformed into solving 2 identical systems in 2 indepen-
dent (n /)-cubes. In each subcube it is sufficient to solve for 2"-’ variables. No
communication ofthe components ofthe solution vector between subcubes is necessary.
(If n, then backsubstitution can be avoided entirely by making the forward elimina-
tion terminate at the appropriate equation.) The algorithm can be used with or without
a substructuring phase, called SS/BCGE (i) and BCGE (i), respectively. With one
send or one receive operation at a time, the communication complexity ofthe broadcast-
ing phase of the BCGE (i) algorithm is twice that of the gathering of equations in
algorithm TGET (i). The parallel arithmetic complexity of algorithm BCGE (i) is the
same as that of TGET (i). The estimated execution times without any intermediate
substructuring and two-way elimination for the equations are

(8)
( P )TBCGE(i)(P, 1; N, t, t, r, B,,, i) 32 - (2’ 1) + 2 "-g+3 + 8 t B,,, => 12

(’-’o [ 16Px2j] )+2 ffm |
+2"--’--’ z+(4P-2)t,

(9) TSS/BCGE(i)(P 1; N, ta, tc, % B,, i)

Tss(P, 1; N, ta, t, -)+ TBCGE(i)(N 1; N, t, tc, % Bin, i).

The measured times are somewhat lower than the predicted times 16] for algorithm
BCGE (n- 1) assuming one send or receive operation at a time. A 20 percent overlap
between send and receive operations explains the difference between the predicted
and measured times. Such an overlap has also been observed in other experiments.
Note that if the communication time for one exchange operation is twice that of one
send or one receive operation, then algorithm BCGE (i) is always inferior to algorithm
TGET (i). However, if send and receive operations can be performed concurrently,
then the BCGE (i) algorithm is of lower complexity than the TGET (i) algorithm.
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The BCGE(i) algorithm is of sequential complexity O(2iP). With multiple
tridiagonal systems distributed with one equation per processor, and each processor
having one equation of every system, the arithmetic complexity of algorithm BCGE (i)
makes it clearly inferior to algorithm TGET (i).

2.5. Hybrid algorithms. The parallel arithmetic complexity of algorithm TGET (i)
is higher than that of the CR algorithms, while the former requires fewer start-ups
than the latter algorithm in the case of unbounded communication buffers. The data
transfer times for the CR algorithms are lower than the data transfer time for algorithm
TGET (i). These characteristics motivate the consideration of hybrid algorithms. Let
Ttrid(P, 1; N, ta, tc, ’, B,) be the total time required to solve a single system of P
equations in an N processor cube for given ta, tc, -, and B,,. Assume that P is a power
of two, P -> N _-> 4 and B,, _-> 16. Then,

Ttrid(P, 1; N, t, t, T, B)

T2GE(P 1; 4, t, t, ’) if N 4,

min { T2GE(N, 1; N, ta, t, ’),

rcr(a, c, 7’) -- rtrid |;--, a, tc, T, B

min { T(P, 1; N, t, t, r),

rsbt(P 1; N, tc, 7", Bm)-t- rtrid P, 1;
2’ ta’ tc’ T, B

if P=N,

otherwise,

where

T26E(P, 1; N, ta, tc, ’)=(4P-2)ta+ N’+(8N+S)tc,

Tss(P, 1; N, t,, t, ’)= 17(-1)t +4’+40t,

Tsbt(P, 1; N, t, % Bin)-
B.,N

+
B,N ’+---- t, and

Tcr(ta, tc, 7")= 16t +4r+40t.

Tsbt(P, 1; N, t, % B,) is the time for gathering of PN equations per processor
in N processors to 2PIN equations per processor in N/2 processors, and scattering
2PIN components of the solution vector in each of N/2 processors to PIN com-
ponents of the solution vector in each of N processors. Tcr(ta, t,’)=
TCR_2(N, 1; N, t, tc, r)- TCR_a(N/2, 1; N/2, ta, tc, 7") is the time for one-step cyclic
reduction using algorithm CR-2. Note that in an N processor cube, only n- 1 steps
is required for the SS/CR algorithm to solve for a single system as seen from equations
(2) and (3). Since the "one-step saving" does not generalize to the multiple systems
case, we ignore the possible one-step saving for the CR algorithm. For the solution of
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P equations on N=4 processors, two-way Gaussian elimination yields the lowest
complexity of the algorithms we consider. Hence, Ttrid(P 1; 4, ta, tc, 7", Bm)---
T2E(P, 1; 4, ta, to, ’). For N equations on N > 4 processors we consider:

Two-way Gaussian elimination.
One-step gathering of equations followed by the solution of a system of N
equations evenly distributed over N/2 processors.
One-step cyclic reduction followed by the solution of a system of N/2 equations
on N/2 processors.

For the solution of P > N equations on N > 4 processors we consider:
Two-way Gaussian elimination.
One-step gathering of equations followed by the solution of a system of P
equations on N/2 processors.
Substructuring followed by the solution of a system of N equations on N
processors.

Note that partial substructuring, i.e., reduction to more than one equation per
processor, is in general not preferable with respect to performance. The "total" and
"partial" substructurings require the same number of communication start-ups, and
the only disadvantage of substructuring compared to the TGET (i) algorithm is the
start-up time for N > 4. (The time for arithmetic operations for substructuring and for
the TGET (n-1) algorithm compares as 17(P/N) to 4P, approximately.)

Figure 3 shows the calling sequencies. The label on an edge of the graph is the
expression for the time required to traverse that edge, with the arguments for the
number of systems (which is one) and the parameters ta, to, 7", and B, omitted. The
argument of Tsb and Tss in the figure is P/N. The direct solution of P equations on
N processors is not represented in the figure. The cyclic reduction (or parallel cyclic
reduction) algorithm is represented by the edges on the diagonal. For each node on
the diagonal there is one equation per processor. Applying the TGET (i) algorithm
implies a vertical motion to level P/N 2 i. Substructuring implies a horizontal motion
to the node on the diagonal. Figures 4 and 5 show the optimal calling sequencies
(among the considered algorithms) for various ratios of t,/t and ’/t, and B, (with
the maximum required buffer size specified). The "o" sign denotes the two-way Gaussian
elimination algorithm in the figures.

FIG. 3. The calling sequencies.
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2.6. Summary of algorithms for the solution of single tridiagonal systems. Table 1
summarizes the complexities of the individual algorithms. Memory requirements are
expressed in units of four elements of four bytes each (real systems, single precision).
Some measured and predicted times for the solution of a single tridiagonal system on
an Intel iPSC/1 are given in Fig. 6. The measured values of the machine parameters
are approximately: t,, 30/sec, tc 10/zsec, and z 2 msec. The predicted execution

TABLE
Complexity comparison of algorithms for the single tridiagonal system.

Algorithm Arithmetic Byte transfers Min start-ups Memory

TGET (n) 8P-7 20P(1---) 2n

P
TGET(i) 4P-2 20

N
(2i-1)+2"-i+3+8 2n+2 -i-2(n-i)

P
BCGE (i) 4P-2 32

N
(2i- 1)+2"-+3+8 2n+2 -i-2(n- i)

FPl
SS/CR-1 17[/+16n-32 60n-40 6n-4

/ +4

SS/BCGE (i) 17 +4N-19 32(2 1)+2"-++48 2n+2--2(n-i)+4

P
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FIG. 6. Measured and predicted times of the CR-2, PCR-3, TGET (n 1)-cc, and BCGE (n 1)
algorithms on the Intel iPSC/1 for matrices of real elements, P N (P N for CR-2).



576 C.-T. HO AND S. L. JOHNSSON

times agree within 20 percent with the measurements, except for the PCR algorithm.
The measured times for this algorithm are considerably higher than the predicted times.
For the Intel iPSC/1 the predicted (and by far the measured) times for the PCR
algorithm are always higher than those of any of the CR algorithms described here.
With respect to performance, odd-even cyclic reduction is always preferable to parallel
cyclic reduction on the Intel iPSC! 1.

The complexity of algorithm SS/TGET(n-2) is always lower than that of
algorithm SS/TGET (n- 1), if N => 4. If one exchange operation takes the same time
as one send or receive operation, then algorithm SS/BCGE (i) is always of lower
complexity than algorithm SS/TGET (i). With respect to arithmetic time, the break-
even point between the algorithms TGET (i) and SS/TGET (i) (for < n) is at N 17/4,
independent of P; substructuring should always be performed, except for N 2 or 4.
With respect to data-transfer time, algorithm SS/TGET (n- 2) is of lower complexity
than algorithm TGET (n-2), if P> N_-> 16. If N=8 the break-even point is P=24.
For N=4 algorithm TGET(n-2) is always of lower complexity than algorithm
SS/TGET(n-2). With respect to start-up time, an algorithm with substructuring
requires four more start-ups than the corresponding algorithm without substructuring,
assuming unlimited buffer size. However, for limited buffer size, the start-up time
asymptotically becomes proportional to the data-transfer time.

For the hybrid algorithms we conclude:
With increasing maximum buffer size the boundary between the regions for
gathering and substructuring moves in a direction implying more steps of
gathering instead of substructuring. For a very small buffer size cyclic reduction
should be used.
Increasing the significance of the arithmetic time implies a growing region for
substructuring, and cyclic reduction.
Increasing the data-transfer time implies a growing region for substructuring,
and cyclic reduction.

For complex systems the number of real arithmetic operations increases faster
than the data volume. Hence, the communication contributes a smaller fraction to the
total execution time for a complex system than a real system. See [16] for measured
and predicted execution times on the Intel iPSC/1.

3. Multiple tridiagonal systems. With complete freedom of distributing the systems
of equations, the obvious choice is to allocate all equations of a single system to the
same processor. Then, the systems can be solved locally by Gaussian elimination. No
communication is required and the number of arithmetic operations is the minimum
of the methods considered here. The solution is trivially parallel.

If the tridiagonal systems arise in connection with the solution of some form of
partial differential equation in two or more dimensions, then other considerations may
guide the allocation of lattice points to processors. With a one-dimensional partitioning
of the lattice all tridiagonal systems may be allocated identically over the entire cube.
This allocation of equations is assumed in this section. We will consider two-
dimensional partitionings in the next section.

It follows from our analysis (and experiments) of single system solvers that parallel
cyclic reduction and broadcasting followed by Gaussian elimination are not of interest
for the multiple systems case. Repeated application of odd-even cyclic reduction for
each system results in poor load balance, since the processor holding the middle
equation is active in all reduction stages. Balanced Cyclic Reduction (BCR) 14] balances
the load by performing the reduction such that for a set of N systems the reduction
process converges to a unique processor for each system.
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We consider three methods for solving multiple tridiagonal systems in this section:
pipelined Gaussian elimination, combinations of transposition of systems of equations
and substructuring, and balanced cyclic reduction. We also determine the optimum
combination of these three algorithms as a function of machine parameters, the number
of systems, and the size of each system.

3.1. Pipelined Gaussian elimination. In the case of two-way pipelined Gaussian
elimination, a processor performs forward elimination on one system, sends the last
equation of that system to the next processor, then continues with the first equation
it has of the next system, etc. The two middle processors solve for the appropriate
variables, and the backsubstitution proceeds in a fashion similar to the forward
elimination. The number of communication start-ups can be reduced by communicating
the data for several equations at once, causing a reduction in the arithmetic efficiency
of the pipe of processors. (However, blocking of equations may increase the utilization
of each processor, if the functional units of a processor are internally pipelined.)

Let T2Gz.p(P, Q; N, ta, t., , Bm, i) be the time for pipelined two-way elimination
with 2 systems per packet. Then, the complexity of a pipelined two-way elimination
with one system per packet is

T2GZ.p(P Q; N, ta, tc, ’, Bin, O)

N
1 +30-5 t+ 4 Q+-2 +2--| "

(o
Q+
+ (56Q + 16N-64)tc,

for Q > 1. During the forward phase, the number of floating-point operations is 5P/N
per system per processor (the first and the last processors have five fewer operations).
During the backward phase, the number of floating-point operations is 3PIN per
system per processor. The two middle processors have three more operations per system
due to the fact that six operations are required to solve the two-by-two system of the
two middle processors. The first term in the expression for.the number of start-ups
contains a factor of four: a factor of two is due to forward and backward elimination,
and another factor of two is due to the sending and receiving of data during the
pipelining. Four start-ups are subtracted totally for the first and the last step of the
pipelining, for both forward and backward phases. It is assumed that Bm -> 12. The
second term in the expression for the number of start-ups accounts for the exchange
of the 3Q floating-point numbers between the two middle processors. It is assumed
that the exchange is done for all the Q systems together. The number of element
transfers are

(11)

2.4(3+1) Q+---l-1 +2.4.3Q.
2

For 2 systems per packet, 0 =< < log_ Q, the complexity estimate is

T2GE.p(P, Q; N, t, tc, ’, B, i)= - Q+2’ -1 +3Q-5" 2 t

r4 ’1
IBm /)(+N 2--- )

+2 ----m| 7"-t-(56Q-I-2i+4N-2i+6)tc"
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The number of element transfers are

(7 N )2.4(3+1).2 +-1-1 +2.4.3Q.

For 2i= Q, the complexity is

(12)

T2GE_p(P Q; N, to, t, r, Br, log Q)= Q(4P-2)to + 8Q(N + 1)tc

+ l(-{+,) + (7- ,) } ,,..
I ,,,,, I

Note that the coefficients of - and tc in equation (11) do not specialize to the coefficients
of " and tc in equation (12), because the communication changes from "send and
receive" to "send or receive." Equation (11) specializes to equation (10) when i=0.
When N 2 and 2i= Q, both (11) and (12) degenerate to two-way elimination on two
processors without pipelining. The complexity is

Q(4P-2)t.+ ’+24Qt.
lB,,/

The optimal value of 2 is /Qrl(Pta +4Nt) assuming B,, >- 12Q, and

8PQ
T2OE-p(P, Q; N, ta, t, r, Bin, iopt) ---- ta+2(N-3)r+56Qt+8/Qr(Pt.+4Ntc).

3.2. Equation transposition and substructured elimination. If all the systems are
identically distributed across the entire cube, then a transpose operation on the data
structure results in the trivially parallel case. A transpose operation on the result of
the solution to the equations may be required. This procedure is the multiple systems
version of algorithm TGET (n) (or TGET (n- 1 )). The number of arithmetic operations
is the same as in the pipelined case, but there is no inefficiency in the use of arithmetic
units. With Q mod N 0, all processors perform an equal amount of work in the
solution process. Two-way elimination does not offer any reduction in arithmetic
complexity, unlike in the single-system case.

The transposition of the set of equations gathers the equations of Q/N systems
into a single processor (and different processors for different sets). Each step of the
transposition doubles the number of equations ofa system that are present in a processor
(and reduces the number of different systems in a processor by a factor of two). It
may be advantageous to perform substructuring after every few transpose steps to
reduce the data volume that needs to be communicated.

The transposition can be performed through a sequence of exchanges in the
different dimensions. Such an algorithm is optimal with communication restricted to
one port at a time. With concurrent communication on all ports of every processor,
the communication time can be reduced by a factor that is at most equal to the
dimension of the (sub)cube in which the systems to be gathered are allocated [15].
Since each step for Q mod N 0 is an exchange step, the transposition in the multiple-
systems case requires at least twice the number of start-ups of the single-system case.
Additional start-ups may be required for a limited buffer size B,, since half of the
data set being transposed takes part in every exchange.
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The complexity of the initial substructuring is

Tss(P, Q; N, t, t, r, Br.) 17Q ([P] 1)t+2(16+4)Qt
/

(13)

+:,(r16< +
and the complexity of one gather and one scatter step of the transpose algorithm is

Tst(P, Q; N, t, , )
(14)

20QP
i"c + ([[7IN NB.

’!6P 11 +[[TJ NB.I6P 1 + r[71 ;"".1
+ f[--TJ At}),.

For steps of the transpose operation starting with P equations followed by
substructuring (assuming Q mod 2 =0), we have

( N )Tbt(P, Q; N, t, 7", Bin, i)+ Tss P, Q;-, t., tc, % Bm

r
I NB;I

+
I NB. ) 20iQPr+

N t

40QP
2iN tc,

where the first row is the transpose time, and the second row the substructuring time.
If the procedure is repeated recursively, then P/N 1 for all applications (since the
substructuring always reduces the number of remaining equations per processor to
one per system), except possibly for the first. In the last application it may also be the
case that substructuring is replaced by (two-way) Gaussian elimination (if N is 1 or 2).

In the above complexity expressions the time for local data movement is ignored.
For some computers, such as the Intel iPSC/1, this approximation is very poor [17].
The transpose operation implies a recursive partitioning of data sets into smaller and
smaller blocks. With a high start-up time for communication it may be desirable to
form messages of several blocks to fill a communication buffer. Accounting for the
local data motion time, or many start-ups because of many messages being smaller
than B,,, can significantly alter the complexity of the algorithm. With a copy time of
tcp for one byte, the copy time can be accounted for by using the following expression:

(15)

Tsbt(P, Q; N, t, r, B, tp, i)

j=l 2JNB,. I NB,. I

r,
NBr.|

tc,

where rcp_f=(8PO/N)tcp and rcp.b=(2PQ/N)tep are the copy times for half of the
local array for the forward and backward phases, respectively. Note that if 16PQ/2iN >-

B,,, then no extra overhead is required due to local data motion during transposition.
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For the Intel iPSC/1 the copy time for the communications buffer of size l k bytes is
approximately equivalent to 4z. Including the copy time yields an expression of the
form (1 + 2 + 4+ 4 +. + 4)z compared to (1 + 1 + 1 + 1 +. + 1)z if the copy time is
ignored, assuming 8PQ/N <-Bin. This difference is large enough to affect the choice
of solution method for multiple tridiagonal systems.

An alternative to the optimized transpose algorithm used for the estimates above
is to use the router. However, on the Intel iPSC/1 matrix transposition by the router
software is inferior by approximately a factor of five for large (relative to the packet
size) matrices, and by two orders of magnitude for small matrices (see Table 2).

TABLE 2
Matrix transposition on the Intel iPSC/1 for one-

dimensional partitioning.

Algorithm
Cube

P, Q dim. Optimum Router

1024 4 1.8 sec 8.7 sec
1024 5 1.3 sec 6.9 sec
128 4 0.058 sec 4.4 sec
128 5 0.075 sec 9.0 sec

For the arithmetic and communication parameters of the Intel iPSC/1, the com-
plexity estimates of an n- 1 step transpose followed by two-way elimination and the
same algorithm with substructuring preceding the transpose are compared in Fig. 7
for up to 5-cubes. Measured times are given in Fig. 7. We conclude that substructuring
is not advantageous for the Intel iPSC/1. Note the importance of including the copy
time for a good agreement between measured and predicted times.

In the substructured as well as the nonsubstructured estimates above we assume
that all the data for an equation is moved in the transposition. But in some instances
it is possible to store the system matrix pretransposed, and only transpose the right-hand
side and the solution vector.

4000

(SS)/TGET(n-I) measured times, P Q

, + SS/TGET(n- 1)

TGET(n-I)

",..

0
0 2 4

Cube dimension

4000

0
6

(SS)/TGET(n-1) predicted times, P Q 128

, + SS/TGET(n- 1)

TGET(n- l)-cp

TGET(n- )

0 2 4 6
Cube dimension

FIG. 7. The measured and predicted times for the TGET (n 1) and SS/TGET (n 1) algorithms.
TGET (n- 1)-cp includes the copy time.
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3.3. Balanced cyclic reduction. The arithmetic complexity of the substructured
elimination is the same as that of cyclic reduction, but cyclic reduction reduces the
communication requirements. After the substructured elimination, each processor has
one equation of each of the Q systems. In the BCR algorithm, the reduction process
for each set of Q/N systems "converges" to a distinct processor, thereby keeping the
load on the processors balanced. For each step of the reduction phase, the Q systems
are partitioned into successively smaller subsets by virtue of the equations on which
the reduction is performed. For instance, in the first step the set of equations is
partitioned in half: in one half elimination is performed on even equations, in the
other on odd equations. By numbering equations and systems from zero and letting
the elimination on even equations be performed for even systems, the lowest-order bit
in the binary encoding of the equation and system indices can be used to control the
communication and elimination operations. Another obvious choice is to perform
the elimination on even equations for the first half of the systems, in which case the
highest-order bit in the system index and the lowest-order bit in the equation index
are used for the control in the first step. By performing the operation recursively, the
control proceeds toward higher/lower order bits.

The BCR algorithm can be implemented as an exchange algorithm with exchanges
of equations between adjacent processors between elimination steps to keep all
equations subject to further elimination in easily identifiable subcubes for each system.
Such an exchange algorithm requires three exchanges for each step in the reduction
phase, and three in the backsubstitution phase. Hence, with one send or one receive
at a time, a total of approximately 12n start-ups is required, if the buffer size B, >= 8Q
bytes for real systems. The scheme is then applied to both subcubes recursively. Note
that four of these 12 communications can be saved, if the computations at each step
are split into two partsnthose depending on the preceding and succeeding row,
respectively (as described for the CR-2 algorithm). Figures 8(a) and 8(b) show the
four communication steps for one step of the BCR algorithm in the forward phase;
Figs. 8(c) and 8(d) are another alternative of the same complexity.

The estimated times for the exchange version of the BCR and SS/BCR algorithms
for Q mod N 0 are

TacR(N, Q; N, ta, to, -, B,)= 17Q(1---)ta+{4(16+4)Q(1---)+2(16+4)--}tc
(16) +{4’g-l(I16Q1 [ 4Q])

i= 2’B J +/2’B

+2([ 16Q

rss/c(, ; N , , r, )
(7

rss(e, ; N , , , )+r(N ; N t, , , ).
For arbitrary Q and P N, the complexity of one-step BCR is

Tbcr(O; t, t, r, B)= 17[1 t +4oot
(18)
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(1)(..2[’.1 7.....f" (o) "’,o( ...l...... :..["]

2(’s)[Q’] 3(.s)[’’]
(,)

BCR algorithm: (a)+

i1I".i)[
a(o)[l 2(o)[

(:)
Alternative BCR algorithm: (c) -F (d)

FIG. 8. Thefour communication stepsfor one step ofthe BCR algorithm in theforward phase. ’U "is the set of Q systems. In (a) the left subcube sends its equations of the set " and receives its neighbor’s
equations of the set ’. In (b) equations 1()[’], 3()[’], and 5()[ ’] are sent to equations 2(5)[’],
4(s)[’], and 6()[’], respectively; the communication in the right subcube is similar.

Hence, the complexity of/-steps of BCR for arbitrary Q can be derived by summing
the complexity of each step with the first parameter being Q, [Q/2 ], [Q/2 ]/2 ], etc.
An alternative to the exchange based BCR algorithm is to use an in-place algorithm.
For such an algorithm we choose to use the router of the Intel iPSC/1. The result of
implementing the two versions of BCR is shown in Fig. 9. The algorithm using the
router requires 50-100 percent more time for solving the reduced systems on the Intel
iPSC/1. The total time for the router based in-place algorithm is about 30 percent
higher than that of the algorithm using exchanges for each step in the case of a 5-cube.
For a fixed size problem the difference in the total time increases as the number of
cube dimensions increases, since the substructuring part reduces in significance.

The predicted times for solving the reduced systems is lower than the measured
times by approximately 30-70 percent for the 4- and 5-cubes, due mainly to the

4000

BCR Measured Limes, P q 128

400router

4
Cube dimension

BCR Measured Limes, P. N, Q 128

J exchange

.;..;.;..’.-’- #
predicted

0 0o 6 0 2 4
Cube dimension

FIG. 9. Measured and predicted times of balanced cyclic reduction (BCR) using the exchange and the
in-place algorithms. Note that the figure on the right is for the reduced systems, i.e., P N.
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synchronization delay. In fact, an algorithm with each communication step involving
all the processors tends to have a more significant delay for a larger cube. This
characteristic is often the reason why the difference between the measured time and
the predicted time increases with the cube size (Fig. 9).

With concurrent communication on all ports of every processor the number of
start-ups can be reduced by a factor of two. Hence, each BCR step in the forward
phase requires two communication steps (Fig. 8). This number of start-ups is minimal
because in each step the processors that need to communicate are a distance two apart.
However, it is possible to reduce the data-transfer time by a factor of up to four, (Fig.
8), by pipelining (a) and (b), or by overlapping the two alternatives ((a)+(b) and
(c)+(d)) with each working on half of the systems. The overlapping algorithm does
not cause any increase in the number of start-ups, and therefore is better than the
pipelined algorithm.

3.4. Hybrid algorithms. The optimum choice of algorithm depends on machine
parameters, the number of equations per system P, and the number of systems Q. In
the balanced cyclic reduction method, and in the transpose and substructuring method,
a problem is recursively changed into a number of problems on independent, smaller
subcubes. The choice of algorithm should be reevaluated during the recursion process.
The recursion can be stopped at any point by pipelined Gaussian elimination. The
optimum method is determined by the following set of equations:

Ttrid(P Q., N, ta, tc, % Bin)

T2GE(P, Q; 2, G, tc, r, B,) if N 2,

min { T2GE(N, Q; N, to, to, r, B,),

rsbt( Q; N, tc, T, Bin)-- rtrid ;-, a, tc, Bm

Tucr(Q; ta t, r, Bin)+ trid ;, ta, tc, ", Bm

{ T(P, Q; N, t, t, r, ),min

rss(e, ; N , , , )+(N; N , , ,)
where

if P= N,

otherwise,

TE(P, Q; N, ta, tc, z, B,)= min {T2E_p(P, Q; N, G, t, , Bin, i)},
0 i<--log Q

16Q + z+4OQtTss(P, Q; N, to, t, % B,) 17Q 1 to + 2
| B,,, /

I NB, NB, ) 20QPr+
N

tC,

Tbcr(Q"tatc’7’Bm 17I1t.+4(18_] [2Q])+ r+ 40Qtc.



584 C.-T. HO AND S. L. JOHNSSON

It is assumed that Q mod 2 0. If this is not true, then Tsb becomes equation (14) and
Tbc becomes equation (18). T2GE-p(P, Q; N, 6, 6, % B,,, i) is the time for pipelined
two-way elimination with 2 systems per packet (eq. (11)). TZGE is the time with optimal
packet size 2 i.

Figure 10 shows the general calling sequencies for Q kN. The label on an edge
of the graph is defined as in Fig. 3. The two arguments of Tss, and Tsbt, are PN and
Q. The arithmetic time of Tss, and the data-transfer time of Tsbt, are proportional to

T(32,

FIG. 10. The general calling sequencies for 32 >= P >= N and Q kN.

2k;32)

(1,32k)

;6)
t(2,16k)

;8)
,t(4, 8k)

’t4; 4)
t(8,4k)

2k;2)

the product of its two arguments. Figures ll(a)-(c) show how the calling sequencies
depend on the maximum packet size for 6 0, r 1, and 6 0. In the figure pipelined
two-way Gaussian elimination with a block size of Q equations and one equation are
represented by "o" and "." signs, respectively. When Bm is increased to o, part of
the region for substructuring is replaced by transposition. Figures l l(d)-(f) give the
optimum calling sequencies if both arithmetic time and data-transfer times are accoun-
ted for, and the communications overhead is high. Figure 12 shows the calling sequen-
cies for a set of parameter values for which the value of B,, is irrelevant.

In the figures showing the optimum choice of algorithm assuming tcp--0 the BCR
algorithm is never used, whereas with a large value of top, the BCR algorithm may be
preferable, as seen from Fig. l(e) tcp=0 and Fig. 13 tcp--4 (the value for the Intel
iPSC/1). As B,, increases, the region for BCR extends to larger N along the P N
diagonal line.

The time for steps of the BCR algorithm is

(19)
j----O

bcr -;6, tc,%B, =170 1- 6+4j=o 2JB, + 2JB," 7-

+800(1-) tc,

assuming P N and Q mod 2i= 0. If the time for local data motion can be ignored,
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FIG. 11. On the left, the calling sequencies for =0, z= 1, tc=O tcp=0, Q= N and (a) B,. 16, (b)
B.= 1024, and (c) B.,=26. On the right, the calling sequencies for ta/tc= 10, r/tc 1000, top=0, Q= N
and (d) Bm= 16, (e) B,. 1024, and (f) B,. =26.
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FIG. 12. The calling sequencies for ta/tc=O.O1, ’/t= 1, B,, 16, tcp=0 and Q= N.
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FIG. 13. e calling sequencies for ta/tc= I0, Z/tc= I000, B,, 1024, tcp/t=4, and Q= N.

then/-steps of the transpose algorithm followed by substructuring is

) )j=o
Tsbt N, ,’--2j, ta, tc, r, Bm +Tss P, , ta, tc,

In order to account for the local data motion time the first term in the coefficients
for both - and tc need to be changed according to equation (15).

Note that for i= 1, equations (19) and (20) yield the same complexity. For > 1
equations (19) and (20) have the same arithmetic complexity. For i> 1 and Bm >-8Q,
the start-up time of (19) is always higher than that of (20). The ratio is two asymptoti-
cally. For a limited buffer size, the number of start-ups eventually compares as the
data-transfer times. The data-transfer time of equation (19) is smaller than that of
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equation (20), except if i= 2 and 3. Hence, with top--0 the complexity of one step of
BCR is the same as that of the one-step transposition followed by substructuring. The
complexity of two steps (three steps) of BCR is always higher than that of two-step
(three-step) transposition followed by substructuring, independent of the maximum
buffer size. With top 0, BCR is never preferable over transposition and substructuring
with respect to computational complexity for Q being a multiple of N. The optimum
number of transposition steps for each substructuring depends on the values of ta, r,
to, B,,, and Q. With local data motion requiring a significant time the BCR algorithm
becomes competitive, especially for relatively large maximum packet size.

3.5. Summary of algorithms for solution of multiple systems. From the above
analysis, and the recursion formulas for optimum choice of solution method we
conclude that for multiple systems:

Relatively high arithmetic time favors pipelined Gaussian elimination and
transposition without substructuring.
Relatively high data-transfer time favors pipelined Gaussian elimination instead
of transposition.
Relatively high communication start-up time favors transposition instead of
pipelined Gaussian elimination.
The block size for pipelined Gaussian elimination tends toward all equations
when the arithmetic time is insignificant, otherwise the block size tends to be
small (one equation) to maximize the use of the.processor pipeline.
A smaller communications buffer tends to favor substructuring instead of trans-
position.
For a fixed N, doubling the number of equations almost doubles the arithmetic
time for pipelined Gaussian elimination and leaves the communication time
unchanged. With substructuring the total arithmetic time approximately doubles,
but increases relatively somewhat more than for Gaussian elimination. The
communication time is unchanged. Increasing P for fixed N and Q favors
pipelined Gaussian elimination.
Doubling both N and 0 for fixed P > 2N keeps the total work per processor
constant. The start-up time and data-transfer times for pipelined Gaussian
elimination approximately doubles. For transposition and substructuring the
data-transfer time also approximately doubles, but there are only four additional
start-ups. Hence, as N increases substructuring is favored.
With insignificant time for local data motion the BCR algorithm is never
competitive with the transpose/substructuring algorithm with respect to compu-
tational complexity. With a high cost for local data motion the conclusion may
become the opposite because in the BCR algorithm Q/2 active systems out of
Q can be selected to be continuous independent of the step. Increasing the
maximum packet size favors the BCR algorithm more than the transpose/sub-
structuring algorithm as far as copy time is concerned.
The communication time of the transpose/substructuring algorithm can be sped
up by at most a factor equal to the dimension of the subcube from which data
are gathered (i for/-step transposition) with concurrent communication on all
ports of every processor. A similar speed-up is not possible for the BCR
algorithm, because of communication conflicts.

4. Two-dimensional decomposition. In the one-dimensional decomposition for the
solution of multiple tridiagonal systems the choice of algorithm is either trivial (embar-
rassingly parallel), or the analysis above should guide the choice of algorithm. The
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nontrivial case is of particular interest for two- or higher-dimensional problems, and
solution methods such as fast Poisson solvers and the Alternating Direction Method.

4.1. One directional solution. The one-dimensional analysis is easily generalized
to the two-dimensional case by assuming that Q/N2 systems are distributed to each
of N2 separate subcubes consisting of N1 processors each, where N1 x N2 N. The
allocation of partitions to processors within each subcube is made by a binary-reflected
Gray code. The time for the solution of the systems of equations is given by
Ttrid(P, Q/N2; N, ta, tc, r, B,,), where N= N x N2. It is fairly easy to verify that the
solution time is minimized if N2 is maximized. The one-dimensional partitioning
yielding the "embarrassingly" parallel case is optimum.

4.2. Alternating Direction Methods (ADM). We consider a grid of P x Q internal
points, and embed it in an N x N2 processor mesh, that in turn is embedded in a
Boolean n-cube by a two-dimensional binary-reflected Gray code. Thus, each processor
is assigned PQ/N grid points. The two-dimensional Gray code ensures that each row
and column of the processor mesh is itself a subcube, and that adjacency is preserved
for each row and column. One ADM step consists of two half steps, each of which
implies a number of tridiagonal matrix-vector multiplications and the solution of an
equal number oftridiagonal systems. Each ofthe vectors in the matrix-vector multiplica-
tion represents the solution variables along a row (column) of the computational grid,
and the tridiagonal matrix the approximation of derivatives along the same row
(column). Similarly, tridiagonal systems are solved for each row (column). The second
half step is the complement of the firstuone forms the matrix vector products along
the grid rows and solves tridiagonal systems along columns.

One ADM step consists of two half steps,

(I-1/2AtAx)ui+/= (I +1/2AtBy)u i,

(I -1/2AtBy)u i+l (I +1/2AtAx)u i+’/

In each half step, computations are performed independently on grid rows or
columns, i.e., on independent subcubes [19]. The matrix vector product takes a time
of5(PQ/N) ta for the arithmetic, and requires exchanging QN floating-point numbers
with nearest (north and south) neighbors for one of the half step. This .gives a total
time of

(21) Tmpy P,--;N,,t,tc, Z, Bm =5---t+16-tc+ N2B 4%

for the matrix vector products of one half step. Then Q/N2 tridiagonal systems of
order P each are solved on subcubes of N1 processors.

Let TAD(P, Q; N, ta, t, r, B) be the time for one step of ADM. Then,

To(P, Q; N, t., t, , )
-< min
0log N1log N { (Q )Ttrid e"2", Nl, ta, tc,’rBm

(22) "- Ttrid Q, N2, ta, tc, r, Bm

+ Tmpy Q,-; N2, ta, tc, 7", Bm
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For matrix-vector multiplication and pipelined Gaussian elimination with one
system per block, the leading term of the arithmetic complexity is independent of the
shape of the processor array. A lower-order term in the arithmetic complexity for the
pipelined Gaussian elimination is optimized for N1 #PN/Q. The number of start-ups
for the matrix-vector multiplication as well as one of the two major terms in the
expression for the number of start-ups in the pipelined Gaussian elimination are
minimized at N1 v/PN/Q. Another major term contributing to the number of start-ups
in the pipelined Gaussian elimination algorithm is minimized for N1 =-. The
optimum choice of N1 for the data-transfer time is similar to that of start-up time. For
a transpose algorithm followed by local Gaussian elimination, the complexity is
independent of N1 (for any B,,). For the SS/BCR algorithm, the arithmetic time is
independent of N1; the start-up time is independent of N1 for large B,,, and minimized
at N #PN/Q for small B,; the data-transfer time is minimized at N1 v/PN/Q.
With this value of N1, P! Q N1/N2, i.e., the aspect ratio of the processor grid is the
same as that of the physical grid.

Let

]Q1 2t(gN+lge-gO)/aJ and /Q1

be the two (or one) power-of-two numbers closest to N1 =/PN/Q. Let be the
choice of/Q1 and N1 that yields the smallest execution time, and let Nlot be the optimal
value of N1 for equation (22) with~Tpy ignored (most of the time is spent on the
tridiagonal part). Also let )r2 N/N and N:oo N Nloo,. Using )Q1 instead of Nloo,
results in an execution time that is at most 20 percent higher than optimum for
the set of machine parameters investigated earlier and P Q. (The time for/Q is the
same as the time for N1 due to symmetricity.) The number of (P, N) pairs for which

1 Nlo,, is a small fraction of the considered region of (P, N) pairs.
We also evaluated the nonoptimality of )Q1 for 1 _-< log N _-< log P log Q 4_-< 20.

In this case the largest deviation in execution time from the optimal value was 50
percent. Again, the region where the simplified choice results in measurable increase
in execution time compared to the optimum.choice is small.

The values of log N2opt- log Nlo,-log N2 + log N for a few cases, are shown in
Fig. 14. The closer this number is to zero, the closer Nlo is to N.1. The figure also
shows the consequences of selecting an array aspect ratio as N1 x 2 instead of

N1 pt
X N2 pt

by giving the ratio of r Tu, /T, where Tu, and Tg, are the sum of
opt pp

the times for solving tridiagonal systems along the two axis wth N1 Nlopt and
respectively. For Figs. 14(a) and 14(b), r=>0.86 for the considered domain. If B,, in
Figs. 14(a)-(d) is reduced to 16, then Nopt =/Q for the considered domain.

Based on our examples, decreasing.the maximum packet size, or increasing the
data-transfer rate, tend to yield Nop

5. Conclusions. The execution time for multiprocessors with a packet switched
communication systems and nodes without pipelined arithmetic units can be accurately
modeled by the start-up time for a communication, the data-transfer time, maximum
packet size, and the time for arithmetic operations. It may also be necessary to account
for the local data motion time, as is the cas6 for the Intel iPSC! 1.

For a single tridiagonal system, the analysis as well as the experiments on the
Intel iPSC/1 show that odd-even cyclic reduction can be competitive with parallel
cyclic reduction with respect to arithmetic time, and in particular with respect to
communication time. Odd-even cyclic reduction performed considerably better than
parallel cyclic reduction on the Intel iPSC/1. A similar result has also been observed
on the AMETEK system S14 [20].
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FIG. 14. The values of log N2o,,-log Nlop,-log 2+log 1 for (a) t,, =0, r= l, re=0, Q/P= l, (b)
to 1, ’/t= 1000, Q/P= 1, (c) =0, r= 1, to=O, Q/P= 16, and (d) ta/t 1, r/t 1000, Q/P= 16;
all ith B 216 and top O. e ratio ofT / T, for the same sets ofparameters as (c) and (d) are shown
in e and (0, respectively.

For multiple tridiagonal systems of equations the domain in the parameter space
in which pipelined Gaussian elimination requires less time than the other considered
algorithms is increasing at the expense of substructuring with increasing time for an
arithmetic operation. The region for pipelined Gaussian elimination is increasing at
the expense of transposition with or without substructuring with an increased time for
the transfer of an element between processors. A high communication start-up time
favors transpose based algorithms instead of pipelined Gaussian elimination. Reducing
the size of the communications buffers favors substructuring and pipelined Gaussian
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elimination instead of transposition. The choice between substructuring and pipelined
Gaussian elimination is generally a function of P! N, except for relatively small P and
N for which pipelined Gaussian elimination is of choice. Increasing the size of
individual systems for a fixed size cube and a fixed number of systems favors pipelined
Gaussian elimination. Increasing the cube size and the number of systems for systems
of fixed order favors substructuring. Balanced cyclic reduction is only of interest with
a high cost for local data motion.

For multiprocessors with the performance characteristics of the Intel iPSC! 1 and
with at least 1024 processors (the Intel iPSC/1 is limited to at most 128 processors)
pipelined Gaussian elimination would be the method of choice if P/N >= 128, transposi-
tion without substructuring the choice for P/N =< 4, and substructuring the preferred
method otherwise, except for P N for multiprocessors with 32-4,096 processors. In
the last case, balanced cyclic reduction is the preferred method with respect to execution
time. For cubes with at most 512 processors, the choice ofmethod is very case dependent
(Fig. 13).

For Alternating Direction Methods choosing the aspect ratio of the processing
array as close as possible to the aspect ratio of the physical domain is optimal for a
large range of parameter values, and close to optimal for many other values.

Combining in the routing system is important for the performance of several of
the algorithms. The required combining is of the merge/split type.

During the revision of the paper, some of our iPSC/1 codes were ported to iPSC!2
by Eisenstat and compared with the timing of his code using a different data structure
[4]. A preliminary result shows that the codes by Eisenstat seem to perform slightly
better than the codes by us for iPSC/2. Also, the choice of algorithm for iPSC/2 is
different from that of iPSC! 1.

Acknowledgments. We thank Stanley Eisenstat for his helpful comments on
implementation issues and Eileen Daily for her editorial efforts.
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A FAN-IN ALGORITHM FOR DISTRIBUTED
SPARSE NUMERICAL FACTORIZATION*

CLEVE ASHCRAFTt, STANLEY C. EISENSTAT$, AND JOSEPH W. H. LIU

Abstract. This paper presents a column-oriented distributed algorithm for factoring a large
sparse symmetric positive definite matrix on a local-memory parallel processor. Processors cooperate
in computing each column of the Cholesky factor by calculating independent updates to the corre-

sponding column of the original matrix. These updates are sent in a fan-in manner to the processor
assigned to the column, which then completes the computation. Experimental results on an Intel
iPSC/2 hypercube demonstrate that the method is effective and achieves good speedups.

Key words, sparse Cholesky factorization, distributed numerical factorization, fan-in algorithm

AMS(MOS) subject classifications. 65F05, 65F50, 65W05

1. Introduction. With the advent of local-memory parallel processors, many
researchers have considered the problem of solving large sparse linear systems on such
architectures [3], [4], [5], [7], [9], [11], [12]. In this paper, we present a new column-
oriented distributed algorithm for computing the Cholesky factor of a large sparse
symmetric positive definite matrix.

We assume that each processor has been assigned a subset of the columns in
the matrix and is responsible for computing the corresponding set of columns in the
Cholesky factor. We do not address the problem of how to symmetrically reorder the
matrix to increase the potential parallelism, nor do we address the problem of how to
assign columns to processors to balance the workload and reduce communication. See
[7] for one approach to these problems.

Processors cooperate in computing each column of the Cholesky factor by calcu-
lating independent updates to the corresponding column of the original matrix. These
updates are sent in a fan-in manner to the processor assigned to the column, which
then completes the computation. Thus we refer to this as a fan-in algorithm for
distributed sparse numerical factorization.
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FIG. 1. A 10 10 symmetric matrix (only the lower triangle is shown).

In 2, we briefly review Cholesky factorization by columns and introduce the
notion of an aggregate update column. In 3, we describe how the fan-in algorithm
uses aggregate update columns to compute the columns of the Cholesky factor. In 4,
we present performance results on an Intel iPSC/2 hypercube. The speedups obtained
compare favorably with those reported in [7] and [9].

2. Preliminaries. Let A be an n x n symmetric positive definite matrix and let
L be its Cholesky factor, with entries aij and lij, respectively. The column-Cholesky
method computes L column by column:

Algorithm 1: Column-Cholesky Factorization

for column j := 1 to n do
begin

:---- ljk
tn anj lnk

tj

end

Here the temporary vector (tj, ..., tn) is used only for clarity; its storage can overlap
completely with hat of (l.,... ,lnj)r.

This formulation is applicable to both dense and sparse matrices. But in the
sparse case, the updates lj(l:,..., 1,) to column j are sparse and come only from
those preceding columns k of L for which lj O. These columns are given precisely
by the nonero structure of row

Struct(Lj,) {k k < j, ljk 0}.
For example, consider the symmetric matrix whose lower triangle is shown in

Fig. 1. Each nonzero in the matrix is represented by a ".", and the matrix has been
chosen so that no fill-in occurs during the factorization. The seventh column of the
Cholesky factor is computed (sparsely) as

t7 a77
ts as7 171 I2 174 I50 0
10 a10,7
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Since Struct(LT,) {1,2, 4,5}, both/73 and 176 are zero and columns 3 and 6 do not
enter into the computation.

To describe the fan-in algorithm for distributed sparse numerical factorization, we
now introduce four related notions:

factor column L,j (ljj,... ,lnj)T;
update column ljk(ljk,’’" ,Ink)T, where ljk 0;
complete update column keStruct(n,)ljk(ljk," ,lnk)T;
aggregate update column keg ljk(ljk,’" ",lnk)T, where K C_ Struct(Lj,).

The factor column L,j is an implicit representation of the n j update columns

lij(lij, lnj)T, j + 1,..., n.

Update columns and complete update columns are special cases of aggregate update
columns where K {k} and K Struct(Lj,), respectively.

In Algorithm 1, the column-Cholesky method is formulated in terms of complete
update columns the complete update column for column j is computed and sub-
tracted from (ajj,..., anj)T.

It can also be formulated in terms of update columns- the update columns for
column j are computed and subtracted one at a time. This is the approach used in a
(nodal) sparse matrix factorization code, and in the distributed algorithm presented
in [7] (where the update columns are sent implicitly as factor columns1).

And it can be formulated in terms of aggregate update columns the update
columns for column j are partitioned into disjoint sets, an aggregate update column
is computed for each set, and these aggregate update columns are subtracted one at a
time. This is the approach used in a supernodal sparse matrix factorization code [2]
(where the groups correspond to supernodes), and is the basis for the fan-in algorithm
presented in the next section.

3. A fan-in distributed algorithm. Assume that we are given a mapping of
columns to processors, and let map[k] denote the processor assigned to column k.
Then we can write the complete update column for column j as a sum of aggregate
update columns (each corresponding to a different processor p):

where

and

E ljk(ljk,’’’,lnk)T Eu[j’P]
kStruct(Lj. p

u[j,p] E ljk(ljk, ,Ink)T,
krow[j,p]

row[j,p] {k e Struct(Lj,) map[k p}.

Note that the update columns appearing in u[j, p] all come from factor columns that
are mapped to processor p. Thus u[j, p] can be computed without any interprocessor
communication. Of course, if row[ j, p] q}, then u[ j, p] 0 so that

E ljk(ljk,’’" ,lnk)T E u[j,p].
kStruct(Lj, p row[j,p]O

That is to say, if ljk :/= 0, then the factor column L.k is sent to the processor assigned to column
j, which then computes the update column ljk(ljk,... ,lnk)T and subtracts it from (ajj,... ,anj)T.
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We now state the fan-in algorithm for distributed numerical factorization.

Algorithm 2: Fan-in Distributed Cholesky Factorization

mycols { j map[j] myname}
for column j := 1 to n do

if row[j, myname] O or j E mycols then
begin
u:=0;
for k row[j, myname] do

u :- u + ljk(ljk, "",Ink)T
if j mycols then

Send aggregate update column u to processor map[j]
else
begin

t :--- (ajj,...,anj)T-u;
while not all contributions have been received do

Receive an aggregate update column u for column j
from another processor and subtract u from t

end
end

Here rnynarne denotes the processor-id of the processor under consideration, and all
vector operations take advantage of sparsity.

This algorithm works for any mapping of columns to processors, although the
performance is highly dependent on the precise mapping.

For simplicity, we have assumed that the aggregate column u[j,p] is sent di-
rectly to the destination processor map[j] and that t is formed by subtracting each
of these contributions from (%j,..., aj)T. While this approach works irrespective of
the connectivity of the multiprocessor network, one could also take advantage of the
underlying topology by partially summing the aggregate update columns on their way
to the destination processor. With this change, the underlying logic closely resembles
that used in the fan-in scheme of Romine and Ortega [10] for the solution of dense
triangular linear systems.

To illustrate the operation of Algorithm 2, we use the example from 2. Assume
that the columns have been assigned to processors p, P2, and p3 using a simple wrap
mapping (see Fig. 2). The columns assigned to each processor are shown in Fig. 3.

4
5

6
7

8
o9

oeoool0
Processor Pl P2 P3 Pl P2 P3P p2 P3 p

FIG. 2. Wrap mapping of the columns of a 10 10 matrix.
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1 tl /1 N
2 2 2
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6

8

update u[7, pz] update u[7, p2] update u[7, p3] 0

FIG. 3. Fan-in factorization of column 7.

Column 7 of the Cholesky factor belongs to processor Pl, and there are contribut-
ing update columns from processors pl and/)2, but not from processor io3 (since both
173 and/76 are zero). Processor p2 has to compute its contribution to column 7,

u[7,p2]

and send it to processor p. Processor p has to compute its contribution to column 7,

u[7,p] 17 -t-/74

subtract the two aggregate update columns (sparsely),

t7

1
a77

0 0
tl0 a10,7

and finally compute the factor column (l,,...,/lO,7)T.
4. Experimental results. The distributed fan-in algorithm for sparse Cholesky

factorization was implemented in C and run on an Intel iPSC/2 hypercube with Weitek
1167 floating-point chips.

The test problems were nine-point finite-difference operators on rectangular grids.
We used the nested dissection ordering [6], since it gives optimal-order fill and a well-
balanced elimination tree. We used the subtree-to-subcube mapping [8] to assign
processors to columns, since it gives good load balance and reduced communication.
Table 1 contains the timing results and the corresponding speedups for three grid
problems. The speedups are relative to a state-of-the-art serial code, again written
in C.

Two other approaches to distributed numerical factorization are:
the fan-out algorithm, in which each factor column is sent from its originating
processor to every destination processor that needs it [7];
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TABLE 1
Parallel factorization time and speedup on hypercube.

Problem Serial
Time

31 31 2.74
63 63 23.26
125 63 60.21

8 Processors
Time Speedup
0.54 5.07
3.86 6.03
9.26 6.50

16 Processors
Time Speedup
0.39 7.03
2.41 9.65
5.67 10.62

32 Processors
Time Speedup
0.32 8.56
1.56 14.91
3.52 17.11

a distributed version of the multifrontal method [9].
The fan-out code achieved a speedup of 5.54 when solving an L-shaped grid problem
with 2614 unknowns on a 16-processor hypercube [7]. The multifrontal code achieved
a speedup of 9.5 when solving a nine-point problem for a 65 65 grid on a 16-processor
hypercube [9]. The speedups given in Table 1 compare favorably with these results2

and suggest the potential of the new distributed scheme.
However, one should not draw conclusions on the relative merits of these ap-

proaches based on these statistics, since the problems, machines, and baseline sequen-
tial codes differ. A thorough and detailed comparison of the fan-in, fan-out, and
distributed multifrontal methods, and their respective implementations, will be given
in [1].

Acknowledgment. We would like to thank Andy Sherman and the referees for
their helpful comments and suggestions.
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ON THE USE OF STRUCTURAL ZEROS IN ORTHOGONAL
FACTORIZATION*

JESSE L. BARLOW?

Abstract. If the orthogonal factorization of a sparse matrix A is the result of column updates, the
numerical upper triangular factor R may have numerical nonzeros where there are structural zeros. This
problem arises in the solution of sparse inequality-constrained least squares problems by active set methods.

In order to fit R into a static data structure, these nonzeros have to be neglected, even though,
theoretically, they may be quite large. In this communication, it is shown that neglecting these nonzeros
does not have an adverse effect.

Key words, least squares, symbolic factorization, sparsity, numerical nonzeros
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Structural zeroes in orthogonal factorization. Let A be an m n sparse matrix
which has been factored into the form

(1) A:QR,

where Q is an m rn matrix and R is an rn n matrix. R may be upper trapezoidal
or it may be an intermediate stage in an orthogonal factorization of A. The matrix A
is assumed to be a submatrix of the rn p matrix B, where p _-> n. It is desired to allocate
storage for the factorization of A based upon the symbolic factorization of BrB from,
say, SPARSPAK-B [2].

If the factorization is the result of a sequence of column updates, then we may
have a factorization of the form

(2) = a+ 6A= (Q+ 6Q)(R + 6)= QR,

where 0 Q+ 80,/ R + 6/ are the computed versions of Q and R in (1),A6A is
the backward error, and 6( and 6/ are forward errors in computing ( and R. The
entries of/ may be nonzero where R has structural zeros according to the symbolic
factorization of BTB. This problem was encountered by Bj6rck [1] in the solution of
sparse box constrained least squares problems. To save storage and to be able to use
a static data structure as in SPARSPAK-B [2], it is often convenient to neglect these
numerical nonzeros in/. Stewart (private communication) pointed out to ,ke BjSrck
that from his analysis [3], these nonzeros could be quite large. We show here that
neglecting these values will not have a deleterious effect, no matter what their size.

First, we recognize that,by setting structural zeros to zero, instead of storing R in
(2) we are, in fact, storing R, which is defined by

R R + 6R, 6R (6o),
where the entries of 6R satisfy

6r^ij if rij # 0 (by structural considerations)
6F 0 if rj O.

Received by the editors September 8, 1989; accepted for publication November 30, 1989. This research
was supported by National Science Foundation grant CCR-8700172, the Air Force Office of Scientific
Research grant AFOSR-88-0161, and Office of Naval Research grant N0014-80-0517.

? Department ofComputer Science, Pennsylvania State University, University Park, Pennsylvania 16802.

6OO



TIMELY COMMUNICATION 601

Clearly

Thus the forward error in R is no greater than that of R.
One concern would be how the use ofthese structural zeros would affect subsequent

calculations. That is, suppose that R is an intermediate stage in an orthogonal factor-
ization. Suppose that we also perform the orthogonal factorization

R= QEU,

where U may be upper trapezoidal or just a later stage in the factorization. Then,
computationally, we have

R + 8/ + t/ --/ -- tll Q2 + td2)( U+ t/.),
R + 8R + 5R1 R / 5R1 (Q2 / 8Q_) U+ 8u),

where 8/1 and 5/1 are the backward errors in the second factorizations. From Stewart
[3] the resulting forward errors in 5(: and tS are

(3)
3K(R)o3

1 2K (R)t5

and

(4) I1 011 + +

Here 03 11/ + ,II,/IIRII,, We have analogous bounds for t(ll F and II0IIF. Since
/ and / satisfy similar backward error bounds and the expressions (3) and (4)
are monotone increasing functions in 03, these bounds will not be adversely affected
by setting numerical nonzeros to zero where there are supposed to be structural zeros.
Indeed, they may be improved by doing so.

This result is supported by numerical tests in [1].
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presentation.
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POTENTIAL FLOW IN CHANNELS*

L. GREENGARDt

Abstract. A method is presented for calculating potential flows in infinite channels. Given a collection
of N sources in the channel and a zero normal flow boundary condition, the method requires an amount
of work proportional to N to evaluate the induced velocity field at each source position. It is accurate to

within machine precision and for its performance does not depend on the distribution of the sources. Like
the Fast Multipole Method developed by Greengard and Rokhlin [J. Comput. Phys., 73 (1987), pp. 325-348],
it is based on a recursive subdivision of space, knowledge of the governing Green’s function, and the use
of asymptotic representations of the potential field. Previous schemes have been based either on conformal
mapping, which experiences numerical difficulties with the domain boundary, or direct evaluation of Green’s
function. Both require O(N2) work.

Key words, fluid dynamics, potential flow, vortex method, N-body problem, Fast Multipole Method

AMS(MOS) subject classifications. 30B50, 31A15, 41A30, 65E05, 70C05, 70F10

1. Introduction. The evaluation of potential fields in infinite channels arises as a
numerical problem in several areas, most notably electrostatics and fluid dynamics.
The governing equation is the Poisson equation,

(1) A=

subject to an appropriate boundary condition. In this paper, we will restrict our
attention to two-dimensional models and will consistently use the terminology of fluid
dynamics. In viscous incompressible flow, the left-hand side is the stream function,
the right-hand side is the vorticity, and the condition imposed on the boundary is that
of zero normal flow

(2) u.n=0,

where the velocity field u is given by

(3) u= xx"
In terms of the stream function, this is equivalent to specifying homogeneous Dirichlet
boundary conditions

(4)

We will concentrate on particle models, where the vorticity field is discretized,
not by a mesh, but by N point vortices,

N

(5) -- E i" l(X--Xi, Y--Yi)"
i=l

Here, $ is the Dirac -function and sci is the strength of the ith point vortex located
at (xi, yi). In vortex methods, what we would like to compute is the stream function
and/or velocity field at each particle position. In the absence of boundary effects, the

* Received by the editors September 19, 1988; accepted for publication (in revised form) April 26, 1989.
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604 L. GREENGARD

desired results can be obtained from the free-space Green’s function for the Poisson
equation (-(1/27r) In r) as follows:

(6) (x,, Yi)--- # --J" In ((x, xj )2 + (y, yj )2) for i= 1 N,
4r

(7) u(x,, y,)= E (Y’- y’ x- x,)
for i= 1, , N., 27r (x,-x)2+(y,-yj)2

Note that, using direct summation, the calculations (6) and (7) require an amount of
work proportional to N2. To overcome this obstacle, a variety of fast "N-body"
methods have been proposed in the last few years, which reduce the computational
complexity to O(N log N) or O(N). These include particle-in-cell methods 1], 15],
astrophysical tree codes [2],[3], series expansion methods [17],[20], and the fast
multipole method [5], [9], [10], [18].

Remark 1.1. It is clear from (6) and (7) that the stream function and velocity field
are unbounded in the neighborhood of a point vortex. In [7], Chorin introduced the
idea of replacing the point vortices by "vortex blobs" whose induced field is held
constant within a small neighborhood of the source. More recent work by Hald [11],
Beale and Majda [4], and others has shown that higher-order accuracy can be obtained
by using different approximations for the local field. Outside a finite-size core, however,
the velocity field due to a vortex blob in most of these methods is simply that of a
point vortex. Since we are interested in reducing the computational cost of vortex
methods, which is generally dominated by far field interactions, we will ignore the
precise nature of the local interactions and will continue to use the point vortex model.

For a straight channel, the fluid velocity cannot be obtained as in (6) and (7).
The main difficulty is that the zero normal flow condition can only be satisfied by an
infinite image system ( 2), making direct summation over a collection of point sources
impossible. The most commonly used technique for overcoming this problem in
constrained flows is that of conformal mapping. By converting the calculation to one
in the upper half plane, the boundary condition can be imposed with one image per
particle, and the potential flow computed as in (6) and (7) with only double the number
of point vortices (Fig. 1). An attractive feature of this approach is that the fast N-body
algorithms for free-space calculations may be applied directly.

There are two objections to this mathematically reasonable procedure. In a channel
with zero normal flow boundary conditions, the velocity field induced by a point source
decays exponentially along the length of the channel. But the free-space Green’s
function used in the upper half plane decays as 1! r, losing much of the physical

FIG. 1. Conformal mapping of the channel to the upper halfplane. The left-hand limit points A and C are

mapped to the origin and the four solid vertical line segments in the channel are mapped to the four semicircles

in the upper halfplane. Two representative particles are marked by the small circle and square. The zero normal

flow boundary condition is easy to apply with the method of images (each source is simply reflected across the

x-axis and given opposite strength). Unfortunately, there is much stretching and contraction of the physical
domain, which can cause practical difficulties.
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behavior of the solution. In fact, the physical behavior is expressed by the mapping
itself, which for the strip {0 <-y-< 7r} is simply e. The second objection is that a
discretization of the boundary is often required (e.g., for vorticity generation). Confor-
mal mapping, however, is well known to experience numerical difficulty when the
derivative of the map has a great dynamic range 12], 16], 19]. This is clearly observed
in Fig. 1, where the images of equispaced points along the top and bottom of the
channel are points whose separation is growing (or contracting) exponentially. It
would, on both counts, be much preferable to remain in the channel itself. To do this
we will first need to replace the infinite image system by an analytic expression for
the Green’s function. This can be obtained through elliptic function theory. In [6],
Choi and Humphrey derive expressions for both the infinite channel and a closed
rectangular domain. With this expression, the velocity field can be obtained in a manner
analogous to the N-body calculation of equation (7). Direct summation, of course,
will require O(N2) work.

In this paper, we propose a new algorithm for two-dimensional potential flow in
infinite channels. It is based on the analytically derived Green’s function, and requires
an amount of work proportional to N to evaluate all pairwise interactions. Like the
Fast Multipole Method (FMM), it makes use of the superposition principle, far-field
and local expansions, and a recursive subdivision of space. The channel algorithm
consists of two distinct parts. The first part, described in 2 and 3, is devoted to
computing distant interactions along the length of the channel. After deriving the
Green’s function, we consider its long range behavior and define certain asymptotic
representations of the far field that we refer to as stream expansions. We then carry
out an initial decomposition of the computational domain along the length of the
channel, and show how to efficiently compute interactions at a distance in the lengthwise
direction. The second part of the algorithm is described in 4, where we address the
problem of computing near neighbor interactions. We show how elementary analysis
can be used to reduce the computation to a set of uncoupled free-space problems,
each of which can be solved by repeated application of the FMM.

2. Green’s function for an infinite channel. We begin by developing an explicit
expression for the velocity field induced by a point vortex in an infinite channel. The
domain is defined to be the strip {0-<_ y-< H}. We refer to the direction x increasing
as downstream and to the direction x decreasing as upstream. We will use complex
notation, equating the points (xi, yi) with the complex numbers zi. If we define fi by

(8) E
1

ji 27r zi zj’

then

(9) u(x,, y,)= (Im ((z,)), Re ((z,)))

is the velocity field induced by a collection of point sources with strength located
at the points z (x, y). In the remainder of this paper, we consider the calculation
of 6 rather than u and will abuse notation by referring to as the velocity field.

Let us now suppose that a source of unit strength is located inside the channel
at Zo and that z is a second point inside the channel with z Zo. In order to satisfy
the zero normal flow condition along the top and bottom of the channel, we introduce
the infinite image system shown in Fig. 2.

Let us first add up the contributions from the images with positive strength, located
at Zo + 2jHi(j -,. ., c). The velocity field 61(x) induced by these images is given
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.ZO
2;

2o+4Hi

Zo+2Hi
Zo + 2Hi

Z
.Zo

zo-2Hi
o-2Hi

(b)

FIG. 2. Enforcing boundary conditions by the method of images. Successive reflection across the top and
bottom boundaries creates the image system shown. The images at positions o+2jHi, j =-c,..., have
strengths of opposite sign from those at positions z + 2jHi.

by the expression

(10) fi(z)=
1

=_ z Zo + 2jHi

(11)
1 +

1

Z Z0 Z Z0 + 2jHi

1
/

z Zo- 2jHi

(12)
1 +j’ 2(Z-Zo)

Z Zo Z Zo) +4HZj2"

But from ([8, p. 36]) we have

(13) coth (Trz)
1 2z . 1

=--"l"--
k’" Z

2 k2’
7rz 7r -I-

so that

(14)

where

ill(z) tr. coth (tr(z- Zo)),

(15) cr-
2H

For the images with negative strength, located at o+ 2jHi (j -c, , ), we obtain
an induced velocity field fi2, given by

(16) fi2(z) =-tr. coth (tr(z-o)).

The net velocity field is, therefore,

(17) fi(z) r. (coth (tr(z- Zo))-coth (tr(z- o))).

A simple integration yields the stream function induced by a point vortex,

( (sinh (o’(z- Zo)))(18) (z) =Re log
sinh (r(Z-eo))]
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A different derivation of W is given by Choi and Humphrey in [6]. As mentioned
previously, with this analytic expression for the pairwise interaction, the evaluation of
the velocity field at each of the N source positions can be carried out in O(N2)
operations. In order to develop a fast algorithm tailored to the channel itself, we need
to examine the properties of the Green’s function in more detail.

2.1. Upstream and downstream expansions. Let us suppose that z is downstream
of Zo (Re (z- Zo) > 0). Then

e’(Z-Zo) + e-,*’(Z-Zo)
(19) coth (o-(z- Zo)) e.Z_Zo_ e_,.Z_Zo

(20) =-1 +
1 e-2re(z-z)

(21) =--1+2" e2"zok.e-2zk.
k=0

Note that (21) can be obtained from (20) only if e-2’’(Z-Zo)< 1, which is ensured by
the condition that z be downstream of the source. From (17), then, the velocity field
downstream of a unit source at Zo has the expansion (about the origin)

(22) (z) 20". E (e2’ e2"e) e-2.
k=l

From this, it is immediately obvious that the decay in the field is exponential along
the length of the channel. The main reason for developing an expansion of this form,
however, is that it allows us to effectively use the superposition principle. By this we
mean the following.

THEOREM 2.1. Suppose that m sources with strengths {qj,j 1,. ., m} are located
at points {zj, j 1,. ., m}, with Re(zj) < r. Then for any point z further downstream
(Re (z) > r), the velocity fl(z) induced by the sources is given by

(23) fi(z) , ak" e-2"zk
k=l

where

(24) ak =2’" E q:" (e2’*zk-e2’%k)
j=l

The error in truncating the expansion (23) after p terms has the bound

(25)
p

fi(z)- E ak" e-2"k
k=l

A. X
p+I

where

(26) A 4tr , Iq and x= e-2’{Re{z}-r.
j=l

Proof. The coefficients ak are obtained directly from (22). The error bound is a
consequence of the triangle inequality and the fact that (22) expands the field due to
a single source as the sum of two geometric series.
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The upstream direction is treated in an analogous fashion. If Re (z- Zo)< O, then
the velocity due to a source at Zo can be expressed as

(27) (z) 2tr. 2 (e-2zk e-2ek) e2Zk.
k=l

THEOREM 2.2. Suppose that m sources with strengths {qj,j 1,. ., m} are located
at points {zj, j 1,. ., m}, with Re (zj) > r. Then for any point z further upstream
(Re (z) < r), the velocity (z) induced by the sources is given by

(28) (z) Y bk" e2zk
k=l

where

(29)
j=l

The error in truncating the expansion (28) after p terms has the bound

(30)
P

(z)- Y, bk" e2k
k=l

A. X
p+I

where

(31) A=4o" It:hi and x=e2"(Re(-’0.
j=l

DEFINITION 2.1. The expansions given by (28) and (23) will be referred to as
upstream and downstream expansions, respectively. For a given collection of sources,
the pair will be referred to as stream expansions.

The representation of the velocity field by means of these expansions may be
viewed as an analogue of the multipole decomposition of the field due to a collection
of sources in free space. It is important to keep in mind, however, that both their rate
of decay and region of convergence are quite different.

Before examining the properties of stream expansions any further, we demonstrate
their usefulness in computing far-field interactions with a simple example. For this,
suppose that U and U2 are two sets, each containing N point vortices, located inside
a channel of width H, and separated by a distance d (Fig. 3). To compute the velocity
at each position in U due to the sources in U2 (or the velocity at each position in U2
due to the sources in U) by means of the Green’s function would require O(N2)
operations. Let us instead form a downstream expansion due to the sources in U and
an upstream expansion due to the sources in U2. From (25) and (30), it is easy to

d

FIG 3. Two clusters of point vortices located inside a channel of width H. The distance between the two

clusters is denoted by d.
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determine a priori how many terms are needed to achieve a relative precision of e.
We simply require that

H. In (l/e)
(32) xP+I’e or p

r. d

which is independent of N. The cost of formation of the two expansions is clearly
proportional to Np. Evaluating the two expansions at all points in the relevant cluster
also requires an amount of work proportional to Np, so that the total computation
scales linearly with N, assuming that the relative precision e and separation distance
d are fixed.

2.2. The shifting lemma for stream expansions. The fast algorithm to be described
depends not only on the formation and evaluation of stream expansions, but on their
analytic manipulation. The following obvious lemma describes the necessary tools.

LEMMA 2.1. Suppose that

(33) fi(zu) Y, bk" e2zuk
k=l

and

(34) fi(Zd) Y, ak" e-2’zk
k--I

are the upstream and downstream expansions about the origin due to m sources with
strengths { cb, j 1,. , m}, which are located at points { zj, j 1, , m}, with r <
Re zj < r for some r > O. Then

(35) fi(z,,) /3g" e2(z,,-)g
k=l

and

(36) fi(za) E ag. e-2’(,-)g
k=l

are the corresponding upstream and downstream expansions about Zo, where

(37) k-- bk" e2zk

and

(38) ak ak" e-2’zk.
Furthermore, the error bounds for the shifted stream expansions are exactly the same as
those for the original stream expansions.

Note that the behavior of shifted stream expansions contrasts sharply with that
of multipole expansions in free-space (see [9], [10]). In the latter situation, the validity
and accuracy of an expansion depends not only on the source positions but on the
location of the expansion center. Note also from (24) and (29) that the coefficients of
stream expansions about the origin are pure imaginary. If the centers of the shifted
expansions are chosen to lie along the x-axis, then the coefficients in (37) and (38)
are also pure imaginary, yielding a savings in both computational cost and storage.

Remark 3.1. To this point, we have been viewing stream expansions as representa-
tions of the far field due to a distribution of sources. It is possible, however, to view
them in a different light. The expansions (33) and (34) of the preceding lemma are



610 L. GREENGARD

valid outside the strip -r < Re (zj)< r. By choosing a point Zo upstream of the strip
boundary (Re (Zo)<-r), the shifted expansion (35) yields a representation of the
induced field in a neighborhood of z0. The same obviously holds for shifting a
downstream expansion in the downstream direction (36). These are local representa-
tions of the field, the analogues of Taylor series in free-space, just as the far field
stream expansions are the analogues of multipole expansions.

3. The Channel Decomposition Algorithm. In this section, we describe the first
part of the fast algorithm. The basic idea is to subdivide the channel into vertical strips
and to use stream expansions to compute far-field interactions.

The "elementary" strips into which the channel is refined have an aspect ratio of
one third. The reason for not subdividing too much further is clear from equation (32).
As d approaches zero, the number of terms required to achieve a fixed precision grows
arbitrarily large. If we stop using expansions when d H/3, however, then the number
of terms required is given by

3" In (l/e) 1
(39) p= <In-.

We, somewhat arbitrarily, choose to stop subdividing the channel at this point.
We will, of course, need to compute the interactions within an elementary strip and
between nearest neighbor strips. This part of the calculation will be described in 5.
It relies on some additional analysis and the FMM for free-space problems.

The remainder of this section is devoted to a description ofthe channel decomposi-
tion algorithm. The main strategy used is that of clustering particles at a variety of
spatial length scales and computing distant interactions by means of stream expansions.
We begin by determining the locations of the extreme upstream and downstream
particles. The corresponding section of the channel is considered to be the computa-
tional domain, and a sufficient number of elementary strips are created to cover the
region (Fig. 4).

FIG 4. Decomposition of the channel into "elementary strips." The original distribution of particles is

shown in (a). In (b), a finite domain containing all particles has been subdivided into rectangular regions, each

ofwhich has an aspect ratio ofone-third. S-expansions can be used to compute the interactions between particles
contained in nonneighboring strips.

We proceed by introducing a binary tree structure that groups particles at coarser
and coarser levels (Fig. 5). Level 0 corresponds to the finest discretization of space
(the elementary strips), whereas level l+ 1 is obtained from level by the merger of
two strips. The resulting strip at the higher level is referred to as the parent, while the
two strips being merged are referred to as the children. Two strips at the same refinement
level are said to be nearest neighbors if they share a boundary, otherwise they are said
to be well separated. By construction, then, the minimum distance between well-
separated strips is HI3, and to achieve a precision of e in computing interactions via
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(b)

(d)
FIG 5. In (a), eight elementary strips are shown that cover the computational domain. This level ofspatial

refinement is referred to as level O. In (b), (c), and (d), pairs of strips are successively merged to form coarser
and coarser subdivisions of the channel. The "center" of a strip is defined to be the midpoint of the segment of
the x-axis bounded by that strip, as indicated in (d).

stream expansions we need only choose the number of terms to be p- [In (1/e)]. At
coarser levels, the number of terms can obviously be decreased.

DEFINITION 3.1. The center of a strip is defined to be the midpoint of the segment
of the x-axis bounded by that strip (Fig. 5(d)).
Other notation used in the description of the algorithm includes the following:

F,i a p-term upstream expansion about the center of strip at level l, describing
the far field due to the particles contained inside the strip.

Fld, a p-term downstream expansion about the center of strip at level l,
describing the far field due to the particles contained inside the strip.

LlU, a p-term local stream expansion (see Remark 3.1) about the center of strip
at level l, describing the field due to all particles upstream of strip i’s

nearest neighbors.
Lld, a p-term local stream expansion (see Remark 3.1) about the center of strip

at level l, describing the field due to all particles downstream of strip i’s
nearest neighbors.

Interaction list for strip at level l, it is the set of strips that are children of the
nearest neighbors of i’s parent and that are well separated from strip (Fig.
6).

The channel decomposition algorithm is a two-pass procedure. In the first (upward)
pass, we form the far-field stream expansions FI, and Fld, for all strips at all levels,
beginning at the level of elementary strips. In the second (downward) pass, we form
the local stream expansions LlU, and Lld, for all strips at all levels, beginning at the
coarsest level.

To see how the latter part is accomplished, suppose that at level l+ 1, the local
expansions L and Ld have been obtained for each strip i. Then, by using Lemma 2.1
to shift these expansions to the centers of strip i’s children, we obtain upstream and
downstream expansions for each child strip at level l, describing the velocity field due
to all particles upstream and downstream of strip i’s nearest neighbors. For each strip
j at level l, then, the interaction list is precisely that set of strips whose contribution

FIG 6. The interaction list for strip at level Strips marked with a "u" are upstream members of the
list, whereas those marked with a "d" are downstream members of the list. Note that thick lines correspond to

mesh level + 1.
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to the potential must be added to create LlU,j and Ll, (Fig. 6). For each upstream
member of the list, we use Lemma 2.1 to shift the center of the corresponding far-field
expansion F to the center of strip j and add the result to the upstream expansion
obtained from the parent. Similarly, for each downstream member of the list, we use
Lemma 2.1 to shift the center of the corresponding far-field expansion Fd to the center
of strip j and add the result to the downstream expansion obtained from the parent.
Note that at the coarsest level, Ld and L are equal to zero, since there are no
well-separated strips to consider.

Finally, for each strip j at the finest level, we evaluate the local expansions Loa,j
and L,j at the position of each particle contained in the strip.

ALGORITHM 1.
Comment [Set number of terms to be used in expansions.]

Choose the precision e to be achieved. Set the number of terms
in all expansions to p [In(l/e)].

Upward Pass
Step 1.
Comment [Decompose the channel into elementary strips.]

Define elementary strip width to be Swid H/3.
Compute Xmin x-coordinate of extreme upstream particle position.
Compute Xma --x-coordinate of extreme downstream particle position.
Compute number of elementary strips K r(X,max--Xmin)/Swid ].
Compute height of binary tree nlev [log2 K ].

Step 2.
Comment [Form far-field stream expansions at finest level.]

do i=l,...,K
Form p-term upstream and downstream expansions Fg, and Foa,
by using Theorems 2.1 and 2.2.

end do
Step 3.
Comment [Form far-field stream expansions at all coarser refinement levels.]

do l= 1,. ., nlev
Form p-term upstream and downstream expansions F, and Ftd,
for each strip at level by using Lemma 2.1
to shift the center of each child strip’s expansions to the current
strip center and adding them together.

end do
Downward Pass

Step 4.
Comment [Form local stream expansions at all refinement levels. Recall that L and
La are zero at level nlev since there are no well-separated strips to consider.]

dol=nlev-1,...,0
For each strip at level l, initialize Ll,i and Lla,
by shifting the L and La expansions of strip i’s parent to the
center of strip i. For each strip in i’s interaction list, determine
whether it is upstream or downstream of strip i. If upstream, shift the
center of the corresponding F expansion to i’s center and add to
Ll,i. If downstream, shift the center of the corresponding
Fa expansion to i’s center and add to Lla, (Fig. 6).

end do
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Step 5.
Comment [Local stream expansions are now available at the finest mesh level. They
can be used to compute the velocity field due to all particles outside the nearest-neighbor
elementary strips.]

do i=l,...,K
For each particle located in elementary strip i, evaluate
L,i and Ld

o,i. Add results together.
end do

A brief operation count of the channel decomposition algorithm follows in
Table 1. The estimate for the running time is therefore

(40) N. (4p+ 1)+ K. 6p.

4. The evaluation of near-neighbor interactions. The channel decomposition
algorithm has left us with a sequence of uncoupled problems to consider. For each
elementary strip, we must compute the internal interactions as well as the effects of
the sources contained in that strip on the particles in the nearest neighbors (Fig. 7).

Because of their poor convergence rates in this regime, stream expansions are of
limited use. We could proceed by direct evaluation of the remaining interactions
through the use of the Green’s function, but the asymptotic complexity of such an
algorithm would be O(N2). Let us instead examine one of the subproblems in more
detail.

We begin by reconsidering the method of images used to impose the zero normal
flow condition in Fig. 2. Successive reflection across the top and bottom of the channel
yields a one-dimensional array of squares (Fig. 8). These are either copies of the
channel section itself or of its reflection across the bottom boundary, offset by 2jHi
for some integer j. Note that we are only acting on the sources contained within the
central elementary strip, but that we will compute the velocity field at particle positions
within all three elementary strips of which the square is composed. In this manner,
all interactions will have been accounted for exactly once.

TABLE

Step number Operation count Explanation

Step order N

Step 2 order 2Np
Step 3 order K.p

Step 4 order 5p. K

Step 5 order 2Np

Examine each particle position to determine extreme upstream and
downstream coordinates.
Each particle contributes to an upstream and a downstream expansion.
The number of nodes in a binary tree is less than twice the number
of leaves, so that the total number of nodes is of the order K. For
each node, an amount of work of the order p is performed.
For each strip at each level, there are at most three entries in the
interaction list. For each entry, the amount of work is proportional
to p. In addition, two p-term expansions must be obtained from the
parent.
Two p-term stream expansions are evaluated for each particle.

FIG 7. In the second part of the algorithm, interactions are computed within each elementary strip and
between nearest neighbors. This is accomplished by marching along the channel, considering one strip at a time,
and accounting for its influence on all relevant particles..
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::

::

:: 6"0_
FIG. 8. The channel section and its translated images are represented by boxes labeled C. The square

obtained by reflection across the bottom boundary and its translates are labeled C.

The problem, again, is how to account for the sources in all images squares. We
present a solution based on multipole expansions.

4.1. Multipole expansions. We will require two results. For the first, suppose that
m point vortices with strengths qi and positions zi are located within a disk of radius
r centered at the origin. Then, for a point z with Izl > r, the velocity field v(z) induced
by the sources is given by a multipole expansion of the form

ak(41) v(z)= E -,
k=l

where

(42) ak E qi" Zi -1.
i=1

The error in truncating the sum after s terms is

(43) Iv(z) a-l (_A1) (-lc)
where

(44) A= E Iq, and c=
i=1

Z

For a proof, see [9].
Note that to obtain a relative precision of e (with respect to the total charge), the

number of terms required in the series representation of v is approximately -logc (e),
independent of m, the number of source charges.

The second result we need is contained in the following lemma, which describes
the conversion of a multipole expansion into a local (Taylor) expansion inside a
circular region of analyticity.

LEMMA 4.1 (Conversion of a Multipole Expansion into a Local Expansion). Sup-
pose that m sources ofstrengths ql, q2, ", q,, are located inside the circle D with radius
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R and center at Zo, and that [Zo} > (c + 1)R with c > 1. Then the corresponding multipole
expansion

ak(45) v(z)=
k:l (Z-- Zo) k’

converges inside the circle D_ ofradius R centered about the origin. Inside 02, the potential
due to the charges is described by a power series"

(46) v(z) Y b" z 1,
/=0

where

(47) bl-- ak (l+k-1):1 a/- k-1
(--1)k"

Furthermore, for any s_->max (2, 2c/(c-1)), an error bound for the truncated series is
given by

(48) v(z)- bl" z
/=0 c(c- 1)

where A is defined in (44) and e is the base of natural logarithms.
Proof. See [9] for the proof.
DEFINITION 4.1. TWO squares with sides of length 2d are said to be well separated

if they are separated by a distance 2d.
Remark 5.1. Let A and B be well-separated squares with sides of length 2d, and

let DA and DB be the smallest disks containing the boxes A and B, respectively. Then
the disks have radii ,,/. d, and the distance from the center of one disk to the closest
point in the other disk is at least (4-/) d. Letting c (4-)/x/= 1.828, the error
bound (48) applies with a truncation error using s-term expansions of the order c-s.

Remark 5.2. In this section, the center of a square refers to its geometric center
and not to its strip center (Definition 4.1.).

4.2. Reduction to a free-space problem. We will use Lemma 4.1 to account for all
image sources outside the nearest-neighbor squares. The remaining calculation can
then be carried using the free-space Green’s function (see (6), (7)). We begin by
choosing a coordinate system with the origin lying at the center of Co. For each square
C, the multipole expansion induced by the contained sources is of the form

(49) v(z)= ak

:, (Z--Z)’
where

(50) zj 2jHi

is the square’s center. Note that the coefficients ak of such a multipole expansion are
translation invariant; i.e., they are identical for all integer j. Moreover, for j 0, C is
well separated from Co, and the field induced inside the channel is accurately represent-
able by an s-term local expansion, where s I-logo (e) is the number of terms needed
to achieve a relative precision e (see Remark 5.1.). This local representation is given
by Lemma 4.1 as

p

(51) j(z)= b,. z
m=0
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with

k

p

m/kak (m+k-1)(52) b,, (-1) k.
=1Zj k-1

Let S be the set ofnonzero integers. To account for the field due to all well-separated
images C, we compute the coefficients of a local representation by adding together
the shifted expansions of the form (52) for all z with j S to obtain

P

(53) (z)= E btmtal" Zm
m=0

where

(54) httal ak (--1) k
k=l k-1 ;+

The summation over S for each inverse power of z can be precomputed and
stored. For powers greater than one, the series is absolutely convergent. For (rn + k) 1,
however, the series is not absolutely convergent, and the computed value depends on
the order of addition. Choosing a reasonable value for the sum of the series requires
consideration of the physical model. For this, suppose that the only particle in the
simulation is a source of unit strength located at the origin. Then the image system
corresponds to a uniform one-dimensional lattice, and by symmetry considerations,
the induced velocity at any lattice point must be zero. But the net velocity of the
particle at the origin corresponds to the summation over S of 1/z, so that we set

(55) 21=0.sz
For powers k > 1, the summation over S of 1/z can be expressed in closed form by
making use of the Riemann zeta function.

DEFNn’ON 4.2. The Riemann zeta function if(z) is defined by

(56) ’(z)= 2 n-Z.
rl=l

LEMMA 4.2. For k > 1,

O ifk is odd,
(57) 1= (_1)

s z --i- (k) ifk is even.

Proof. The result follows immediately from the definitions of S and z.
To account for the well-separated images of Co, we will require the corresponding

multipole expansion. It is easy to verify, however, that for such squares, centered at
a point wj, the expansion is of the form

’)/k
(58) v(z)=

(z )k=l Wj

where

(59) 3/k --k"
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Except for Co and C1, all of these images are separated from Co, and as above,
the fields they induce inside the channel section are accurately representable by a local
expansion,

p

(60) (z) Y 6,,. z
m=0

with

k--1 k-1

The well-separated images C clearly have centers

(62) ., 5Hi, 3 Hi, 3 Hi, 5Hi,. ..
Let T be the set of integers of the form

(63) {+(2j+ 1),j 1, 2,...,}.
We again account for the field due to all well-separated images by forming the
coefficients of a local representation

p
ttotal(64) (z)= Y z

m=O

where

(65) total__ ? Yk (--1) k
=1 k-1 w’+k

The summation over T for (m + k) > 1 is absolutely convergent. For (m + k) 1,
the series is not absolutely convergent, but symmetry considerations again dictate the
choice

(66) L
1

0.
wj

For higher powers of k, a closed-form expression for the summation over T of w can
be obtained through the use of Bernoulli numbers.

DEFINITION 4.3. The Bernoulli numbers B, are given by the coefficients of t"/n!
in the expansion

in
(67) y B,..e’-I ,=o n!

They satisfy the equation (see [8, p. 7])

(68) , 1 (22k 1)Tr2k

j=o (2j+ 1)2k-- 2" (2k)! IB= l.

LEMMA 4.3. For k > 1,

O ifk is odd,
(69)

1 k k/2 !(_ k/2

7" W---f"k= (2k 1)Tr Bkl(--1) -2k 1)
ifk is even,Hkk!

where Bk is the kth Bernoulli number.
Proof The result follows immediately from the definitions of T and wj.
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If we add the computed coefficients otal from (65) to the coefficients btai from
(54), we obtain a single local expansion that describes the field due to all sources
outside the nearest neighbor squares of Co. This local expansion can then be evaluated
at all particle positions in Co.

The final step in the algorithm is to compute the velocity field due to the free-spaces
sources within Co, Co, and C1. This problem is handled by the FMM, which requires
an amount of work proportional to n + m to evaluate the field induced by n sources
at rn points.

ALGORITHM 2.
Comment [Set number of terms to be used in expansions.]

Choose the precision e to be achieved. Set the number of terms
in all expansions to s [log (1/e) ].

Comment [From Algorithm 1, we are given that the number of elementary strips is K.]
Define n to be the number of particles in the ith strip.
Clearly, nl + n+. + n: N, the total number of particles.

Comment [Process each elementary strip.]
do i=l,...,K

Define Co to be the square whose central third is strip i.
Step 1.

Form coefficients ak of s-term multipole expansion about center
of Co induced by sources in strip i.
Form coefficients /k of s-term multipole expansion for square Co
via equation (59).

Step 2.

Step 3.

Step 4.

Form coefficients bk d-tk of s-term local expansion about the
center of Co, which describes the field induced by all reflected
sources outside the nearest-neighbor squares.

Evaluate local expansion at all particle positions in strips i- 1, and + 1.

Compute velocity field induced by sources in Co, Co, and C
at all particle positions in strips i- 1, and + 1 via the FMM.

end do

A brief operation count of Algorithm 2 follows in Table 2. The estimate for the
running time is therefore

(70) N. (4s + 3a) + K. s2.

TABLE 2

Step number Operation count Explanation

Step order Ns

Step 2 order Ks

Step 3 order 3Ns
Step 4 order 3aN

Each particle contributes to an s-term multipole expansion when its
elementary strip is being processed.
The creation of a local expansion requires order work and is carried
out once for each elementary strip.
Three local expansions are evaluated for each particle.
K free-space problems are solved, each of dimension ni, with a factor
of three included to account for the extra image sources and evaluation
locations. The factor a represents the constant for the linear time
FMM.
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To summarize, then, the full algorithm consists of the following"
(1) Decomposition of the channel into elementary strips,
(2) Algorithm 1 to compute distant interactions, leaving a sequence of uncoupled

nearest-neighbor problems to consider,
Algorithm 2 to compute nearest-neighbor interactions.

5. Numerical results. A computer program has been implemented using the chan-
nel decomposition and nearest-neighbor algorithms of this paper. For testing purposes,
we randomly assigned particles to positions within a channel section of length 5H,
where H was the channel width (Fig. 4), with source strengths between zero and one.
Five-digit accuracy was requested from the expansions. In the first part ofthe algorithm,
stream expansions were computed to 10 terms, while in the second part ofthe algorithm,
multipole and Taylor expansions were computed to about 20 terms. We performed the
calculations in four ways: (1) through the algorithm of this paper in single precision;
(2) directly from the Green’s function in single precision; (3) directly from the Green’s
function in double precision; (4) via conformal mapping in single precision. The direct
evaluation from the Green’s function in double precision was used as a standard for
comparing the relative accuracies of the other three methods in a least squares sense.
Calculations were carried out on a SUN 3/50 workstation using the 68881 coprocessor.

The following observations can be made from Table 3.
(1) The accuracies of the results obtained by the fast algorithm are in agreement

with the error bounds given in this paper. In fact, the results are consistently more
accurate than either of the direct calculations.

TABLE 3
Table of CPU times in seconds required by the fast algorithm (alg), the direct Green’s function method

(DIR), and conformal mapping with direct evaluation of the resulting N-body problem (cm). The least squares
errors for the three methods are shown in the last three columns. Timings in parentheses are estimated by
computing the results for only a subset of 100 of the particles. The corresponding errors are computedfrom that
smaller data set.

N Tatg Tdi T,,, Eatg Edir Ecru

100 8.38 34.8 14.0 4.5.10-7 7.2" 10-7 1.1" 10-6

400 53.1 551 223 2.7" 10-7 4.1 10-7 1.2" 10-6

1600 398 (8820) (3550) 4.3" 10-7 1.3" 10-6 1.1" 10-6

6400 1890 (141000) (56800) 6.9’ 10 -7 5.2" 10-6 3.4" 10-6

(2) The CPU time requirements of the fast algorithm appear to grow somewhat
superlinearly. The reason for this is that there are two constants associated with the
algorithm, a small one for the channel decomposition and a larger one for the FMM.
The observed timings are dominated by the first constant for 100 and 400 particles,
and by the second constant for the larger tests. When there are a small number of
particles per strip, the FMM with its associated overhead is simply not invoked.

(3) By the time the number of particles reaches 6400, the fast algorithm is about
75 times more efficient than the direct Green’s function method.

(4) Even for as few as 100 particles, the fast algorithm is about four times faster
than the direct calculation.

6. Conclusions. A fast algorithm for potential flow in channels has been developed.
It is based on asymptotic expansions that we refer to as stream expansions, some
analytic observations concerning classical multipole expansions and Taylor series, and
the fast multipole method. The asymptotic CPU time requirements for the algorithm
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grow linearly with the number of sources and, despite its complex structure, numerical
experiments demonstrate that dramatic speedups can be obtained for evern moderate
size particle systems.

In its current form, the algorithm requires that the channel boundaries be straight.
A method applicable to channels with smoothly perturbed boundaries will be described
in a subsequent paper. For polygonal (piecewise linear) perturbations of the channel,
an attractive approach would be to conformally map the problem domain into an
infinite strip. Howell and Trefethen 14] have recently developed a conformal mapping
algorithm that can be used for just such purposes. A combination of their scheme with
the method described in this paper should allow for large-scale simulations of practical
interest in fluid dynamics and electrostatics.

A somewhat different generalization of obvious interest is that in which obstacles
are present in the interior of the channel. For such calculations, the channel algorithm
can be combined with the integral equation technique due to Rokhlin [18] to provide
a fast method for computing potential flow around arbitrarily-shaped objects.

Acknowledgments. The author thanks V. Rokhlin for several useful discussions
and the referees for suggestions that improved the presentation of the paper.
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NONLINEAR EQUATIONS*
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Abstract. A new quasi-Newton update is proposed based on a least relative change in the updated
matrix, rather than on a least absolute change as is normally the case for quasi-Newton methods. The
method corresponds to a quasi-Newton method weighted in a scale corresponding to a row scaling. The
new method retains sparsity without having to include it as an affine transformation within the derivation.
Unlike Broyden’s and Schubert’s methods, the method is scale-invariant. Comparisons are made on a set
of problems that show promising results for the new method.

Key words, nonlinear equations, quasi-Newton, sparse, Jacobian, scale-invariant
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1. Introduction. In this paper we consider the problem

(1.1) f(x) =0,

where f and x are vectors and f is a nonlinear function of x, with Jacobian J, which
has a known sparsity pattern. Quasi-Newton methods have been developed for solving
this problem when analytical Jacobian elements are not available. Broyden [4] first
presented his method for full matrix problems, and a method in which a known
Jacobian sparsity pattern is maintained was presented independently by Schubert 18]
and Broyden [5] and analysed by Marwil [13]. In 2 these two methods are reviewed.
In 3 the new sparsity preserving method is presented and derived. Finally, the three
methods are compared on a set of test problems.

2. Quasi-Newton methods. The theory of quasi-Newton methods, or least change
secant methods as they are often called, is well known (Dennis and Schnabel [10]).
An approximation A to the Jacobian J(x) is maintained and updated. In both Broyden’s
and Schubert’s method the updated matrix B satisfies the following condition:

(2.1) min IIB-AII,

subject to certain constraints. For Broyden’s method the only further condition required
is the secant condition

(2.2) BQ(y,s),

where

(2.3) Q(y, s)= M( Rn"" Ms y),

and

s=x+-x and y=f+-f
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where if x and f correspond to the kth iteration then x/ and f/ correspond to the
(k + 1)th. Solving the constrained optimisation problem defined by (2.1) and (2.2) gives
Broyden’s update

(y-As)s T

(2.4) B=A+ sTs

For sparse systems, where the sparsity pattern of the Jacobian is known, a third
condition is added" that the sparsity pattern of A be maintained. Using the notation
of Dennis and Schnabel, let Z R be the 0-1 matrix denoting the pattern of zeros
in J(x), i.e.,

(2.5) Zo={0, J(x) 0’
otherwise,

and let SP(Z) denote the set of n n matrices with this zero pattern, i.e.,

(2.6) SP(Z) (M R"": Mij =O if Zij =O, l <- i,j <-_ n).

The update for sparse systems is defined by

(2.7) min IIB-AI[ subjectto Be Qf’)SP(Z).

Solving this constrained optimistion problem gives Schubert’s update

(2.8) B A + Pz(D+(y- As)s T)

where Pz:Rn"-R is the matrix projection operator defined by

0, zo =o,
(2.9) (P(M)) Mo, Zis 1.

Similarly for a vector v R", we define 6 R" by

(2.10) (/i) {0, Zij--O,
vj, Zo l

where vs is elementj ofthe vector v, and the matrix D+ is a diagonal matrix with elements

(2 11) D= I lid’’ di0,
I. O, d O,

and where

Schubert’s method is, therefore, an extension of Broyden method in which the change
in the updated matrix is still minimized (in the Frobenius norm) but one further
constraint is added: that of sparsity. The matrix projection operator Pz zeros out the
elements of M corresonding to the zero positions of the sparsity pattern Z and leaves
remaining elements of M unchanged. Schubert’s method has not been found to be a
reliable method for solving large systems of nonlinear equations. In spite of their
similarity, Broyden’s method has had much more success (Chen and Stadtherr [7],
Perkins and Sargent [17]). A basic difference is that, although liB-Ally is minimised,
because of the additional constraint of sparsity, the absolute change may be much
greater in the sparse case.



A NEW SPARSITY QUASI-NEWTON UPDATE 623

Problem (2.7) can be extended to incorporate further information about the
problem. Calamai and More [6] have recently shown that a sparse method for nonlinear
equations may be derived that also satisfies constraints on the elements of the Jacobian
approximation although no numerical results are given. An obvious inclusion is
retaining symmetry of the updated matrix, useful for solving optimisation problems
[9]. Interest in these methods has been limited because of the poor performance. Toint
[19] has proposed a method that relies on the functions being partially separable, i.e.,
each equation is the sum of a small number of element functions, in which parts of
the Jacobian corresponding to each element function are updated rather than updating
the whole matrix. Toint reports some improvements for these methods over Schubert’s
method but the results are not conclusive.

Rather than minimize the absolute change in the matrices a new method is
presented here that minimises a relative change in the matrix elements over the whole
matrix, i.e.,

(2.12) min i=l j=l Aij

Equation (2.12) may be written in terms of the Frobenius norm as

(2.13) min (e(B-A)ej)eie
i=1j=1 e Aej F

This produces a sparsity preserving update that has shown good numerical results on
a variety of problems.

In the following section we derive the new update within the least change
framework of Dennis and Schnabel [10]. Following this we compare its performance
with the methods of Broyden and Schubert on a series of standard problems.

3. A least relative change Quasi-Newton update. We aim to solve the following
constrained minimisation problem. Given A find B which satisfies (2.12). To derive
the new update we will use the lemma used by Dennis and Schnabel to derive both
the Broyden and Schubert updates.

The n x n matrix problem in the Frobenius norm (2.1) is identical to n vector
minimisation problems in the 2-norm, i.e.,

(3.1) liB- all liB,o- a,.l[
i=1

where Ao is the (column) vector obtained from row of A and similarly for B. In the
same way, problem (2.13) may be reformulated as

(3.2) min[(Bij-Aii)2] 1/:z

i=1 j=l -’and we can solve n problems by choosing a Bo to solve for each element of (3.2), i.e.,

(3.3) min W?(B,-A,)II- subjectto Bs--y,,
where V diag (A), i.e., a diagonal matrix formed from each row of A, and W is
its pseudoinverse.

In the following theorem we solve the minimisation problem for each row of the
updated matrix. Since A is sparse W/may have zero diagonal elements and its inverse
will be not defined. In order to solve the minimisation problem we must use the pseudo
inverse of W-, defined in Theorem 3.6.5. in Dennis and Schnabel [10]. Since W- may
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itself also be singular we must define a further matrix W in which all zero diagonal
elements of W- are replaced by a finite e. The inverse of W is then defined but in

Wi (Bio Aio) will bethe limit as e approaches zero the corresponding elements of
zero and hence will not affect the minimisation.

THEOREM 1. Let Bi L(R’); s, y R"; s 0; and let W be the pseudoinverse of
W; then the solution to

(3.3) min W(B,. A,.) 7-I1= subject to Bs y,

(3.4) Bi Aio+
(y As),s T- W)2

W,s

Proof. First, consider the following problem, similar to (3.3)"

(3.5) min IIW(n,-a,)ll= subjectto Bs=y,.
If we consider the matrix W- as a scaling for each row of A, and W* is identical to

W- except that zero diagonal elements of W- are replaced by e, then the following
scalings are equivalent as e approaches zero

W Bio, WA,

and

Equation (3.5) may be rewritten as

min ,o -,Lo subject to/ 7-
iSi Yi.

This is the usual quasi-Newton problem and, following the reasoning of Theorem
11.2.1 of Dennis and Schnabel [10], the solution is given by equation (3.4). In the
limit as e approaches zero (3.5) and (3.3) are identical since such elements will not
contribute to W(B-A), and the solution is defined provided not all elements of
s or W are zero. l-1

By combining the solutions of (3.3) for each row of B, we obtain the following
update:

(y As),s T- Wi)2

(3.6) B A+ 2 e
,: s( W,)s

where each matrix in the summation of the update corresponds to one row update of
the form of equation (3.4). Like Schubert’s update, each row of the update has a
special form due, in this case, to its scaling by W. Each row has a unique denominator
s T-(W)2s and hence the update is best performed by rows.

Note that, unlike Schubert’s method, it is not necessary that B SP(Z)f’l Q but
only B Q. By taking the pseudoinverse of V in which the inverse of zero elements
are set to zero, we have taken into account the sparsity of the problem.

Equation (3.6) may also be written element by element as

(y- As)isi(aij)2
(3.7) Bj Aj +

k=l sEk(Aik)
If any Ao is zero so also is B0. Hence any identically zero elements will remain zero
and need not be stored. It is therefore wise to begin with an approximation with the
same sparsity pattern as the Jacobian since if an arbitrary matrix were to be used
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elements initially assumed to be zero would remain zero. In this work a forward
difference approximation to the Jacobian at the starting point has been used.

4. Scale invariance. A useful property held by the new update that is not shared
by either Broyden’s or Schubert’s method is that of scale invariance. If D1 and D_ are
nonsingular diagonal matrices, let the following scalings apply:

(4.1) =DlX,

(4.2) f= Df
(4.3) ,= D2AD-.
If {Xk} is the sequence of vectors generated by a method for the unscaled problem and
if {k} denotes the sequence generated for the problem scaled using (4.1) and (4.2),
then the method is scale invariant if

(4.4) )k D1Xk Vk.

Paloschi and Perkins [16] set out the conditions under which a quasi-Newton method
is scale-invariant. The following lemma gives the sufficient conditions for a quasi-
Newton method being scale-invariant.

LEMMA 16]. Given the changes ofscale (4.1) and (4.2) and sequence ofnonsingular
matrices {Bk} satisfying the following relation"

(4.5) = DBD-
then a quasi-Newton method defined by

(4.6) Ap -f,

(4.7) x+=x+p,

and

(4.8) Bp y

satisfies (4.4), i.e., is scale-invariant.
They demonstrated that a class of rank one quasi-Newton updates that are also

scale invariant does exist. Bogle and Perkins [2] have shown that these results can be
extended to obtain a similar class of sparse quasi-Newton updates that are not rank
one. We will now show that the new update is also scale-invariant. The following
scalings must also apply:

(4.9) g=Ds,

(4.10) fi= O2y.

Let d be the ith element of D, and similarly d2 of D.
TI4EOREM 2. Consider the method defined by the relations (3.7), (4.6), and (4.7)

that generate the sequences {Xk} and {Bk}. Iffor any change of scale of the form (4.1)
and (4.2) Ao is such that

(4.11) ,o= D2AoD-1,

then the sequence {Xk} satisfies (4.4), i.e., the method is scale-invariant.
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Proof. Since Ao satisfies (4.5), we need only show that if A satisfies (4.5) then so
also does B. Then, by induction, so will the entire sequence {Bk}. Substituting the
scalings in element by element it follows that

k=l dl k
Skdlk sd d/(4.12) O d21Aij+

d2!ao+ (d21 (y as)is;(ai;)2(4.13)
d; k d;] s(A,k)2

k=l

and therefore B satisfies (4.5) for the entire sequence {Bk}.
Neither Broyden’s method nor Schube’s method is invariant to the scaling defined

by (4.1) [1], [16].
5. Implementation. The three methods have been implemented in Foran. The

tests were done on a CDC Cyber 174 in single precision, which has a word length of
60 bits. In order to compare the methods, the same implementation has been used
where possible. The only point where the implementations differ is in the solution of
the set of linear equations. For Broyden’s method we have used a standard LU
decomposition with paial pivoting and updated using Bennett’s algorithm [3]. This
was found to give the same results on this machine as using a QR decomposition. For
Schube’s method and the new method, the sparse matrix package MA28 (Duff [11])
has been used in which a sparse LU decomposition is obtain using the Markowitz
pivoting strategy [12] and the matrix refactorised at each iteration using the pivot
strategy obtained on the first iteration.

The method was said to have converged if the following test was satisfied within
200 iterations:

(5.1) If(x)l < 10-8 i=l,...,n.
The results presented in Tables A2-A4 in the Appendix indicate the number ofiterations
required to solve the problem including those required to initialise the Jacobian by
finite differences. Those problems for which a solution was not obtained are indicated
by +. Since the problems are sparse, the method of Cuis, Powell, and Reid [8] has
been used to economise on function evaluations for initialization. The number of
independent differencing steps required for each problem is given in Table A1.

It has been found to be profitable when using quasi-Newton methods to reinitialise
the Jacobian by differences if the method is making poor progress 16], [2]. Reinitialisa-
tion will be more impoant with the new method since if an element that is not an
analytically zero element becomes zero, it will remain zero, which may cause a
deterioration in progress until reinitialisation is invoked. In our code we have employed
the following strategy. If I[fk 112 is not reduced in 10 successive iterations, reinitialisation
is performed at the point found so far with the best value of Ilfkll=,

A trust region method [14] has been implemented to maintain control of the
stepsize. The step is forced to remain within a domain in each dimension i, , for the
kth iteration defined by

,o max (50, 501,ol),
50, 0,

k 501 ,1, , # 0,
where k is the ith element of Xk.
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6. Numerical results and conclusions. The new method (NEWQN) was tested
along with Broyden’s (BROYD) and Schubert’s (SCHUB) methods on the eight
problems listed in Table A1 of the Appendix each with 50 variables. Most are adapta-
tions of standard test problems [15]. Problems 4 and 5, however, are new and result
from the solution of equations resulting from a set of countercurrent reactors. The
equations for problems 4, 5, and 6 are given in the Appendix. Each problem was
attempted from its standard initial point Xo, from 10Xo, and from 100Xo in order to
test the robustness of each method, i.e., its ability to solve problems from a wide range
of initial points. The methods have only been tested on relatively small sized problems
(50 variables). This was done in order to make direct comparison between the new
method and Schubert’s method, which are sparse methods, and Broyden’s method,
which is a full matrix method, on an identical problem set. With identical implementa-
tions it is then possible to compare the effectiveness of the updates alone in their
attempts to find a solution.

The results for the three methods are presented in the Appendix. Three indices
have been used to collect the data for all 24 problems together for comparison. If ro
is the number of iterations required to solve problem with method j, rib the best result
for problem/with any of the m methods (i.e., rib =min (ro)), the number of successes
by method j, and nj the number of problems attempted by method j then we define
the following indices"

Robustness index:

(6.1)
n

Efficiency index:

(6.2)

Combined robustness and efficiency index:

(6.3) Ej x Rj , rib
nj

i= l, rijO \ rij /

The summations arc taken only over successful results. R is clearly a percentage of
cases for which each method found a solution. For E and E x R indices larger values
indicate a better result with 1.0 being the best result possible.

The results in Table 1 confirm the superior robustness of Broyden’s method over
Schubert’s method, although when successful Schubert is the more efficient of the two.
On this set of problems, the new method has a robustness equal to that of Broyden’s
method. Also, the method is more efficient than either of the other two methods. The
results demonstrate that the new method is a significant improvement on Schubert’s

TABLE
Summary of results.

BROYD SCHUB NEWQN

Successes 22 18 22
R index .92 .75 .92
E index .654 .834 .899
E x R index .600 .625 .824
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TABLE A1
Problem set (50 variables unless otherwise indicated) with number of iterations

required for initialisation by finite differences.

Discrete boundary value function
2 Broyden tridiagonal function
3 Broyden banded function
4 Counter current reactors problem
5 Counter current reactors problem 2
6 Brown almost linear function (tridiagonal version)
7 Extended Rosenbrock function
8 Extended Powell singular function (52 variables)

3
3
7
4
5

49
2
4

TABLE A2
Results from initial guess Xo (number of iterations).

BROYD SCHUB NEWQN

7 7 6
2 15 13 10
3 27 28 23
4 33 25 35
5 42 27 62
6 65 + 59
7 6 6 6
8 63 46 23

TABLE A3
Results from initial guess 10xo.

BROYD SCHUB NEWQN

9 8 8
2 64 53 16
3 140 47 65
4 136 + 29
5 231 + 63
6 66 123 133
7 6 6 6
8 99 42 28

TABLE A4
Results from initial guess 100xo.

BROYD SCHUB NEWQN

35 18 16
2 + + 21
3 + 57 77
4 203 + 50
5 86 + +
6 82 124 123
7 8 7 7
8 104 54 +
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method for solving large sparse problems, although further testing will indicate to what
extent this is true of broader classes of problems.

Appendix.
PROBLEM 4. Countercurrent reactors problem (1).

f(x) czx,_2 (1 t)x,+2 xi- Oxix+,
i=1,...,2n-l,

f+(x) cx_ (1 t)xi+3 x+3 x,+ Oxixi+,

x_=x,+2=l.0, Xo=X,+=0.0, 0=4.0, t=0.5.

Initial point:

_Xo (0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2," ).

PROBLEM 5. Countercurrent reactors problem (2).

f(x) Aox (1 x)x3-A OAx2,

f2(x) Box1 (1 xl)x,-A OAx2,

A(X) AIX (1 Xl)X x Ox3x4,

f+l(x) xixi_-(1 -x)xi+3-xi+- Oxixi+, =4," ", n,

Ao x,+2 1.0, Bo X,+l 0.0, 0 4.0, A 0.414214.

Initial point:

_Xo (0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2,. ).

PROBLEM 6. Brown almost linear function (modified).

f(x)=2x+x2-3,

f(x) x_ +2x +x/ -4, 2,. ", n 1,

(x.,_,)+,o/10)
L(x) ’=’ = 1.o.

10

Initial point:

_Xo 0.5.
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A FOURIER-SERIES METHOD FOR SOLVING SOLITON PROBLEMS*

C. I. CHRISTOV" AND K. L. BEKYAROV

Abstract. A Fourier-Galerkin method with an earlier proposed complete orthonormal system of func-
tions in L2(-oo, oo) as the set of trial functions is developed and displayed for the problem of calculating
the shape of the one-soliton solution of the Korteweg-de Vries equation. The convergence of the method
is investigated through comparison with the analytic solution, which appears to be very good. The truncation
and discretization errors are assessed pointwise. The technique developed is also applied to the soliton
problem for the so-called Kuramoto-Sivashinsky equation and the obtained soliton shape is compared to
the existing difference solution. The quantitative agreement between the Fourier-series-method result and
the numerical one is good. In the present paper, however, the soliton solution is obtained for a significantly
wider range of phase velocities, which suggests that the spectrum might be continuous. The new technique
can also be applied to a variety of other problems involving identification of homoclinic solutions.

Key words, solitons, spectral methods, Fourier-Galerkin method, Korteweg-de Vries, Kuramoto-
Sivashinsky

Introduction. In recent years, the problem of calculating shapes of solitons has
attracted considerable attention due to its application in different fields of modern
physics (see, e.g., 1 ], [2]). At this time the available techniques for calculating solitons
lack generality and, as a rule, bear semianalytical character. Each of these techniques
proves effective only for the particular class of equations for which it is devised. In
turn the numerical approaches based on straightforward difference approximations
are faced with formidable challenges. The first one is rooted in the inverse nature of
the boundary value problem in an unbounded region, forcing us to employ shooting
procedures that are intrinsically highly unstable. One ofthe effective means of overcom-
ing that difficulty appears to be the method of variational imbedding [3], [4] based on
rendering the original inverse problem to a higher-order but correct boundary value
problem. The second challenge is connected with the choice of the "actual" infinity
for the difference approximations and often shows itself through the occurrence of
artificial eigenvalue problems that are not characteristic for the original problem in an
unbounded region.

A method free from said shortcoming is that of Fourier-series expansion with
respect to certain complete orthonormal (CON) system of functions in L2(-, )
space. However, the governing equations for solitons are, as a rule, nonlinear. For the
employed CON system, this places the very stringent requirement of possessing, for
the product of two members of the system, a representation in series with respect to
the system. It should be noted that for the well-known sets of Hermitian functions in
L2(-, ) and Laguerre functions in L2[0, ), such a representation is not available
(see, e.g., [5]).

The most systematic way to devise a CON system with the required properties is,
perhaps, to map through an algebraic function the infinite interval into [-1, 1] and
then to use the CON set of Chebyshev polynomials. This idea was initially sketched
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by Grosch and Orszag [6] for the semi-infinite interval and was generalized by Boyd
[7], who gave the appropriate mapping for the entire interval (-oo, oo) map and built
the rigorous basis beneath the said technique. Boyd [8] coined the term "rational
Chebyshev functions" for the newly devised set of functions (which we prefer to call
Boyd functions in order to stress the specifics in the unbounded intervals) and presented
a scrupulous analysis of the convergence region of the series with respect to them.

Another system suitable for nonlinear problems in infinite intervals is proposed
in the earlier work [9] and developed further in [10]. Unlike the above-mentioned
works of Boyd, in the works of Christov and Bekyarov the emphasis is put on the
performance of the spectral method in the infinite interval for intrinsically nonlinear
problems.

In the present paper the numerical technique for application ofthe Fourier method
based on the CON system from [9] is developed. The method is featured through
solving the soliton problem for the Korteweg-de Vries (KdV) equation and for the
equation of weakly nonlinear approximation in falling down a wall of thin viscous
capillary films (sometimes called the Kuramoto-Sivashinsky equation). Although some
authors use the term "soliton" only for special kinds of solitary waves, in the present
work this term is used as a synonym for the term "solitary wave."

1. Posing the problem. For the sake of simplicity consider the following form of
the Korteweg-de Vries equation (see [2, Chap. 3]):

(1.1) ut -6UUx + Uxx,, 0,

and seek a solution of the type of propagating wave u u(:), where : x-at, and
a > 0 is the phase velocity of the wave. Then (1.1) reduces to

-au’-6uu’ / u’" O,

where the prime stands for a differentiation with respect to the independent variable
:. We have a soliton solution (a solitary wave) ifthe following boundary conditions hold:

(1.2) u(:)O for :-+.
Under these boundary conditions the above ordinary differential equation can be

integrated once and rendered to

(1.3) au 3 u 2 + u" O.

Thus (1.3) and (1.2) form the boundary value problem to be solved. Fortunately, the
latter possesses an analytical solution for each a > 0:

(1.4) u sech2 [x/-d/2 ]
2

that can be used for checking the accuracy of the numerical schemes proposed.
Another interesting one-dimensional nonlinear equation of evolution arises in the

weakly nonlinear approximation for the shape of the free surface of thin film of viscous
liquid falling down a vertical plane when the capillary forces are significant. The rich
phenomenology of this flow made it one of the most popular and spurred a formidable
amount of research papers. It is not the purpose of the present work to go into the
details connected with that flow and we refer the reader to [11] and [12] for a
comprehensive review of the experimental and theoretical approaches, respectively.
For our purposes it is enough to cite here that in the frame of the weakly nonlinear
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approximation [13] the following dimensionless equation for evolution of the scaled
film thickness q in a moving frame can be derived [14], [15]"

(1.5) 0____ 6q OX2 "" OX4ot -x+ 0.

The same equation is arrived at in 16] when modeling chemically reacting fronts and
flames. Now (1.5) is called the Kuramoto-Sivashinsky equation (for brevity the K-S
equation). A thorough investigation of the different regimes is given in [17], where the
bifurcation catalogue of the attractors of the K-S equation is compiled on the basis
of several hundred numerical experiments.

Consider once again a solution of the type of propagating wave q q(), x- ct
when (1.5) is rewritten as follows"

-cq’ + 6qq’ + o"+ ((4) ---0

and when under the boundary conditions for soliton solutions

(1.6) q(#)O for +oo
we can integrate once and obtain

(1.7) -cq + 3q2 + q’ + q’" 0.

Unlike for the Korteweg-de Vries equation for the last boundary value problem
(1.6), (1.7) an analytic solution is not yet available. Rather, different numerical tech-
niques are applied [4], [12], [18], [19] and the shape of the one-soliton solution is
calculated fairly reliably, but the question of which is the type of spectrum (continuous
or discrete) for the eigenvalue parameter c is still unresolved. Having the Fourier
method verified in the case of the KdV equation, we apply it to boundary value problem
(1.6), (1.7) and the soliton solution obtained compares very well with the finite-
difference solution [4]. The interesting finding here supporting the difference-method
results of [4] is that we were able to find the approximate solutions for the soliton
problem for each value of celerity c, which we tried up to 20. This allows us to state
the hypothesis that the spectrum for which solitons of the K-S equation exist is
continuous 0 < c <

It should be mentioned that we consider only smooth classical solutions to (1.3)
or (1.7), which yields that under conditions (1.2) and (1.6) these solutions should
belong to the L2(-, c) space. So we occupy ourselves in what follows with solutions
for which the following requirement holds:

(1.8) I_q2(:)d<+ or f_u2(:)d<+c.
2. The CON system. Wiener [20, p. 35] introduced the system

1 (/x- 1)"
(2.1) p,,-/--(ix+l),,+a, n=O, 1,2,.

as a Fourier transform of Laguerre functions. Higgins [21] defined it also for negative
n and proved its completeness and orthogonality. The significance of (2.1) for nonlinear
problems is revealed in [9], where the product formula is derived:

(2.2)
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and the two real subsequences ofodd functions S. and even functions C. are introduced
according to the formulae

(p.+p_._,) (p.-p_._,)
(2.3) s. i/ c. / n=O, +l,

The sequence can be reduced just to its portion with positive values of index n due
to the symmetry property:

(2.4) S_n---S,_l, C_n---,_

The explicit expressions for S. and C. can be found in [9]. A simple representation
in terms of trigonometric functions has been brought to our attention by Geshev [22]"

(2.5)
S.(x) (_1).+

sin (n+ 1)O+sin nO
4

C.(x) (-1)"
cos (n + 1)0 + cos nO

where O=2arctg(x). These and other formulae interrelating the CON system
employed here to the different families of Boyd’s functions are presented in [23].

Most of the practically important formulae for the system (2.3) are compiled in
[9] and [10], and here we cite only those that are necessary for carrying out the present
calculations.

The most important feature ofthe system, n.amely, equality (2.2) for the real-valued
subsequences S., C. adopt the form

(2.6.SS)
S.S E a.,.k Ck,

k=O

Olnmk 2 tk’n+m+l tk’n+m + tk’ln-ml-sgn In m[- k,[In-ml-1/2]},
where 8i, is Kronecker delta and [. stands for the integer part of a real. Respectively,

(2.6.CC)

C,,C,,= E
k=O

/3.,.k 2 -8k..+,.+1 + 3k,.+,. + 3k,I.-,-I-sgn n m[- 3k,tl.

and

(2.7.SC)
s.c E r.s,

k=O

1
"Y.,,,k

22,,/
{-- ""+"+1 + 8k,n+m +sgn (n m)k.ln-ml--sgn (n m)k,ln-ml-1}"

In the same manner the formulae representing derivatives of a member of the
system into series with respect to the system are derived:

(2.8a) C’.= E O,,mS,., S’,,=-E O.,.C,.,
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where

(2.8b) C".= E x.c, s".= E x.s,
---0 ----0

where

1 nZ+(2n+l)2+(n+1)2

X""=-- n(n-1)6"’"-2+ n26’’"-- 4

1
+(n+ 1)26,.,+- (n + 1)(n + 2)3,,.,+2.

(2.8c) c" .q"Z .s, =-Z .c,
=0 =0

where

1 3
q.,. =’ n(n l)(n 2)6,.,._- n(n- l)(2n l)(m,n-2

3 3 )+-n(5n2+l)r.,n-l+-{(n+l)[5(n+l + 1]m,n+

4n3+4(n+Z)3+(2n+ l)[n+(2n+ l)+(n+ l)z] m, +

3
--(n+ l)(.+2)(2n+3)6.,,.++-(n+ l)(n + 2)(n + 3),.,.+3.

3. Fourier series for the Korteweg-de Vries equation. In order to display the
performance of the Fourier-series method for solving soliton problems, we begin with
the Korteweg-de Vries equation. Since the sole purpose of the present work is to check
the applicability of the new CON system to the case of intrinsically nonlinear problems,
we are not concerned with the problem of which of the spectral techniques will work
most efficiently: Galerkin, collocation, or tau version (see [24] for a comprehensive
review of the spectral methods), and as so we do not create different algorithms to
implement each ofthem for the purposes of comparison. Rather we choose the Galerkin
scheme, because in our case it is cheaper in implementation due to the fact that the
matrix is sparse. In fact, the part of the matrix that is responsible for the linear terms
is a band matrix with seven nontrivial diagonals (see (2.8c)), whereas the part respon-
sible for the nonlinear terms has only four nontrivial diagonals (see (2.6) and (2.7))
that are not adjacent, however. It is clear that for equations with more complicated
nonlinear terms it is better to use the collocation (pseudospectral) technique, since the
latter is much easier to program and the respective algorithms are easily verified. The
only reason to decide against it in the present paper is that the pseudospectral method
always converts the differential equation into a system of nonlinear algebraic equations
with dense matrix. So we resort here to the Fourier-Galerkin method.

It is easily shown that (1.3) admits even functions as solutions and hence we
develop the solution to be u into series only with respect to the even subsequence of
functions C,, namely,

(3.1) u(x)= E a,C,(x).
n=0
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Then for the terms entering (1.3), we obtain

(3.2) u"(x)= anO(,,nCn(x)
m=0 n=0

and

(3.3) U2(X) E amam2mm2nCn(x).
m=O m2=O n=O

Since for the Galerkin method the sets of trial and test functions coincide with the set
C,, then upon introducing (3.1)-(3.3) into (1.3), combining the terms with the like
functions Cn, and taking the respective coefficients to be equal to zero (due to the
independence of members of subsequence Cn and its completeness in the subspace of
even L2(-oo, oo) functions), we obtain the following infinite nonlinear algebraic system
for the unknown coefficients an:

(3.4) -a. a,,-3 amar,,2fl,,m2n+ a,,,X,,,n=O, n=0, 1,2,....
m=O m2=O m=O

For the sake of definiteness we take a 1, which does not cause a loss of generality,
since substituting u(x)= av(ax) we can exclude the parameter a from the equation.

It is obvious that we can solve only finite versions of (3.4) and the number N of
unknown coefficients at which the vector a={an} is truncated corresponds to the
number of equations of (3.4) that are retained. The chief purpose of the present work
is to show the efficiency of the Fourier-Galerkin method with the CON basis set from
[9] for nonlinear problems, as is done in [23] for the case of linear equation with
polynomial coefficients. The sole trait of efficiency of a spectral method is the capability
to give good approximation with a sufficiently small number (N + 1) of functions, used
in the series (see, e.g., [24, Chap. 1] and this will be the central issue of what follows.

For this reason we are not concerned here with the problems of the particular
numerical implementation of the procedure for solving the nonlinear algebraic system
representing the truncated version of (3.4). These problems require a detailed treatment
if they are to be tackled and this goes far beyond the framework of the present paper.
For now we need only a sufficiently rapid robust procedure for solving nonlinear
systems. Moreover, here we solve only one-dimensional problems when the required
computational time is small. We found satisfactory the pseudo-Newton’s widely used
algorithm of Brent (see [25]). The problem of efficiency of the numerical procedure
shall, however, inevitably arise when multidimensional soliton problems yielding vast
algebraic systems are to be considered.

The general consequence of the algorithm is as follows:
(i) We begin with the case N 0 when the system reduces to just one equation

for the unknown ao, which has two solutions

ao)=0 and ao2)=-0.835543.
Here is shown the bifurcation character of the problem uffder consideration. In this
simple case we are fortunate to solve the intricate problem for existence of a nontrivial
solution at the stage N 0. This will be not the case for some other equations and, in
general, we must try with increasing N in order to find a nontrivial solution.

(ii) Having obtained the solution for certain N M, it is used as an initial
condition for calculations with N M+ 1 coupling it simply with the initial condition
a4+1 0. After the convergence of the numerical procedure of the Brent method is
attained, the (M + 1)th approximation is completed.
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(iii) The calculations are terminated when the first K + 1 unknowns ai, i=
0, 1, 2,..., K cease to change with increasing the number of equations, and more
specifically, when the following criterion is satisfied:

where Ilall--(a +... + a)1/2 is the Euclidean norm of the solution and e is a small
quantity. In our calculations we took e 10 -3, K 6 and the convergence in the said
sense was obtained for N 17. Table 1 gives an insight into the manner in which the
convergence is attained. It is seen that the convergence is very rapid and for N 6
even a changes only with quantity of approximately 0.005.

In order to check the accuracy of the Fourier method, we used two different
methods. The first consists of developing the exact solution (1.4) into a series with
respect to the system using the Simpson formula with fourth-order approximation for
evaluation of the respective integrals taken over the region x [0, 20] with 501 grid
points. The coefficients obtained in this manner comprise the first column of Table 1.
We can easily see the excellent agreement for the first 10 coefficients ao," ", a9 of the
exact solution, and calculated with N 10, the approximate solution. This is a certificate
for good performance of the method proposed.

The second way of verifying the method is the comparison with the exact solution
for the soliton shape itself. Such a comparison is depicted in Fig. 1, and the convergence
for the shape is so rapid that even the approximate solution with N 7 cannot be
discerned from the exact one. The most striking thing, however, is that the solution
with N 1 (two terms in the truncated series) differs less than with 0.025 from the
exact solution at the time when the size of solution is 0.5, i.e., the difference is within
five percent from the maximal value. The latter means that in certain cases the present
method can serve as a method for express assessment ofthe solution shape that requires
solving just a couple of nonlinear algebraic equations.

It is interesting to assess the error of the Fourier-Galerkin method. The analytic
solution (1.4) of the nonlinear KdV equation gives us the unique opportunity to

TABLE
Developing the solution by increasing the number of equations, and comparison with the

respective coefficients obtained by developing the analytic solution into Fourier series.

ao
al
a2
a3
a4
a5
a6
a7
a8
a9

Analytic
solution

-0.7925
-0.1760
0.0190
0.0588
0.0500
0.0319
0.0167
0.0067
0.0009

-0.0010

N=0 N=I N=4 N=6 N=9

-0.8355 -0.8101
-0.163

-0.7994 -0.7930 -0.7925
-0.1688 -0.1731 -0.1760
0.0137 0.0203 0.0190
0.0371 0.0567 0.0588
0.0176 0.0444 0.0501

0.0237 0.0321
0.0078 0.0167

0.0066
0.0008

-0.0009

Maximal
absolute
error (3.8)

0.167 0.0430 0.0243 0.0046 0.0016
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\ !

FIG. 1. Developing the calculated shape for the solitons of the Korteweg-de Vries equation by increasing
the number of modes N+ (N O) (N 1) and comparison with the analytical solution:

quantitatively assess the part ofthe absolute error due to the truncation ofthe serieswthe
truncation error (see, e.g., [8], [24] for definition)"

N

(3.6) ET(x; N)= U(X)--
n=0

Taking a,, , from the first column of Table 1 (i.e., the "true" ones) we obtain the
pure contribution to the error due to the truncation of the series. This error as a function
of the spatial coordinate x is depicted in Fig. 2.

Following [8] we also consider the so-called discretization error:

N

(3.7) ED(X; N) =-
n=0

where the quantities denoted by a superscript N are the solution of the truncated
system, whereas those without a superscript are the coefficients of the series for the
analytic solution (see the first column in Table 1). Discretization error as a function
of x is shown in Fig. 3.

In most of the cases, an analytical solution is not available and hence the two
kinds of errors above cannot be calculated explicitly. For this reason the absolute error
(which is not a simple sum of the truncation and discretization errors) is the only one
that can be assessed in the numerical computations:

N

(3.8) EA(X; N)=- u(x)- ., (aNS,, + ti)C,), ea(N) max lEA(X; N)I,
--’0
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0.17.
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0.08

0.02

0.04

0.06

0.08

FIG. 2. The truncation errorfor the Korteweg-de Vries equation as a function ofxfor different N
(N=0) (N= 1) (N=4) (N=6)" (N =9).

where u(x) is either the analytic solution (when available) or the numerical spectral
solution with certain sufficiently large number N of terms pertained, i.e.,

Noo
(Noo) .’ =(Noo)(3.9) u(x) , (u, ..., +., C,).

n=0

The last row of Table 1 presents the maximal with respect to the x value e(N)
of the absolute error. The rapid decrease of the absolute error with the increase of the
number of the retained terms in the series is well seen. The latter is very important
since the solution (1.4) decays exponentially at infinity, whereas the functions of the
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-0,01 1
FIG. 3. The discretization error for the Korteweg-de Vries equation as a function of x for different N:

(N=0) (N= 1);--- (N =4); (N =6); (N-- 9).

employed CON system decay as x-2. There is no doubt that at x--> c the approximate
spectral solution poorly represents the real behavior of the solution. In that region,
however, the magnitude of the solution is small and does not bear significant practical
importance. That is, the method proposed is adequate enough for practical purposes,
even in situations where the asymptotic behavior of the sought solution differs sig-
nificantly from the respective behavior of the functions from the basis set.

4. Optimization of the method. The delightful results of the previous section are
a matter of luck in a sense, because the characteristic measure of the support of the
sought function turns out to be close to that of the employed set of functions, and
more specifically for the first couple of members. If it happens that this is not the case
and those two characteristic lengths are not close enough, a significantly greater number
of terms might be needed to secure acceptable approximation.

Fortunately, the unboundedness of the considered interval always allows us to
bring the mentioned characteristic lengths in correspondence, since if F(x) L2(-, )
then F(x) L2(, ), where/3>0 is real. The idea to scale the independent variables
is also employed in [6]-[8], and for the scale factor it is shown that its optimal value
may even depend on the number of terms retained in the truncated spectral series. It
is simpler to scale the independent variable prior to the calculations and thus render
the characteristic length of the sought solution in accordance with the scales length
of functions So, Co. It is important to mention here that the adequate choice of/3 in
[9] allowed us to reduce for the Burgers equation the required nontrivial coefficients
ai just to one" the coefficient a0. That was possible since the soliton problem there
reduced to a first-order ordinary differential equation. When higher-order equations
are considered such a drastic reduction is not to be expected but still the solution can
be significantly improved. The problem is to devise a quantitative criterion for discerning
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the better solutions. Qualitatively speaking, a solution is better when the higher-order
coefficients represent a smaller share from the norm of the vector of coefficients ai.
One of the possible versions a criterion securing the presence of that property is the
following"

N

(4.1) I(fl)= E la,(/3)ln-=min.
n=0

In the last formula, the coefficients ai(fl) are the solution of the system

(4.2)
N N 1 N

-a.a,-3 ., E am,am2[3mlm2n+-’ E Xm,a,=0,
ml=0 m2=0 m=0

n =0, 1, 2,. .
The reason for seeking the value/3 min for which the minimum of I is attained

is that this can be done for a relatively small value of N and only after that to run
the final calculations with higher N. The quest for minimum turns out to be a very
inexpensive procedure, since for each new value/3 the solution for the previous one
serves as an initial condition and the iterative procedure [25] converges rapidly.

The minimum of I(/3) is sought in the interval 0.5 -</3 =< 25 by means of the method
of the golden section [26]. For N 5 the sought value is min 2.84. Here we mention
that a couple of different criteria have been checked, e.g.,

N

(4.3) I(fl)= E a,,(fl) n2=min
n=0

or

N

(4.4) 1(/3)= E a(fl) n4=min,
n=0

and what is amazing is that the optimal scale factor is always min 2.8. Table 2 gives
an insight into the way in which the solution for a depends on fl for the case N 4.
It is seen that a2 promptly decreases near the optimal value of/3. Figure 4 shows the
solution calculated only on the basis of the first two coefficients ao, al with two different
values of/3. It is interesting to note that for the optimal value / 2.8, the solution
virtually coincides with the analytic one and cannot be discerned in the figure.

Here we note that calculating the scale factor/3 in accordance with the adopted
criterion does not necessarily yield for a fixed N a solution with least value for the

TABLE 2
The dependence of ai on ifor different scale factors fl when N--4.

2
2.8
4
5

ao al a2 a3 a4

-0.7994 -0.1688 0.0137 0.0371 0.0176
-0.5640 0.1086 0.0568 0.0112 -0.0002
-0.4513 0.1806 -0.0004 -0.0080 -0.0002
-0.3475 0.2043 -0.0643 0.0088 -0.0015
-0.3377 0.2136 -0.0587 0.0091 -0.0027

Maximal
error,

compared
to N=IO

0.0243
0.0033
0.0021
0.0003
0.066
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FIG. 4. The shape of the soliton for the Korteweg-de Vries equation as given by the first two terms no, al
with different fl (fl 2.8) and analytic solution" (fl 1).

maximal absolute error. This is easily seen in Table 2, where the least error is attained
for/3 4. The purpose of the optimization proposed here is to minimize the number
N of needed terms in series that are enough to give quantitatively adequate approxi-
mation.

5. Solitons for the Kuramoto--Sivashinsky equation. Deriving confidence from the
successful attempt with the Korteweg-de Vries equation, here we apply the proposed
spectral method for calculating the soliton solution of (1.7). Some preliminary results
in this direction have been obtained in [27]. The situation here is more complicated
for two reasons" a higher-order derivative is present, and the solution is neither an
even nor an odd function. As such, the solution is sought in the following truncated
series"

N

(5.1) q(x) Z [h,(x)S,(x)+h,(x)C,(x)].
n=0

Introducing the latter into (1.7), after standard manipulations, we arrive at the nonlinear
system for coefficients

N N N

m=0 ml=0 m2=0
(5.2)

N N N-- (Onm+qnm)-chn+3 E (am,m2nhm,hrn2+flrn,m2nhmhm2) =0.
m=0 ml=0 m2=0

System (5.2) contains 2N+2 equations for the 2N/2 unknown coefficients
ho, ho,’’ ", hN, hN. The general scheme of the algorithm is the same as in 3. We
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stress that in this case the convergence with respect to the number N is slower and
can be seen in Table 3. If we consider only the first seven pairs hi, hi, the convergence
within three percent (e 0.03) is attained for N 20. The slow convergence is easily
explained by the fact that the solution has a more complicated form (see Fig. 5),
showing a row of local minima and maxima. It turns out that in the last case the
adequate choice of scaling factor/3 is much more important than in the previous case,
where the solution has monotone shape. Here we do not employ the full-scale technique
for defining the optimal/3. Rather, we estimate from obvious considerations that/3 2
is to be good enough for "compressing" the soliton to fit the length scale of the So, Co.
Indeed, Table 4 and Fig. 6 convince us that the results are considerably improved.
First, the accuracy reached with N 20 is e 0.001 (30 times better) and this time
even N 0 gives fully acceptable approximation for the soliton. For N 3 the obtained
accuracy corresponds to N =6 with /3 1, and N 14 matches the performance of
N 20. We should mention that the results above are obtained for c 1.

TABLE 3
Developing the solution with Nfor c 1.

0

2
3
4
5
6

hi 7
8
9
10
11
12
13
14

0

2
3
4
5
6

8
9
10
11
12
13
14

7 8 9 11 15 20

0.1936 0.0325 -0.1474 0.0787 0.0297 0.0813
0.0572 0.1104 0.1459 0.0707 0.0969 0.0764

-0.0531 0.0101 0.0880 -0.0114 0.0066 -0.0140
-0.0857 -0.0669 -0.0229 -0.0554 -0.0602 -0.0625
-0.0684 -0.0859 -0.0880 -0.0580 -0.0739 -0.0625
-0.0361 -0.0662 -0.0970 -0.0401 -0.0519 -0.0370
-0.0108 -0.0349 -0.0717 -0.0197 -0.0176 -0.0074

-0.0105 -0.0373 -0.0054 0.0127 0.0145
-0.0112 0.0011 0.0314 0.0250

0.0022 0.0377 0.0256
0.0010 0.0344 0.0199

0.0258 0.0117
0.0159 0.0038
0.0075 -0.0021
0.0021 -0.0053

0.6634 0.6859 0.6267 0.6493 0.6713 0.6632
0.0723 0.1036 0.1407 0.0562 0.0901 0.0710

-0.0745 -0.0726 -0.0616 -0.0913 -0.0786 -0.0832
-0.0713 -0.0887 -0.1027 -0.0708 -0.0774 -0.0706
-0.0381 -0.0563 -0.0776 -0.0141 -0.0306 -0.0199
-0.0135 -0.0247 -0.0409 0.0279 0.0097 0.0188
-0.0026 -0.0069 -0.0148 0.0443 0.0297 0.0344

-0.0008 -0.0026 0.0409 0.0322 0.0315
0.0003 0.0279 0.0249 0.0186

0.0138 0.0150 0.0032
0.0041 0.0065 -0.0038

0.0013 -0.0182
0.0159 0.0038

-0.0010 -0.0212
-0.0004 -0.0181

Maximal absolute error compared to the case N + 20
0.1714 0.1168 0.1821 0.0212 0.0091 0



644 C. I. CHRISTOV AND K. L. BEKYAROV

I
I

FIG. 5. Developing the calculated shape of the film soliton for c with number of modes N+
(N 0); (N 6); (N 19) and comparison with the difference solution of [4]

FIG. 6. Developing the calculated shape of the film soliton for c and the scaling factor 2 with the
numberN+ ofmodes: N O); N 3) N 14) and comparison with the difference solution
of[4]
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Now, after being convinced that the proposed method is highly effective for
calculating the shapes of solitons, we try to answer the question of what for spectrum
exists for the parameter c. In [4] it is found that the difference solution to the problem
based on the notion of variational imbedding exists for 0.4=< c =< 4.9 and the results
strongly suggest that the soliton is to be expected for the entire open interval c (0, o).
It is not computed in [4] only because some measures for the grid are to be taken for
c << 1 and c >> 1. The present results confirm that conclusion and the shape of the film
soliton is obtained for a wide range of governing parameters c (see Fig. 7). We can
see the intricate shape for very high c >-10. The latter can be thought of, however,
only as preliminary results as far as the physics of the phenomenon is concerned, but
is still a very good achievement of the method of Fourier in L2(-oo, 3).

6. Conclusions. The present paper deals with developing the numerical aspects
of a new technique for the Fourier method in L2(-, ) with a CON basis system of
functions proposed earlier. The necessary formulae are compiled and the systems for
coefficients of the series are obtained in the frame of the Galerkin approach for two
famous nonlinear equations: Korteweg-de Vries and Kuramoto-Sivashinsky for which

TABLE 4
Developing the solution with Nfor c and the scale factor fl 2.

0

2
3
4
5
6

hi 7
8
9
10
11
12
13

0

2
3
4
5
6

hi 7
8
9
10
11
12
13

2 4 7 12 15 20

-0.0180
0.1452

0.2083
-0.0656
-0.0923
-0.0317

0.2351
-0.1109
-0.0703
0.0106
0.0357
0.0246
0.0080

0.2162 0.2128 0.2112
-0.0939 -0.0939 -0.0916
-0.0691 -0.0664 -0.0672
0.0062 0.0677 0.0065
0.0311 0.0299 0.0297
0.0195 0.0167 0.0174
0.0009 -0.0012 -0.0002

-0.0101 -0.0098 -0.0091
-0.0120 -0.0089 -0.0089
-0.0087 -0.0036 -0.0041
-0.0044 0.0014 0.0009
-0.0012 0.0004 0.0004

0.0040 0.0042
0.0025 0.0031

0.4378
-0.1032

0.4922
-0.0911
-0.0159
0.0129

0.4632
-0.0846
-0.0125
0.0152
0.0027

-0.0057
-0.0037

0.4698 0.4674 0.4689
-0.0930 -0.0955 -0.0957
-0.0116 -0.0118 -0.0115
0.0202 0.0223 0.0224
0.0025 0.0046 0.0047

-0.0125 -0.0122 -0.0126
-0.0120 -0.0136 -0.0135
-0.0039 -0.0058 -0.0053
0.0031 0.0024 0.0033
0.0055 0.0071 0.0075
0.0040 0.0078 0.0072
0.0015 0.0061 0.0041

0.0036 0.0004
0.0016 -0.0025

0.2291
Maximal absolute error compared to the case N+ 20

0.0280 0.0211 0.0180 0.0011
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FIG. 7. Evolution of the soliton shape with the parameter c: (c 1); (c= 10);- (c 20).

soliton solutions do exist. The performance of the Fourier-Galerkin method is checked
through comparing the approximate solution for KdV to the known analytic solution.
The different kinds oferrors (truncation, discretization, and absolute one) are calculated
as functions of the spatial coordinate x. Some means for optimization of the Fourier
method based on the notion of scaling the independent variable are discussed. Then
the mathematical technology is applied to the K-S equation and the soliton solution
is obtained for a variety of values of nonlinear eigenvalue parameters c. The shapes
of solitons compare well with known difference solutions.

The results obtained suggest that a reliable and robust numerical technique is
devised for calculating the shape of solitons occurring as solutions for certain nonlinear
differential equations of evolution.

Acknowledgments. The authors are indebted to the referees for helpful suggestions.
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FAST POLAR DECOMPOSITION OF AN ARBITRARY MATRIX*
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Abstract. The polar decomposition of an m x n matrix A of full rank, where rn n, can be computed
using a quadratically convergent algorithm of Higham SIAMJ. Sci. Statist. Comput., 7 (1986), pp. 1160-1174].
The algorithm is based on a Newton iteration involving a matrix inverse. It is shown how, with the use of
a preliminary complete orthogonal decomposition, the algorithm can be extended to arbitrary A. The use
of the algorithm to compute the positive semidefinite square root of a Hermitian positive semidefinite matrix
is also described. A hybrid algorithm that adaptively switches from the matrix inversion based iteration to
a matrix multiplication based iteration due to Kovarik, and to Bj6rck and Bowie, is formulated. The decision
when to switch is made using a condition estimator. This "matrix multiplication rich" algorithm is shown
to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than
matrix inversion.

Key words, polar decomposition, complete orthogonal decomposition, matrix square root, matrix
multiplication, Schulz iteration, condition estimator
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1. Introduction. A polar decomposition of a matrix A Cmn is a factorization
A UH, where H Cnn is Hermitian positive semidefinite and U C is unitary;
here we define unitary to mean that U has orthonormal rows or columns according
as rn _-< n or m >_- n. The decomposition always exists, H is the unique Hermitian positive
semidefinite square root of A*A (i.e., H (A*A)I/2), and U is unique if and only if
A has full rank (these properties are proved in 2).

The polar decomposition is well known in the case rn-> n (see [8] and [11], for
example). We have followed Horn and Johnson [14] in extending the definition to
m-< n. The consistency of the definition can be seen in the result that for any m and
n the unitary polar factor U is a nearest unitary matrix to A in the Frobenius norm
(this is a straightforward extension of a result from [6]). Because of the role it plays
in solving this and other nearness problems, computation of the polar decomposition
is required in several applications 13 ]. A recent application, which motivated the work
here, is the computation of block reflectors (generalizations of Householder matrices)
[19]. Here, the polar decomposition of an arbitrary matrix must be computed, and it
is desirable to do this efficiently on vector and parallel computers.

The polar decomposition can be obtained directly from the singular value
decomposition (SVD). Higham [11] describes an alternative approach based on a
Newton iteration involving a matrix inverse. The iteration is defined for square,
nonsingular matrices only, but in 11 it is pointed out how a preliminary QR decompo-
sition enables the treatment of A C" with m >- n and rank (A) n. It is also shown
in [11] how the iteration can be used to compute the square root of a Hermitian
positive definite matrix. According to the traditional model of computational cost
based on operation counts, the iterative algorithm is generally of similar expense to

* Received by the editors November 14, 1988; accepted for publication (in revised form) July 12, 1989.
t Department of Computer Science, Upson Hall, Cornell University, Ithaca, New York 14853. This
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648



FAST POLAR DECOMPOSITION 649

the SVD approach, but is much more efficient when the matrix is nearly unitary. In
an attempt to improve the performance of the iterative algorithm on machines that
execute matrix multiplication at high efficiency, Schreiber and Parlett 19] propose the
use of an inner Schulz iteration to compute most of the matrix inverses; they show
that this leads to an increase in efficiency if matrix multiplication can be done at a
rate 6.8 times faster than matrix inversion. Gander [7] develops a family of iteration
methods for computing the polar decomposition of a rectangular matrix of full rank;
his family includes a variant of the Newton iteration of [11].

The purpose of this work is twofold. First, we extend the algorithm of [11] so
that it is applicable to arbitrary A. Our technique is to use an initial complete orthogonal
decomposition so as to extract an appropriate square, nonsingular matrix. We might
say that the complete orthogonal decomposition is to the polar decomposition what
Chan’s preliminary QR factorization is to the SVD! We also show how to use the
algorithm of [11] to compute the square root of a (singular) Hermitian positive
semidefinite matrix. Second, we introduce a modification of the Schulz inner iteration
idea of [19] that reduces the cutoff ratio of multiplication speed to inversion speed
from 6.8 to 2, or to 1.5 if advantage is taken of a symmetric matrix product.

2. Iterative polar decomposition of an arbitrary matrix. The basic algorithm of 11
is as follows. It converges quadratically for any square, nonsingular A. We use a
MATLAB-like algorithmic notation, and denote by A-* the conjugate transpose ofA-.

ALGORITHM 2.1. U, HI polar, square (A, ).
% Input arguments: square, nonsingular A; convergence tolerance .
% Output arguments: U, H.
Xo=A; k=-I
repeat

k=k+l
(11 II, IIx ’ I1 /(llx II, IIx ]l)) a/4

1/2( + x-;*/ r,,)
until Xk+, Xk II, -< II,
U X,+
H=1/2(U*A+A*U)
To adapt the algorithm to arbitrary A C we begin by computing a complete

orthogonal deomposition (COD)

0

where Pe C and Q e C are unitary, and R e C is nonsingular and upper
triangular (we exclude the trivial case A 0, for which R is empty). This decomposition
may be computed using a QR factorization with column pivoting followed by a further
Householder reduction step (see [9, p. 169] for the details). Now we apply Algorithm
2.1 to R, obtaining R UH, and we piece together" the polar factors of A. We have

A=P[ URHRo 00] Q,

p[ URo
=- UH,

m-r,n-r 0

Im_r,n_
"Q o
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where Im_r,n_ denotes the (m- r)x (n- r) identity matrix. Note that I,,-r,,-r could
be replaced by any unitary matrix ofthe same dimensions; this shows the nonuniqueness
of the unitary polar factor when r-rank (A)< min (m, n). Note also that even though
U*U# I when m < n, H U*UH for all m and n; thus A’A= HU*UH-H2, so
that H (A’A)/2.

In evaluating U and H advantage can be taken of the zero blocks in the products.
Denoting by Qa the first r columns of Q, we have

(2.1) H QIHRQ*.

For U we partition

P (P1, P2

and we distinguish the two cases:

(2.2a) m => n =:> U [PI, P]
0

0 [im_, 0]

in which, respectively, the last m-n columns of P and the last n-m rows of Q*
need not participate in the multiplication.

To summarise, we have the following algorithm.

ALGORITHM 2.2. U, H] polar (A, e, 6).
% A 0 is arbitrary.
[P, R, Q] =COD (A, e)
UR, HR] polar, square (R, 8)
Form U, H according to (2.1) and (2.2).

As the notation indicates, in floating-point arithmetic a tolerance e is required
for the complete orthogonal decomposition to determine a numerical rank (i.e., the
dimension of R). The natural approach is to set to zero all rows of the trapezoidal
QR factor of A that are negligible (in some measure) relative to e (see [9, p. 166]).
The choice of e is important, since a small change in e can produce a large change
in the computed U when A is rank-deficient. However, a redeeming feature is that
whatever the choice of e, and irrespective of how well the QR factorization reveals
rank, Algorithm 2.2 is stable, that is, the computed polar factors /], satisfy

UH A+ E,

where IIEII max {e, a}llAll; this follows from the empirical stability of Algorithm
2.1 (see [11]) together with the stability of the additional orthogonal transformations
in Algorithm 2.2.

The operation count of Algorithm 2.2 breaks down as follows, using the "flop"
notation [9, p. 32]. The complete orthogonal decomposition requires 2mnr- r(m + n)+
2r3/3 + r(n r) flops [9, pp. 165,170]. Algorithm 2.1 requires, typically, eight iterations
(assuming 8 10-16), and hence (7 +)r flops (taking into account the triangularity
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of R). And formation of H and U requires at most nr2+n2r/2 and mr2+
max {nm, mn} flops, respectively. By comparison, computing a polar decomposition
via the Golub-Reinsch SVD algorithm requires approximately 8mn+25n3/6 flops
when m _-> n. The Golub-Reinsch SVD algorithm does not take advantage of rank-
deficiency, although it could be modified to do so by using an initial complete
orthogonal decomposition as above.

Of course, operation counts are not always a reliable guide to the actual computa-
tional cost on modern vector and parallel computers. An alternative performance
indicator is the amount ofmatrix multiplication in an algorithm, since matrix multiplica-
tion can be performed very efficiently on many modern computers [1], [3], [18], [20].
As we will see in the next section, Algorithm 2.1 can be modified so that it is rich in
matrix multiplication. In the complete orthogonal decomposition in Algorithm 2.2 the
second Householder reduction step can be accomplished using the matrix multiplica-
tion rich WY representation of [3], [20]. In the initial QR factorization effective use
of the WY representation is precluded by the column pivoting. One alternative is to
use Bischof’s local pivoting and incremental condition estimation technique [2], which
does not hinder exploitation of the WY form. Another alternative is to compute a QR
factorization without pivoting, and then to apply Chan’s post-processing algorithm [5]
for obtaining a rank-revealing QR factorization.

Finally, we show how to use Algorithm 2.1 to compute the Hermitian positive
semidefinite square root of a Hermitian positive semidefinite A Cnn. First, we
compute a Cholesky decomposition with pivoting,

0

where Rl C is nonsingular and upper triangular. Then Householder transforma-
tions are used to zero R (as in the complete orthogonal decomposition):

U*IIrAIIu=[T*I][TI, 0], TllGC uppertriangular.
k 30

Next, Algorithm 2.1 applied to Tll yields Tll- UT-Hr, whence, with Q- II U,

=0 Q*=
0 0

Q* --x

Square roots of semidefinite matrices are required in some statistical applications [10].
An alternative to this polar decomposition approach is to make use ofan eigendecompo-
sition; the relative merits are similar to those discussed above for the SVD.

3. A hybrid iteration. To make Algorithm 2.1 rich in matrix multiplication rather
than matrix inversion, Schreiber and Parlett [19] use an inner Schulz iteration,

(3.1) Z+I=Z+(I-ZXk)Z, Zo= X,,

to compute X on all iterations after the first. This approach takes advantage of the
fact that since the Xk are converging quadratically, X{_I is an increasingly good
approximation to X{ 1. The Schulz iteration (3.1) is a Newton iteration and so also
converges quadratically. Schreiber and Parlett observe that for the matrices in their
application (which are often well conditioned) the typical number of inner iterations
required for convergence is 6, 5, 3, 2, 1, leading to 17 iterations in total, or 34 matrix
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multiplications. If the matrix inverses were computed directly, five inverses would be
needed. This suggests that the modified algorithm will be faster than Algorithm 2.1 if
matrix multiplication can be done at a rate 34/5 times faster than matrix inversion.

Further experimentation with the inner Schulz iteration led us to feel that it is
unnecessary to run the inner iteration to convergence, and we considered employing
just one Schulz iteration, with the starting matrix Zo Xk* (=X;’ since Xk converges
to a unitary matrix). Thus the basic iteration

(3.2) Xk+
’)/k

is replaced by (setting "Yk--1)

Xk+, 1/2(Xk + (Z*o + Z*o (I ZoXk)*))
(3.3)

Xk(I +1/2(I--X*k Xk)).

This is precisely the quadratically convergent iteration of Kovarik 15] and Bj6rck and
Bowie [4] for computing the unitary polar factor! Hence, just a single inner Schulz
iteration is enough to maintain quadratic convergence.

The convergence of (3.3) is described by the following relation, noted in [17]"

Rk+l =R+1/4R,

where R I--X*k Xk. (Using this relation, we can show that the asymptotic error
constant is - for (3.3) compared with 1/2 for (3.2) [11].) If IIRkll 1, then

2IIR+,II < IIRII=/IIRII=- IIRII < IIRII,
To maximise the number of matrix multiplications we therefore need to switch from
iteration (3.2) to iteration (3.3) as soon as the convergence condition

(3.4) IIx*x III--< 0 < 1

is satisfied; to ensure fast convergence 0 should not be too close to 1. As explained
below, typically (3.4) is satisfied for k 3 with 0=0.6 (and obviously for k =0 if
Xo A happens to be nearly unitary). Rather than expend a matrix multiplication
testing (3.4) we can use the matrix norm estimator CONEST from 12]. This computes
a lower bound for IIcII, by sampling several matrix-vector products Cx and C’x; thus
we can estimate IIX*k Xk 1111, without forming X*k Xk, in O(r2) flops (for r x r Xk).
A suitable way to use the estimate is to test whether it is less than A0, where A < 1. If
so, X*kXk--I is formed, in preparation for (3.3), and its norm is taken. If (3.4) is
satisfied then (3.3) is usedotherwise we revert to iteration (3.2). The optimum choice
of A depends on the desired bias between wasting a matrix multiplication in an abortive
switch of iteration, and not switching soon enough. The estimate from CONEST is
almost always correct to within a factor 3, so A ->_ is appropriate. In practice we have
found that the performance of the algorithm is fairly insensitive to the choices of 0
and A.

To summarise, our hybrid inversion/multiplication algorithm is as follows.

ALGORITHM 3.1. U, HI polar, mult (A, , A, 0).
% A must be a square, nonsingular matrix.
Xo A; k =-1; /x 1; switched=false
repeat
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k=k+l
if switched

R I-X*Xk;
evaluate (3.3)

else
I., CONEST I X’X
if >h0

evaluate (3.2)
else

R= I--X*kXk; / IIRIli
if t > 0, evaluate (3.2), else evaluate (3.3), sw+/-tched=true; end

end
end

until/ -<_
U X+
H=1/2(U*A+A*U)

Since iteration (3.3) requires two matrix multiplications, and iteration (3.2) requires
one inversion, Algorithm 3.1 will be more efficient than Algorithm 2.1 if matrix
multiplication can be done at twice the rate of matrix inversion; thus, compared with
using the full inner Schulz iteration, the "cutoff ratio" is 2 instead of 6.8. Moreover,
if advantage is taken of the symmetry of the second matrix product in (3.3) the cutoff
ratio is reduced to 1.5. The overall speedup depends on the ratio of inversions to
multiplications, which in turn depends on the conditioning of the matrix, as discussed
below.

All the algorithms mentioned here have been coded and tested in PC-MATLAB
[16], running on an IBM PC-AT. For this machine the unit roundoff u 2.22 10 -16.
We used 0 .6, A .75, 8 v/7 u, where r is the dimension ofthe matrix A in Algorithms
2.1 and 3.1, and e =max (m, n)]tlu in the complete orthogonal decomposition, where
T is the triangular factor from the QR factorization with complete pivoting.

The following comments summarise our numerical experience, based on a wide
variety of test matrices.

Algorithms 2.1 and 3.1 usually require the same number of iterations. Occasion-
ally Algorithm 3.1 requires one more iteration due to the larger error constant for
iteration (3.3).

In general, the typical number of iterations for Algorithm 3.1 is seven to nine,
within the switch of iteration on iteration three or four.

TABLE 3.1

k rF(Xk+,) IIx* Xk llll’ Iteration Yk

0 2.6265E7 1.1380E10 (3.2)
5.3197E2 2.6233E4 (3.2)

2 4.0886E0 8.0962E- 2 (3.3)
3 3.9959E0 4.4915E- 3 (3.3)
4 4.0000E0 1.3686E- 5 (3.3)
5 4.0000E0 1.2607E 10 (3.3)
6 4.0000E0 1.5765E 17 (3.3)

3.1546E-3
8.0931E 3

Norm estimate when (3.2) is used; exact quantity when (3.3) is used.
Norm estimate exact to five digits.
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For well-conditioned matrices (:2(A) <- 10, say), as are common in certain
applications (see 13]), Algorithm 3.1 tends to require at most seven iterations and the
switch is on iteration one, two, or three.

We present the results for one representative matrix in detail" MATLAB’s
"gallery(5)," which is the 5 x 5 nilpotent matrix

-9 11 -21 63 -252
70 -69 141 -421 1684

575 575 -1149 3451 -13801

3891 -3891 7782 -23345 93365

1.024 1024 2048 -6144 24572

Using Algorithm 3.1 within Algorithm 2.2, the numerical rank is diagnosed as 4, and
Algorithm 3.1 is presented with a triangular matrix having one singular value of order
105 and three of order 1. Table 3.1 summarises the iteration. The backward error
A- t)/ - 4.7ullall.

Acknowledgment. We thank Des Higham for suggesting several improvements to
the manuscript.
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ON SHAPE-PRESERVING INTERPOLATION AND SEMI-LAGRANGIAN
TRANSPORT*

PHILIP J. RASCHt AND DAVID L. WILLIAMSONf

Abstract. A large number of interpolation schemes are evaluated in terms of their relative accuracy.
The large number of schemes arises by considering combinations of interpolating forms (piecewise cubic
polynomials, piecewise rational quadratic and cubic polynomials, and piecewise quadratic Bernstein poly-
nomials), derivative estimates (Akima, Hyman, arithmetic, geometric and harmonic means, and Fritsch-
Butland), and modification of these estimates required to ensure monotonicity and/or convexity upon the
interpolant. Shape-preserving methods maintain in the interpolant the monotonicity and/or convexity implied
in the discrete data.

The schemes are first compared by evaluating their ability to interpolate evenly spaced data drawn
from three test shapes (Gaussian, cosine bell, and triangle) at two resolutions. Details of the cosine bell
tests are presented in this paper. Details of the other tests are presented in a companion technical report.
Of the monotonic interpolants, the following are the most accurate: (1) The Hermite cubic interpolant with
the derivative estimate of Hyman modified to produce monotonicity as suggested by de Boor and Swartz.
(2) The second version of the rational cubic spline suggested by Delbourgo and Gregory, with the derivative
estimate of Hyman modified to produce monotonicity. (3) The piecewise quadratic Bernstein polynomials
suggested by McAllistor and Roulier with the derivative estimate of Hyman again modified. Imposing strict
monotonicity at discrete extrema introduces significant errors. More accurate interpolations result if this
requirement is relaxed at extrema. The Hermite cubic interpolant is improved by relaxing the strict
monotonicity constraint to one suggested by Hyman at extrema. In a like manner, the accuracy of the
rational and piecewise quadratic Bernstein polynomial interpolants can be improved by requiring only that
convexity/concavity be satisfied rather than monotonicity.

Some of the more accurate interpolants are incorporated into the semi-Lagrangian transport method
and tested by examining the accuracy of the solution to one-dimensional advection of test shapes in a
uniform velocity field. The semi-Lagrangian method using monotonic interpolators provides monotonic
solutions. The semi-Lagrangian method using interpolators that maintain convex/concave constraints give
solutions that are essentially nonoscillatory. The monotonic forms damp the solution with time, more so for
narrow than broad structures. The best monotonic forms are the Hermite cubic interpolant with the Akima
or Hyman derivative estimates modified to produce monotonicity with C continuity. The corresponding
C continuous forms have unacceptable phase errors with the Hermite interpolant. The rational cubic with
the Hyman derivative estimate modified to produce monotonicity is comparable to the C Hermite form
described above. The C rational form does not have the phase error seen in the C Hermite interpolant.
The essentially nonoscillatory forms damp much less than the monotonic forms. The solutions that used
rational cubic interpolants with a Hyman derivative estimate modified to satisfy a convexity/concavity
constraint were the most satisfactory of the shape-preserving schemes.

Key words, monotone, convex, interpolation, shape preserving, advection, transport

AMS(MOS) subject classifications. 65D05, 65D07, 65M05

1. Introduction. Shape-preserving interpolation denotes a class of methods that
maintain any monotonicity, and/or convexity suggested by data in the interpolant.
These shape-preserving properties provide a means of avoiding the oscillations often
seen in polynomial interpolation. Many methods [4], [15], [16], [17], [9], [5], [6],
[12], [8], [7] have been introduced in the past few years with shape-preserving
properties. They have usually been evaluated in terms of their "visually pleasing"
nature, or via the error terms of the associated Taylor series. While these quantities
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are of great importance, many problems require the interpolation of data that are not
strictly monotonic, or convex. Often the underlying form of the data has discontinuities
in its derivatives, and the Taylor series error estimates are of limited utility. Thus, it
is desirable to evaluate the accuracy of the interpolant in a more general context. In
this paper we objectively compare shape-preserving interpolants with each other and
with non-shape-preserving forms to provide a sound basis for choosing one for a
particular application.

This paper attempts to provide a survey of a number of the currently accepted
methods of shape-preserving interpolation that have appeared in the literature. We
present a review of the methods, and then use two classes of tests to allow the schemes
to be compared. Because of the review of methods, a careful description of the
experimental design, and discussion of the results, the paper is long. Some of the
supporting details are provided in a companion technical report [21]. We have made
a strong effort to condense our results and conclusions into a concise form in 5,
which we urge the reader to peruse first. That section contains no "numbers." Results
are reviewed, and schemes are ordered qualitatively and quantitatively. We are not
aware of any study that compares such a broad variety of schemes using objective
tests. This was the primary motivation for performing the study. We needed to know
of a reasonably accurate, simple, shape preserving interpolation scheme.

The ultimate application requiring this study was to use a shape-preserving
interpolant as one part of a set of improvements to a technique known in the meteoro-
logical literature as semi-Lagrangian transport (cf., [19], the references therein, and
the references of 4). Semi-Lagrangian transport is used for (among other things) the
solution of differential equations describing the evolution of scalar fields embedded
in an advecting velocity field.

It is difficult to construct semi-Lagrangian schemes that strictly conserve mass. To
balance this disadvantage they have the desirable property of unconditional computa-
tional stability, resulting in schemes that do not have the very common restriction,
often referred to as the Courant number restriction, on the timestep of U,t/,x <- 1,
where U is the velocity, and/t and x are intervals of time and space discretization.
They also are not generally cursed with the slowdown in phase speed with large Courant
number often seen in implicit forms of computational methods whose explicit cousins
have a Courant number restriction. The semi-Lagrangian schemes have been shown
in 18] to be consistent, and this property, with the stability property mentioned earlier
implies convergence via the Lax Equivalence Theorem. We are constrained only by
accuracy considerations in the choice of timestep length, with no additional stability
considerations. We were led to a consideration of semi-Lagrangian methods in a set
of calculations on the sphere with the computational grid constrained by other aspects
of the problem [30] to be nearly equally spaced in latitude and longitude. With this
computational grid we invariably encounter flows in which the Courant number greatly
exceeds 1, and we needed a computational method that would deal with this situation.

One part of the semi-Lagrangian scheme requires an accurate interpolation of the
scalar field, and it was this interpolation that we hoped to improve using a shape-
preserving technique. By replacing the polynomial interpolants usually used in semi-
Lagrangian transport with shape-preserving interpolants, the physically unreasonable
oscillations seen in solutions to this equation should be reduced or eliminated. With
this improvement, the semi-Lagrangian scheme becomes closer to the monotonic [2],
[26], [27], [28], [29], or total variation diminishing schemes [10], or positive-definite
transport algorithms [24]. These schemes are often used for solving evolution equations
posed in flux form. Although the shape-preserving forms of semi-Lagrangian transport
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schemes and monotonic or total variation diminishing schemes mentioned above do
not show the undesirable oscillationsmin exchange they are characterized by increased
damping, diffusion, or clipping phenomena over the oscillatory solutions. While any
numerical scheme can be made to provide positive-definite solutions by ad hoc correc-
tions to the solution at the end of each timestep, these corrections cannot be applied
to the corresponding overshooting in the solution. We have found that in practice their
application to schemes that are oscillatory often leads to substantial errors in the
solution as well. The transport scheme must obviously be chosen to suit the problem
at hand, and often it is more important to maintain the positivity, or nonoscillatory
nature of the solution, and sacrifice other characteristics. In this paper we explore the
trade-offs seen in moving from nonshape-preserving forms of semi-Lagrangian trans-
port to shape-preserving forms.

In 2 a notation is established, and the various shape-preserving interpolation
schemes are reviewed. Various interpolation schemes are compared in 3, in terms of
their accuracy in representing a single test shape. A more complete test with shapes
that differ in their degree of continuity, monotonicity, and convexity is provided in
[21]. A summary of the interpolation comparison of 3 and [21] appears in 3.4. The
schemes judged better in this comparison are then used within the semi-Lagrangian
technique ( 4) in the solution to the simplest of transport problems, that of one-
dimensional advection of a scalar field (of prescribed initial shape) by a constant
velocity field. In our tests involving this equation, the error is associated only with the
interpolation. The accuracy of the solution thus provides an objective measure of the
error accumulated over many interpolations. The overall conclusions are provided in

5. These tests allowed us to compare many of the shape-preserving interpolation
forms, and we judged the results to be of probable interest to the community using
these interpolation formulae and to the community interested in improvements to
semi-Lagrangian transport.

2. The interpolation problem. We begin by defining the grid {Xi}=I, X < X2’"
< xn, and the data values {f},f =f(xi). It is also convenient to define the discrete slopes

(1) Ai-’
Xi/l--X

The data are locally monotonic on the double grid interval [x_, x+] if

(2) Ai_IAi > 0,

and locally convex if

(3)

For concave data, the previous inequality (3) is reversed. We note that with these
definitions, some data may be interpreted as concave and convex on a single grid
interval. We deal with this special case in 3.2. We define the piecewise interpolant
p cc[xl, xn], with K _-> 0. On each subinterval [x, Xi+l], let

X X
(4) 0 hi Xi+ Xi,

hi

and

(5) p(x) --pi(O).
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The interpolant p has the following properties"

alp(x,)
(6) p(x,) =f, -d,.

dx

Here, di is some estimate of the derivative of f at the endpoints of the subinterval.
The interpolant is specified on the subinterval in terms of the data f, and the derivative
estimates di at the endpoints of the subinterval, that is,

(7) p,(O)=p,(O,f,f+l, di, di+l).

The interpolant thus adheres to the standard osculatory representation, although the
functional form of p is not necessarily the usual Hermite form of the cubic polynomial.
For the intercomparison, only interpolating forms that involve use of local information
are included, i.e., d is a function of a few surrounding values of f. In this fashion we
have excluded from consideration many global schemes; for example, the classic C2

cubic splines which minimize the integral of the curvature of the interpolant over the
entire domain, exponential splines under tension [25], and global versions of the
monotone, piecewise interpolants of [8] and [5]. These schemes require information
over the entire domain. We chose to evaluate local methods because our major final
goal was a local transport scheme. Local methods are also desirable because adding,
changing, or removing data in the domain will only change the interpolant in the
vicinity of the change of data. Following this restriction, schemes that differ from each
other in three major ways are considered"

The method of estimating the derivative is varied according to algorithms that
have appeared in the shape-preserving literature.

The type of interpolating function is varied to encompass cubic polynomials,
rational functions, and quadratic Bernstein polynomials with extra knots.

To guarantee monotonicity or concavity/convexity in the interpolating function,
certain constraints are imposed on the derivative estimates. The appropriate constraint
depends on the interpolation form.

It is convenient to address these items in reverse order in the following sections.

2.1. Constraints on the derivatives. Certain constraints must be imposed on the
derivative estimates used in the interpolation schemes for the interpolants to maintain
the properties of convexity/concavity or monotonicity present in the data. The con-
straints are reviewed in this section, proceeding from the least to the most restrictive
form. The constraints can be written in terms of restrictions on the derivative estimates
d at the endpoints of an interval, as a function of the discrete slope A within the
interval. Because of this, the constraint on d based on Ai_l of the interval to the left
may be different from that based on Ai of the interval to the right. We may choose to
use a different derivative estimate at a point for interpolation over two adjacent intervals
by constraining the estimate differently, in which case the interpolant is C, or insist
that constraints associated with both intervals be satisfied simultaneously, in which
case the same derivative estimate is used for the adjacent intervals, and the interpolant
is C 1. When the constraint on d depends not only on the discrete slopes over the
adjacent intervals z_ and Ai, but also the derivative estimate d_ or di+ at the other
ends of the intervals, the C interpolants become global. Such forms are not considered
in this report.

The requirement that the continuous derivative estimates bound the discrete slope
for a CO interpolant

(8) (di Ai)(Ai- di+,) > 0 (NCC0)
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and lie between the adjacent discrete slopes for a C interpolant

(9) (di-Ai_l)(Ai-di)>O (NCC1)

must be true if the interpolant is to be convex/concave in the intervals [xi, xi+l] and
[xi_, xi/], respectively. These requirements are identified as Necessary Condition(s)
for Convexity/Concavity, CO and C 1, respectively.

In order that the interpolating function be monotonic on the interval
and C, the derivatives must satisfy the Necessary Condition for Monotonicity CO

sign (di) sign (Ai) sign (di+), A # 0,
(10) (NCMO)

d di+ O, i O,

that is, the derivative estimate at the endpoints must have the same sign as the discrete
slope on the interval. For a C interpolant on the interval

sign (Ai_I) sign (d,) sign (Ai) Ai_lAi > O,
(11) (NCM1).

di =0, Ai_Ai <= 0,

The derivative estimate at the data point must have the same sign as the discrete slopes
surrounding it or be zero if the discrete datum is an extremum at this point. This
condition is the Necessary Condition for Monotonicity C (NCM1).

For the rational and piecewise quadratic Bernstein polynomial interpolation forms
discussed below, the necessary conditions NCM0 and NCM1 are also sufficient
conditions for monotonicity. Similarly, the NCC0 and NCC1 are sufficient conditions
for convexity with these interpolants. On the other hand, for Hermite cubic interpolants
NCM0 and NCM1 are necessary but not sufficient for monotonicity and must be
augmented by additional constraints on the derivatives.

Fritsch and Carlson [8] have found both necessary and sufficient conditions for
monotonicity of Hermite cubic interpolants. Let a di/Ai, /3 di+/Ai; then if A # 0
the cubic interpolant will be monotonic if and only if (a,/3) lies within the domain

Mns defined by the union of two domains:

(12) [/ns ,e U ,ff/[b

where

(13) ,/e (O, 1)--{O, 1 I) (0, [) 0),

(14) Mb(a,/3) {a,/3: 0<= a =<3, O=</3 --<3},

and

(15) /3) (a 1)2+ (a 1)(/3 1)+(/3 1)2- 3(a +/3 -2).

If A 0, then di di+l 0 and the necessary condition discussed earlier is also sufficient.
Embedded in this domain Mns is the region Mb recognized independently by de Boor
and Swartz [4] that provides a sufficient condition for monotonicity for the Hermite
cubic interpolant. This sufficient condition

(16) 0_-< a <=3, 0_-</3 _-<3 (SCM)

is easier to apply than the more general necessary and sufficient condition () in
which a and/3 may be dependent on each other. Throughout the remainder of this
article, this simpler condition will be referred to as the Sufficient Conditionfor Monoton-
icity (SCM). As before, we define CO and C forms depending on whether the derivatives
di are bounded by just the A of the interval being interpolated or by the A of the two
adjacent intervals simultaneously.
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Constraints on the derivative estimates are applied in the following fashion. The
NCM constraints are imposed according to

(17) d, - [ d, d O,
t0, d,a -<_o

where i=j, j + 1 for NCM0 interpolation on the interval [xj, xj+], and j i-1, for
NCM1 interpolation on the double interval [xi-1, Xi+l]. Similarly, the SCM constraints
use

(18) di SIGN (d) min (Id, I, 13Ajl)

where =j, j + 1 for SCM0, and j i- 1, for SCM1, and are applied following the
corresponding NCM constraint. Finally, we use the following algorithm to apply the
NCC1 constraint.

di,
(19) d

dlim,
(di Ai-1)(Ai- di) >- 0,
(d,-A,_,)(A,- d,) <0

where

min (Ai_I, Ai) di < Ai-,
(20)

max (Ai_, Ai), di >-- A_.

At an extremum where the data are not monotonic over the surrounding double
interval, NCM1 limiting provides a severe restriction, as d is constrained to be zero
there. The interpolant must put the extremum at the data point. For Hermite cubic
interpolants Hyman [12] has relaxed the SCM1 limiting concept where the data reach
a local extremum, and are not monotonic, in an attempt to mimic a convexity constraint.
He proposed the following limit on the derivatives"

(21) di SIGN (di) min (Idil, 13Ai_,I, 13A,I).

This allows for overshoot on the interval next to local discrete extrema and thus is
nonmonotonic, but does provide some control of the overshoot and, in particular,
prevents oscillations at the edge of fiat plateaus. This type of limit is more in the spirit
of essentially nonoscillatory schemes as introduced by Harten and Osher 10] in which
overshooting can occur to prevent undesirable clipping, but no additional extrema are
allowed.

2.2. Interpolation forms. Three types of interpolating functions are considered,
all of which appeared in the recent literature regarding shape preserving interpolation:

Cubic polynomials [4], [8], [12], [7]
Quadratic Bernstein polynomials with extra knots [15], [16], [17]
Rational functions [9], [5], [6].

The Hermite cubic and rational interpolating functions can be described using
the formalism of Delbourgo and Gregory [5]. Consider the function

P,(O)
(22) p,

Q,(O)

on the interval 0_-< 0 _-< 1, equivalently x _-< x _-< X+l, where

(23) P(O)=f+oa+(rf+l-hid,+)O(1-O)+(rf+hd,)O(1-o)E+f(1-O)
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and

(24) Q,(0) 1 +(r,-3)O(1-O).

We consider four choices of the parameter
If ri 3, pi reduces to the standard Hermite cubic polynomial interpolation form.

Recall that the interpolant will be monotonic if the di lie within the domain Mb.
If r 1 +(d + d+l)/A, then P and Qi reduce to quadratic polynomials, and

p is identified as a rational quadratic interpolant. Delbourgo and Gregory [5] have
shown that provided d and d+l satisfy the NCM0, p will be monotonic over the
subinterval, otherwise this interpolant is not well defined. If NCM0 (10) is not satisfied
we modify the derivatives to satisfy it in order to apply the rational quadratic via (17).

If ri 14- max (Ci/ci, Ci/Ci+l), where ci Ai- di, Ci+l di+l- Ai, Ci di+l di
then Pi is a cubic polynomial, and p is identified as the rational cubic interpolant
version 1.

If r 1 + c+1/ci + c/c+1, then P is again a cubic polynomial and pi is identified
as the rational cubic interpolant version 2. Delbourgo and Gregory [5] have shown
that if the derivatives satisfy the convexity/concavity constraints NCC0 or NCC1 then
both rational cubic versions will be convex/concave. If, in addition, the derivatives

TABLE
Algorithms for derivative estimates as they simplify for evenly spaced data.

Identifier Algorithm

Akima [1], [8], [12]

Arithmetic mean [8], [9], [5], [12]
Deficient spline

(Ai-l+Ai)

Geometric mean [5]
di

fsign
0,

Ai_IAi-->0

Ai-Ai < 0

Harmonic mean [7]
Rational linear [9]
McAllister-Roulier 17]

2Ai_IA Ai_IA >--0

d A "t" A

.0, Ai_Ai <0

Fritsch-Butland [7], [12]
Ai_IAi-->0

Ai_Ai < 0

Cubic x(x,,xi+)

x(x,_,,x,)

Hyman 12] Ai_ 7Ai_ + 7Ai Ai+
di



SHAPE-PRESERVING INTERPOLATION AND TRANSPORT 663

satisfy the monotonicity constraints NCM0 or NCM1, then both versions will be
monotonic. Delbourgo and Gregory [5] have also shown that version 2 is, in general,
more accurate than version 1. The derivative estimates must satisfy NCC0 for the two
versions of the rational cubic interpolant to be well defined.

The quadratic Bernstein polynomials with extra knots cannot be described using
the previous formalism. This interpolant is constructed by piecing together two quad-
ratic Bernstein polynomials within each interval, with the point of intersection (the
extra knot) determined by a rather complex algorithm that cannot be succinctly
described with a few equations or figures. Because of this, the reader should refer to
the descriptions found in the series of original articles 15], 16], 17]. The characteristics
of the Bernstein polynomials, together with the algorithms developed for constructing
the knot, the value of the interpolant at the knot, and the interpolant derivative at the
knot guarantee that the interpolant will be monotonic provided NCM is satisfied, and
convex/concave provided NCC is satisfied.

2.3. Derivative estimation lrocedures. Table 1 lists the algorithms used in estimat-
ing derivatives at the nodes. Several of the algorithms suggested in the literature for
shape preserving interpolation that differ for unequally spaced data reduce to a common
form when the data become equally spaced. The tests that follow use only equally
spaced data, and therefore common algorithms are grouped together. The table also
includes an algorithm identified as Cubic, which does not usually appear as a derivative
estimate. This scheme arises by computing a cubic interpolant through the four points
surrounding the interval. The derivative estimates at the ends of the interval can then
be written as a linear combination of the four surrounding data points. Such a scheme
results in an interpolant that is only CO continuous. It is included because this form
of interpolation is often used in semi-Lagrangian problems. The harmonic mean,
geometric mean, and Fritsch-Butland derivative estimates automatically satisfy the
NCM and NCC constraints. The others generally must be modified to satisfy them as
described in 2.1.

3. Intercomparisons of interpolation schemes.
3.1. Test shapes and diagnostics. The accuracy of the interpolation schemes has

been tested on a uniform grid using three shapes: Gaussian, cosine bell, and triangle.
For the cosine and triangle shapes, the nonzero portion is confined to the central half
of the domain. These shapes were chosen because they have similar forms, but may
be successively more difficult to approximate accurately. The Gaussian is C, the
cosine bell C 1, and the triangle C. The tests were made by embedding the shapes
within the domain [0, 2]. Tests using 10 and 40 intervals over the 2r domain were
performed. The shapes were successively displaced 100 times, by 1/100 of the grid
interval and measurements of the accuracy were made over the domain [0, 27r]. This
was to establish the sensitivity of the representation to the relative position of the grid
and test shape. The error varied by at least a factor of 5 over the 100 realizations. We
compare the schemes using the error averaged over all realizations. For brevity this
paper documents the results only for the well-resolved cosine bell shape. The other
cases are documented in [21].

More precisely, define the data points in the evaluation domain [0,2r] to be
xt (l- 1)h, where h 2"rr/N, 1, N+ 1, and N 10 or 40 for the two widths chosen.
The test functions are given at these data points and the interpolation is evaluated
over the set of points within [0, 27r] given by :j=(j-1)h/13, j= 1, 13N+l. Note,
Xl--913(1-1)+1 and the data points where the interpolators fit exactly are included in
the error measures. Extra data points were added outside the domain, when needed
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to compute the appropriate derivative estimates near zero and 27r. The exact forms for
the functions to be interpolated were

Gaussian:

(25)

Cosine Bell:

(26)

Triangle:

F(x)=exp [-2((x-c"))],5

F(x)=
l+cos

6

O,

]x-c,l<6,

(27) F(x) f(10,
where 6 107r/24 specifies the width of the test shapes and c, 7r (n 1) h/100+ e

controls the offset of the test shape with respect to the grid. The additional small offset
e 10-5 is included so that the maximum of the test functions never coincides with a
sampled point. The error over the entire domain [0, 27r], denoted the total error, is
given by

1 100 13N+l

E [P()-F(, c,,)]2h/13.(28) Er 100 =1 j=l

We also consider the error over the domain [0, 27r] excluding the two grid intervals
adjacent to the discrete maximum of the test shape. The test shapes are monotonic
over this evaluation domain and we refer to this error as the monotonic region error

1 lOO

(29) EM 100 Yl X {P(;)- F(;, c.)]h/13

where

(30) [j; j <jc,j >jR]

and the left and right bounds of the excluded gridpoints are determined from the grid
intervals where the discrete slope of the test function changes sign, i.e., given the data
point 1" at which

(31) A/._IAI. < 0,

the bounds are given by

(32) jc 13(1"-2)+ 1,

(33) j 13(/*) + 1.

3.2. Description of interpolation schemes and notation. The error statistics are
presented in the tables as a function of interpolation form, derivative approximation
scheme, and derivative limiter. The least restrictive derivative limiter leading to a
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well-posed interpolant is always included, even if it allows over/undershooting.
Limiters are then included in the table that are expected to result in improvements in
the interpolants, by reduction of the over/undershooting. The various forms of the
interpolation are reviewed in the next few paragraphs and a naming convention for
use in the tables is introduced.

We have included seven types of derivative estimates in the intercomparison" the
Akima estimate (AKIn[I], [8], [12]), Arithmetic mean (ARI[8], [9], [5], [12]),
Geometric mean (GEO[5]), Harmonic mean estimate (HAR--[7], [9], 17]), Fritsch-
Butland estimate (BUT--[7], [12]), the derivative estimate that gives rise to the simple
piecewise cubic interpolant achieved by fitting the cubic through the data nearest the
point of current interest (CUB), and the Hyman estimate (HYMn[12]).

The first spline form used is the Hermite cubic interpolant. Monotonic forms are
constructed by applying the sufficient conditions (SCM0 and SCM1). Hyman’s
extension to the SCM1 limiter, HYM1, which allows limited overshooting in the vicinity
of extrema, is included. As mentioned before, relaxation of the monotonicity condition
at the discrete extrema is in the spirit of essentially nonoscillatory schemes that allow
for an extremum to form between data points, but do not allow additional extrema to
form. Hyman’s version can be relaxed further by applying no limiting in the vicinity
of extrema, that is, the sufficient condition for monotonicity is applied only in the
vicinity of monotonic data (SCM0-EE and SCM1-EE). The EE notation is used to
imply "Except at Extrema."

As discussed in 2, the rational interpolant forms require less stringent derivative
limiters. The rational quadratic interpolant is properly posed only when the derivative
estimates satisfy NCM0. Like the Hermite cubic interpolant, the limiters are applied
to constrain the derivatives in the whole domain, and except at extrema. For the
NCM1-EE case, the NCM0 constraint is applied at the extrema to keep the scheme
well defined.

As McAllister and Roulier 16] have pointed out, there are inevitable complications
that arise when the data and corresponding derivative estimates switch between
monotonic and concave/convex states. This change in the character of the data also
requires a switching in the way the interpolants are constructed. McAllister and Roulier
[16] and coauthors in [15] and [17] have described a complete implementation for
the piecewise Bernstein polynomials. The scheme is well posed for all data, but becomes
monotonic, or convex/concave only if the derivative estimate satisfies the necessary
conditions for monotonicity NCM or convexity/concavity NCC, respectively. Recall
that the Rational cubic interpolants (versions 1 and 2) are properly posed only if the
derivative estimates satisfy the convexity condition NCC0. If the data do not satisfy
this condition (in the vicinity of an inflection point), some switching condition must
be used. We have implemented this switching within the rational cubic interpolants
in the following way.

The derivative estimates are made;
The derivative limiter (if any) is applied;
The data and derivative estimate are used to see if NCC0 is satisfied, if so, the

rational cubic interpolant is used, if not, the rational quadratic interpolant, as described
above, is used there.

The tables of the errors provide a staggering amount of information, and the
discussion justifying the conclusions about the interpolation from the tables is somewhat
tedious. Therefore, most of the discussion and tables are relegated to [21]. In the next
section, only the errors for one test shape are discussed, as an example of the method
of analysis. The detailed discussion of the remaining shapes appears in [21 ]. The results
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are then summarized in this paper for all the tests (including those of [21]) in the
following section and the important conclusions about the interpolation intercom-
parisons are highlighted there.

3.3. Well-resolved cosine test shape.
3.3.1. Hermite cubic (Table 2). The errors associated with the Hermite cubic

interpolation of the cosine bell shape over a domain resolved with 40 points appear
in Table 2. Each column provides an indication of the error associated with the
application of a different limiting form on the derivative. Each row describes the error
associated with the use of a different derivative estimation scheme. The unbracketed
number is the error calculated over the whole domain, and the number in brackets is
the subset of the errors calculated over the monotonic portion of the domain, i.e.,
eliminating the two grid intervals adjacent to the discrete maximum in the test data.

When no limiters are applied (first column), the Hyman derivative estimation
scheme has the least error, followed by the cubic then the arithmetic mean derivative
estimates. In this case, the ordering agrees with the ordering by formal accuracy of
the derivative estimates. The ordering by accuracy for the rest of the estimates becomes
Akima, geometric mean, Fritsch-Butland, and harmonic mean. We have entered the
BUT and HAP. forms in the SCM1 column since they automatically satisfy that
condition. When the error over only the monotonic part of the domain is considered,
the geometric derivative estimate improves greatly in the ranking, with similar changes
in the other derivative estimate schemes that automatically satisfy the NCM. Comparing
the two types of errors (bracketed and unbracketed) for estimates that automatically
satisfy NCM with those that do not suggest that more than half of the error is
concentrated near the extrema for the derivative estimates satisfying the NCM, with
only a few percent of the error concentrated there for the other schemes.

Application of the SCM degrades the approximations over the whole interval
(second or third column compared to first), more so for C continuity (third column)
than for CO (second column). The only exception is the arithmetic derivative estimate

TABLE 2
Error measures for the Hermite interpolant, cosine bell shape, using 40-point resolution. Unbracketed

numbers represent the ensemble average of the error integral associated with the 100 realizations of the shape.
The numbers within square brackets represent the error excluding the intervals adjacent to the extrema.

Slope No limiter SCM0 SCM1 HYM1 SCM0-EE SCM1-EE

Ari 1.25 (-6) 2.43 (-6) 2.71 (-6) 1.54 (-6) 1.22 (-6) 9.66 (-7)
[1.24 (-6)] [8.85 (-7)] [6.32 (-7)] [6.32 (-7)] [8.85 (-7)] [6.32 (-7)]

Cub 1.07 (-6) 2.22 (-6) 2.80 (-6) 1.60 (-6) 1.01 (-6) 1.02 (-6)
[1.06(-6)] [6.78(-7)] [6.80(-7)] [6.80(-7)] [6.78(-7)] [6.80(-7)]

Aki 2.55 (-6) 4.04 (-6) 5.27 (-6) 3.93 (-6) 2.83 (-6) 3.25 (-6)
[2.52 (-6)] [2.52 (-6)] [2.94 (-6)] [2.94 (-6)] [2.52 (-6)] [2.94 (-6)]

But 4.01 (-6)
[1.46 (-6)]

Geo 3.22 (-6) 3.38 (-6) 3.44 (-6)
[1.05 (-6)] [1.07 (-6)] [1.14 (-6)]

Har 5.70 (-6)
[2.65(-6)]

Hym 7.05 (-7) 1.96 (-6) 2.75 (-6) 1.52 (-6) 7.50 (-7) 9.17 (-7)
[7.05 (-7)] [4.36 (-7)] [6.03 (-7)] [6.03 (-7)] [4.36 (-7)] [6.03 (-7)]
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in the monotonic region. For all but the geometric derivative estimate, this degradation
occurs in the vicinity of the extrema, since the error over the interval excluding the
extrema actually decreases with the application of the SCM limiters, less so for C
continuity than for CO

In general, the application of the monotonicity condition to monotonic data
improves the interpolation. In the vicinity of the extrema on the other hand, the error
increases, because the monotonic derivative estimates must be zero there and the
extrema must occur at a data point rather than in the interior of a subinterval. In the
monotonic regions CO continuity provides a more accurate interpolation than C
continuity (second column versus third) at the expense of smoothness ofthe interpolant.
With the application of the SCM limiters, the advantage of the Hyman over the cubic
and arithmetic derivative estimates decreases, although the Hyman remains superior.
With the SCM1 limiter, the cubic derivative estimate falls behind the arithmetic
derivative estimate, i.e., the C condition compared to the CO condition does more
harm to the cubic than to the arithmetic derivative estimates (third column versus
second).

As mentioned earlier, the Fritsch-Butland and harmonic derivative estimates
automatically satisfy SCM1 and so are placed in the third column of Table 2 with the
schemes to which they are comparable. Neither is as good as any of the better derivative
approximations (Hyman, cubic, or arithmetic) in either the monotonic region or the
vicinity of the extrema. The geometric approximation to the derivatives is also not as
good as these.

The monotonicity condition associated with the SCM1 requires the derivative
estimate to be zero at extrema in the discrete data. The condition will naturally introduce
errors when the function has a maximum between the discrete data points. This
mismatch in structure is reflected in the error table by errors over the whole interval
being larger than those over the monotonic region. The last three columns in Table 2
are schemes that allow for overshooting of a nonmonotonic interpolant in one of the
two intervals adjacent to the discrete extrema, the particular interval being the one in
which the derivative estimates at the end have opposite sign. The amount of overshoot
for the schemes labeled EE is not controlled except inherently by the derivative estimates
themselves. The derivative limiter suggested by Hyman permits limited overshooting
but eliminates it when the data imply an approach to a fiat plateau structure.

The relaxation of the strict monotonicity condition at the extrema to allow
overshooting improves the interpolant there with no effect in the strictly monotonic
region. For example, the SCM0-EE limiter (Table 2, column 5) has less error over the
entire interval than the SCM limiter applied over the entire interval (Table 2, column
2). The errors over the monotonic interval remain the same. Thus the interpolant is
improved for all derivative estimates by relaxing the monotonicity condition at extrema.
Imposition of Hyman’s limiter at the extremum does degrade the accuracy of the
interpolant slightly (fourth column versus sixth) in the region of the extrema such that
it falls between the limited and nonlimited cases.

To summarize, for the 40 point cosine bell with a Hermite cubic interpolant the
Hyman derivative approximation always produces the best interpolation, followed in
descending order by cubic, and arithmetic derivative estimates. Imposition of the
monotonicity condition either implicitly as in the Fritsch-Butland and harmonic mean
estimate, or explicitly with the SCM limiters, improves the interpolation of monotonic
data, but can degrade the interpolation near the discrete extrema by suppressing
overshooting when the underlying field actually overshoots the discrete values. SCM0
does less damage than SCM1. At the risk of over/undershooting, the limiters should
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not be applied at the extrema. The C Hyman limiter will allow over/undershooting
at isolated extrema but will prevent it on approaching fiat plateaus.

3.3.2. Rational quadratic (Table 3). As with the Hermite cubic interpolant, the
best derivative estimate is the one proposed by Hyman, followed by the cubic derivative
estimate and then the arithmetic (except the C monotonic form where arithmetic is
insignificantly better than cubic) estimate. The C form of the approximation is better
than the CO in the monotonic interval (bracketed terms of the second column versus
the first), but not as good in the intervals near the extremum. Relaxing the necessary
condition improves the interpolant there (third column versus second). The Akima,
Fritsch-Butland, geometric, and harmonic derivative estimates are not as good as the
others.

Comparing Tables 2 and 3 shows that the rational quadratic is not as accurate as
the Hermite cubic, i.e., comparison of columns one and two of Table 3 with columns
two and three of Table 2, respectively. The rational quadratic interpolant is not, in
general, as accurate as the monotonic forms ofthe cubic interpolant. The only exception
is the Hyman derivative estimate with C continuity in the monotonic region. The
interpolant can exceed the accuracy of the Hermite interpolant for monotonic data,
with an accurate derivative estimate.

3.3.3. Rational cubic interpolation forms (Tables 4 and 5). Comparison of the two
forms of the rational cubic in the tables entry by entry shows that the second version
(Table 5) is consistently better than the first (Table 4) except for a few cases involving
the Akima or Fritsch-Butland approximations. Since the Akima, Fritsch-Butland,
geometric, and harmonic approximations result in larger errors than the other schemes,
we do not consider them further in conjunction with the rational cubic. Therefore, we
consider only the second form of the rational cubic (Table 5) coupled with the Hyman,
cubic, and arithmetic derivative estimates.

For each derivative limiter (i.e., each column) the Hyman derivative approximation
continues to provide the best interpolant, followed by the cubic then arithmetic estimate.
Again, they are ordered following their formal accuracy. As with the Hermite cubic,

TABLE 3
Error measure for the rational quadratic interpolant, cosine bell

shape, using 40-point resolution. See Table 2 caption for an explanation
of the numbers.

Slope NCM0 NCM NCM1-EE

Ari 2.89 (-6) 3.35 (-6) 2.28 (-6)
1.24 (-6)] [6.39 (-7)] [6.39 (-7)]

Cub 2.47 (-6) 3.36 (-6) 2.25 (-6)
[8.32 (-7)] [6.10 (-7)] [6.10 (-7)]

Aki 4.38 (-6) 5.69 (-6) 4.38 (-6)
[2.78 (-6)] [2.78 (-6)] [2.78 (-6)]

But 5.19 (-6)
[2.04(-6)]

Geo 4.36 (-6)
[1.45(-6)]

Har 6.80 (-6)
[3.52(-6)]

Hym 2.28 (-6) 3.16 (-6) 2.02 (-6)
[6.60 (-7)] [3.96 (-7)] [3.96 (-7)]
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TABLE 4
Error measure for the rational cubic interpolant version 1, cosine bell shape, using 40-point resolution. See

Table 2 caption for an explanation of the numbers.

Slope No limiter NCM0 NCM1 NCM0-EE NCM1-EE NCC1

Ari 2.37 (-6) 4.00 (-6) 3.08 (-6) 2.37 (-6) 1.33 (-6) 2.37 (-6)
[2.35 (-6)] [2.35 (-6)] [1.31 (-6)] [2.35 (-6)] [1.31 (-6)] [2.35 (-6)]

Cub 1.19 (-6) 2.62 (-6) 2.54 (-6) 9.85 (-7) 7.62 (-7) 1.06 (-6)
[1.18(-6)] [9.72(-7)] [7.50(-7)] [9.72(-7)] [7.50(-7)] [1.05(-6)]

Aki 2.26 (-6) 3.84 (-6) 4.19 (-6) 2.26 (-6) 2.26 (-6) 2.26 (-6)
[2.24 (-6)] [2.24 (-6)] [2.24 (-6)] [2.24 (-6)] [2.24 (-6)] [2.24 (-6)]

But 3.40 (-6)
{1.11 (-6)]

Geo 3.88 (-6)
1.64 (-6)

Har 6.61 (-6)
[3.17 (-6)]

Hym 8.50 (-7) 2.40 (-6) 2.25 (-6) 7.78 (-7) 4.55 (-7) 8.49 (-7)
[8.49 (-7)] [7.77 (-7)] [4.54 (-7)] [7.77 (-7)] [4.54 (-7)] [8.48 (-7)]

TABLE 5
Error measure for the rational cubic interpolant version 2, cosine bell shape, using 40-point resolution. See

Table 2 caption for an explanation of the numbers.

Slope No limiter NCM0 NCM1 NCM0-EE NCM1-EE NCC1

Ari 1.73 (-6) 3.20 (-6) 2.56 (-6) 1.73 (-6) 8.27 (-7) 1.73 (-6)
[1.72 (-6)] [1.72 (-6)] [8.16 (-7)] [1.72 (-6)] [8.16 (-7)] [1.72 (-6)]

Cub 1.05 (-6) 2.20 (-6) 2.34 (-6) 7.40 (-7) 5.64 (-7) 8.10 (-7)
1.04 (-6)] [7.32 (-7)] [5.55 (-7)] [7.32 (-7)] [5.55 (-7)] [8.02 (-7)]

Aki 2.40 (-6) 3.80 (-6) 4.39 (-6) 2.40 (-6) 2.40 (-6) 2.40 (-6)
[2.37 (-6)] [2.37 (-6)] [2.37 (-6)] [2.37 (-6)] [2.37 (-6)] [2.37 (-6)]

But 3.58 (-6)
1.26 (-6)

Geo 3.25 (-6)
[1.15(-6)]

Har 5.50 (-6)
[2.39(-6)]

nym 6.42 (-7) 1.99 (-6) 2.10 (-6) 5.36 (-7) 2.93 (-7) 6.03 (-7)
[6.42 (-7)] [5.35 (-7)] [2.93 (-7)] [5.35 (-7)] [2.93 (-7)] [6.03 (-7)]

the modifications required for monotonicity degrade the solution at the extrema and
improve it in the monotonic regions (second or third column versus first). Unlike the
Hermite cubic, but like the rational quadratic interpolant, the rational cubic interpolant
with C continuity offers improvement over CO continuity (third column versus second),
except with the Hyman and cubic estimates measured over the entire domain. For
practical purposes CO and C produce the same average error with the Hyman estimate.
When the strict monotonicity condition is relaxed at the extrema so that the rational
cubic interpolant relies on its convexity properties, the error is reduced further (fourth
and fifth columns versus second and third, respectively). It is also of interest to note
that, in this case, the error over the entire domain is almost the same as that within
the monotonic domain (for example, compare bracketed with corresponding
unbracketed terms in columns four and five). The extrema are no longer responsible
for a larger fraction ofthe error. Column six (labeled NCC1) represents implementation
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2 of the interpolant as discussed in 2.2 and 3.2. We see that implementation 1 and
2 result in identical accuracy for the arithmetic and Akima derivative estimates that
automatically satisfy NCC1. Their accuracy is almost equivalent for the cubic and
Hyman derivative estimates, suggesting the particular implementation makes little
difference.

3.3.4. Bernstein quadratic (Table 6). Within any column, the relative standings of
the derivative estimates are the same as with the rational cubic (Table 5) with the
exception of a reversal of the Fritsch-Butland and geometric estimates. These two,
along with the harmonic and Akima approximations, have the largest errors and will
not be considered further here. The errors from the Bernstein quadratic scheme are
consistently higher than the corresponding ones from the second version of the rational
cubic (Table 6 compared to the corresponding entry in Table 5). The only exception
is the cubic derivative estimate with no limiter, where the errors are identical to the
accuracy shown in Table 5.

TABLE 6
Error measurefor the piecewise quadratic Bernstein polynomial interpolant, cosine bell shape, using 40-point

resolution. See Table 2 caption for an explanation of the numbers.

Slope No limiter NCM0 NCM1 NCM0-EE NCM1-EE NCC1

Ari 2.18 (-6) 3.79 (-6) 2.98 (-6) 2.18 (-6) 1.10 (-6) 2.18 (-6)
[2.16 (-6)] [2.16 (-6)] [1.09 (-6)] [2.16 (-6)] [1.09 (-6)] [2.16 (-6)]

Cub 1.05 (-6) 2.40 (-6) 2.52 (-6) 7.86 (-7) 6.01 (-7) 1.00 (-6)
1.04 (-6)] [7.77 (-7)] [5.92 (-7)] [7.77 (-7)] [5.92 (-7)] [9.94 (-7)]

Aki 2.51 (-6) 4.08 (-6) 4.65 (-6) 2.51 (-6) 2.51 (-6) 2.51 (-6)
[2.47 (-6)] [2.47 (-6)] [2.47 (-6)] [2.47 (-6)] [2.47 (-6)] [2.47 (-6)]

But 3.67 (-6)
1.34 (-6)]

Geo 3.75 (-6)
1.56 (-6)

Har 6.46 (-6)
[3.16(-6)]

Hym 7.05 (-7) 2.23 (-6) 2.30 (-6) 6.26 (-7) 3.50 (-7) 8.42 (-7)
[7.04 (-7)] [6.26 (-7)] [3.49 (-7)] [6.26 (-7)] [3.49 (-7)] [8.41 (-7)]

The Bernstein quadratic scheme tends to have slightly smaller errors than the
Hermite cubic with the Hyman and cubic derivative approximations when no limiters
are applied to the derivatives (column one of Table 6 versus column one of Table 2)
but the differences seem negligible. When the appropriate Co monotonic limiters are
applied, the Hermite cubic tends to be the better of the two with these derivative
estimates. The Bernstein quadratic interpolant tends to be better with the C monotonic
limiters (columns two and three of Table 6 versus columns two and three of Table 2,
respectively). In short, neither the Bernstein quadratic nor Hermite cubic forms are
consistently more accurate than the other.

3.4. Conclusions from the interpolation tests. In the previous section we have
compared the various schemes in interpolating a well-resolved cosine bell shape. In
[21 we make similar comparisons for well-resolved Gaussian and triangular test shapes,
and for the three corresponding poorly resolved test shapes. Out of the mass of numbers
considered in these comparisons there are logical inferences to be drawn relating the
various schemes to each other. These conclusions may not be universal, as definite
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known properties of particular fields might be used to advantage in the interpolation
scheme. Minor exceptions can be found in our tables that might imply some other
scheme is ideal for such specific applications. It is also possible that our conclusions
would change with a different error measure.

We begin by itemizing our conclusions regarding the interpolating functions"
The Hermite cubic and the second version of the rational cubic interpolant

appear to be the most useful interpolation formulas. The first version of the rational
cubic interpolant is consistently inferior to the second.

The Bernstein quadratic interpolant is generally of comparable accuracy to the
rational form mentioned above. We found it to be somewhat more difficult to program
for the various special cases, which results in a corresponding increase in the complexity
of computer code and execution time.

The rational quadratic interpolant is of comparable accuracy to the SCM limited
Hermite cubic for monotonic data, but it does not allow the flexibility of the Hermite
cubic near extrema, nor does it allow for the concave/convex structure provided by
versions of the rational cubic interpolant. For data that have an extremum, this scheme
is not recommended because there is no alternative to assuming the slope goes to zero
at a discrete extremum. This results in much larger errors in the vicinity ofthe extremum
than the cubic, rational cubic, and piecewise quadratic spline forms.

Conclusions regarding the derivative estimates follow"
The geometric mean, harmonic mean, and Fritsch-Butland derivative estimates

are consistently less accurate than the others. Their virtue is their simplicity. While
they may result in visually pleasing interpolants, they are generally of insufficient
accuracy for many applications. The rational-linear derivative estimate [9], equivalent
to that suggested by McAllister and Roulier [17], and to the harmonic mean estimate
suggested by Fritsch and Butland [7] for equally spaced data, is the least accurate of
all the derivative estimates. The Fritsch-Butland derivative estimate is always more
accurate than the rational linear estimate.

The Akima approximation performs extremely well for data with small scale
features, but less well for the broader, more rounded shapes. Careful examination of
the results suggests the Akima scheme is actually quite accurate in the vicinity of the
extrema, and much less accurate over the rest of the domain.

Except for the intersection of straight lines such as triangular peaks where the
Akima estimate shines, the Hyman derivative estimate is the most accurate, followed
generally by the cubic, then arithmetic. The disadvantage of the cubic derivative
approximation is that it does not provide for a C continuous interpolant, whereas
the others do.

Monotonicity constraints generally improve the interpolation of monotonic data
and data approaching a fiat plateau. These constraints degrade the interpolation near
extrema by not allowing any overshoot that might be implied in the underlying data.
The derivative estimate is constrained to be zero in the vicinity of an extremum with
the C form. The CO continuity constraint is less serious in this than the C 1.

Where strict monotonicity is not required, relaxation of the monotonicity condi-
tion at any extremum seems desirable to allow the interpolant to form an extremum
somewhere other than at a data point. Application of Hyman’s limiter for the Hermite
cubic seems desirable to prevent overshooting in the approach to a flat or nearly fiat
plateau.

In general the accuracy of the interpolation does not vary by more than a factor
of two or three between schemes. The exception to this statement occurs when the
shape to be interpolated is analytic and resolution is high, in which case the high
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formal accuracy of the cubic interpolant, and the Hyman fourth-order derivative
estimate result in substantial increases in accuracy over other schemes. We saw this
demonstrated in the well-resolved Gaussian test shape, points.

We mention in passing that we also tested other CO sufficient conditions for
monotonicity with the Hermite cubic interpolation form that modify the derivative
estimates to lie on the elliptical boundary of Mns(12) rather than to the more restrictive
boundary of Mb. These limiting forms involve extra calculations and result in minute
but discernible improvements in the accuracy of the representation.

4. One-dimensional semi-Lagrangian advection. As mentioned in the Introduction,
the primary motivation for this intercomparison was to improve the interpolation used
in the technique identified in meteorology as semi- or quasi-Lagrangian advection 13],
[14], [20], [19]. The technique has also been used in other fields [23], [11]. It is similar
to a method suggested by Van Leer in his earlier papers on conservative monotonic
advection schemes. It was abandoned by Van Leer because of the difficulty of strictly
enforcing both conservation and monotonicity simultaneously. It also shares common
characteristics with the pseudo-particle methods suggested in Takewake, Nishiguchi,
and Yabe [26] and Takewake and Yabe [27].

In meteorology, the semi-Lagrangian technique has found increasing acceptance
because of its accuracy and unconditional stability with respect to the size of the
timestep. In practice, the community has found that when using nonshape-preserving
polynomial interpolation, the solutions are of sufficient accuracy that they adequately
conserve mass even without a strict enforcement of the conservation property. The
solutions do however show evidence of a "ringing" effect generating negative (hence
nonphysical) values of the advected quantity during an integration in time.

The initial motivation for this work was to reduce or eliminate these over- and
undershoots by using shape-preserving interpolation functions in the semi-Lagrangian
scheme. Using shape preserving interpolation the semi-Lagrangian integration scheme
becomes either monotonic (see, e.g., [28], [29], [2]) in the sense that extrema will not
increase due to the numerical method, or essentially nonoscillatory [10], in the sense
that no new extrema are introduced in the solution by the method.

In this section some of the more accurate schemes examined in the previous
section are retested in the simplest possible transport problem, the one-dimensional
advection of a scalar by a constant advecting wind. The Eulerian form of the evolution
equation for the advection of a scalar field in the absence of sources and sinks is

(34)
of(x, t__) + v(x, t)

of(x,t______) 0"
Ot Ox

Here f is a scalar field, is time, and v is the velocity. Given a distribution of f at
time t, the solution at time + ;t is

(35) f(x, t+ tSt) f(), t).

Here, it is assumed that v is constant in space and time, and the departure point becomes

(36) =x-vt.

When v is not constant, determining the trajectory is nontrivial; however, solution
methods have been developed for use in geophysical problems. This paper will focus
exclusively on the interpolation aspects of the solution. Given the true departure point,
an interpolation is made to find the value there, f(, t). From the interpolated values
off, the solution to (35) follows trivially. Thus, semi-Lagrange transport with a constant
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advection velocity is equivalent to "recursive interpolation." This is of course a
tremendous simplification of our actual problem of interest, but provides a simple
meaningful test of the efficacy of the approach. Our actual interest is in problems
involving nonconstant velocity fields, nonuniform grids, and multiple dimensions [30].

Many different nonshape-preserving polynomial interpolation schemes have been
used over the years for semi-Lagrangian transport, the simplest being linear interpola-
tion. Semi-Lagrangian transport then becomes very similar to the familiar "upwind"
differencing used in solving advection equations; it automatically provides a monotonic
solution, but is also extremely diffusive. Quadratic interpolation schemes were intro-
duced into meteorological problems in the late 1950s and early 1960s. More recently,
cubic, cubic spline, and deficient cubic spline interpolation methods have been used
[20], [14], [22], [19]. The single example of the use of shape-preserving interpolation
is found in [23], but these tests used an extremely high resolution, and did not provide
the objective statistics needed to intercompare results. Akima’s scheme was tested by
Huffenus and Khaletzky [11] in a semi-Lagrangian scheme and found to be quite
accurate. While this interpolation is not monotonic, and hence does not produce a
positive semidefinite solution to (34), the oscillations are much reduced over a regular
cubic formulation.

We reduce the number of interpolation schemes to test by considering only those
that rated well in the interpolation tests or have some historical importance. Thus a
discussion of only the highly scoring and more readily applicable Hermite and rational
cubic version 2 interpolants appears here. The quadratic Bernstein polynomial inter-
polant rates near the rational cubic scheme but is more complicated to apply. Thus
we do not consider it here. Only the more accurate arithmetic, cubic, Hyman, and
Akima derivative estimates with appropriate limited and unlimited forms are tested.

The advection equation is integrated by choosing v t/x r/12. An irrational
number is chosen so that the relative position of the shape and gridpoints change with
time. Given a long enough integration it becomes almost uniformly distributed over
the domain. For the following figures the coordinate system of perspective moves with
the advecting velocity. The equation is integrated for 1,000 timesteps with snapshots
of the evolution of the scalar field plotted every 200 timesteps. The line code in the
figures is such that the shorter the pattern members, the later in time the solution. The
scalar field deforms slowly due to errors in the interpolation. During some of the
integrations, the scalar field stops deforming after a while and propagates with a
characteristic shape for the remainder of the integration. This suggests that there may
be preferred shapes for given interpolation schemes that are handled very accurately.

We use cosine bell and square wave initial conditions, with 11 nonzero points on
the interval. These shapes are relatively narrow, and it might be expected that the
schemes will be ordered in accordance with the poorly resolved test case interpolation
results discussed in [21] and summarized in 3.

4.1. Square wave. Figure 1 shows the results of integrations of the unlimited forms
of the arithmetic, cubic, Hyman, and Akima derivative estimates with the Hermite
cubic interpolant. The left panel shows snapshots of the evolution of the shape of the
scalar field, with a line pattern as described above. The right panel shows the evolution
of the normalized mean, maximum, minimum, sum of negative values, excess greater
than one, and mean absolute error. These quantities appear within the panel ordered
approximately from top to bottom. Two lines appear for each quantity. The thinner line
shows the "ideal" behavior. The heavier line shows the "actual" behavior. Occasionally,
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FIG. 1. Hermite cubic interpolant, square wave initial conditions, unlimitedform ofthe derivative estimates.

The left panels are snapshots of the evolution of the shape with time (every 200 timesteps); the shorter the line
segment, the later in the integration (i.e., solid line--original shape; dotted line--t 1000it). Printed numbers
give the normalized error and mean after 1,000 timesteps. The right panels are the diagnostics of the evolution
with respect to time, from top to bottom. Upper solid--normalized mean value; long dashed--normalized
maximum value; medium dashed--normalized minimum value; short dashed--normalized sum of value less
than zero; dash dot--normalized sum of values greater than one; lower solid line--RMS error. All values are
plotted with a horizontal line at the ideal value, using the same line pattern. The ordinate ticks represent intervals
of O..

the lines are coincident, so that only one appears on the panel in which case the scheme
does very well according to that measure. The numbers appearing in the upper
right-hand corner of the panels on the left are the final value of the normalized error,
and mean. Each tick mark on the ordinate represents a 0.1 variation.

Strong oscillations (less than 10 percent of the true signal) usually associated with
dispersion errors are evident in the Hyman and arithmetic derivative estimates. The
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cubic derivative estimate shows less over/undershoot and the Akima estimate the least.
The Akima version seems to be slowly evolving towards a peaked shape. As mentioned
before, strict mass conservation is not a priori maintained by semi-Lagrangian schemes,
rather mass would be preserved by accurate solution of the evolution equation. The
total mass (upper solid lines of right panels, and "Sum") remains constant to two
percent over the 1,000 timesteps for all the schemes with the Akima scheme showing
the largest increase in mass (1.2 percent). There is a substantial component of the field
for the first three schemes consisting of negative values. If we neglect this negative
component of the field (on the grounds that it can have no physical basis) when
computing the integral of the field, the conservation of mass for these schemes is much
worse. There is also a substantial component of the field that is greater than one. With
the arithmetic and cubic estimates, this overshoot is largest early in the forecast and
then decreases. With the Hyman estimate, these excess values set up early in the
forecast then shift relative to the overall structure. With the Akima estimate, they
increase with time; however, the Akima estimate shows the least tendency for
over/undershooting error in the unlimited form. There is also little tendency for negative
values with the Akima scheme. In fact, the Akima estimate solutions are the most
accurate, followed by those solutions that use the Hyman, cubic, and arithmetic
derivative estimates.

Solutions that arise by applying SCM0 limiters for the Hermite cubic interpolant
appear in Fig. 2. The monotonicity condition has improved the solution by eliminating
the overshoot at the expense of an increase in the diffusion and decrease in the
maximum value, at least for the arithmetic and cubic derivative estimate versions. The
Hyman and Akima derivative estimate versions are improved by the limiting procedure,
with little or no increase in diffusion of the shape. The error in the mass conservation
has increased for the less accurate forms (arithmetic and cubic), but there is very little
difference for the two more accurate forms (Akima and Hyman). We also note that
the mass loss is less than the mass associated with the over- and undershoot of the
unlimited forms. The SCM0 limited forms show slightly less overall accuracy when
compared to the corresponding unlimited forms, but the difference is small for the
Hyman estimate.

Imposition of the SCM1 constraint results in a very substantial increase in the
error, which can be seen to be due to error in the phase of the solution, with the
exception of the cubic derivative estimate scheme (Fig. 3). However, it must be
remembered that the cubic estimate is C only where the derivatives were modified
by the limiting procedure. Elsewhere it remains CO The total mass tends to increase
slightly with the C forms, whereas it decreased slightly with the CO forms. This phase
error is also seen with the Hyman limited form (Fig. 4) where overshooting is engendered
by the slight relaxation of the monotonicity constraint in the vicinity of extrema, and
a substantial increase in error in the mass conservation is evident.

Finally, Fig. 5 shows the application ofonly the necessary condition for monotonic-
ity with CO continuity (NCM0) rather than the sufficient condition (SCM0). This seems
sufficient to remove the unwanted oscillatory behavior in the Hermite interpolant with
the Hyman and Akima derivative estimates although as expected it is not sufficient to
guarantee monotonic solutions. These schemes are slightly more accurate than the
corresponding SCM versions, and slightly less accurate than the unlimited versions.
It is interesting to note that the C version of this limiter (not shown) results in a
substantial increase in the over/undershooting of the solution for these derivative
estimates. The nonlinear Akima derivative estimate on the other hand is not sensitive
to the difference between the CO and C estimates.
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FIG. 2. Hermite cubic interpolant, square wave initial conditions, SCM0 limited form of the derivative
estimates. See Fig. l’s legend for an explanation of the panels.

Figures 6 and 7 show forecasts made using the second version of the rational
cubic interpolant. As may be seen from Fig. 6, compared to Fig. 1, the rational
interpolant produces a more rounded profile for the unlimited derivative estimates
along with a substantial reduction in the over/undershooting, and less dispersion,
compared with the Hermite form of the interpolant, for the arithmetic, cubic, and
Hyman derivative estimates. The Hyman estimate is slightly more accurate than the
corresponding solution that uses the Hermite interpolant; all others are slightly less
accurate. Overall we consider the unlimited rational interpolant solution to be better
than the unlimited Hermite. The exception is the solution using the Akima derivative
estimate that is worse with the rational than the Hermite polynomial interpolant.

Use of the C necessary condition for monotonicity with the rational cubic
interpolant (Fig. 7) increases the diffusion slightly for the polynomial derivative
estimates, but not for the Akima estimate. The CO version is almost identical (not
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FIG. 3. Hermite cubic interpolant, square wave initial conditions, SCM1 limited form of the derivative
estimates. See Fig. l’s legend for an explanation of the panels.

shown). As expected, the overshooting is eliminated. Unlike the Hermite interpolant
(see Fig. 3 or 4), the C monotonic rational interpolant does not show an increase in
the phase error, when compared to a CO version. In addition, the total mass decreases
slightly with the CO and C versions of the rational interpolant as the CO Hermite did
but unlike the C Hermite form with which it increased slightly. For the C forms the
rational cubic with the Hyman derivative estimate limited to satisfy NCM1 is clearly
the best.

4.2. Cosine bell. The strongly oscillatory results seen in the unlimited Hermite
interpolant square wave tests also appear in the cosine bell results (Fig. 8). The Akima
derivative estimate shows the least error followed by the Hyman estimate. The Akima
estimate has evolved to an almost triangular form leading the true solution and the
Hyman shows undershooting. There is also evidence (right panel) of a 2t oscillation
in the maximum amplitude of the peak with the Akima estimate, and the mass
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FIG. 4. Hermite cubic interpolant, square wave initial conditions, Hyman C limitedform of the derivative
estimates. See Fig. l’s legend for an explanation of the panels.

conservation is worse for the Akima version than that using other derivative estimates.
The cubic and arithmetic mean derivative estimates are much less accurate, and clearly
less satisfactory.

The impact ofthe SCM0 limiting on the extremum value is much more pronounced
for the cosine bell than was seen in the square wave. This is a familiar result with
monotonic transport schemes where "clipping" will inevitably take place when the
peak value moves between two data points. It can be seen in Fig. 9 for the SCM0
form, and occurs consistently for other limiters as well. The amplitude has been reduced
to half its original value over the 1,000 timesteps for all interpolation schemes that
limit extrema. The C limiters (not shown) also produce the very strong phase error
seen in the square wave tests. Errors for the more accurate Akima and Hyman forms
have approximately doubled, and mass conservation is very much worse than with the
unlimited forms.
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FIG. 5. Hermite cubic interpolant, square wave initial conditions, NCCO limited form of the derivative
estimates. See Fig. l’s legend for an explanation of the panels.

The unlimited forms utilizing the rational cubic interpolant version 2 (Fig. 10)
are, in general, more strongly damped than the unlimited Hermite interpolant forms.
The form using the Hyman interpolant is the most accurate of the rational interpolants,
with about the same accuracy as the corresponding Hermite form. There is very little
undershoot, and the maximum value has decreased to about 75 percent of its original
value. It has preserved the shape of the initial condition very well except for the
damping. Application of the necessary condition for monotonicity (NCM1, not shown)
increases the damping to 40 percent of its original value unless it is excluded from
application at the extrema, in which case it leaves the interpolation essentially
unaffected. Use of the necessary condition for convexity/concavity (NCC1) increases
the error and conservation error slightly compared to the unlimited forms, but provides
a shape-preserving, essentially nonoscillatory solution (Fig. 11). These errors are much
smaller than the shape-preserving forms seen using the Hermite interpolants.
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See Fig. l’s legend for an explanation of the panels.

5. Summary and conclusions. A large number of shape-preserving (and some
non-shape-preserving) interpolants were compared to examine their relative accuracy.
The large number of schemes arise by considering combinations of interpolating forms
(piecewise Hermite cubic, three forms of piecewise rational, and Bernstein polynomials
with extra knots), methods of estimating the derivatives (Akima, Hyman, arithmetic,
harmonic, and geometric mean, and Fritsch-Butland) and derivative constraints that
provide for shape preservation suggested by Carlson and Fritsch [3], de Boor and
Swartz [4], and Hyman [12].

The intercomparisons were made by first examining the ability of the schemes to
interpolate a set of evenly spaced data drawn from three test shapes. Two resolutions
were used to examine the sensitivity of the interpolation schemes to data density.
Results for the well-resolved cosine bell are documented in 3.3, and all others in
[21]. The schemes were evaluated in terms of their accuracy over the interval in which
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estimates. See Fig. l’s legend for an explanation of the panels.

the data were monotonic, and the interval containing an extremum. The Hermite cubic
and rational cubic (version 2) interpolants appear to be the most useful of the
interpolants. The Bernstein polynomial approach is nearly as accurate, but is somewhat
more complex to code. When tested with shapes well resolved by the data (shapes
resolved by 40 points), the Hyman, cubic, and arithmetic mean derivative estimates
provide the highest accuracy, in descending order. When tested with relatively poorly
resolved shapes with sharp gradients, defined by 11 nonzero valued data points, the
ranking changes. The Akima derivative estimate stands out when used with the Hermite
cubic polynomial interpolant, and the Hyman estimate appears best when used with
the forms of the rational cubic interpolant.

In general, the interpolants that strictly preserve monotonicity have large errors
in the vicinity of an extremum. These errors arise because the interpolant is forced to
have its extrema at data points while the underlying data may imply extrema between
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data points. Some form of relaxation of a strict monotonicity constraint is required
for reasonable accuracy near extrema. We have considered the less restrictive restraint
suggested by Hyman, and the complete relaxation of a monotonicity constraint in the
vicinity of extrema. We have also considered convexity constraints where appropriate.
These techniques improve the accuracy by allowing possible overshooting.

We then compared the more favorable schemes via a test more closely allied to
our particular interests, using shape preserving interpolation as part of the numerical
solution to a one-dimensional advection problem solved by the semi-Lagrangian
technique. Only the more accurate interpolants as determined from the first set of tests
were considered. The test consisted of the advection of a scalar field by a constant
velocity field with square wave and cosine bell shapes for initial conditions.

In general, the rational form showed much less over- and undershooting than the
Hermite interpolant when the derivative approximations are unconstrained. The Hyman
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and Akima derivatives constrained to satisfy the SCM0 are the most accurate monotonic
form of the Hermite interpolant. They result in slight damping with the square wave
and minimal diffusion. Significant phase error is introduced when the derivatives are
constrained to satisfy SCM1. With the rational cubic interpolant, when the derivatives
are constrained to satisfy NCM0, NCM1, or NCC1, the Hyman derivative approxima-
tion is best, comparing favorably with the best Hermite solutions. The Akima estimate
is unacceptable with the rational cubic form. Unlike the Hermite cubic, the rational
cubic does not show any increased phase error with C limited derivatives compared
to C. Thus if C continuity is desired, the rational form should be used.

Application of the monotonicity conditions to the derivative estimates produces
damping of the solution, especially with poorly resolved structures, by not allowing
any overshoot implied by the data. The schemes that relax the monotonicity constraint
somewhat, and hence are more closely allied to the essentially nonoscillatory schemes
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of Harten and Osher 10] are more accurate, because they do not entail this clipping
phenomenon.

With no derivative modification, the Akima derivative approximation coupled
with the Hermite cubic interpolant, which looks formally substantially less accurate
than some of the other combinations tested, has the least mean absolute error of all
schemes in the semi-Lagrangian integration test. Peak values were well maintained,
and the shape was reasonably well preserved with a slow tendency to evolve toward
a triangular shape. There was little overshooting of the true shape and the overshoot
was confined to a few gridpoints. This result conflicts somewhat with that of Long and
Pepper [14]. They used a two-dimensional test with a very narrow cosine hill going
to zero over four gridpoints. This conflict may possibly result from the extremely short
spatial scales used in their work, and the somewhat larger scales used here. The Long
and Pepper [14] result is also at odds with Huffenus and Khaletzky [11], who (using
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a Gauss|an test shape, with a half width of 3.1 grid intervals) found the Akima
method to perform very well.

The other scheme that ranked quite well according to the semi-Lagrangian test
was the rational cubic interpolant scheme with derivative estimates determined by the
Hyman Algorithm. The scheme tended to damp the strongly peaked cosine bell to
about 75 percent of its initial amplitude over the 1,000 timestep test, less than any
other ofthe shape-preserving schemes. The shape remained substantially more coherent
than other forms utilizing a rational interpolant.

There is an inevitable tradeott between the simplicity of the Hermite cubic inter-
polant coupled with derivative estimates that automatically satisfy sufficient conditions
for monotonicity but sacrifice accuracy, and the schemes that require more sophisticated
derivative estimates with additional shape-preserving constraints, or more complex
spline forms, or both. It is our experience that the benefits of the more complex
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algorithms are worthwhile for any problem that requires more than "visually pleasing"
results. We have compared the various approaches with a variety of test cases, both
for pure interpolation and coupled with semi-Lagrangian transport. The scope of these
tests is necessarily limited. Other error measures could be adopted, and the question
of unequally spaced data has not been addressed. According to our evaluations, there
is no one best scheme for all test cases, although a few consistently appeared among
the best. In specific applications, definite known properties of particular fields might
be used to advantage in the interpolation scheme. The choice of a scheme from among
the best here for a particular application should take such specific characteristics into
account.
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the final manuscript and M. Pappas for assistance in drafting figures.
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Abstract. Systems oflinear equations involving submatrices ofsingular M-matrices have been considered
in the calculation of stationary distribution vectors of ergodic Markov chains. In this paper, an alternative
appproach is suggested, using bordered matrices instead, motivated by the stability analysis of the first
approach. The conditioning of this approach, which applies to general as well as M-matrices, is considered.
Two numerical examples with small matrices are included.
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1. Introduction. Consider the problem of finding the right eigenvector p corre-
sponding to the simple zero eigenvalue of the n x n matrix A, i.e.,

(1) Ap =0

subjected to some scaling constraint

for some vector e not deficient in p.
Note that the exact form or size of the vector e does not affect the problem (1)

theoretically, as the answer p is only unique up to an arbitrary scaling factor. It is
crucial only to the conditioning of the numerical solution process used.

In the calculation of the stationary distribution vector of an ergodic Markov chain,
the vector e is usually chosen to be the left eigenvector

(2) el (1, .,1) r

with A being an M-matrix. This corresponds to the fact that A I-Qr for some
stochastic matrix Q and any row-sum of Q, being the sum of the probabilities, equals
to unity.

We shall assume that A is an M-matrix with e in (2) being a left eigenvector
corresponding to the simple zero eigenvalue for the rest of the paper, although we
shall discuss the case for a general matrix A in 7.

The solution vector p can then be proved to be positive. Solutions obtained using
scaling schemes with e not chosen to be el in (2) can, of course, be scaled back to
satisfy ep IIP]]I 1 with ease. (The effect on the errors of these solutions will be
considered later.)

Some background information on M-matrices and Markov chains can be found
in the references listed at the end of this paper (e.g. [3], [29]). Various numerical
algorithms and applications were suggested and analysed ([20], [24], [26], [28], [35],
[38]). The methods divide roughly into three categories:

(I) Rank-1 update methods--the equation in (1) with the scaling scheme is
modified to become a nonsingular system of equations by adding rank-1
terms.

* Received by the editors June 29, 1987; accepted for publication (in revised form) July 25, 1989.

" Mathematics Department, Monash University, Clayton, Victoria 3168, Australia.
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(II) Row/column deletion methods--a row and a column in A are deleted to
yield a nonsingular system.

(III) Other methods, such as QR decomposition with column pivoting [4].
A detailed comparison of these methods will be a major undertaking, especially

for problems with large matrices. More work has to be done in this area and the results
will be reported elsewhere.

In this paper, we only consider methods related to the first two categories. The
first method, suggested by [21] and [26] and analysed in [1], is singled out for
comparison with the new algorithm suggested later in this paper. (See also [28], [35],
[38].) This is because the new algorithm was motivated by the stability analysis in [1],
where instead of deleting a row and a column of A to form a nonsingular submatrix
as in [21] and [26], we add a row and a column to A, i.e., to form a bordered matrix
of A, to obtain a nonsingular system (cf. [5], [22], [27]). We suggest that the new
algorithm is better conditioned than the old one. It is thus natural to consider the new
algorithm through looking at the old one.

Note that the applications of bordered systems to continuation methods for
bifurcation problems [6], [7], [30], [34] or corrections to approximate eigensystems
[8], [9], [17], [40] amount to inhomogeneous problems, in comparison to problem
(1). The corresponding conditioning problem has been investigated in [6], [7], [34].

The conditioning of problem (1) has been examined thoroughly by Wilkinson and
others [25], [42] in the general context of algebraic eigenvalue problems. For the
special case when A is an M-matrix, analysis have been done through the use of the
group inverse A [21], [23], [31], [32] or the smallest positive singular value "’nrr(A)-I of
A [1], [26].

Finally and without getting into details, algorithms for problem (1) can usually
be shown to be closely related to the inverse iteration [36], [40], [42].

The plan for this paper is as follows. In 2, we introduce the algorithm suggested
in [21] and [26] and reiterate some stability results from [1]. In 3, the new algorithm
based on the bordered matrix technique will be presented. We then investigate the
conditioning of the problem (1) in 4, and the stability of the new algorithm in 5.
Two simple numerical examples are included in 6. In 7, the general case when A
is not an M-matrix is discussed, and the paper is concluded in 8.

2. Algorithm 1. The following was suggested by [21] and [26] and analysed in [1].

ALGORITHM 1.
Step 1. Find j and k such that the submatrix B formed by deleting the jth row

and kth column of A is invertible; i.e.,

(3) A=P zT- a

where Pi is the permutation matrix that exchanges the ith and nth rows.
Step 2. Solve by LU or QR decomposition [25] the subsystem

(4) B -y.

Step 3. Let

and scale x to form p, i.e., p yx, such that p [I,= 1.
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In [1], it has been proved that, for some number Vkn,

n-1 < O.(nB_)l < rr(A)
t,,n_(5)

([ Vkn]-I + 1)(x/- + 1)

where cr w) denotes the ith singular value of the matrix W.
Vkn is the kth component of the nth singular vector Vn of A (corresponding to

the zero singular value), and ]Vkn] -1 _--< x/. See 1] for details. Note that Vn is a multiple
of p.

()A is considered to be a condition number for problem (1) [26] and rn_As O’n_

that for (4), it was claimed from (5) that solving problems (1) and (4) involves the
same conditioning, and thus solving problem (1) by Algorithm 1 is, in this sense,
numerically stable. The lower bound in (5) can be optimized through choosing k in
Algorithm 1 to be the index of the maximum component of Vn. It can be done after
applying Algorithm 1 with some initial arbitrary value of k to obtain some initial
approximation pO) to p, select k from pO (as it is a multiple of Vn), and rerun Algorithm
1 if appropriate.

Such analysis was inadequate and incomplete in the following sense:
(a) The quantity "n-l’A only was used in reflecting the conditioning of the problem

in (1), and the usual condition number

lepl
(6) Sn --= COS (e, p) --= COS O

el I1=" p I1=
by Wilkinson [42] is not explicitly involved. (Here cos (e, p) denotes the cosine of
the angle 0n between the vectors e and p, as in standard references such as [37], [42].)
It is more than a simple rescaling of results, as the effect of ][PlI2 on the conditioning
is lost, due to a specific scaling scheme for p, and absolute errors were considered
instead of relative errors.

(B)(b) Similarly, crn_ was used to represent the conditioning of (4), and not the
usual condition number

(7) t<(B) IIBII" IIB-1II= o.(B)n-1

B. isthus ignoring the scaling effect of []BILE. (Note that B is (n-1) (n-1) and
its smallest singular value.)

It is easy to show that rA--_> rB SO an upper bound of KE(B) in terms of
can be obtained together with (5). However, a lower bound for rB is needed if a
lower bound of _(B) in terms of xE(A) is also required (which will be the case if we
are interested in the detection of ill-conditioning of problem (1) when solving (4)).
Such a bound for rn can be obtained, using similar techniques as in this paper, but
is not of any interest, because of the problems mentioned here.

(c) The lower bound in (5) can be poor and virtually zero for a large value of n,
which indicates possible ill-conditioning of Algorithm 1.

(d) Algorithm 1 and the analysis in [1] work only for the case when A is an
M-matrix and e e [as in (2)] for the scaling scheme.

3. Algorithm 2. Based on the analysis in 1] and the classical perturbation analysis
for algebraic eigenvalue problems by Wilkinson and others [25], [42], the approach
of deleting a row and a column in Algorithm 1 seems to demonstrate some potential
weaknesses (see (a)-(d) in the previous section). These weaknesses may be real, or
may well be spurious because of ineffective use of available information in the stability
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analysis. Anyhow, the proofof (5) 1 indicates that the factor (x/+ 1 can be eliminated
by using a bordered system of A instead.

ALGORITHM 2.
Step 1. Scale A (by multiplication of a real constant) so that IIAII= 1.
Step 2. Solve the bordered system

,4 x] __[]
where e=e//- (i.e., Ilell-). should be equal to unity in exact
arithmetic, and can be used as a check on the numerical behaviour of the
algorithm.

Step 3. Scale x back to form p according to any desirable scaling scheme.

Step is a simplified version of the more elaborated scaling of A to DAD using
diagonal matrices D (i 1, 2), so that the singular values of A satisfy the inequalities
( < 1 <, from the stability analysis in 5. The more complicated scaling schemen--I

does not seem to be justifiable, unless extra requirements exist. In practice, we want
to satisfy ][A[[2 1 using a scaling factor equal to a power of 2 for optimal computer
implementation.

The vectors e in Step 2 in (8) must be nondeficient in the right and left eigenvetors
corresponding to the zero eigenvalue, respectively, to ensure the inveibility of A [5].
Note also from the scaling scheme for (1) that the problem will not be well posed if
e is deficient in the right eigenvector. The angle between the left and the right
eigenvectors features prominently in the stability analysis later.

We shall see that the bordered system in Step 2, together with the scaling vector
e chosen to be e/, yield a stability result similar to that in (5) but without the
dreaded factor:

(9) (A) () . r(A) + 2,
where the ’s are constants dependent on s cos (e, p) but otherwise small under
normal circumstances, and a condition number of the problem in (1) will be proved
to be rE(A).

For well-conditioned , x can then be accurately obtained so long as the relative
error in x is not large and x is not too small relative to ft. The scaling scheme e rx 1,
which implies [Ix 1, ensures that the latter situation will not occur. The inequalities
in (9) together with the scaling scheme thus indicate well-conditioning for Algorithm
2.

4. Conditioning of the problem. Consider the simple eigenvalue Ak and its eigenvec-
tor Xk of A, i.e.,

AXk AkXk,

and the corresponding peurbed eigenvalue problem, for some peurbation parameter
e and ]]F][= 1,

(A+ F)x()= X()x().

Assume that the eigenvectors are scaling to have unit length.
From [25, pp. 202-204] (see also [37], [42]), we have

(10)
dA(0) lYFx] ,
de ]y Xk [Sk ]- Sk COS (Xk, Yk)
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where Yk is the left eigenvector of A corresponding to Ak and Xko We also have the
asymptotic series

(11) Xk (e) Xk + e ik Xi + O(

Note for our problem in (1) that the separations ]Ak- Ail in the first-order term in the
above series will have a minimum equal to I)t,_ll (A,_l being the smallest nonzero
eigenvalue of A in magnitude and A, --0). It can be proved that the higher derivatives
of Ak(e) with respect to e (and thus the higher-order terms in the corresponding Taylor
series) will contain the quantity A,_. (See [13], [32] for details of derivatives of
eigenvalues and eigenvector; see also [10], [12] for other perturbation analysis results
for algebraic eigenvalue problems by the author.)

Alternatively in [1] and [26], it has been shown that ra__) is a condition number
of the problem in the following sense. If/ satisfies the perturbed system

(12) Aft=r, er/ 1;

of (1) with e el, we have, for 6p =-

(1+,l-if
(13) IIpll2 =< <a> Ilrl12,

O’n_

The result is comparable to that in terms of A,-1 in [25], [37], and [42].
By choosing e e/x/-ff as in (8), we can prove the following lemma.
LEMMA 1. Let A be a singular n x n matrix of rank n- 1. If 6p satisfies equation

(12), then

K2(A) Ilrll=(14)

and

(15) IIpll=_ K2(A) Ilrll_______.
Ilpll=

with s cos (e, p) (=llpll-) and (A)= IIAII=IIA/II= o’a)/"’(a)
Proof. From (1) and (12), we have

(16) Ap r, eSp O,

which in turn implies, for some T and with A+ denoting the (1, 2, 3, 4)- or Penrose-
generalized-inverse [2], [23] of A,

(17) p A+r+ Tp.

Let the singular value decomposition (SVD) of A be

o v2] =u’v’

where the matrices U and V are ohogonal and the diagonal matrix
diag {gA),... n--lJ"

Note that

(19)
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which, together with the scaling scheme e rp 1, imply

v.(20) P Vr U."
Premultiply (17) with e r, and together with the second equation in (16), we have

y -erA+r.
Substituting y back into (17) and expressing in terms ofthe SVD in (18) A+= VE- U1r,
we arrive at

(21) 8p V1Z-’ Ul r UV1Z-’ Urp QV1Z-’ Ur r

with Q -= I VU/UV.
It is easy to prove that IIQII - 1/cos (e, p) by considering the eigenvalues of QQ.
From (21), the properties of norms, and the facts that Ill-’Ill’ ".-lrr(A) and sn

Ilpll the results in (14) and (15) can be deduced.
Note that the appearance of sn in (14) and (15) in Lemma 1 is in agreement with

the results by Wilkinson and others [25], [37], [42], like those in (10) and (11). Also,
(a) reflects the scaling of the problem, as seen from the relativeusing K2(A) instead of crn_

error inequality in (15). Note from (14) that the condition number s, affects only the
absolute error in p.

The proof of Lemma 1 uses a similar setup as in Theorem 2.1 of 1 ], but follows
a quite different line of analysis. Note also that in [1] e was chosen to be e and the
solution p in this paper is v/-ff times that in [1]. As a result, Lemma 1 represents a
stronger result than that in Theorem 2.1 of [ 1 ], in the sense that the absolute or relative
error in p has been proved to be roughly n times smaller than in 1], and because of
the appearance of s,. (It appears that the factor n represents an unintentional and
conservative estimate of s,.) In addition, the proof of Lemma 1 above does not require
A to be an M-matrix or e be chosen in any specific form, say e e, unlike that of
Theorem 2.1 in ].

Finally, denote the group-inverse [2] of A by A*, [[A*[[2 has been shown to be a
condition number for our problem [16], [21], [23], [31]. The condition number sn is
proved in 11 to satisfy

1IIa 112--< s2lla+ll2 2
SnO’n_

The group inverse is also involved in the derivatives of eigenvalues and eigenvectors
of matrices depending on parameters [13], [32].

(22)

5. Stability of Algorithm 2. Consider the eigenvalues of the matrix r,, where

A= er 0 0 1
Cl
r

c2 0 0 1

using the SVD in (18) with c c,] Vre.
Note that crc= CrlCl + c22= 1, with

(23) Icl =cos (e, p) cos 0n s,, Iic1112 sin 0.
Equation (22) implies that the matrix T is unitarily similar to

(24) 0 C2 0 C( C2 0 C2C " C 0

0 0 1 0 0 1 0 0 1
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Consider now only the n x n submatrix W in (24) by deleting the last row and column.
It is a rank-1 update

(25) W= +cc
0

Using the theory of rank-1 updates in [25] and [42], we have the following inequalities:
rr.(A) -12 _(W) < 1_(W) [’" n-ld Crn(26) [o’A)]2 o’]W) [o’]A)]2 + 1, tr.

Inequalities (26) and the form of the matrix in (24) imply
rr() ]2 min { 1 trw)} trw).(27) [o’a)]2 max {1, r]W)}, [v.+

We can then prove the following lemma concerning the lower bound of --’
LEMMA 2.

cos 0.[,-a ]2’,-1 cos2 0n[(a).,_j-12
(28) .--w>= >

A] A][cr._ +(sin 0.+cos 0.)2= [tr._ +2

Proof From the well-known rank-1 update formulae [25]. [42]
N-l uv T"N-1

N + uv)- N- l+vrN-lu
the inverse of W in (25) equal to

W_I= -c-c
-c;c- c;( + c-c,

Consider xrW-x for some unit vector x, the propeies of norms and (23) imply

=t_]-(1 +tan 0) +sec 0,

which in turn implies the result in (28), with

max (sin 0 + cos 0)
o

We can then prove the main result stated in (9), in a slightly different form.
THEOREM 3.

(9 ( ( sX[(+],
where

(i) =5, 1 when>1 >
( 1(ii) =2, 3+[],or=4+[_,

when 1 and 1.
(A)(iii) 1=3+2[]A)]-2, 2 1, or=2, 2 2{l+Ln-1]-2},

(a) < 1when a) 1 and ,_
Proof From (26)-(28), we can deduce

K(A) K() s2.

with

or
= {2 + 2[tr]a)]-2 + ’’(A)" .-112} KZ(A) + 1

2t22(A) + +2[ (A)]-2O’n_ 1. -- o’A)]2.
By considering the three different possible cases (i)-(iii), the result in (29) follows.

Some observations from the above theorem and its proof can be made as follows:
(1) The bounds in (29) are quadratic in K22(A) in the sense that the i’s are

dependent on the singular values trA) and ,..(A)
n--1



BORDERED MATRICES AND SINGULAR SYSTEMS 695

Note that s, appears in the upper bound of K22(,) in (29). Note also that c1 and c2
(A)are small except in pathological cases when trA) and tr,_l are both very large (case

(ii)) or very small (case (iii)) in comparison to unity. In such unlikely ill-scaled events,
a scaling factor can be used to scale the matrix A back to case (i) so that trA) > 1 > a)

and thus Step 1 in Algorithm 2.
The scaling factor may be estimated using generalizations of the techniques described
in 14] and 15] for the estimation of condition numbers in the infinity norm. Simpler
schemes may well be adequate and more work has to be done in this area.

(2) For ill-scaled problems or ill-conditioned problems with small s, iterative
refinements [40], [42] may have to be used in solving the linear system in (8) in Step
2 of Algorithm 2.

(3) It is easy to see that A is a rank-2 update of the matrix A. The updating
techniques for M-matrices [18]-[20], [41] may be used to decompose into LU factors
when solving (8) in Algorithm 2.
This is, in fact, the only application of the M-matrix propey of A in Algorithm 2
and the related analysis, totally contrasting Algorithm 1 and its analysis in [1]. We
have not made use of the special form of el in (2) either. It is unclear how such
additional propeies of A can be utilised beneficially.

Finally, similar results as in Lemma 2 and Theorem 3 can be proved by considering
the matrix [from (22)

0 0 1

c c 0

its inverse

-ccl,- 0 c
0 1 0

and the property of matrix norms Nil- supllxll,llyll=l lyTNxl Upper bounds can then
be obtained by other properties of norms and inequalities, and lower bounds from
careful selection of x and y. This alternative approach yields worse bounds than those
of the results in this section, and so has not been used. However, the techniques can
be used for more complicated situations, e.g., when the bordered matrix

A -=
e r

is considered, instead of that in (8) with a- 0.

6. Numerical examples. The main aim of this paper concerns the bounds for the
condition numbers in (5) and Theorem 3, and it is not intended to compare the
numerical algorithms in detail. Indeed, we do not want to claim any superiority of the
algorithms suggested here. The examples here are only for the illustrative purposes of
showing that Algorithm 2 actually works, and ofcomparing the bounds for the condition
numbers.

Elsewhere we shall consider more detailed numerical comparisons of algorithms
suggested in earlier sections (and the generalizations in later sections) and other
methods, especially when n is large.

Early results for other test matrices (n < 100) are promising, agreeing in the main
with the observations made in this section.
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(I Q,) r, with Q,We consider two examples defined by the matrices A Ai
from [21, p. 10] and Q2 from [39, p. 283]"

"7.40 1.10 0 0 0 0 0 1.50"
0 6.78 0 0 0.11 0 0 3.00
0 0 0 4.00 0 0 0 6.00

Q1 10-1
0 0 0 6.69 0.11 0 0 3.20
0 0 0 0 9.12 0 0 0.88
0 0 0 0 0 7.40 0 2.60
0 0 0 0 0 0 8.70 1.30

1.50 0 0.47 0 0 0.55 2.70 4.78

"85000 0 14900 90 0 5 0 5"
10000 65000 24900 0 90 5 0 5
10000 80000 9960 30 0 0 10 0

0 40 0 70000 29950 0 10 0
Q2= 10-5

50 0 40 39900 60000 10 0 0
0 50 0 0 5 60000 24990 15000
3 0 3 4 0 10000 80000 9990
0 5 0 0 5 19990 25000 55000

The resulting matrices Ai are M-matrices, although Q2 is not stochastic (because the
sixth row does not sum to unity) and el is not the left eigenvector for A2. However,
Q2 can be made stochastic by changing the (6, 2) element from 0.00050 to 0.00005 with
the corresponding matrix A denoted by A3. We can consider A2 to be a perturbation
of A3, with the error size equal to 0.00045. Application of the numerical algorithms
to A2 will demonstrate the effects of perturbation or errors.

The computations were performed on the VAX-16 system in the Monash University
Computer Centre, using the well-known numerical linear package MATLAB [33].
Linear equations have been solved using Gaussian elimination with partial pivoting.
The machine accuracy is around 10-’5

For A1 and A3, the computed p’s are accurate up to machine accuracy using
Algorithms 1 and 2. The actual results are not interesting and thus will be ignored
here. The optimal choice of k 7 has been made in the computation for Algorithm 1,
for Ai (i- 1, 2, 3). The behaviour of the bounds of the condition numbers for A2 and
A3 are similar, and the comparisons of these bounds are summarized in Table 1. Case
(i) in Theorem 3 applies for the bounds in (29) for all the examples in this section.

The bounds in (5) and (29) behave as expected, with the bounds in (29) tighter.
Note also that the bounds for KE(B) constructed from (5) will be even less tight, when

(B) is not representa-bounds for cr]B) are available. As mentioned before, the quantity
tive enough for use as a condition number, and the bounds in (5) for both

TABLE

Upper bound in (5)
r(B)
Lower bound in (5)
K2(B)
Upper bound in (29)

Lower bound in (29)

A1

0.095
0.067
0.0073

19.43
49.82
16.92
13.82

A2

0.00022
0.000093
0.000021

13744.79
13974.242
5850.612
5707.652



BORDERED MATRICES AND SINGULAR SYSTEMS 697

are out by roughly one order of magnitude, especially for the lower bounds. The
bounds in (29) are comparatively better. The condition number K2(B) is also larger
than K2(A), especially for A.

The lower bounds in (29) perform well in terms of tightness, with the upper
bounds overestimating by two or three times. It may be the effect of the value of c1 5
in case (i) of Theorem 3.

The computation of p for A is summarized in Table 2. The error in the computed
/ from Algorithm 1 is larger than that from Algorithm 2. Similar observations can be
made for the residuals, which are of the same order as the perturbation from A3 to
A, i.e., 0.00045. Recall from Table 1 that the condition number for Algorithm 1
(K(B) 13744.79) is larger than that for Algorithm 2 (2(A)= 5850.61). Note also that
the residuals are a lot smaller than the actual errors in/.

7. When A is not an M-matrix. The results presented so far in this paper have
nothing to do with the fact that A is an M-matrix or the special form of the left
eigenvector el as in (2), apart from one particular comment [(3) in 5, after Theorem
3]. For a general matrix A, Algorithm 2 and the related analysis will still work, if we
have prior knowledge of the left eigenvector. Because determining the left eigenvector
is adjoint to that of the right eigenvector and because it involves the same degree of
difficulty, prior knowledge of the left eigenvector seems, in general, to be too much
to ask. We thus suggest the following modified version of Algorithm 2, which requires
no prior knowledge of the left eigenvector.

ALGORITHM 3.
Step 1. Scale A (by multiplication of a real constant) so that IIAII 1.
Step 2. Solve the bordered system

(30) A =- er
where e q is a randomly chosen vector of unit length. should be equal
to unity in exact arithmetic, and can be used as a check on the numerical
behaviour of the algorithm.

Step 3. Scale x to unit length to form .
Step 4. Repeat Step 2 using e =q :.
Step 5. Scale x back to p using any desirable scaling scheme.

Heuristically, the vector q must only be nondeficient in the left eigenvector Un
for the Algorithm 2 to work. For a well-conditioned problem, the right eigenvector p
should have a large component in the direction of Un. Hopefully, the initial random
vector q in Algorithm 3 is going to have a sufficiently large component in U, and yield
an intermediate answer that is reasonably close to p. Choosing e =q will then
ensure that e and q have large components of V, and U,, respectively, and an accurate
answer is produced.

TABLE 2

[[Error in computed

Algorithm

0.16
9.2x 10-5

Algorithm 2

0.037
4.2 x 10-5
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To put Algorithm 3 (Steps 2 and 4, in particular) on a firmer basis, the following
stability theorem (c.f. Theorem 3) for the bordered system with e =q U. is proved.
(The theorem does not make use ofthe restriction that e q, so is slightly more general.)

THEOREM 4. With notation similar to Theorem 3 and

cos 0" --- cos (e, V.), cos tb. cos (q, U.),

we have

2
(31) K22(A)--< K(/) -< [rg, K2(A) + rg2K2(A) + cg3],

cos 0 cos b
where

(i) 4 + sin ., 2 1 + 2 sin ., 3 2, when a) 1 .
(a) 3 4+ ffa) sin 6. + [a)]2, or(ii) 1=1, 2=2sin.+

2+ sin . + (A) + (a) re(a) sin ., 3 2 when a) > 1 and._]2, 2 1 +sin . +._
> 1
(iii) =3+[a)]-+sin .[a)]-2, 2=2sin .+[a)]-l, 3=2 or = 1,

(A) - (A) - (A) ]-22=l+sin.+sin.[.-1] ,3=3+sin.+t._] +[._ ,whena)<land=
if(A) < 1n_l

Proof Similar to the deduction in 5, consider the eigenvalues of the matrix
where

(32) A= er 0 0 1 c c 0 0 1

using the SVD of A in (18), with

c= Vre,
C2

Note that Ilcll,_= Ildll== 1 and

dl]--WTq.d=
d2

(33) Ic=l =cos (e, V) cos 0., IIc111_= sin 0.
(with s. no longer equal to cos O but the cosine of the angle between U and V) and

(34) Id,_l =cos (q, U.) cos b., Iid2]12 sin ..
Equation (32) implies that the matrix T is unRarily similar o

0 c 0 d +cc cc Nd
(35) N 0 0 c2 0 0 d2 c2c( c 0

d d2 0 c( c2 0 dZ 0 1

The matrix N in (35) can easily be shown to be similar to the rank-1 updated matrix

+ 0 [cT01c2], W= aTE 10

Using propeies of norms, we can show that
_(W) < (A) ]2 ffW) < 1(37) [A)]2 W)[a)]2+ 1 + 2ffA) sin ., g. [o._j

These inequalities, tgether with the application of the theory of rank-1 updates [25],
[42] to the matrix N in (36), prove that

(38) [A)]2<[g{A)]2<[g{A)]2+2g{A) sin .+2, [.+,
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The lower bound for -(a) in terms of .(A)
,.+ ,,._ can be obtained from the inverse N- in

the form

with Z=(I-dld()-1.
Standard manipulations using properties of norms, (33) and (34) imply

1
IIzIl= < c’c, II_-- tanCOS2 Cn

and in turn the lower bound

(39)

,_,.(a) ]2 >[’ rl+l

,(A) 12[.,,_,, cos O. cos .
(A) ]2 (A)_cos2 . or._ + .-1 1 + cos 0. + sin 0. ]2

(A)]o’n_ COS20"cOs2

(A) 22[o’,,_ + 1]

with standard bounds for the trigonometric functions.
The result in (31) is then proved using the bounds in (38) and (39), and the fact

that
(A)_ O.(nA_)l ]- (A)[o.A)]-,o’A)--2(A)O’n-, --2 []

The bounds are not optimal as the coefficients can be sharper, in an effort to make
the bounds reasonably simple. Also, similar and coarser bounds can be obtained using
techniques indicated at the end of 5.

Using the scaling strategy in Step 1 in Algorithm 3, and the bounds

1 <= K2(A) <= KZ(A), sin ,, <-- 1,

(31) implies

(A) =< 2(A) =< (A),
4cos 0,, cos .

and thus the equivalence of the conditioning of problem (1) and Step 2 or 4 of
Algorithm 3.

The factors sin b, in (31) in Theorem 4 reduce to zero in (29) in Theorem 3. The
results in (29) are not exactly the same as that in (31) after substituting zero for sin ,
because of different usage of various inequalities. The factors sin b, can obviously be
replaced by unity, but the relationship between Theorems 3 and 4 is then lost.

The factor cos 0, cos , in (31) in Theorem 4 indicates that the equivalence of
the theoretical problem in (1) and the problem solved by Steps 2 and 4 in Algorithm
3 is sharp if and only if both 0, and , are small. The numerical algorithm is then
well conditioned if and only if e in (30) is not too deficient in Vn (i.e., 0n small) and
q is not too deficient in Un (i.e. small).

In choosing e =q and e hopefully not too deficient in V, in Step 4, the well-
conditioning of the problem (i.e., V, not deficient in Un) should ensure that q is not
too deficient in U,.

The condition number sn cos (Un, Vn)= cos w does not feature directly in (31),
but is related to 0n and , in the following sense. The angle w is small if and only if

0n and , are small when we choose e q. In general when e q, sn will then be
unrelated to 0n or Cn, and s, will then affect only the conditioning of problem (1) in
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the sense of Lemma 1. However, it is not obvious how else q can be chosen, in order
to ensure the well-conditioning of the algorithm.

Theorem 4 can be easily generalized to deal with bordered systems with A having
an m-multiple zero eigenvalue, and e and q being n m matrices. The results in
Theorem 4 still hold, with 8n and n replaced by the maximum angles 0max
arccos Ve[[2 and tmax-- arccos Uffq[[2, respectively.

8. Conclusions. A direct algorithm for calculating the null vector of a general
matrix A has been proposed, with the implications on the calculation of the stationary
distribution vector of an ergodic Markov chain discussed. It has proved that the
conditioning of the algorithm (and its generalizations) is comparable to that of the
original problem. Wilkinson’s condition number s. for algebraic eigenvalue problems
and 2(A) have been shown to have important roles in the conditioning of the problem
and the related algorithms.

We have not considered the problems with structured matrices A, as in [28]. When
Gaussian elimination with partial pivoting is used to solve the bordered system in (8)
or (30), a dense vector q does not affect the improvement in efficiency because of the
structures in A. We may choose the vector e to be structured in some way to improve
the efficiency of solving the bordered systems. A balance then must be maintained
between efficiency and conditioning, but more work must be done in this area.

Finally, it is strange to see the results in [1] for the special case, when A is an
M-matrix with e el, appearing to be not as satisfactory as the ones in this paper. In
addition, it is not clear how such properties can be utilized in the analysis of this
paper. Intuitively, more information should yield better results. It may be in this case
that the additional property of A being an M-matrix is either irrelevant or has not
been fully exploited. This apparent paradox is still unresolved.
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RANDOM SEARCH IN THE PRESENCE OF NOISE,
WITH APPLICATION TO MACHINE LEARNING*

S. YAKOWITZ" AND E. LUGOSI

Abstract. A search for the global minimum of a function is proposed; the search is on the basis of
sequential noisy measurements. Because no unimodality assumptions are made, stochastic approximation
and other well-known methods are not directly applicable. The search plan is shown to be convergent in
probability to a set of minimizers. This study was motivated by investigations into machine learning. This
setting is explained, and the methodology is applied to create an adaptively improving strategy for 8-puzzle
problems.

Key words, machine learning, random search, optimization
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1. Introduction. The object of this study is the following problem: A measurable
real-valued function f(x) is defined on a domain D in R a. At each decision time n 1,
2,. ., the decision maker selects a point, X(n), and observes the number

(1.1) Y(n)=f(X(n))+ W(x(n))

where W(X(n)) is a random variable whose distribution function may depend on the
point selected. It is presumed that W( has a constant mean (we take it to be 0) and
a uniformly bounded absolute pth moment, p> 2. Moreover, the variables of the
sequence

{ W(X(n)): n 1, 2,...}

are assumed independent, given the X(n)’s, even if some of the x-values are repeated.
The goal is to find a sequential search plan that assures that if f() has an essential
infimum, say fmin, then for any e > 0,

(1.2) P[f(X(n))>fmi,,+e]Oas n.

We will propose a plan that achieves this consistency property.
The problem was motivated by our investigations of machine learning for solving

the 8-puzzle, a puzzle oft-mentioned in the computer science literature (e.g., Doran
[7], Doran and Michie [6], Michie and Ross [17], Barr and Feigenbaum [1], Levy
[13], and Nilsson [18]). Our idea in machine learning was to parameterize a space of
plausible (heuristic) value functions and subgraph searches, so that x, in this context,
plays the role of parameter value. In our application, x serves as a weighting factor
to balance criteria in a value function and to limit the depth of search. (This artificial
intelligence terminology will be defined in 4. Intuitively speaking, in checkers, the
parameter could quantify trade-off between control ofthe center ofthe board, protection
of pieces, etc.) The initial 8-puzzle configuration is chosen at random, and f(x) is the
expected computational effort required, under the decision strategy determined by x,

* Received by the editors December 22, 1986; accepted for publication (in revised form) June 15, 1989.
This work was supported in part by National Science Foundation grant DPP-82-19439.

t Systems and Industrial Engineering Department, University of Arizona, Tucson, Arizona 85721.
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to put the puzzle into the target position in which the numbers read in ascending order.
In our study, computer effort is measured by the number of nodes expanded in
reordering the tiles. A search that looks deeply into the game graph usually makes a
better move, but it expands more nodes. After having the computer solve a single
puzzle with a randomly chosen initial configuration, one gets, effectively, a random
observation Y(x)- number of node expansions for a certain initial configuration and
for the decision strategy associated with parameter x. The expected value of this
observation (over the randomization on initial boards) is f(x). Our claim is that this
setting is really quite general and could apply to checkers and chess. Indeed, our
confidence in this approach has been fortified by experimental studies with go-moku
[22], and an assembly-line balancing problem [24]. Our computational experience with
8-puzzle learning will be reviewed in 4.

In the systems literature of ten to twenty years ago, a number of random search
methods were proposed, most of them being dedicated to finding global minima on
the basis of noiseless measurements. The review [9] gives a good summary of the
engineering literature, and reference [21] offers more theoretical references. Some
algorithms for the noisy case (1.1) have also been posed ([4], [5], [9], [16], [21, 4])
and in some cases, were shown to be consistent; a strategy in [21] even achieved a
convergence rate. Yet for one reason or another, these techniques have not gained
popularity. The present approach stems from [21], but we think it to be much more
practical and efficient.

Stochastic approximation, simulated annealing, and bandit methods are also
related to our stochastic minimization problem. The Kiefer-Wolfowitz [10] strain of
stochastic approximation allows for noisy measurements, but unimodality is a funda-
mental hypothesis to this approach.

Simulated annealing presumes a deterministically observed underlying function.
However, it is to be noted that recently Kushner [11] has used simulated annealing
ideas to extend stochastic approximation to global searches. One idea from the
simulated annealing literature that we have adopted is that of putting a Gibb’s
distribution on the sample points in the search to be described in the next section.
This tactic, which is not absolutely essential, was inspired, in part, by ideas in [8].
Having studied our construct, the reader will be able to devise consistent alternatives.

Traditionally, bandit problems (e.g., Berry and Fristedt [2]) presume that there
are only finitely many search parameters. However, this literature is relevant (especially
the optimal strategy of Lai and Robbins 12]). Yakowitz and Lowe [23] have explored
generalizations to nonparametric, infinite bandit populations that are also aimed at
our stochastic minimization model.

Let it be understood at the outset that the search problem having been posed, it
can be solved by fairly elementary considerations (although to our knowledge, such
solutions have not worked their way into practice). For example, it is known (e.g.,
Mack and Silverman [15], Devroye [4], and Schuster and Yakowitz [20]) that under
fairly general circumstances, nonparametric regression estimators converge uniformly,
on bounded domains, to the sampled "target" function. To adapt these developments
to the search problem, one can devise a plan that calls for asymptotically sparse
sampling to "learn" the underlying function f(x), and at intervening times, sampling
at the point that minimizes the inferred regression function, to achieve asymptotically
optimal performance.

While such devices can be shown (e.g., Devroye [4]) to possess property (1.2),
they seem to us ad hoc and wasteful. For instance, there does not seem to be much
point to "learning" the objective function accurately in regions that are suboptimal.
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The situation, as we see it, is that no compelling methodology for stochastic
minimization of a multimodal function has yet emerged, and therefore sensible avenues
should be explored. The plan to be revealed next evolved from pragmatic considerations
and substantial computational explorations.

2. A search methodology.
2.1. The algorithm.

Components:
1. We presume that the absolute pth moment, p > 2, of W(x) is bounded, uniformly

in x.
2. Let b denote a number greater 2/(p-2) and 1. For i= 1, 2,..., let N(i) be an

integer chosen at random from the interval ((i- 1) b, ib]. Thus N(1)= 1. We denote
the members of {N(i)} as "search times." (At search times new sample points are
tested.)

3. Let p(x) be a probability density function whose support is the entire domain D
off(x). (During search times, new values of x will be chosen at random, according
to p(x).)

4. { T(n): n _-> 1} is a sequence of positive numbers converging to 0.

Initialization: n 1, NP-- 0, rn(0) =0 for 1, 2,. ..
The Procedure: If n {N(i)}, sample and update. {n is a "sample time"}
1. Set NP= NP+ 1, NNp 1. {NP counts the number of sample points}
2. Choose the sample point X(n) t(NP) at random from D, according to the pdfp(x).

{t(j) denotes the jth sample point}
3. Observe a noisy function value:

(2.1) Y(X(n))--f(X(n))+ W(X(n))

and define

mNp(n) Y(X(n)). {mj denotes the average performance at sample point t(j)}

4. Update resample probabilities: for i= 1,..., NP, define the "resample" prob-
abilities by

(2.2) P(i) =exp (-mi(n 1)/T(n))/Denom
where

NP

(2.3) Denom= exp (-mj(n-1)/T(n)).
j=l

{A point whose average performance is good (low mi) has the better chance of being
picked. As n increases, T(n) decreases, and the chance of good points are even higher.
But by our minimal sample schedule in step 7 below, even bad points are picked
infinitely often, but relatively seldom. This prevents an optimal point from being
overlooked due to a run of "bad luck."}
Go to 7.

Else, if n {N(i)), resample. {n is not a "sample time"}

5. Choose index I at random according to the probability masses {P(i)} in step 4,
and make an observation at resample point X(n)= t(I). Let

Y(X(n)):=f(X(n))+ W(X(n)),

and

Nx := Nl(n)+ l{Nl(n) counts the number of samples that have been taken at t(i)}
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{Remark. Please bear in mind that N(i) is the ith sample time, whereas Ni(n) is the
number of observations made at the point t(i) by time n.}
6. Update the mean value at index I according to

(2.4a) m,(n)----- ((NI 1)/Nt)ml(n 1)+ Y(X(n))/Ni,

and set

(2.4b) m(n) := m(n 1), for # I.

7. If n {N(i)}, assure that all points have been sampled at least Min (n) times, where

(2.5) Min (n)= C’[n lib log (n)] 1/(p-2).

(C’ is an arbitrary positive constant.) For each i_-< NP, perform steps (2.4a) and
(2.4b) while

(2.6) N(n) < Min (n).

Increment n and N(n) at each pass.
8. Set n- n + 1, and begin the procedure again.

2.2. Experimental example. We have coded this search technique and applied it
to several multimodal functions. For example, we took D [0, 1] andf(x) sin (107rx),
with W(n) being standard normal, and the sample pdfp() being uniform on D. To
impress our readers (or at least ourselves) with how erratic the noisy samples of this
oscillatory function are, we have made a plot (Fig. 1) showing the target function and
100 pairs (Z(i), Y(i)), where the Z(i)’s are chosen uniformly on D. In Table 1, we
have listed averages, over 100-point blocks, off(X(i)), where the search was conducted
according to the preceding plan. We set b 2, p- 10, and C’- 1.

FIG. 1. The function f(x) and 100 noisy sample pairs.

The value fmin for this function is, of course, -1.0. The search gets off to a
reasonably good start, but many observations are needed to get very close to this
optimal value. The reason is that the measure of points in [0, 1] for which sin (107rx) <
-0.95, say, is about 10 percent, and yet this gives the probability of a randonly chosen
test point t(i) satisfying that condition. Keep in mind that the total number of sample
points grows only as the square root of the number of observations.

Some improvement can be made by updating the selected value of t(i) by a
"Kiefer-Wolfowitz" (KW) step at each resample time. By this plan, we simultaneously
search all valleys, and thereby with this modification, under suitable smoothness
conditions, assure that the minimum is approached at the fast stochastic approximation
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TABLE
Average performances during successive blocks of

O0 samples.

Block number Average value over nth block

100(n+l)

n (1/100) E f(X(i))
100n +1

0 -0.49
-0.78

2 -0.72
3 -0.89
4 -0.83
5 -0.79
6 -0.82
7 -0.84
8 -0.82
9 -0.83

rate, even though the function is not unimodal. We do not dwell on this point because
in artificial intelligence applications, such as the 8-puzzle, the objective function is
typically discontinuous and the KW idea is inapplicable. In Table 2, we relate the
results of redoing the experiment with KW steps as just described.

3. Convergence analysis of the search. Here we show that if the target function
f(x) is continuous and has a finite infimum, call it fmin (or even ill(x) is discontinuous,
with a finite Lebesgue-essential infimum), then the performance under the search
specified in the preceding section converges in probability to the optimal, in the sense
that,

f(X n )) fmin, in probability, as n - .Let NP-NP (n) continue to denote the number of distinct randomly selected
domain points obtained by time n, and {t(j), 1 _-<j_-< NP}, the actual values of these
points. Recall that the sequence {N(j)} denotes the sample times.

TABLE 2

Average performance during successive blocks of
O0 samples wtih KW steps.

Block number Average value over nth block

100(n+l)

n (1/100) Y. f(X(i))
i=100n+l

0 -0.55
-0.77

2 -0.85
3 -0.81
4 -0.90
5 -0.94
6 -0.87
7 -0.87
8 -0.86
9 -0.87



RANDOM SEARCH AND MACHINE LEARNING 707

LEMMA 1. Let e be a positive number and fmin denote the (essential) infimum of
f(x). At resample times n, as n->

(3.1) P[X(n)= t(i): mi(n)<-_fmin+ e]-> 1.

Proof. Define the set

S(n)={t(i): i_-<NP, mi(n)<fmin+e/4, i-< NP(n)}.

Then for fl sufficiently small but positive, and # S denoting the number of points in
S, as n->o,

(3.2) P[#S(n)> NP(n)]-> 1.

To confirm this, observe that for any fixed value t(i),

P[m,(n) <f(t(i))+ e/4, all n= 1, 2,...]>0.

This assertion is a restatement of [3, Lem. 2.8]. Let Q(t) denote the probability above
when t(i) t, and set

A { t: m(t) ----<fmin + e/4}.

Then since Q(t) is positive on A, and since A has positive probability under p(), we
have that for each sample point t(i),

(3.3) P[mi(n)<-fmin+e]>- JA Q(t)p(t) dt>O.

For fl not exceeding the above integral, (3.2) is a consequence of the law of large
numbers.

Omit the argument n in S(n), T(n), etc., for now. Under the event in (3.2)

P[X(n) t(i): mi <fmin+ e]

> YkS exp (--mk/T)

Let "Num" denote the numerator above. This fraction is bounded from below by

Num
[Num+ NP exp (-((fm + e)/T))]"

Then note that if the event in (3.2) holds,

Num_-> fl NP exp (-(fmn + e/2)/T).

One concludes from these two relations that the second term in brackets of the
denominator of the preceding fraction is asymptotically negligible, as T- 0, and so
almost surely, (3.1) is true.

LEMMA 2. Let {Z(i)} be a sequence of independent O-mean random variables with

finite absolute pth moments, p 2. Then for S(n) Z(i): 1 <- <- n, and e a positive
number,

(3.4) P [max [S(j)[/j> < C/np-2"

Proof As noted in [4, Lem. 2], we have that for some constant C,

P[IS(j)[/j > e] < CI/j p-1.
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Now just sum these terms from n to ea, and note that the probability of unions of a
countable number of events does not exceed the sum of the individual event
probabilities.

THEOREM. Iffor some p > 2 the pth absolute moment of W( t) is uniformly (in t)
bounded, then as n

f(X(n)) fmi,, in probability.

Proof. By choice of b, the probability that a given number n is either a sample
time or "step 7" time tends to zero as n . So it suffices to prove the assertion for
resample times. Let n be a resample time and S(n) be as in the Proof of Lemma 1.
Define the set B(n) (B for "bad") by

B(n)={t(i)" i<-__NP, f(t(i))>fmin+e}.

we show that

P[X(n)B(n)]O.
It is apparent that the set S(n) is random. Let Q(n) denote that event B(n)fq S(n) is
not empty. Our plan is to show that P[ Q(n)] 0. Since the content of Lemma 1 is that

P[X(n)eS(n)]I,
the theorem follows. We let Z Z(n):= B(n) f’l S(n). Then

P[Q(n)]<=,zP[lm,(n)-f(t(i))[> e]
<- C,zE(1/ N,( n p-2),

where C is the bound of Lemma 2, as applied to W(x). Now by the construct (2.5),

N(n) p-E>- C’n/ In (n),

whence

P[Q(n)]< C NP/(C’n lib In (n))= O(1/ln (n)),
where we have used that NP (n) grows as n /b.

In summary,

P[X(n) B] <- P[X(n) S(n) CI B(n)] + P[X(n) S(n)].

The first probability on the right vanishes because the probability that the event
S(n) fq B(n) is not the empty set converges to zero, and the second converges to 0, in
view of Lemma 1.

4. An application of random search to machine learning. In our view, the common
artificial intelligence methods for games are determined by three objects"

(i) The game graph,
(ii) An algorithm for machine expansion of a subgraph about any given node, and
(iii) A heuristic value function defined on nodes.

The game graph determines the available decisions or moves from a given state or
board position, each allowable action being represented by a branch emanating from
the node representing the state. We will display a subgraph later when details of the
8 puzzle are described.

The customary plan for choosing a branch at a given node involves expanding
the subtree about that node, and using the value function to assign numbers to the
leaves (i.e., the terminal nodes). Then dynamic programming may be used to discern
the best decision at the expansion node, with respect to the subgraph and leaf values.
This process is repeated at each decision time.
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The application of the stochastic minimization scheme related in the preceding
section is predicated on the hypothesis that a sequence of similar decision problems
presents itself. In the 8-puzzle problem, that sequence will be taken to be puzzles with
randomly chosen initial boards. In a sequence of checker games, for example, one can
imagine that the randomness arises by variations of an opponent’s strategy. We identify
the minimization variable x with the vector (xl, x2, x3), where xl parameterizes a space
of value functions defined on boards B, and x2, and x3 similarly index a collection of
graph expansion rules. The objective function f(x) is viewed in the machine learning
setting as the expected risk of a decision problem, given the decision strategy determined
by the value-function/graph-search parameter x (x, x2, x3).

Our experience at this writing includes the 8-puzzle, tic-tac-toe, go-moku, a
stochastic travelling salesman problem, and assembly-line tuning. The intention of this
section is to report our experience in applying our random search scheme to the
8-puzzle. Following Schofield [19], in the starting and target configuration the center
square is empty (Fig. 2 and Fig. 3). The tiles are numbered 1 through 9, but without
a5.

2 3 2 3
4 6 4 6
7 9 8 7 8 9

FIG. 2. A typical starting configuration. FIG. 3. The target configuration.

The objective is to rearrange the board by successively moving tiles to the blank
space until the arrangement in Fig. 3 is achieved. The measure of performance of a
particular puzzle solution is determined by the total number of nodes expanded during
the process of reordering the tiles. A search that does not expand very deeply at each
board tends to move fast, but the moves are less fruitful than one that expands to
deeper levels. The motivation is that the number of nodes expanded ought to be a
fairly good indicator of CPU time.

Thus, in connection with the model (1.1), Y(n) is the number of node expansions
required to rearrange the nth puzzle, and f(x) is the expected number of search
expansions, under value-function and search-parameters (x, x2, x3). The expectation
is over randomly chosen initial boards. There are 20,160 possible initial boards.

In our experiments, at each "game," an initial board was chosen at random from
the class of all solvable boards. The subgraph at each node was the full graph about
that node up to a given depth x3, with the proviso that some improvement must be
obtained in the value function by level x. In Fig. 4 we have expanded the graph,
about the board node shown in Fig. 2, to a depth x3 2.

The parametrized value functions were defined on board arrangements B by

(4.1) V(b; x)= x*(Vert (B)+ Horiz (B))+ Manhat (B).

Here Horiz (B) is the number of order inversions when the board numbers of B are
read horizontally, i.e., row by row. Thus in the case of the root board shown in Fig.
2, reading horizontally, we have

21346798

and we observe that 21 and 98 are inverted with respect to the sequence 1, 2, 3, 4, 6,
7, 8, 9. Consequently, for the board shown, Horiz (B)= 2.
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17981
BlankMo

left/ down/, _ht up
17 9 8J

left’right left’right
down/

2

FIG. 4. An 8-puzzle subgraph.

Vert (B) is the number of inversions when the tiles are read vertically, column by
column, where inversions are in comparison to the ordering 1, 4, 7, 2, 8, 3, 6, 9. In
case of the board above, reading vertically, we have

24719368.

Regarding the first four numbers, 2471, we get two vertical counts because 2 improperly
precedes 4 and 7. Then we get three more, because 2, 4, and 7 have order inverted
with respect to 1. Thus this subsequence has five inversions. The remaining four numbers
have a similar pattern of inversion with respect to their proper ordering. Hence
Vert (B) 10.

The measure Manhat (for "Manhattan distance") is the sum

Manhat (B) E,d(i)

where d(i) is defined to be the minimal number of moves required to get the tile
labeled "i" from its current board position to its correct place on a properly arranged
board, these moves presumed made in absence of all other tiles. Thus in the board of
Fig. 2 Manhat (B)= 4, because the tiles 1 and 2 are each off their proper places by
one move, as are 8 and 9. The measure Manhat had been previously used by Levy [13].

The law p(), for choosing the sample points t(i) is composed on three segments.
The variable xl, indexes the value functions, as in (4.1), and (x2, x3) determines the
tree expansion as explained above. The law of xl is the uniform density on [0, 3]. The
maximum search depth x3 is random on the integers 1 to 5, and x2, the depth by which
an improvement must occur, is chosen from integers 1 to, but not including x3, unless
x3 1. (From Schofield [19] it is known that the depth of a full graph can be as large
as 30, and the average depth is over 20; computationally speaking, the 8-puzzle is not
trivial!)

The program organization entailed making the 8-puzzle strategy a procedure, with
passing input parameters (xl, x_, x3) as just described. This procedure relays an output
Y to the driver program, the value Y being the count of the total number of nodes
expanded during puzzle rearrangement. The driver program itself is essentially the
same as that used for the sine function experiment discussed in 2, with obvious
accommodations being made for the change in the optimization variable x.

The results of a learning session are summarized in Table 3. The situation is that
the expected number of node expansions varies sharply with graph expansion regime.
For some parameters causing very shallow searches, the puzzle is never rearranged.
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TABLE 3

Average number of node expansions per puzzle.

N

Average number of node
expansions

in first N puzzles

10 80,720
20 45,010
50 30,210
100 19,730
300 12,920
700 10,190
1000 8,860

(The program terminates the search after 250 tile moves. If the program failed to
terminate, the large penalty 11,400 was assigned.)

The point we wish to make is that in this application, marked on-line improvement
is attainable while statistical inference is undertaken.

Acknowledgment. The first author is grateful for related discussions with Professor
C. Newman.
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ON GENERALIZED CROSS VALIDATION FOR TENSOR
SMOOTHING SPLINES*
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Abstract. The natural tensor-product smoothing spline is one of the methods of choice for fitting noisy
data given on a grid. A generalized cross-validation procedure for automatic selection of the smoothing
parameter in the method is introduced. It is shown that as in the well-known univariate and thin plate spline
cases, the method selects the parameter in an asymptotically optimal way. Computational aspects of the
method are also discussed, and a numerical example is presented. The method developed here can also be
extended to complete and periodic tensor-product smoothing splines.

Key words, smoothing splines, tensor splines, cross validation, fitting noisy data
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1. Introduction. It is well known that the natural smoothing spline is an effective
tool for fitting data in one variable, particularly if the method of generalized cross
validation is used to select the smoothing parameter. Besides being easy to compute
(cf. [3], [7], [11], [12], [16], [17], [18], [23], [27]), it has been shown that the method
possesses a certain asymptotic optimality (cf. [3], [22]). Recently, we have developed
a similar generalized cross-validation method for fitting univariate data using complete
splines 14]. As in the natural case, we have shown that the method is asymptotically
optimal, and that the optimal smoothing parameter can be computed efficiently.

In this paper we are interested in fitting surfaces to data given at points on a
rectangular grid. While any of a variety of general fitting methods could be used,
for example, thin plate smoothing splines [4]-[6], [16], [20]-[22], for the sake of
efficiency it is certainly more reasonable to use tensor-product splines as discussed
in [1].

The purpose of this paper is to provide a generalized cross-validation method for
selecting the smoothing parameters when fitting gridded data using tensor-product
splines. In particular, we shall treat both the computational and theoretical aspects of
the method, including a proof of its asymptotic optimality.

The paper is organized as follows. In 2 we give a general treatment of the method.
Computational aspects are discussed in 3. Sections 4 and 5 are devoted to an
asymptotic analysis of the method, culminating in Theorem 5.6, which shows that the
generalized cross-validation procedure introduced here produces optimal smoothing
parameters (in a certain statistical sense). Section 6 contains a numerical example.
Finally, 7 is devoted to several remarks, including a discussion of how the results
can be extended to complete and periodic tensor splines.

2. Tensor-product smoothing splines. A general treatment of abstract tensor-
product smoothing splines (in the bivariate case) has recently been given in [1]. For
our purposes here, we need a somewhat different treatment of the subject. We carry
out our discussion for the general case of d variables.
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Let n {nl, rt2," nd} and m {ml, m2," mcl } be vectors of positive integers
with ni -> 2mi for i= 1, 2,..., d. For each such i, let [a, b] c R, and let

(2.1) Pi={ai=x =bi}X2" "Xni
be a partition of [a, b]. Let IcRa be the parallelopiped defined by the Cartesian
product of the [a, b]; i.e.,

d

(2.2) 1)= 1-I [a,, b,].
i=1

Suppose that we are given measurements

(2.3) zi,,,2,. .,,, f(x aleq,Xiz ",X )+eil,i2,...ia l<=ij<=llj, j-" 1," "’, d
where f" f--N is the function we are trying to fit, and where the measurement errors

e,,,..., are realizations of independent identically distributed random variables with
zero mean and common variance crY. As already mentioned in the introduction, in this
gridded data situation, one of the most efficient and effective ways of fitting the function
f is to use tensor-product splines. To introduce them, we need some further notation.

For each i= 1,. ., d, let

(2.4) ffOi := Hm’[ai, bi] :-- {u" [ai, bi]-.-)N" u, u’, ., u(m) e L2[ai, bi] }.

These are Hilbert spaces, and taking their tensor product, we obtain a Hilbert space
(cf. [13])

(2.5) N= l@2Q’" "@ d,

which is the completion of the set

(2.6) g’ span { u @/’/2@" @/./a" lgi e LPi, 1," ", d},

with respect to the inner product defined on g by bilinear extension:

d

i=1

where for each i, (,)e, is the inner product on i.
Suppose A > 0 is prescribed. Fix i= 1,..., d. Then given u, v e 3f and w e N",, let

(2.8)

where

(2.9)

and

Ji(u) := Qi(u, u)-2Li(w, u),

Qi(u, v)= A u(m’)(t)v(")(t) dt +-- u(xj)v(xj)
ni j=l

(2.10) Li(w, u)=1 u(xj)wj.
/’li j=l

It is well known (cf. [3], [18]) that there is a unique function sie that minimizes
Ji over . It is the univariate smoothing spline associated with the data w. Since sq

depends linearly on w, there exists a bounded linear operator Sl" R", such that

(2.11) s[Ai w S[A
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Our aim now is to construct a certain quadratic form on using the J1,"" ", Jd.
First, let Q Q1 (R) Q2 (R)" "(R) Qd be the bilinear form

defined by
d

(2.12) Q(u,(R)u2(R). "()Ud, I)l()/)2Q"" "QVd)’" H Qi(ui, vi),
i=1

and extended by linearity to
by

d

(2.13) L= L,.
i=1

Now, for each u and z i= " let

(2.14) J(u) Q(u, u)-2L(z, u).

The quantity J(u) equals, up to an additive constant, a combination of the residual
sum of squares plus a penalty term depending on X; for the bivariate case, see
(2.35)-(2.36).

TnzoM 2,1. For each A > O, there exists a unique function sx that minimizes
J(u) over . is function is called the tensor-product smoothing spline.

Proo By the Lax-Milgram lemma, it suces to prove that Lz’uL(z, u) is
bounded, and that Q is coercive. The boundedness of Lz follows from the fact that
each of the L is bounded as an operator from ", to , while

d

(2.15) IL(z, u)l H liE, Ilzll Ilull,
i=1

(see 13]).
We turn now to the proof of the coerciveness of Q. First note that there exist

a , ad > 0 such that

(2,16) Q,(u, u)

Now if for each 1, ,d,{6}= is an oahonormal set on i, then {= 6}=
is an oahonormal set in (cf. [13]). But

d

i i ,.. ",a J ,J ,"’,Ja
(.7

M d

i ,,...,i k
J ,J ,’",Ja

Thus, the bilinear form (2.17) defined on@ N x@il corresponds to the matrix

d

@ ,,
k=l

where

Since the eigenvalues of a tensor product of matrices are the products of the
eigenvalues of the individual matrices (cf. [13]), and since the eigenvalues of, are
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bounded below by Olk, k= 1,..., d, we conclude that the eigenvalues of M are
bounded below by l-[ di=1 ai. It follows that

Q Y, il,i2,"’,id11Q’" QJfd’ 2 il,i2,’",idl’’’id
il ,i2,’" ",id il ,i2,"" ",id

(2.19)

i=1 i ,i2,...,i

:}:= is dense in , we obtain the coercivity of Q:Now since span

The following theorem gives a characterization of the tensor smoothing spline.
THEOREM 2.2. e unique tensor smoothing spline s of eorem 2.1 can be

written as

(2.20) sx Sxz,

where

(2.21) Sx stl(R) .(R)Sd.

Proof. From the preceding theorem and the Lax-Milgram lemma, we conclude
that the condition

(2.22) Q(sx, v)= L(z, v),

characterizes sx. Hence, there exists a linear bounded operator Sa such that sa Sxz, and

(2.23)

Now let {e}L1 be the canonical basis for ". Then a basis for= is given by
{@= e}, and z can be written as

1@’"@
i=1 i2=1 id=l

Then

s=S[I](R)"’(R)S[d]z= zq,i2,...,i e,,’’’sd]e
i1:1 i2=1 id=l

Now using the ohogonal basis defined earlier, we have

d

Q(g,, ),...@)= z,,,,...,, Q(S[]e, )
i=1 i2=1 id=l k=l

d

i=1 i2=1 id=l k=l

t(a "
By the density of the ohonormal basis, we conclude that

Q(e,, v)= L(z, v), Vv

Since the solution of (2.22) is unique, it follows that
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Theorem 2.2 asserts that the tensor smoothing spline can be calculated by comput-
ing the tensor product of the univariate smoothing operators. In the next section we
will show how this can be accomplished in practice. In the remainder of this section
we explore in more detail the connection with [9], 10]. For each 1,. ., d, suppose
we take

(2.24) (u, V)ae, [u(’’)(t)vU")(t)+u(t)v(t)] dt

to be the inner product on i. Now let

(2.25) ’= {f: fl-->R: Df L2(fI), a, m,, i= 1,..., d},

where D is the usual multi-index notation for paial derivates. We endow ’ with
the inner product

(2.26) ( g)’ E Dg,
Cd

where Ca = {0, m} represents the set of veaices of the "d-cube" in
d dNow let u, v , 1, , d. Then, clearly, iff @ = u and g @ = v, the

fact that m and u,) L[a, b], 1,. ., d, implies

IDVI [U’)(t)]2 dt<.
i=1

Moreover,

d

H (Ui,
i=1

It follows that the inner product defined on the set g’ defined in (2.6) is the restriction
of (,)e’ to g. Thus, is a subset of ’. We now prove that ’.

As seen in the proof of Theorem 2 1, {@i,(R)’" "(R) @a} is an orthonormal basis for. Thus to show that ’, it suffices to show that

(f, o

d} is also a basis for ’. Nowimplies f 0, or equivalently, that {@ i, (R). (R) ,
<f, ,(R)" "(R) ba> 2 Df II

Ca k=l

where for ease of notation, we now write 4’ for q,. Let

faa [Ornaf(Xl,’’’,Xd-’,t) (ama)oo(a-’)(x,, Xa_,) (t)
Otmd

(2.27)
+f(Xl,""", Xd-1, t)@a(t)l dt
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and
bl+ Iomto)(l+l)(Xl, ", Xl, t) (ml)

,+ 0t
(2.28) -- (-O(/+I)(x1, Xl, t)q,i+,(t)J dt

for l= d-2, , 1. Then

(2.29) (f
This equality holds for any , in the orthonormal basis {O}a of )1, and hence
w<l)(x) 0 for all x.

Using (2.28) for 1, we get

0= (Xl, t) t)+2)(x, t)@(t) at
t

for any @{@}, the oahonormal basis of 2. Hence, 2)(x, x2)=0 for all x, x2.
By induction, it is easy to show that

d

f(x,,..., x) =0, V(x,,...,x)= H [a,,b,].
i=1

We have thus shown that ’. A similar proof leads to the following expression
for Q:

(2.30) Q(u, u)= ap) [ ]Du[ d,
Cd

where
d o

(2.31) p(a)= ,
i=1 mi

and

(2.32)

Similarly, we have

Oli mi

(2.33) L(z, u) E zi,,i2,...,i,,u(x,, xi2,
il ,i2,...,ia

Now let d 2. In this case, Ca {(ml, m2), (ml, 0), (0, m2), (0, 0)} and we get

Q(u,u)=A 2

al a2 0202 ] dad+X-- L da
2 a(.34)

1 ’[Ou(x.e)] 1+-- +2 2 [u(xl,
nl i=l L O2

nln2 i=1 j=l
xj)],

which corresponds to the expression given in [9]. Thus in this case the smoothing
spline is the minimizer of the quantity

(2.35) J(u) RSS(u)+ PN(u)- Z Z z.
i=1 j=l
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where

(2.36) RSS(u)
1

(u(x’, x.)-zi)
/’/1/’/2 i=1 j=l

is the residual sum of squares and PEN(u) is the penalty given by the first three terms
of (2.34) and z/nln2 is a constant. Gu et al. [8] have studied a tensor smoothing
spline in with a different penalty and which allows scattered data, but of course it
lacks the tensor structure of the smoothing spline presented here.

3. Computational aspects and generalized cross validation. We begin this section
by showing that the tensor smoothing spline can be computed by solving ceain linear
systems of equations, and that this computation can be organized in a highly efficient
manner. First, we recall that for each 1 d, the univariate smoothing spline corre-
sponding to data y measured at points a x<x<... <x,,= b can be written
as

(3.1) s siy aiy,

where A is the so-called influence matrix for univariate spline smoothing (cf. [3],
[17]), =(0’, 0.) and { ,= are the cardinal natural splines of degree
2m- 1 satisfying

(3.2) O’(x)
O, j k.

Using well-known propeies of tensor products (cf. [2]) for z d we have

(3.3.’ SAZ:i=I si]z:i=l Ai]z:( i=l )(i=1Ai]) Z"

The first tensor product in the last expression in (3.3) gives a mapping from
into ai= W defined by

(3.4) r= 2 2 2 r,,...,,0, @...@0,e
i=1 i=1 i2=1 id=l

We now discuss the second tensor product in the last expression in (3.3). Let I
denote the identity matrix in N,. By elementary propeies of tensor products, we have

d

i=1

(3.5)

Using de Boor’s cyclic-shift factorization technique [2], we can rewrite this as

d

A’= p(A@t,..._,)o P_,(A-’,..._)
i=1

(3.6)

where P denotes the permutation that shifts indices circularly to the left; i.e.,

P(B@. .@Bd) Bd-l@Bd-l+@" "@Ba@B@" "@Bd-t-.
From (3.6), we see that the effect of applying @d Ai to z amounts to successivelyi=1

applying a transformation of the form

(3.7) B@I@" "@Im,
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and then permuting the indices. But the application of (3.7) to z is the same as applying
B1 to the first index of zil,i2,...,id R’, while holding all other indices constant. This
corresponds to smoothing the data in the direction, keeping all other indices fixed.
Thus we have shown that computing the tensor smoothing spline simply amounts to
successively solving univariate smoothing problems, and that the available univariate
software (cf. 11], 12]) for solving them can be immediately applied.

In the remainder of this section we introduce and discuss the computation of a
suitable cross-validation function that can be used to automatically select an optimal
value for the smoothing parameter A for tensor smoothing. For each A > 0, let

(1/N) Zi,,i,...,id [zi,,iz,...,i,- sx(3.8) V(A)= d ]2[1-(l/N) Tr ((,=1Ati])

where N- rId=l n. In analogy with the univariate case (cf. [3], [18]) we call V(A) the
generalized cross-validation (GCV) function. We denote the first point on (0, oo) where
V assumes a minimum by A v. In 4 we show that this method ofchoosing the smoothing
parameter is asymptotically optimal.

We turn now to the problem of computing A v. As in the univariate case [3],
[16]-[18], this has to be done by evaluating V(A) at several selected points As and
then selecting the best value by a search procedure (such as the "golden search"
method, cf. [16], [18]). For the evaluation of V(A), we note that the eigenvalues of
(iL A[xi] are given by the product of the eigenvalues of the matrices At], and thus

(3.9) Tr A 1-I Tr (A).
i=1 i=1

Then writing

(3.10)

we get

(3.11) V(A)=

2]lUll 2= Y Uil,i2,...,id
i ,i2,’",id

(llN)llz- Atadzll 
[1-(l/N) I]d Tr(At)]2"

i=1

The numerator in (3.11) is simply the sum of squares of the differences between
the given data values z,,2,...,a and the values of the smoothing spline at the points
x,,i,..., as x,,,..., runs over the grid. Efficient methods for computing the traces
appearing in the denominator of (3.11) have been discussed in several papers [11],
17], 18]. For the case of equally spaced data, approximate values for the eigenvalues

(cf. [17]) can be used, while in the unequally spaced case, the algorithm given in [11]
and generalized in [14] can be applied.

4. Properties of the true error and the validation function. In this section we collect
several results that will be needed in the following section to show that the generalized
cross-validation method is asymptotically optimal.

We begin with some notation. Throughout this section we suppose that f
is a fixed unknown function that we are trying to fit. Let n=(nl,’’’, rid) and
m= (m,..., md) be vectors of positive integers with ni->2m for i= 1,..., d. Let

(4.1) P= P(R)" "(R)Pd

be a partition of the parallelopiped l’l defined in (2.2), where the P are as in (2.1).
Suppose that z e (,d.= Rn, is the vector whose components are the set of measurement
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values in (2.3), arranged in their nature lexicographical order. Given a smoothing
parameter A > 0, let s s=,.,p,,., denote the corresponding tensor natural smoothing
spline of Theorem 2.1.

We are interested in how well s fits f. To measure this, we introduce the true
mean squared error

1
(4.2) T(A) Y, [f(x, xdd)-- S(X xdd)]2.

F/lr/2 iid il,i2,...,i

This expression can be rewritten as

(4.3) T(A IIA z fll =,
where f is the vector whose components are the values f(xi,,’", xd) arranged in
lexicographical order, and A is the matrix

d

(4.4) a ) atil

i=1

Note that z f+e, where e is the vector whose components are the values ei,,2,...,
arranged in lexicographical order.

As in 1, we now assume that the eq,2,...,i are realizations of independent
identically distributed random variables with zero means and common variance tr2.
Thus, T(A) is also a random variable, and we may take its expected value. As in [3],
it is easy to see that the result is

(4.5)

where

(4.6)

and

E(T(A)) cr2/x2(A)+ b2(A),

nln2.., nd

(4.7) b2(A) Ill- A,fll
nln2 nd

We shall also be interested in the expected value of the cross-validation function
V(A) defined in (3.8). Again as in [3], it is easy to see that

b2(A )+ o’2(1 2/Zl(A )4-/.2(A ))
(4.8) E(V(A))

(l_/x,(A))2

where

The following lemma follows as in [3].
LEMMA 4.1. For all A > 0,

IE(T(A)) -(E(V(A))- o’2)]=<(4.10) A(A ),
E(T(A))

where

(4.11) A(A) [(A) 2/z(A) +/12(A) ] 1

tt2(A) (1 -/x(A))2"
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Lemma 4.1 asserts that, as in the univariate and thin plate spline cases [21], the
behavior of E(V(A)) and E(T(A)) is controlled by the behavior of bE(A),/Zl(h), and
/.,2(A). We turn to a study of these quantities.

LEMMA 4.2. Given a partition P, let

(4.12) maxlkn,_ Xk+ X
max
l=,=d minl=k,,-1 [Xk+I XI

Then there exist constants L1, U and L2, U2 depending only on m and Bn,P such that
for all h > 0 with h <- 1 and nih 1/Era, __> 2(mi 1), 1, , d,

(4.13)

L2 U2(4.14) a --</x2(A) -<
H,=, (n, ’/,) H,=, (n, ,i,

Proof. It was shown in [21] that for each i= 1,..., d, there exist constants LI,
and L, U such that for all A satisfying the stated conditions,

(4.15) LI Tr (Atx:1) U1
niA 1/2mi-- ni niA 1/2mi

(4.16) L Tr (Ati:i) 2 U
niA 1/2mi-- ni niA 1/2mi"

Multiplying together the inequalities in (4.15) for i-1,..., d yields (4.13). The
proof of (4.14) follows from (4.16) in the same way. D

Our next lemma gives some information on the size of bE(A).
LEMMA 4.3. There exists a constant K depending only on m and the constant Bn,P

in (4.12) such that

(4.17) b2(A) - r; Ilfll %.
Proof Let/ be the n x n identity matrix, 1,. , d. Then

(4.18)
1b2(A)

li
d
i=1 ni

I1( I1 ()""" () Id Akl1(R) (R) Aka)fll :.
But

(4.19)

11 (R)’’ "(R) Id A’I(R) "(R)Ad= e,(A)(R)/2@" "(R) Id

+ Atoll(R) e2(A)(R)/3(R) "(R)Id

+... + A’(R). .(R) Atad-l(R)ed(A ),

where

(4.20) e,(A) I Atail 1,..., d.

From the univariate theory [3], we know that for all g ,
1

Ile,(a)gll < [g(",)(t)]2 dt < A Ilgll(4.21) n ’
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and

1 ilat,g]l __< 1
E [g(xj)]2.

Hi Hi

Moreover, from [3] we also have

(4.22)
1

iiAt/agll= < C ilgll =

for all i= 1,..., d, where C,n depends only on the constant Bn.p in (4.12) and the
integer m max {ml ma }.

Now combining the above facts and using properties of tensor products, we get

(4.23) b2(A"-----’" <=(A +ACrn +" "Aa-Ic-I)[IfII<-dA Ilfll,
d (1 --Cm)

which is (4.17) with K=d(1-Cd)/(1-Cm). [q

Lemma 4.3 asserts that bE(A) goes to zero as A 0. A kind of converse is given
in Lemma 5.2 below. In preparation for the proof of that lemma, we devote the rest
of this section to a discussion of the Tikhonov regularizer of a function f. For each
i= 1,..., d, let ’i(6) be the mapping from i to such that ’i(6)u is the unique
solution of the problem of minimizing

(4.24) 6 [v(m’)(t) 2+v2(t)--2u(t)v(t)] dt

over all v Ygi. Then the tensor Tikhonov regularizer of a function f is given by

(4.25) f -,(5)(R).. "(R) rd(6)f

The proof of the following result is identical to that of Theorem 2.2.
LEMMA 4.4. For any 6 > O, f is the unique minimizer of

(4.26) [+=1Y] (g’ g)-2 [+,=1 i] (g’ f)’

where

and

?7{i(u, v)=6 [um’)(t)vm’)(t)+u(t)v(t)] dt

i(u, v)= u(t)v(t) dt.

Moreover, f is characterized by the equation

Y{(f, u) w(f, u), for all u

where

and

(u, v)= I, uv

Y{(u, v)= H y{(u, v)= , P) DuDv,
i=1 aC

where p(a) is defined in (2.31).
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5. Asymptotic optimality. In this section we are interested in how our smoothing
method behaves as we take a sequence of finer and finer partitions of . In particular,
we suppose that np, Pp describes a sequence of partitions of fl for p 1, 2,..., and
that zp is the corresponding sequence of data vectors. Throughout this section we
assume that the sequence of partitions is quasi-uniform in the sense that there is a
fixed constant B such that for all p > 0,

(5.)

In addition, we suppose that

Bnp,p B <

min (np)i(5.2)

Note that we are holding fixed the function f and the vector m which determines
the degrees of the spline in each of its variables. For ease of notation, we now make
the following identification:

(5.3) Sp, s.,,.p, pp,,., .
For each p, let Tp(A) be the true mean-squared error defined as in (4.2), and let

v andATVp(A) be the generalized cross-validation function defined as in (3.8). Let A p p

be defined by

(5.4) E[ Vp(A)]=min E[Vp(A )]
A>0

and

(5.5) E[ Tp(A )] min E[ Tp(A )],
A>O

where, as in 4, E denotes expected value. From the definitions, it is clear that

E[ Tp (A pT)] _--< E[ Tp (A pV)].
In Theorem 5.6 below we show that the ratio of these two quantities approaches

1 as p--> oo so that for large values of p, the value of the smoothing parameter A p

obtained from cross validation can be used as a good substitute for the optimal
T TO prove this result, we need several preliminary results.smoothing parameter Ap.

To get started, we first prove that for given > 0, the smoothing splines associated
with exact measurements on a function f converge to the Tikhonov regularizer f
defined in (4.25).

LZMMA 5.1. Suppose Pp is a sequence ofquasi-uniform partitions satisfying (5.2). Let

fp, Sl,llp,pp,fp,,

Here [p is the vector of true measurements on the function f. Then

lim fp, =f,
p--

wheref is the Tikhonov regularizer defined in (4.25).
Proof. Let #i" i--R", be the evaluation operator defined by, (v(x), v(x’o,))

Then

d

i=1
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and

A --L,8 (’/’[1]()".. () ,./.[d SI],. (... (sd]d)f

[(’- s’,) ... +s’, ([-s)?...
+... + s’],... s-’]_,e(]-s)]%

Now from the univariate theory [3], [21],

and

Combining these results leads to the desired assertion.
We are now ready to prove a kind of converse to Lemma 4.3.
LEMMA 5.2. Suppose Pp is a sequence ofpartitions as in Lemma 5.1, and that Ap is

a sequence ofpositive smoothing parameters. Suppose thatfis not in the set m,-1 (R)" "(R)

"d-, where, in general, r denotes the space of univariate polynomials of degree at
most r. Then a necessary condition for the quantity b(Ap), defined as in (4.7), to go to
zero is that Ap O.

Proof With N n... rid, we have

1
bp(Ap)= Ilf-At(R) (R)Atafll -

Nil .,ii (I+ApA,)’" (I+ApAa,a) f,,,,2,..

where fi,,i2,...,i are the Fourier coefficients of f in the basis of eigenvalues of
AI](R) .(a[xd], and 1/(1 + ApA kk) is the ikth eigenvalue of a[xk] Thus

1
2 [(1 + ApA]) (1 + ApAau)- 1] :

b2(AP)=
i,,i2,’",id (I+ApAI,) (I’+AA/da)

is a decreasing function of Ap as Ap decreases. It follows that if the sequence Ap is
bounded below by some constant c>O, then bp(Ap) -> b(6).

But as p -> o, we have

Thus

lim
1 fa,,_oo

IIf-"’(R)"" "(R)0,’11 (f-f)"

lim bp2(Ap)=0 implies | (f-f)2=0,

and thus that f--f for all 6 > 0. This means that

("/’1() () (R) ’d ())f=f

and so

(f,f)=(A,f)=(f,f).
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We conclude that

Ca \{0}

that is, f )ml-1 (R)’" "(R) md--l" This contradiction establishes the lemma. 13

The following lemma follows directly from (4.5) coupled with Lemmas 4.2, 4.3,
and 5.1 (of. [21]).

7- is the optimal smoothing parameter defined in (5.5) corre-LEMMA 5.3. Suppose ip
sponding to a sequence ofpartitions Pp as in Lemma 5.1. Then

T 0(5.6) lim Ap
poo

d

(5.7) lim l--[ [ni(ATp)l/2m’] =cx3
poo i=

(5.8) lim E[Tp(ATp)]=O.
poo

The following lemma follows from (4.11), (4.13), and (4.14) as in [21].
LEMMA 5.4. Given a sequence Pp of quasi-uniform partitions as in Lemma 5.1, let

Ap(A) be as defined in (4.11). Let Ap be any sequence with

lim Ap=O and lim l-[ [n(p) 1/m’ =0.
peo poo i=

Then

(5.9) lim Ap(Ap)=0.
p--

v satisfies the same properties as those enunciatedWe now show that the sequence A p
Tin Lemma 5.3 for A p.

VLEMMA 5.5. Suppose A p is the smoothing parameter defined in (5.4) corresponding
to a sequence ofpartitions that are quasi-uniform and satisfy (5.2). Then

v 0(5.10) lim Ap

d

(5.11) lim I-[ [ni(A)I/2m’]=
poo i=

(5.12) lim E[ Tp(ApV)] 0.
p-oo

Proof. Following the proof of Lemma 3.4 in [21], from (4.10) we can deduce that

E[ Vp(A pV)] o. __< E[ Vp(A pT)] o.Z __< E[ Tp(A pT)][1 + Ap(A pT)].
It follows that

Vlim E[Vp(Ap )- cr:] 0.
p--->

But
2 V V 2

E[Vv(A)I-cr-bp(hp- )+ cr:(/z:..(Av )..v(hpV))(1- l,p(pV)
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and thus, since/x 2 (h pV)</x2 p(, v v
1,p p ), limp_.o b2p(,p )=0. Now applying Lemma 5.2, we

vconclude that limp_ Ap --0. Moreover, we get

(5.13) lim/X2’P(A PV) -/z21’P(A) O.))p- (1 -/z l:,n

This implies that

[i1,i2,.. id } l p l V 2 V 2 V .._> Op )] [J2,p( p )--/-l,p(/p

as p--> , where /3i,,i2,.-.,id(Vp) are the eigenvalues of the matrix A(ApV). These eigen-
values are the products of the eigenvalues of the matrices Ai(A vp), i=l,...,d. Now
following the proof in [21], we deduce that

d

lim 1-I ni(h)’/" +.
P-+

FIG. 1. The test function for the example in 6.
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FIG. 2. The data points for the example in 6.

vIt now follows from Lemma 4.2 that limp-*0o [/,2,p(/p )--0, and thus

lim E[Tp(A)]= lim b(,pv)0-22,p(,pV) 0
/9-,0o p-,0o

and the proof is complete.
v is anThe following theorem is the main result of the paper. It shows that A p

Tasymptotically optimal estimate of the best smoothing parameter
THEOREM 5.6. Suppose that Pp is a sequence ofpartitions as in Lemma 5.1. Then

(5.14) lim 7- 1.
p-,0o E[ Tp(Ap )]

Proof. By Lemma 4.1,

E[ Tp(A pV)](1 Ap(A pV)) _<_ E[ Vp(A pV)] 0.2

<_-

TE[ Tp(Ap)](1 -I- Ap(Ap )).
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It follows that

FIG. 3. The smoothing spline fit for the example in 6.

E[ Tp (ApV)] < 1 + Ap(Ap)
V

Now by Lemmas 5.3, 5.4, and 5.5,

lim Ap(ApV)= lim Ap(Ap) 0,

and the assertion of the theorem follows.

6. A numerical example. In this section we illustrate the performance ofthe method
on a typical example involving the bivariate function

f(x, y) -((x-O’6)/O’E)2-((y-0"5)/0"2)2

on the unit square fl- [0, 1] x [0, 1]. This function is illustrated in Fig. 1.
As data we take

zij f(xi, yj) + ei,

where xi ih and y ih, 0, , 20, with h 1 / 20, and where the errors are generated
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by a pseudorandom number generator. The errors are assumed to be normally dis-
tributed with mean zero and standard deviation 0.2. The measurement grid is shown
in Fig. 2.

Fig. 3 shows the surface that results from fitting the above data with a tensor
natural smoothing spline, where the smoothing parameter is selected by the generalized
cross-validation method of this paper. The computations were carried out on an
IBM PC/AT, and required approximately two minutes to complete.

7. Remarks. (1) It has been observed in practice, both in one and two variables,
vthat the smoothing parameter ,p produced by generalized cross validation performs

almost as well as the optimal choice of the smoothing parameter, even for relatively
modest numbers of data points.

(2) The fact that the smoothing spline provides an excellent fit of the function in
the example in 6 attests to the performance of the method. The fact that the example
was computed on a PC in a rather short time attests to the efficiency and applicability
of the method.

(3) It is a relatively simple matter to carry over the analysis of this paper to the
cases of tensor complete and tensor periodic smoothing splines. For univariate results
on complete smoothing, see [14], and for univariate results on periodic smoothing,
see [23].
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INTEGRALS AND NUMERICAL CONVOLUTION OF LIFE

DISTRIBUTIONS*
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Abstract. A generalization of the Newton-Cotes quadrature rules that provides a means for numerical
computation of Stieltjes integrals without using derivatives is described. The methods find wide application
in the numerical evaluation of many applied probability models. Numerical convolution of life distributions
is discussed in this paper. Error analyses are provided.
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1. Introduction. Many applied probability models require for their completion
the evaluation of integrals of the form

(1) f_oF(t-u) dG(u),

where F and G are cumulative distribution functions (cdf). Equation (1) is the familiar
convolution of F and G, and is often abbreviated to F, G(t). If X and Y are
independent random variables having cdf’s F and G, respectively, then the distribution
of their sum X + Y is given by F G.

Closed form expressions for the convolution (1) are available in only a few special
cases. The closure of the normal and gamma families of cdf’s under convolution is
well known. The convolution oftwo distributions ofphase type 1 is again a distribution
of phase type. Other examples are available, such as a uniform distribution convolved
with various other cdf’s, but these often require a tour deforce in synthetic integration.
Furthermore, the evaluation of (1) may be taking place within a broader computer
model. All these factors lead to an interest in evaluating convolutions of cdf’s by
numerical methods.

Cleroux and McConalogue [2] and McConalogue [3], [4] have previously studied
this problem for life distributions. They rewrite (1) in the form

(2) F(t- u)g(u) du,
o

assuming that the density g of G exists and is accessible in a suitable form for numerical
work. The interval of integration is [0, t] because F and G are life distributions. (i.e.,
have support in [0, c[). Their algorithm uses cubic spline interpolation of F and g
over a subdivision of [0, t] and a five-point Lobatto quadrature [5] on each panel to
obtain the integral for each value of separately. A requirement ofthe original algorithm
[2] is that F and G have densities that are bounded on [0, [, so that, for example,
it fails for a decreasing failure rate Weibull distribution having shape parameter less
than one. McConalogue [4] developed an improved algorithm that is able to tolerate
certain singularities at the origin. However, this improved algorithm still cannot work
with a decreasing failure rate Weibull distribution whose shape parameter is less than

* Received by the editors July 27, 1987; accepted for publication (in revised form) June 22, 1989.
? AT&T Bell Laboratories, Crawfords Corner Road, Holmdel, New Jersey 07733-1988.
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one-half. Baxter [6] surveys other methods of numerical convolution and gives an
example of the use of McConalogue’s improved algorithm [4].

Shohat and Tamarkin [7] develop Gaussian quadrature rules for Stieltjes integrals.
Schulten, Anderson, and Gordon [8] use Gaussian quadrature, with up to six nodes,
for Stieltjes integrals to evaluate Airy integrals (in which the interval of integration is
fixed). Gautschi [9] obtains quadrature rules based on polynomials orthogonal in L2

ofthe measure determined by the Stieltjes integrator function. Two different approaches
may be followed in applying Gaussian quadrature to numerical convolution of life
distributions. First, one may construct a rule for each interval [0, t] corresponding to
each argument at which the value of F G(t) is desired. This is inconvenient because
one is typically interested in the values of F. G for many values of t, and in this
implementation, the nodes of the rule must be recomputed for each new value of t.

Also, evaluating the convolution at n points using a rule with rn nodes requires O(mn)
function evaluations. To avoid this, one may use a single Gaussian rule on [0, o[ and
incorporate the indicator function of the interval [0, t] into the integrand. However,
in this implementation, accuracy may suffer because of possible abrupt changes in the
quadrature as crosses the (fixed) nodes of the [0, oo[ rule.

This paper documents closed Newton-Cotes quadrature rules [10] for Stieltjes
integrals of the form

(3) x( t) dee(t),

and applies them to the develop a numerical convolution method for life distributions.
Generally we will require, at least, x to be continuous and a to be of bounded variation
over the interval [a, b]. If c were differentiable, and an expression for Da suitable
for numerical work were accessible, we could write (3) as

(4) x(t)Da(t) dt,

and use one of many effective numerical quadrature rules to evaluate (4). Indeed,
since we assume a is of bounded variation, it is differentiable almost everywhere on
[a, b]. However, this fact is of little comfort for numerical calculations because the
set on which a is differentiable may be awkward to account for in software. While
these cases may be unusual in practice, we are aiming for a robust rule that makes
this consideration unnecessary. If there were no expression for Da that could be put
into a function call--for example, if a were only known tabularlymevaluating (4)
would require numerical differentiation. Besides its potential for introducing instability
problems, numerical differentiation within a numerical quadrature seems like extra
effort that may be avoidable.

By treating the problem of numerical evaluation of Stieltjes integrals directly, we
avoid numerical differentiation and provide a method that is simple and widely
applicable. Explicit numerical analysis of this method is documented here. While the
mathematics of this analysis is a straightforward generalization of the standard numeri-
cal analysis of the classical Newton-Cotes rules, the quadrature rules presented here
provide a simple and robust solution to a significant problem in the evaluation of
certain applied probability models. We have also used these rules to implement
numerical solution of integral equations r( t) h( t) + to r( u) dF(u) of renewal type
[11], details of which will be published subsequently.

The remainder of this paper is organized as follows. Section 2 contains the
derivation of Newton-Cotes quadrature rules for integrals of the form (3). We give
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explicit expressions for the rules that correspond to the trapezoidal and Simpson rules
in the ordinary (a(t)= t) case. Section 3 discusses numerical analysis for the closed
Newton-Cotes rules. Section 4 covers the implementation of trapezoidal and Simpson
rules in the case of convolution of life distributions. We conclude with some examples
that illustrate the accuracy of the two rules in cases in which the convolution function
is known exactly.

2. Newton-Cotes quadrature rules for Stieltjes integrals.
2.1. A simple, but incomplete, approach. Because the integral (3) is taken with

respect to the measure/x,/x (E) := E da (t), one might expect to obtain quadrature
rules for this integral from quadrature rules for "ordinary" (a(t) t) Riemann integrals
by using first differences a(b)- a(a) of a in place of the "ordinary" increment b- a.
For instance, setting rn (a + b)/2, the ordinary Simpson rule is

b-a
[x(a)+4x(m)+x(b)].(5) x(t) dt

6

A simple thing to do here would be to replace b-a by a(b)- a(a), obtaining

(b) a
(6) x(t) da(t)a (a)

[x(a)+4x(m)+x(b)].
6

This is a step in the right direction, but it will be inaccurate for rules of degree greater
than that of the trapezoidal rule because it ignores the variation of a over the
subintervals. In the example, we would want to involve both a (m) a (a) and a (b)
a(m) to increase accuracy. In the general case, this consideration leads to the
expressions in the next section.

2.2. The Newton-Cotes rules. When these "interior" differences of a are taken
into account, higher-order differences of a come into play for the Simpson and all
higher-degree rules. Nonetheless, even if a were known only in tabular form, the rules
are simple both conceptually and computationally. In this section, we will derive the
Newton-Cotes rules for the Stieltjes integral (3).

2.2.1. Notation and preliminaries. Let X be a normed linear space of continuous
functions on [a, b] (typically, X will consist of functions that are differentiable a
certain number of times), and let J be the integration functional on X, Jx := b x(t) tit,
x 6 X. Let A be a subspace of X, and let P be a projection of X onto A. Let Q be a
quadrature rule for J. If the quadrature rule is constructed by integrating the images
in A of the projection P of certain functions in X, then it will be called projection-based.
Note that A consists of functions for which the quadrature rule is exact, although the
rule may be exact for other functions as well.

As a final point of notation, we will let Jx stand for x(t) da(t), where x X
and a is of bounded variation on [a, b].

2.2.2. Review of the Newton-Cotes rules for ordinary Riemann integrals. The
Newton-Cotes rules for ordinary Riemann integrals are projection-based. To obtain
the closed Newton-Cotes rule of degree n, interpolate x with a polynomial of degree
n at n + 1 equally spaced points, including the endpoints, in [a, b], and then explicitly
integrate the interpolation polynomial. Formally, choose a subdivision of a, b contain-
ing n + 1 points

(7) a to <" < t. b
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that divide the interval into n subintervals of equal length. Let An be the subspace of
X consisting of the polynomials of degree at most n, and let Pn be the projection of
X onto An defined by Pnx is the polynomial of least degree not exceeding n that
interpolates x at to," ", tn. The closed Newton-Cotes rule of degree n for Jx is then
simply Qnx := JPnx. The closed Newton-Cotes rule of degree n is exact for polynomials
of degree n when n is odd, and is exact for polynomials of degree n + 1 when n is
even 12]. Explicit expressions for the Newton-Cotes rules up to and including degree
ten, including error estimates assuming suitable differentiability conditions on x, are
given in 25.4 of Abramowitz and Stegun [5].

The open Newton-Cotes rule of degree n is obtained in exactly the same fashion,
except that the subdivision contains n +3 equally spaced points, and the endpoints
a- to and b- tn+2 are not used. In this case, an nth degree polynomial is used that
interpolates x at tl,’", tn+l. We will only study closed Newton-Cotes rules for
Stieltjes integrals, so other properties of the open Newton-Cotes rules for ordinary
Riemann integrals will not be reviewed here.

2.3. The closed Newton-Cotes rules for Stieltjes integrals.
2.3.1. Definition. The closed Newton-Cotes rules for Stieltjes integrals are projec-

tion-based also. We will continue to use the subdivision (7), the subspace An, and the
projection Pn, as before. However, we will now impose the condition that a be
continuous, as well as of bounded variation, on [a, b]. Remembering that one of our
goals is to avoid differentiations of either x or a, we proceed as follows for the
Newton-Cotes rule of degree n. Begin, as in the ordinary case, by approximating the
integral Jx by J(Pnx). Then integrate by parts to obtain x(b)a(b)-x(a)a(a)-
J(aD(Pnx)), recalling that Pnx(a) x(a) and Pnx(b) x(b). This is not the final step,
though, because aD(Pnx) may not be integrable in closed form. Therefore, we apply
the projection again, and obtain the closed Newton-Cotes quadrature rule of degree
n for Stieltjes integrals as

(8) QS,(x, a):= x(b)a(b)-x(a)a(a)-JPn(aD(Pnx)).
We will now show that (8) reduces to the classical Newton-Cotes rule in the

ordinary case, that is, when a(t)= t.
THEOREM 1. Let ao( t)= t. Then for every x for which Qnx exists, QS,(x, ao)= Qnx.
Proof Since Qnx exists, we have Pnx

An. Since Pn is a projection on An, we obtain Pn(aoD(Pnx))= aoD(Pnx). It follows
that the integral term in (8) reduces to J(aoD(Pnx)), and integrating this by parts
produces the result.

It is natural to ask at this point if QS(x, a) reduces to Qn(xDa) when a is
differentiable. The answer is no, in general; to see this, take fl(t)-t2 and compute
QS(x, ) Q(xDfl). One consequence of this is that error analysis for (8) is not just
a simple matter of applying the standard error analysis for Qn to xDa. This is discussed
further in 3.1.

2.3.2. The trapezoidal and Simpson rules. In this section, we will give explicit
expressions for QS, the trapezoidal rule, and Q2s, the Simpson’s rule, for Stieltjes
integrals. Other than noting that we use Newton’s form of the interpolating polynomial,
with coefficients given as divided differences [12],

(9) Pny(t)= y[to]+ y[to,’’., ti]to,_,(t),
i=1

where

(10) toi(t)--(t-to)’’’ (t-ti), i- 0(1)n,
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we will omit details of algebraic manipulations. Using (9) for n 1 and n 2 and
inserting into (8), we obtain

x(b)+x(a)
(11) QS(x, a):= [a(b)-a(a)],

2

and

(12) Q(x,a):= a(b)-a(a)
[x(a)+4x(m)+ x(b)]

x(b)-x(a)
[a(a)-2a(m)+ a(b)],

where m=(a+b)/2. While the trapezoidal rule QS looks like the simple one you
would get by following the prescription of 2.1, only the first term of the Simpson’s
rule Qs looks like this. The second term, involving a second difference of a, is a
correction that takes into account the variation of a over [a, m] and m, b].

The next section discusses error analysis for the closed Newton-Cotes quadrature
rules for Stieltjes integrals. Section 4 shows how the Simpson’s rule is used to provide
a simple, robust, and accurate quadrature for the convolution of life distributions.

3. Numerical analysis.
3.1. Error analysis.
3.1.1. Introduction. The goal ofthis section is to express the error in the quadrature

rule (8) in terms of properties of x and a. Accordingly, we define E S,(x, a):=
Jx-QS(x, a). By an integration by parts, we obtain ES(x, a) J(P,(aDP,x)-aDx).
Adding and subtracting aDP,x, and using the linearity of J and one more integration
by parts, we finally obtain

(13) ES(x, a)=J,,((I-P,)x)-J((I-P,)(aDP,x)),

where I is the identity operator, Ix x. Equation (13) forms the basis for the error
analyses presented in this section.

3.1.2. Results. As in the case of the ordinary Newton-Cotes rules, it is convenient
to separate the two cases, n even and n odd. The results given in this section show
that the error in the quadrature rule (8) is controlled by intermediate values of certain
derivatives of the functions x and a.

THEOREM 2. Let the points of (7) divide [a, b] into an even number ofsubintervals
of equal length. Let x and a have continuous derivatives of order n + 2 on a, b]. Then
there are r and rE strictly between a and b, and a constant K, < O, for which

t(x,)=
(14)

K. [D.+2x(r,)Da(.r,)+(n+2)D.+,x(r,)D2a(rl(n+2)!

=3
D(r) P.x(

Proof Let w,(t)=(t-to)... (t-t,). The starting point of the proof is (13) and
the equality (I-P,)y(t)=to,(t)y[to,..., t,, t] (see Equation 6.1.8 of Isaacson and
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Keller [12]). Writing f.(t) =ta to.(s) ds, the first term in (13) becomes

L((I-Pn)x)= to(t)X[to," tn, t] dry(t)

b

D,(t)X[to,. "’, t,, t]Da(t) dt

a,( t)D{x[ to, t,, ]Da}( t) dr.

The first term in the integration by parts vanishes by Lemma 7.1.4 of [12]. Continuing,

J((I-P)x)= [D{x[to, t, .]}(t)D(t)

+ X[ to, t,, t]D2a( t)]n,,( t) dt

---fa’[ 1 D,+2x(7.1(t))Da(t)
(n+2)!

1 D"+lx(r2(t))D2a(t)](t) dt+
(n+ 1)"---

[ 1D"+lx(")D(’I)]"K, l(n+2)! Dn+2X(gl)Ot(7.1)+(n+ 1)------S.
We have used Problem 6.1.6 and Corollary 6.1.2.2 of [12].

For the second term in (13), we have J((I-P)(aDP,x))=
w,(t)(aDP,x)[to, t, t] dt. Here we can apply Theorem 7.1 1 of [12] directly,

obtaining

J((I-P,)(aDP,x))=
(n+2)!

D"+2(aDP,x)( 7.2)

(n+2)! k=O +2) Dn+3_k

k
Dka(r) P,x(7.2)

(n+2)! k=3 +2) Dn+3_k

k
Dka (7.2) Pnx(7.2),

the last equality following because degree(P,x)<= n.
THEOREM 3. Let the points of (7) divide [a, b] into an odd number of subintervals

of equal length. Let x and a have continuous derivatives of order n + 1 on a, b]. Then
there exist 7"1, 7"2, 7"3, 7"4, and 7"5 strictly between a and b, and constants K 1>=0 and
K2, < 0 for which

(15)

Proof Write the first term in the error expression (13) as

J((I P,)x) to,( t)X[ to, t,, t]Da( t) dt

+ og.(t)x[ to,’’’, t,, t]Da(t) dt.
b-h
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By an application of the mean value theorem for integrals, the second integral becomes

1 D.+lx(,rl)DOt(,r) to.(t) at.
(n+l)! b-h

For the first integral, write to,(t) (t t,)tO,_l(t) and f,-l(t) Jt w,_l(s) ds, and use
the basic property of divided differences (equation 6.1.6 of [12]) to obtain

Df._(t)Da(t)X[to, t.-1, t] dt-x[to," t.] Df._l(t)Da(t) dt.

Integrate by parts in each term, noting that the integrated terms vanish, as in the proof
of Theorem 2, above, because n-1 is even. Then use the mean value theorems for
integrals and for divided differences as we did in the proof of Theorem 2, obtaining
for the first integral

j’b-h [1 nX 1Dn+lx(,r3)Da(.r3) ]ll._l(t) dt D (’r2)Da(’r2)q-
(n+ 1)-’----

Combining the first and second integrals, and combining the constants using an
integration by parts, and renumbering the indices on the "s, we obtain

n!
[Dnx(’rl)D2t( 7"2) Dnx(’r3)D2z(’r3)]+

g2

(n+l)!
D"+ x( -4)Da ’4)

for the first term in the error (13). For the second term in the error (13), we obtain,
as in the proof of Theorem 2,

(n+ 1)! k=2 k
Dka(’rs)D"+2-kp"x(’rs)"

3.1.3. Discussion. This section will contain some observations on the numerical
analysis of the Newton-Cotes rules for Stieltjes integrals as embodied in the two
theorems above.

When a(t) t, the second term in the error (13) vanishes (see the proof ofTheorem
1), and the error analysis then applied to the first term produces the familiar error
expressions as found, for example, in [5]. This can also be seen by putting c(t)= in
(14) and (15).

If x and a are polynomials, (14) and (15) show that the quadrature rule (8) is
exact as long as degree(x)+ degree(t)<-n + 2 if n is even, and degree(x)+ degree(o)<=
n + 1 if n is odd. Thus the rule (8) has the same degree of precision as that of Q, (xDa),
when a is a polynomial, even though the appearance of the formulas for (8) and for
Q, xDo is different.

The error analysis as embodied in Theorems 2 and 3 is perhaps not very useful
as it stands so far, because no prescription for determining the -’s is available. Common
practice in the ordinary case is to bound the derivatives appearing in (14) and (15),
thereby producing a bound on E,. We will follow this practice here. However, because
of the integration by parts that led to (8), we also have to bound the magnitude of a
term of the form DrP,x for some r. There are (at least) two approaches to this task.
One approach is first to use Markov’s inequality ( 3.3 of [13]) to establish that
IIDIA, =2n2/(b-a). From this it follows that IIDP.xll<-(2n2/(b-a))rllP.IllJxll.
The norms of the interpolation operators P, are given in 4.4 of Powell [14]. Table
4.5 of 14] shows how rapidly the norms of P, grow with n when, for example, a -5,
b 5. Another approach is to explicitly evaluate the derivatives, using (9). The error
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bounds (16) and (17), below, are examples of the use of the former approach. We use
the latter approach in 4.2, which details an error analysis for numerical convolution
of life distributions using the trapezoidal and Simpson rules.

Let y be a function that has a continuous derivative of order r on [a, b]. Let B,.(y)
denote sup {ID’y(t)l: a =< =< b}. In particular, Bo(y) Ilyll. Then, from Theorem 2, it
follows that for n even,

IES(x, c)l-<_ B..(X)Bl(OZ)+(n+2)B,.+(x)B(a)
(n+2)!

(16)
+ Bo(x)llP.II Y

k=3 k

and from Theorem 3 it follows that, for n odd,

KIES(x, a)l<----. [B.(x)Bz(o)]
(17)

+(n+l) B,+,(x)Bl(o)+Bo(x)llP.II nl n+l [ 2n2 n+2-k
k=2 k \b-a/

Bk(a)

Expressions for the constants are given in Table 1.
It can readily be seen that, because of the rapid growth of D IA,, and P, with

n, the smaller values of n are likely to yield rules that are more effective in practice.
Consequently, if the interval of integration is large, it is probably wiser to use a
compound rule with a smaller n that it is to use a single rule with large n. Compound
rules are discussed in 3.2.

TABLE
Constants for (14), (15), (16), and (17).

K. K K2,,
(n+2)! n! (n+l)!

0 -h3/12
2 -h5/90
3 2h5/45 -3h5/80
4 -8h7/945
5 16h7/315 -275h7/12096
6 -9h9/1400
7 9h9/175 -8183h9/518400
8 -2368ht/467775
9 4736h/93555 -173h/14620
10 -673175h 3/163459296

It is somewhat unsatisfying that the error estimates (16) and (17) involve higher
derivatives of c, especially since what was sought was a rule that could be used in the
absence of any differentiability properties of a. In particular, this means that while
the convolution algorithms (25) and (26(a)-(b)), below, do work with continuous cdf’s
that may lack everywhere-defined densities, such as the Weibull distribution with shape
parameter less than one, it will not be possible to provide an error analysis for these
cdf’s using this technique. Recall, though, that the conventional error estimates for
the ordinary Newton-Cotes rules involve higher derivatives of the integrand. This is
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a feature of the method used, which seeks the maximum order that the rule can possibly
achieve. Fewer differentiability assumptions lead to the same rules having lower order.
Should a be known only in tabular form, the error estimates can be viewed as the
error that could be achieved if one were to interpolate the a table with a sufficiently
differentiable function. Error estimates under decreased ditterentiability assumptions
would be useful in case one had an a that was known to have a certain number of
continuous derivatives, and no more (for example, if a were a cubic spline, its third
derivative could be discontinuous at the knots). This remains a fruitful area for further
research whose ultimate goal would be an error bound for (8) when x is merely
continuous, and a is merely of bounded variation. We given an error bound for the
compound trapezoidal rule under similar conditions in 3.3, below.

3.2. Compound rules. Suppose one has a large interval of integration, say, [a, z].
At least two courses of action are possible. One is to take a subdivision of the form
(7), with z in place of b, and use a rule of high degree based on those points. This
will work well if x and a are smooth (higher derivatives are small). However, this
procedure is not likely to be robust against wiggly integrands or integrators. Another
choice is to take a subdivision like (7) again, but now use a low degree rule on each
subinterval (or group of subintervals) separately. This yields a compound rule, familiar
from the ordinary case. Suffice it to say that the order of a compound rule, using
subintervals of equal length, is one less than the order of the simple rule from which
it is built, a result familiar from the ordinary case that carries over to the Stieltjes case.
However, there is no need for the subintervals in a compound rule to have equal
length. This permits continued use of adaptive schemes that put more subdivision
points in areas where the functions change more rapidly, and fewer points where the
functions are smoother.

3.3. Compound trapezoidal rule with a of bounded variation. The compound
trapezoidal rule on a subdivision a= to< tl <’" "< tN Z (not necessarily equally
spaced) is

N x(ti_l)+X(ti)
(18) QS(x, c; N):= [ot(ti)-ot(ti_l) ].

i=1 2

As a first step toward deriving error estimates for the quadrature rules (8) under more
general conditions, we show what can be achieved with the compound trapezoidal
rule with equally spaced points when c is a function of bounded variation.

Choose a subdivision of equally spaced points a to < tl <" < try z with h :=
(z--a)/N=tk--tk-1, k-1(1)N. Recall that a function f on an interval E is said to
be H61der continuous with exponent p (0 < p _-< 1) if there is a positive number L such
that If(s)-f(s2)l <-Llsl-s21p for every sl, s2 E. We then have the following result.

THEOREM 4. If x is a H61der continuous function of exponent p on [a, z] and a is

of bounded variation on [a, zl, then

(19) x(t) dc(t)-Qf(x, a; N) <-L V(a),

where VZ(t) is the total variation of a over [a, z].
Proof. First we prove this for a a bounded nondecreasing step (piecewise constant)

function on In, z], continuous from the right. Accordingly, we assume that there is a
finite number of points T1," , Tj in In, z[ at wich a is discontinuous but continuous
from the right, a(T)- a(T/) tri > 0, i= l(1)J, and c is constant between jumps. Let
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Ak={i: T ]tk-, tk]}, k= I(1)N; note that ,A cr,--a(tk)--a(tk_l). If Ak is empty,
then a(tk)--a(tk_l)=O. If Ak is nonempty, then there is a Tk ]tk-1, tk] for which

iAk trix( T) X(rk) Ak tri by the intermediate value theorem. Then

"x(t) da(t)-QSl(x, a; N)

N N X(tk_) + X(tk)
E E ,x(Ti)-E
k=l iA k=l 2

N N X(tk_) + X(tk)
E x() E ,-E
k=l iA k=l 2

[a(tk)--a(tk_)]

N x(t)+x(t_,)
-x() [a(tk)-- a(tk_,)]

L N

<=-- [(’- t_,)P +(t-’)P][a(t)-a(t_)]

<- L(h/2)P[a(b)- a(a)] L(h/2)PVZ(a)

since the maximum of (v-s)P+(s-u)p for se[u, v], v-u=h, is 21-php.
Now suppose a is a bounded nondecreasing function on [a, z]. Choose e > 0.

Then there is a step function a, continuous from the right, for which V(a- a)< e
and

x(t) da(t)- x(t) da(t)

Note that IVY(a) V,(ce)l < e as well. Then

:x(t) da(t)-QSl(x, a; N)

x( t) da( t) x( t) da( t)

:x(t) da(t)-QSl(x, tx; N) +]Of(x, a; N)-Of(x, a; N)I

<-e+L Vo(a)+ Z
k=l

X(tk-1)+X(tk)

la(tk)--(tk)--(a(tk_l)--a(tk_l))l.

The last term is bounded above by Bo(x)V(a-a) < eBo(x), so altogether we have

l
,z

x(t) da(t)-QSl(x, ce; N) <e+t V(a)+et +eBo(x).

Since e is arbitrary, this establishes (19) for a bounded and nondecreasing.
For the final step, we assume a is of bounded variation on [a, z]. Then a a o2

with al and a2 bounded and nondecreasing on [a, z]. Since QSl(x, a; N) is linear in
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a, we have by the definition of the Stieltjes integral for a of bounded variation

x( t) da( t) QSl (X, a; N) <- x( t) doi( t) QS (x, a,; N)
i=1

<=L VZ(a,)=L V(a).

This completes the proof.

3.4. Romberg-like integration. We can also derive a Romberg-like procedure for
increasing the precision of the compound trapezoidal rule. To do this, we need to
assume that a is bounded and nondecreasing (this is no loss of generality because a
function of bounded variation can be written as the difference of two bounded
nondecreasing functions), and that we choose a subdivision satisfying h a(ti) a(ti_l)
for i= 1 (1)N. That is, the subdivision points are not equally spaced, but are arranged
so that when plotting a against there is equal vertical spacing on the a axis. The
following result permits the construction of a Romberg table [15] for the compound
trapezoidal rule (18) in a similar way as for the ordinary trapezoidal rule.

THEOREM 5. Suppose a is a bounded nondecreasing function on [a, z], x and a

have continuous derivatives of order 2v on [a, z], and h is as above. Then

(20) x(t) da(t)= QS(x, a; N)- ch2 + O(h2+’),

where cj is independent of h.
Proof. We apply Euler’s expansion for the remainder in the ordinary trapezoidal

rule, (11.3.13) of [10], to

tk f t(tk)
x(t) da(t)= x(a-l(u)) du,

tk_l t (tk_l)

obtaining

X( tk_,) + X( tk)
(21) 2

where fli is the ith Bernoulli number ( 1.1 of [10]). Summing (21) over the subdivision
and noting that a(tk)--a(tk_l) h, k I(1)N, we obtain

fa: vl kx(t) da(t)= QS (x, a" N)- h2Jfl- [D2-I(x a-l)] ’(k) O(h+1)a(tk_l) +

(x, .,- h[-’(x -]+ O(h*
which establishes (20).

Put t(kl) tk, k I(1)N and Ql.l(x,aS N):= QSl(x, a’, N). To complete the Rom-
berg table, choose a subdivision containing 2N + 1 points a t(o2) < t2) <. < "2N’(2 b
such that a(t(k2)--a(t(k2_l) h/2, k= l(1)2N. Then set Qs.2(x, a; 2N):=
() sQl,l(x, a; 2N)-(1/2)QlS,l(x, a; N). By (20) we have

(22) x(t) da(t) s 2N) j=2Ol,2(x, a 1 cjh 2j + O( v+

showing that the error is now of order h4. In general, continue with a subdivision
a t(o) < t) <... < "2u’(r) b with a(t(k)) a(t(kr_)l) h/2r, r O, 1, 2,’’. and set
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s N lr4rfS 2rN)_ QS (x, a. 2r-iNQI,r(X, a 2 ):=(4r--I) ,l,r_l(X, O 1,r--1 )] Repeated use of
(20) shows that

x 2rN) O(hE‘x( t) da( t) Q,,,(s a

as long as r _-< u- 1. []

4. Numerical convolution of life distributions. In this section, we show how to use
the trapezoidal and Simpson rules for Stieltjes integrals to construct simple and effective
methods for numerical convolution of life distributions.

4.1. Using the trapezoidal and Simpson rules. Let F and G be life distributions,
i.e., cumulative distribution functions, continuous from the right, with F(0) G(0) 0.
We will study the Stieltjes convolution

(23) F * G(t)= F(t-u) dG(u).

We assume that F and G are piecewise continuous The quadrature rules below must
be applied to each interval of continuity separately, accounting properly for the
contribution to the integral due to the jumps (clearly this can get quite tedious if there
are many discontinuities because the integrand changes each time the number at
which the value of the integral is desired changes). We will now illustrate how to do
this in case there are discontinuities at zero. If F(0)> 0 or G(0)> 0, write

(24) F G(t) F(O)G(t)+ G(O)(F(t) F(0))4- (1 F(0))

(1 G(0)) F(t-u) aG(u),

where F(t)=(F(t)-F(O))/(1-F(O)), and similarly for G. F and GO are now
continuous at zero, so we can apply the quadrature (25) or (26a)-(26b), below, to the
integral in (24), add the correction terms, and obtain the correct result.

The result of a convolution is another cdf, and generally the values of this function
at more than a single point are desired (this is certainly true if repeated convolutions
are being computed). Accordingly, we will assume that it is desired to have N+ 1
values of F G over some, possibly large, interval [0, t]. We will choose a subdivision
like (7), with N+ 1 points, of this interval, and use the resulting points {ti}_-o to
construct compound trapezoidal and Simpson rules for (23). While there is no require-
ment that these subdivision points be equally spaced, it is convenient to take them so
because of the difference that appears in the integrand (the equal spacing limits the
number of function evaluations of F and G to N+ 1 each; unequal spacing increases
the number of function evaluations needed). Let h := t/N; then ti ih, 0(1)N. The
trapezoidal rule approximation for F G(ti) is

F((i-k)h)+F((i-k+l)h)[G(kh) G((k-1)h)](25) QSl(F, G)(t,):=
k=l 2

for 1 (1) N. The Simpson’s rule approximation for F G(t) requires separating even
and odd cases. For N even and i= 2(2)N, or for N odd and i= 2(2)N-1, we have

k=i/2 [F((i-2k)h)+4F((i-2k+6 1)h)+F((i-2k+2)h)O (F, a)(t,):=

(26a) [G(2kh)-G((2k-2)h)]4
F((i-2k)h)- F((i-2k + 2)h)
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[G(2kh)-2G((2k- 1)h)+ G((2k-2)h)]].
For N even and i= l(2)N-1, or N odd and i= l(2)N, we have

Q2S(F, G)(t,):=
F(ih)+4F((i-1/2)h)+ F((i- 1)h)

[G(h)-G(O)]

F((i-1)h)-F(ih)

(i-1)/2

(26b) +

[G(O)-2G(h/2)+ G(h)]

F((i-2k- 1)h)+4F((i-2k)h)+ F((i-2k+ 1)h)
6k=l

[G((2k + 1)h)- G((2k- 1)h)]

F((i-2k-1)h)-F((i-2k+ 1)h)

[G((2k + 1)h)-2G(2kh)+ G((2k- 1)h)]].
The contribution from the integral from zero to tl (first two terms on the right hand
side of (26b)) could have been obtained from the trapezoid rule (25). However, for
accuracy commensurate with that of Simpson’s rule used over the rest of the interval,
particularly for repeated convolution, it is recommended that Simpson’s rule be used
as indicated in (26b). This increases the required number of function calls for F and
G, but the added accuracy is worth the small effort.

In all cases, F G(0)= F(0)G(0)= 0.

4.2. Error analysis with the trapezoidal and Simpson rules. In this section, we use
explicitly the derivatives of P,x that appear in (14) and (15) to construct error bounds
for (25) and (26a)-(26b). In a notation similar to that previously introduced, we let
Bit(F) denote sup {IDrF(u)l 0 <- u <- ti}.

THEOREM 6. If F and G have two continuous derivatives on [0, t], then

(27) tih 2IF G( t,) QSl (F, )( t,)I <-_- [B’(F)B’( G) + B(F)B’( G)].

(28)

Proof. Begin with

IF G(t,)-QSl(F,

I(kh<- F(ih u) dG(u)
k=l k-l)h

F((i-k)h)+ F((i-k+ 1)h)
2

[G(kh)-G((k-1)h)]

Apply (15) with n= 1 to each term on the right hand side. Kll =0 and K2=-h3/6,
independent of k, and from (9) we obtain

D,PF ih u)
F((i-k)h)-F((i-k/ 1)h)

This can be written as -DF(k) for some :k strictly between (i-k)h and (i-k+ 1)h.
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Inserting this into (28) yields

h
IF* G(ti)-Q(F, G)(t,)l -< --lD2F(ih-’k)Da(Zk)+ DF(k)D:a(qk)l,k=l

where Zk, k, and r/k are all strictly between (i-k)h and (i-k+ 1)h. Equation (27)
follows immediately, and this completes the proof of Theorem 6. [3

THEOREM 7. If F and G have four continuous derivatives on [0, t], then

tih< t’h4 cB(F)B_(G)+- B(F)B(O)(29) IF* O(t)-QS(F, O)(t,)l=-i- k=l

where Cl c4 1 and c: c 4.

Proof. Begin with the analogue of (28) that uses Q2s and (26a)-(26b) instead of
(25). Apply (14) with n=2 to each term individually, noting that K2=-4hS/15
independent of k. Explicitly evaluating DuP2F(ih-u) and DP2F(ih-u) from (9),
and using the mean value theorem for divided differences, we obtain DuP2F(ih- u)=
-DF(rlk)+ D2F(k)(U-(2k-)h) and DP2F(ih-u)= D2F(k) for some :k strictly
between (i-2k)h and (i-2k+2)h, and r/k strictly between (i-2k+l)h
and (i-2k + 2)h. Inserting all this into (14), we obtain (29) upon noting that -hi2 <=
u-(2k-)h<=3h/2 for (2k-2)h<=u<=2kh.

4.3. Choice of step size. Equations (16), (17), (27), and (29) are useful for determin-
ing the spacing h necessary to obtain a prescribed overall error. To do this, it is
necessary first to evaluate the various bounds Bi, then set the appropriate expression
equal to the desired overall error, and solve for h. Generally, this will turn out to be
a fairly conservative procedure, and the h obtained will most likely be smaller than is
really necessary to obtain the desired error bound. This is illustrated in Table 2, below,

TABLE 2
Errors for the three examples.

Time Example Example Example 2 Example 3
Trapezoidal rule Simpson’s rule Repeated Simpson Simpson’s rule

0 0.000000000000 0.000000000000 0.000000000000 0.0000000
500 -0.000053837217 0.000000011217 -0.000000011205 0.0002117
1000 -0.000074582390 0.000000015539 -0.000000034788 0.0002645
1500 -0.000077890429 0.000000016228 -0.000000046939 0.0000865
2000 -0.000072673834 0.000000015141 -0.000000046406 0.0001369
2500 -0.000063884514 0.000000013310 -0.000000037976 0.0000486
3000 -0.000054172538 0.000000011287 -0.000000026472 0.0000823
3500 -0.000044870012 0.000000009348 -0.000000015141 0.0000301
4000 -0.000036570544 0.000000007619 -0.000000005665 0.0000526
4500 -0.000029467231 0.000000006139 0.000000001388 0.0000195
5000 -0.000023547180 0.000000004906 0.000000006092 0.0000347
5500 -0.000018701315 0.000000003896 0.000000008831 0.0000130
6000 -0.000014784619 0.000000003080 0.000000010075 0.0000234
6500 -0.000011647722 0.000000002427 0.000000010274 0.0000088
7000 -0.000009152196 0.000000001907 0.000000009801 0.0000160
7500 -0.000007176830 0.000000001495 0.000000008942 0.0000060
8000 -0.000005619098 0.000000001171 0.000000007901 0.0000111
8500 -0.000004394218 0.000000000916 0.000000006816 0.0000042
9000 -0.000003433175 0.000000000715 0.000000005771 0.0000078
9500 -0.000002680403 0.000000000558 0.000000004815 0.0000030
10000 -0.000002091530 0.000000000436 0.000000003970 0.0000055
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where the true error in the computation turns out to be smaller than the error predicted
by using (27) or (29) by at least two orders of magnitude.

4.4. Repeated convolution. For repeated convolutions, define F1 F, and, for n > 1,
F,+I F,. F. To evaluate F, use (25) or (26a)-(26b) iteratively. That is, for the
trapezoidal rule approximation to F(ti), use Qs(F_I, F)(ti), and for the Simpson’s
rule approximation, use Q(F,_I,F)(ti). Since (25) and (26a)-(26b) compute the
values of F,_I at the same mesh points at which the original function F is evaluated,
the equally spaced mesh is particularly convenient for this iterated operation.

Using the Simpson’s rule requires Fn_(h/2), which in turn requires F,_:(h/4),
and so on down to F(h/2"-). These, as well as the values F(h/2"-l), F(h/2),
are used to obtain F(h)= F,(tl). Once F,(tl) is obtained, these values are no longer
needed for the rest of the computation of F(t), i=> 2.

To compute F. G, first compute F and G individually, and then use (25) or
(26a)-(26b) to combine them. Again, when using the Simpson’s rule, the values
F_i(h/2), i= l(1)j-1, and G_(h/2), i= l(1)k-1, are needed.

4.5. Examples. In this section, we give three examples that illustrate numerical
convolution of life distributions using the trapezoidal and Simpson rules for Stieltjes
integrals. The first example compares the trapezoidal with the Simpson rule on a single
convolution, the second example uses the Simpson rule to evaluate a repeated convol-
ution, and the third example illustrates the convolution, using (26a)-(26b) directly, of
two life distributions having densities that are singular at the origin. We have chosen
illustrations using exponential and gamma distributions so we could easily make
comparisons between the computed values of the convolution and the true values that
are obtainable in these cases in closed form.

The first example is the convolution of F(t)= 1- e-’/ with G(t)= 1- e-’/:.
In this case, F G(t) 2G(t) F(t). Table 2 displays the error in the trapezoidal rule
approximation (25) for F G (column 2), and the error in the Simpson’s rule approxi-
mation (26a)-(26b) (column 2). We have omitted the true and computed values in all
the examples from Table 2 to save typesetting pain. The author will be happy to send
tables of those values upon request. In evaluating this convolution, we used a 0,
b 10,000, h 50, and N 200. To save space, the table shows only every tenth point.
The computations were done in double precision, using the C compiler on a VAX
8600 running the UNIX System V Release 2 operating system. The largest error in
Example 1 occurs at 1500 for both the trapezoidal and Simpson rules. The maximum
of the absolute value of the error predicted by (27) at 1500 for the trapezoidal rule
evaluation is 2.3438E-4, and for the Simpson rule, it is 1.0767E-7 from (29). The worst
case in the table is 1500, because the error bounds (27) and (29) increase linearly
with t, while for > 1500, the errors as seen in the table decrease.

The second example concerns a repeated convolution. Using the F and G above,
we compute F3 * G using the Simpson rule and the iterative procedure suggested in

4.3. Again, we use a =0, b 10,000, h 50, and N= 200, and double precision
arithmetic. The errors, again only for every tenth point, are shown in column 4 of
Table 2. While no explicit error analysis like (27) or (29) is given in this paper for
repeated convolution using the Simpson’s rule (26a)-(26b), examination of Table 2
shows that respectably small errors are achievable with this procedure.

In the third example, the two distributions to be convolved each have densities
with singularities at the origin" the tangent (from the right) to the distribution is vertical
in each case. In this example, F is a gamma distribution with location parameter
3 x 10-4 (units of hr-1) and shape parameter -, and G is a gamma distribution with
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the same location parameter and shape parameter -1/2 (see [16] for the parametrization
of the gamma distribution used here). The mean of F is 833.33 hours, and the mean
of G is 1666.67 hours. Then F G is also a gamma distribution with the same location
parameter, and with shape parameter -1/4 ([16], p. 209); its mean is 2500 hours. The
last column of Table 2 shows the error obtained from numerical evaluation of this
convolution using (26a)-(26b). Again, we use a =0, b 10,000, h 50, and N 200,
and double precision arithmetic, and display only every tenth point. While (29) does
not apply here because of the singularities, the last column of Table 2 shows that
(26a)-(26b) still produces reasonable results, especially when considering the simplicity
of the procedure as compared to the methods recommended in [4] and [6].

5. Conclusions. This paper provides new methods for the evaluation of Stieltjes
integrals by developing analogues of the closed Newton-Cotes quadrature rules. These
are based on a simple idea and are most useful when it is impossible or undesirable
to use derivatives of the integrator function in the quadrature. Error analyses are given
that aim to show the highest order achievable by the rules. An error analysis under
weaker conditions than those in Theorems 2 and 3 is presented for the trapezoidal
rule. It would be useful to obtain error analyses under these weaker conditions for the
higher-order rules as well. A major virtue ofthese rules is their simplicity, and, especially
for the lower-degree rules, robustness. The trapezoidal rule can be adapted to a Romberg
scheme provided it is possible to find a sequence of argument values for which the
differences of the integrator function are equal from one argument value to the next.

The trapezoidal and Simpson rules are used to develop two algorithms for numeri-
cal convolution of life distributions. These algorithms are usable even in cases where
previous algorithms [2], [4] fail, such as for convolutions of Weibull distributions with
shape parameters less than one-half. Explicit error analyses are provided for single
convolution. Four numerical convolution examples are computed, providing com-
parisons between computed values and known values in these cases.
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SMOOTHING POLYNOMIAL SPLINES FOR BIVARIATE DATA*

STEWART J. ANDERSON], RICHARD H. JONES,, AND GEORGE D. SWANSON

Abstract. An extension of the smoothing polynomial spline to fit bivariate response data is presented.
The data are modeled as integrated random walks with observational errors. Correlation can exist in the
random walks, the observational errors, or both. The Kalman filter is used to calculate the log likelihood
of the data as a function of the unknown parameters in the covariance matrices, and nonlinear optimization
is used to obtain maximum likelihood estimates of the parameters. A modification of the Kalman filter is
used at the beginning of the data to allow the use of diffuse (noninformative) priors. This model is applied
to the problem of characterizing gas exchange time series of exercising subjects.

Key words, smoothing polynomial splines, vector splines, bivariate response models, Kalman filter,
maximum likelihood estimation, integrated random walks, gas exchange measurements, Fieller’s theorem
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1. Introduction. The use of piecewise continuous functions called splines to model
data is an old concept (Thiele (1880)). This technique has provided an alternative to

simple linear or nonlinear regression when data cannot be modeled using a single
functional form. Until the 1970’s, much of the work in splines assumed that the data

span could be divided into subintervals so that in each subinterval the data could be

modeled by a prespecified function (Wold (1974)). It was also usually assumed that
the specified functions were connected to each other so that overall continuity was

maintained. The points where successive functions connected were called knots. The
number of knots in most of the work prior to 1970 was assumed to be very small in

comparison to the number of data points. Later, a type of spline that has knots at

every data point was introduced. That is, if n data pairs, (ti, Yi), are being modeled
such that the ti are distinct, then the assumption is that n- 1 functions will model the
data. In some cases, the functions will not all be unique. For our purposes, the functions
are assumed to be polynomials of degree 2m-l, where m is a positive integer.
Successive functions are pieced together with the assumption that the first m-1
derivatives of the functions are continuous at the knot. These splines are known as

smoothing polynomial splines.
In this paper, we extend the smoothing polynomial spline model to the case where

a vector, (Yli, Y2i) T, i: 1,..., n of observations is modeled over time i. We assume
that the errors associated with the vector model have a Gaussian structure with
correlation. We also assume that there is correlation in the underlying stochastic
structure of the model. Thus, we used a stochastic motivation of the model and use a

likelihood criterion to arrive at our "best model."
In 2 of this paper, we give a brief review of univariate smoothing polynomial

splines. A brief overview of the Kalman recursion and Rauch-Tung-Striebel fixed

interval smoothing is given in 3. We then use the univariate splines to model gas
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exchange data on exercising subjects in 4 of the paper. In 5, we then introduce a
stochastically motivated two-dimensional vector model. In 6, we examine some of
the assumptions of the vector model. In 7, we show how the vector model was used
on the same data introduced in 4. Finally, in 8, we give some brief conclusions and
directions for further research.

2. Univariate smoothing polynomial splines. A notational convention to be used
in this section is as follows: the notation x(’)(t) denotes the mth derivative of x(t),
whereas X(")(t) denotes the mth integral of X(t).

Much of the theory behind the smoothing polynomial spline was developed by
Wahba (Kimeldorf and Wahba (1970) and Wahba (1978)). To choose the smoothing
parameter (equivalent to choosing the signal-to-noise ratio), Craven and Wahba (1979)
utilized a method called Generalized Cross-Validation (GCV) to find the optimal
polynomial spline given a particular set of data. Although the GCV method was robust
(that is, could estimate the smoothing parameter whether or not the unknown function
came from a stochastic process), the associated numerical algorithm tended to be
somewhat slow. Weinert, Byrd, and Sidhu (1980) and later, Wecker and Ansley (1983)
showed that by assuming an underlying process of an integrated random walk with
observational error, a faster algorithm could be developed. This algorithm represented
the model in a state space form. It utilized the Kalman filter (Kalman (1960)) for
calculating the likelihood function (Schweppe (1965)), and nonlinear optimization
was used to obtain maximum likelihood estimates.

More recently, O(n) algorithms have been developed for computing the smoothing
spline with GCV (Ansley and Kohn (1987) and Hutchinson and de Hoog (1985)).
However, for our univariate and two-dimensional vector smoothing polynomial splines,
we use the stochastically motivated approach to estimate optimum smoothing param-
eters.

In regression analysis, the relationship between n data points, (ti, yi), is described
by a fixed functional form, y =f(ti)+ ei, 1, , n, where the ei are usually indepen-
dently and identically distributed N(0, R). This functional form is usually specified
prior to fitting the data. In some cases, however, no particular functional form can
readily be found to adequately describe a relationship between two observed variables.
In this case, it is appropriate to use smoothing polynomial splines to characterize a
relationship. One advantage to this approach is that no prespecified functional form
must be used. Smoothing polynomial splines have an added advantage in that they
are equivalent to many fixed functional forms. Thus, they can be used whether or not
an underlying function is known for a particular process.

Schoenberg (1964) showed that the smoothing spline, g,,K(t), of degree 2m-1
minimizes the quantity

(1) r= n -1 [g(ti)-Yi]a-F t (g(m)(u))2 du.
i=1

Note that if K 0, this criterion gives an interpolating spline whereas if K , then
the criterion gives a polynomial of degree rn- 1. Therefore, the criterion is a measure
of the deviation of g,,K from the span of polynomials of degree less than m (Wahba
(1978)). Wahba (1978) showed that the stochastic process

ff
m--1’-’ (t-a)k

,/2 (t-h)
(2) g,,(t)= E ak+R cr dW(h),

k=O k! (m-l)!
where W(h) is a Wiener process with unit variance, is the solution to minimizing r(t)
in equation (1) with 1/(mr). This is conditional on letting a =(ao, al,’", a,-) T
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have a diffuse prior, that is, t(0) N(/x, :I,) where Ix is arbitrary, I, is the m x m
identity matrix and :-. Wecker and Ansley then introduced the stochastic process,

--a)k+ Ia (t-h)ji-1j--1
1/2 r(3) XO)(t) X(m-k)(a) R dW(h),

k=O k! (j 1)!

j- m,..., 1. If X( t) (X"( t), xl(t)), then Wahba’s model (2) can be rewrit-
ten as

(4) g,.K(ti)--X")(t),
where ak X(-k)(t) and X(a) is the starting condition of the process X(t). It is usually
convenient to set a tl. Note that the "state," X(t), consists of x(m(t) and its first
m-1 derivatives. The state vector can also be written as x(t)=(x(t),... ,x(m)(t)) T,
where x(t) X(")(t).

The significance of equations (1)-(3) is the assumption that the process underlying
our polynomial spline model is driven by noise in the (m 1)st derivative. For example,
in a cubic spline, the noise in the 1st derivative is translated to noise in the position
component. This complete process allows flexibility because the parameters in the state
vector can change over time. Therefore, a local effect can be modeled as well as a
global effect.

The estimation of the state vectors uses all of the available data. This requires
that the estimation of each state vector, x(t), be carried out in two steps. The first step,
called filtering, uses all of the data up to and including the data point at t to estimate
the state vector (it is assumed that the tls are ordered so that ti < ti+l, 1, , n- 1).
The second step, called smoothing, incorporates the rest of the available data into
another estimate that is then weighted with the filtered estimate to give .a final estimate
that is based on all of the available data.

For either a continuous or discrete model, an assumption of the Kalman filter is
that a given model can be represented in a state space form. Given n data pairs, (t, Yl),
(t2, y2),""", (t,, y), a state space model can be written as:

x(t,+) tI(t,)x(ti) + U(ti),

and,

(6) y(ti) H( ti)x(ti) q- v(ti),

where (i-- ti- ti-, x(ti) is the state vector at time ti, (ti) is the state transition matrix,
y(t) is a vector of observations, H(t) is a matrix of constants, and U(t) and v(ti) are
random input matrices. For the smoothing polynomial spline (or continuous integrated
random walk) model (Wecker and Ansley (1983) and Jones and Tryon (1987)),

m-1 (Fi)
(7) (8i) =exp (Fi) I+ Y

i: i!

8,2./2 6’-11(m 1)!
6, 67’-2/(m-2)!..
0 8

0 1

Also, given (), we can solve for the covariance matrix of the random input from
time t_l to t (Kohn and Ansley (1987) and Anderson (1987)). Denoting the jkth
element of this covariance matrix by Qjk(6), we can write

(8) Qjk((i)
(m-j)!(m-k)!(2m-j-k+ l)’
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i= 1,. ., n; j= 1,. ., m; and k= 1,. ., m. Also, for the univariate continuous
random integrated walk model, x(t, It,) (x(t, It,), x’(t, It,),’" ", x"-l)(t, It,))r, and
H (1, 0,..., 0). In addition, the likelihood function will be maximized with respect
to the variance of the stochastic process, tr2, and the observational noise variance, R.
The Kalman filter is used to calculate -2 In likelihood for given values of tr

2 and R.
This is embedded as a function evaluation in a nonlinear optimization routine to obtain
maximum likelihood estimates of tr

2 and R, which in turn give estimates of the optimal
amount of smoothing under our model assumptions.

3. The Kalman recursion and Rauch-Tung-Striebel fixed-interval smoothing. To
begin the Kalman recursion, we will assume that the stochastic process x(t) has some
distribution prior to gathering the data. To reflect our lack of prior knowledge, we use
a diffuse prior distribution suggested by Wahba (1978). That is, we will assume
x(010) N(0, Aim), A oo, where In denotes the m x m identity matrix. Note that x(010)
denotes the a priori estimate of x(t). Since the model is nonstationary, we must modify
the first few steps of the ordinary recursion to incorporate the infinite variance of the
prior distribution (Kohn and Ansley (1985), (1987) and de Jong (1988)). Assuming
these modifications have been made (see Appendix A), the Kalman recursion is as
follows:

(1) Calculate a one-step prediction:

x( ti t,-) (,)x( ti- ti-l)

(2) Calculate the covariance matrix of the one-step prediction:

P( t, ti_l) tI(t,)P( t,_ t,_l) 7" (3,) + Q(3,)

(3) Predict the next observation:
Y( t, t,-) Hx(ti

(4) Calculate the innovation vector:

l(ti) y(ti) Y( ti t,-)

(5) Calculate the innovation covariance matrix:

V(t,) HP( t, t,_)Hr + R
(6) The contribution of the innovation to -2 In likelihood is"

17- (t,)V- (t,)l(t,) + In IV(t,)

(7) Calculate the Kalman gain matrix:

K(t,) P(t, t,_I)HT-V- (t,)

(8) Update the estimate of the state vector:

x(ti ti) X( ti_l) q- K( t/)l(ti)

(9) Update the estimate of the covariance matrix:

P(t, It,) P( t, It,-1) K(t,)nP(t, t,_).

The Kalman filter gives an optimal estimate (in the least squares sense) of x(ti)
given (h, Yn),""", (ti, y) (Kalman (1960)). The problem of finding optimal estimates
of x(t) given y(tl),. , y(tn), (n > i) is called a smoothing problem. Thus, the solution
to the smoothing problem will give us the optimal least squares estimates of x(t),

1, , n given all of the data. In our problem, we are interested in obtaining these
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estimates with the assumption that our data span is fixed. Our model is continuous;
however, our sampling intervals are discrete. Therefore, we will use discretefixed-interval
smoothing (Brown (1983)).

Rauch, Tung, and Striebel (1965) solved the discrete fixed-interval smoothing
problem. Their solution consisted of two steps: (I) A forward sweep of the data using
the Kalman filter; and (II) A backward sweep of the data which, when weighted with
the forward sweep, gives a minimum least squares estimate for each x(ti), 1,. ., n
given all of the data, (t, y), , (t,, y,). A rigorous derivation of the solution is given
in Rauch, Tung, and Striebel (1965) and Sage and Melsa (1971). A summary of the
solution is as follows:

(1) Obtain the Kalman filter estimates x(ti+ ti), x(ti ti), P(ti+ Its), P(ti ti) for
i=l,...,n-1;

(2) Use x(t, It,) and P(t, It,) as initial estimates for the backward sweep;
(3) Predict x(ti), n- 1,. ., 1 as

(9) x(ti It.) x(ti [ti) + A(ti)[x(ti+l It,) x(ti+l It,)],
where

(10) A(t,) P( t,) (i+I)p-1 (ti+l [ti);
(4) Predict the covariance matrix of x(ti) as:

(11) P( t, Its) P(t, It,) + A( t,)[P( t,+l It.) P( t,+ t,)]A(t,).
The notation convection here is that, for example, x(t, t.) is the estimate of x(ti) given
y(q),..., y(t.).

To conserve the amount of memory needed, one can store the smoothed estimates,
X( ti It.), x( ti+l It.), P( ti It.), and P( ti+ It, in the same arrays as their filtered counter-
parts, x( ti ), X( ti+ It ), P( It,), and P( ti+ ti ).

4. Applications of univariate smoothing splines. This application uses smoothing
polynomial splines to characterize the gas exchange of a subject undergoing an exercise
stress test (Wade et al. (1988)). In our first example, subject B.D. was introduced to
a progressive stress test where the work load was incremented by 33 watts every three
minutes. The monitoring of the subject’s gas exchange measures began approximately
five minutes after the beginning of the experiment. The gas exchange measures were
collected at every breath. The data were then adjusted for estimates of effective lung
volume and pulmonary blood flow (Sherrill (1987)). We then modeled the adjusted
breath-by-breath carbon dioxide production (I?co2) and oxygen consumption (o2)
versus time using cubic and quintic smoothing pocnomial splines. The results of
the two analyses are summarized in Table 1. The 4R and in the table refer to the
estimated standard deviations of the noise terms associated with the observational
error and the (m- 1)-fold integrated Wiener process, respectively.

TABLE
Analysis of spline models for subject B.D.

Curve Model -2 In likelihood

Vo2 vs. TIME Cubic spline 4910.7 81.59 379.59

Vo2 vs. TIME Quintic spline 4935.9 82.20 967.20

Vco2 vs. TIME Cubic spline 4886.7 75.64 674.10

Vco vs. TIME Quintic spline 4931.3 77.48 2325.3
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FIG. 1. Carbon dioxide production as a function oftime under increasing workfor subject B.D. as modeled
by a cubic smoothing spline. The lower curve with the wider confidence interval shows the estimated slope.
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FIG. 2. Oxygen consumption as a function of time under increasing work for subject B.D. as modeled by
a cubic smoothing spline. The lower curve with the wider confidence interval shows the estimated slope.
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In both analyses, the cubic splines had lower values of-2 In likelihood. Thus,
since both models have the same number of parameters, cubic splines were used. The
results of the two analyses are shown graphically in Figs. 1 and 2. In both figures one
can see that the gas exchange curves fluctuated considerably. The effects ofincrementing
the work rate every three minutes are obvious on the slope curve.

As we see in Figs. 1 and 2, both the f’o2 and f’co2 are associated with a large
amount of variability with respect to time. Thus, we would need to account for the
variability in both measures. Also, since the two measures rise and fall in roughly the
same patterns, we would need to account for the correlation of the two processes.

Figure 3 shows similar curves for subject D.S. where the workload was increased
steadily instead of in a stepwise fashion. As for subject B.D., we found that the "best"
smoothing spline (using the maximum likelihood criterion) was a cubic spline.

4000 ’’
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2000 2000

i000 1000

4000

0 0

2 3 4 5 6 7 8 9

TIME (Min)

FIG. 3. Carbon dioxide production as a function of time under increasing workfor subject D.S. as modeled
by a cubic smoothing spline. The lower curve with the wider confidence interval shows the estimated slope.

Information about a subject’s data can be lost by modeling it with a simple
parametric model when the true underlying process is not well known. This loss of
information can be great in situations where a large number of data points are measured.
We feel that a smoothing polynomial spline model is especially useful in this setting
because it can provide much information about a subject during stress testing. Beaver,
Wasserman, and Whipp (1986) recommend that breadth-by-breath gas exchange data
are best characterized by a plot of f’co2 versus f’o which requires the use of a vector
spline.

5. Introduction to two-dimensional vector smoothing polynomial splines. It is often
of interest to an investigator to examine two or more variables as a function of a third
variable, for example, time. The variables of interest each may be modeled univariately
over time. However, in many cases, there may be underlying reasons to believe that
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the two or more variables may be correlated Thus, if an investigator is interested in
describing the overall trend of the two response variables over time, he or she would
want to use a bivariate model. Here, "bivariate" refers to the response variable that
consists of a two-dimensional vector at each time point. As in the univariate case, it
may be difficult to model some data sets using a fixed parametric form. Thus, we
introduce a two-dimensional vector smoothing polynomial spline.

In our formulation of a vector smoothing spline, we assume that two processes
are each assocated with an underlying uncertainty (sometimes called "plant noise" by
engineers) and an uncertainty associated with observation. These noise terms are
assumed to be distributed normally. Furthermore, we assume that the underlying noise
terms of the two processes are correlated and/or the observational noise terms are
correlated. The state equation of the model can be written as follows:

(12)
dx(t)

((R) F)x(t) +Gt’dw(
dt dt

where 12 is the 2 x 2 identity matrix, (R) is the Kronecker product,

xn(t)

X,(t)

x-(
x(

x-(

Gn Gll 0

0 0

G G

0 1 0

0 0 1

0 0 0

0 0 0

0

0

and

(13) dWll(t)=[dWl(t)]dW( t)

From equations (12) and (13), we can conclude

(14)
0

GadWa(t) N
0

"0

6211 0

0 0

GG 0

The observation equation is then written as

(15) yn(t) Hxn(t) + vn(t),

where

yn(t):
;2(I) 0 1 0
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and

/92(t)
N

gll g12 U212 + U222
The factored form of the above matrices assures that the estimates of the matrices are
nonnegative definite.

The extension ofthe univariate model to its two-dimensional vector analog requires
that instead of estimating two parameters, we must now estimate up to six parameters.
That is, given the data triplets, (tl, Y11, Y21),"" ", (t,, Yln, Y2,), we are interested in
obtaining maximum likelihood estimates for o-l=G, o’2=0"2=G11G2, r22
G122 %-G222, Rll-- U121, R12--R21-- Ull U12 and R= U22 + U2. These estimates were
obtained using a natural extension of the recursive approach as described in 2 and
3. For example, in the two-dimensional vector model, the state transition matrix, (ai)
is written as

(16)

1 a /2 a’-’/(m- 1)!
0 1 8i 67’--/(m-2)

01(R) .. ..
O0 0 0 &

0 0 1

where i ti- ti_. The covariance matrix of the random input is obtained by solving
t+8

(17) Q(8)= dP(t+8-r)GGrdpr(t+-r) dr.

Given the time points, tl," ", tn, the solution to this integral equation is

(18)

Q(8,) [%1 0"12]@
0"12 0"22 3

2rn--I 62m--2 a?
((m- l)!)(2m l) (m-1)!(m-2)!(2m-2) m!

(tn-2)!(m- 1)!(2m-2) ((m-2)l)2(2m -3)

a’ a7-1

m! (m-l)!

(m-l)!

(Anderson (1987)).
The algorithm for the vector smoothing polynomial spline can easily be modified

if there are missing data (Jones (1984)). For example, suppose Yli is missing for some
i. For this case, we would eliminate the first row of the H matrix of (4) and the first
row and column of the observational error covaraince matrix R. A similar modification
to these four quantities would be used if Y2i was missing.

Given the information above, we can now follow the nine steps of the Kalman
filter stated in 3. In addition, we can also follow the algorithm for the Rauch-Tung-
Striebel fixed interval smoothing. As in the univariate case, we assume a diffuse prior,
that is, x(O[O)--N(O, 12m), 0, where 12m is the 2m x2m identity matrix. Thus the
assumption of a diffuse prior requires that a modification be made for the first rn steps
of the Kalman filter and the last m steps of the RTS smoothing algorithm (Kohn and
Ansley (1987)). The modifications of the filtering and smoothing algorithms have been
worked out for the case of multiple responses. A general discussion of the filtering
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and smoothing modifications is given in Appendix A. We implemented these algorithms
using FORTRAN 77. A nonlinear optimization program written by Dennis and
Schnabel (1983) was also used to find the maximum likelihood estimates of the
parameters, as was described earlier.

In the two-dimensional vector extension of the smoothing polynomial spline, we
have a choice of four possible models"

(1) An additive model where there is no correlation in either the plant noise or
observation noise of the two splines;

(2) A model that has correlation in the plant noise but not the observational noise;
(3) A model that has correlation in the observational noise but not the plant

noise; and
(4) A model that has correlation in both the plant noise and observational noise.

In model (1), it is necessary to estimate four parameters. In models (2) and (3), we
need to estimate five parameters, and in model (4), we need to estimate six parameters.
The strategy we used to find the "best model" for a two-dimensional vector spline of
degree 2m 1 was outlined by Jones (1984). We began by fitting two splines univariately,
which is equivalent to model (1). In this paper, we fit the univariate models with the
constraint that both splines were of the same degr,,ee. After the "best models" were
found, we use the estimates, {11, 22, /11, and R22 as initial estimates for models
(2)-(4). The additional parameters in models (2)-(4) had initial guesses of 0.0. The
significance of the additional p (p 1, 2) parameters was determined by examining
the change in -2 In likelihood due to the addition. This change is distributed asymptoti-
cally as X. The "best" overall model was obtained by applying Akaike’s Information
Criterion (AIC) (Akaike (1973)),

(19) AIC -2 In likelihood + 2p

to the competing models. As in Jones (1984), we considered any model within two
units of the minimum AIC to be a competitor for the best overall model.

6. Examinations of assumptions for vector models. Jones (1984) considered a large
variety of multivariate time series models. He examined models of the general form:

where x(t) is a d x 1 state vector of deviations from a mean value,/x. In his formulation,
A is the d x d transition matrix, G is a d x p (p-< d) matrix defining the structure of
the random inputs, and e(t) is the vector of random inputs. The solution of the
homogeneous part of this equation given the data is

(21) x(ti)

where a t- t_, and @(8)= e’a,. In the general case,

(22) (a,) I+ Y (AS,)’.
=1 i!

The problem of representing this infinite sum can be averted if A is factored in the form:

(23) A=HAH-1,

where A is a diagonal matrix of the eigenvalues of A and H has columns consisting
of the right eigenvectors of A. These eigenvalues and eigenvectors are in the complex
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domain. Jones then introduced a vector, Y(t), called the transformed state, of the form
(t) H-Ix(t). He then represented the upper portion of (20) as

d
(24) d--- Y(t) AY(t) +H-1G(t).

The solution of the homogeneous part of (13) can be written as

e’ 0 0

(25) (;i) , .0 e2 :.. 0

[:0 0 e:
where the A are the eigenvalues of . The observation equation was written as

(26) Z(t,) HY(t,) + tx + V( t,).
The parameters of interest were estimated by using the Kalman filter to calculate
-2 In likelihood and a nonlinear optimization routine to find its minimum.

In our formulation of the bivariate response model, we assume that correlation
exists in the plant and/or observation error structures. We assume that the transition
matrix has a block diagonal or "uncoupled" structure. Also, in our formulation, we
can represent () as a finite power series. Furthermore, we assume that x(t,I t,) has
a distribution that is approximately N(xa(t), P(t)). Thus, we can obtain approximate
one at a time" and simultaneous confidence intervals. The meaning and statistical

properties of confidence intervals in this nonparametric setting depend on the truth
of the model assumptions being made (Nychka (1988)). The "one at a time" (Graybill
(1976), p. 195) confidence interval for Lrxa(t) where Lk is a 2m x 1 vector of known
constants is obtained by

(27) Lkrx.( ti) =t= tn_p,l_(o,/)JL’P ti ti)Lk.

Simultaneous or Scheffe confidence intervals on LHxn(ti) where L is any q x 1 vector,
H is a q 2m matrix of constants of rank q are obtained by the expression:

(28) Lax( t):lZx/qFq,_2m,l_, x/l"He( t t)HT"L.
In our case, we let H IEm SO that q- 2m. Also, we can use the asymptotic properties
of the F distribution to replace qFq,,_,_ by XEq,_.

In addition to the confidence intervals of linear combinations of the estimated
state vector, we can obtain confidence intervals of a nonlinear form that has a
particularly important application. For example, when modelirg gas exchange data,
we obtain estimates of Qo2 and f’co: with respect to time. Also, we want to obtain
estimates of d?o/dt and d’12co/dt. However, the quantity of interest may be

dco2 d(/co/ dt(29) df’oz d(/o/dt"
The approximate confidence interval for the quantity on the left hand side of (29) may
be obtained by the use of Fieller’s theorem (Fieller (1944) and Zerbe (1978)). For
example, suppose that we find the best vector smoothing spline according to our model
assumptions has an estimated state vector of the form

(30) xn(tilti) x(tilti)l
x2(tilti) I
X’E(tilti)J
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The refers to the first derivative taken with respect to time. For our application, we
want the confidence interval for

(32)

where

(0 0 0 1)x(t,)
P--(0 1 0 0)XB(ti)"

For convenience, let L1 (0 0 0 1) and L2 (0 1 0 0). Following Zerbe (1978), we
define

T (T[x( ]ti) pLx( [ti))/[Le( ti t/)Ll
(31)

2pLP( ti ti)L2 + p2LP( t, ti)L2] 1/2.

Assuming that e N(0, Icr2), then T has a distribution that is a Student’s distribution
with n-p degrees of freedom. Thus, it is assumed

1-a Pr (-t=< T -< t)= Pr (Ap2+Bp+ C<-O),

and

A (Lx( It,))- tL2P( t,)L2,

B 2" t2L(P( t, t,)L- L(x( ti t,)L2rx( ti It,)],
C (L(x(t, ti))2- t2L(a(t, t,)Ll.

In our application, since there is more than one estimated variance parameter, we
replace e= Fl.n-1 by u/q, where u is asymptotically a chi square distribution with
p degrees of freedom (Carter, Wampler, and Stablein, 1983). We can use this asymptotic
property because of our large sample sizes. If a, b, and c are the observed values of
the random variables A, B, and C, then the confidence interval for p is given by

(33)
-b :t: b2 4ac) 1/

2a

provided that the discriminant b2 4ac >= O. The Fieller confidence limits become infinite
when the denominator and numerator are bivariately not significantly different from
0 (Zerbe et al. (1982)). They are exclusive if the numerator is significantly different
from 0 but the denominator is not. ThisA caused difficulty in some of our applications
because the estimated derivatives, df’o2/dt and diZco2/dt were near 0 during some
intervals of time. Thus, in some situations, we were unable to obtain confidence intervals
for the derivatives of interest.

7. Applications of vector smoothing polynomial splines. In 4, we fit two univariate
cubic smoothing polynomial splines to the gas exchange data of subject B.D. The
curves of interest were Vo2 versus time and Vco versus time. Both of the fitted splines
indicated the existence of a large amount of noise in the data. The Pearson correlation
coefficient between the residuals associated with the two splines was .583, which was
significantly different from 0 (p < 0.0001). Thus, we fit a vector smoothing polynomial
spline that modeled I)’co and I)’o versus time. Four cubic vector models were con-
sidered. The four models were (1) a model that had no correlation in either the
observation or plant noise, (2) a model that correlated the two splines in the observation
noise but not the plant noise, (3) a model that correlated the two splines in the plant
noise but not the observation noise, and (4) a model that correlated the two splines
in both the observation and plant noise. The first model was equivalent to fitting each
of the two splines univariately. In this case, the overall value of-2 In likelihood for
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the bivariate response model was obtained by summing the values of -2 In likelihood
associated with the two univariate splines. After finding the optimum splines for each
of the four models, we determined the best model by applying Akaike’s Information
Criterion (AIC) to each of the four models. The comparative results are summarized
in Table 2.

The best model was determined to be model 4. The estimates of the observation
and plant correlation terms were/;o .560 and p .986, respectively. For this model,
we plotted the predicted I7co2 and its "one at a time" confidence interval against the
predicted f’o2 (see Fig. 4). Hence, we could attempt to identify a threshold point using
the same measures as recommended by Beav.er, Wasserman, and Whipp (1986). Also,
we obtained dVco/dVo for each value of Vow. The Fieller’s confidence interval was
not plotted because it was infinite at the points where Vo was not significantly different
from 0.

TABLE 2
Analysis of cubic two-dimensional spline models for subject B.D.

Model Obs. noise corr. Plant noise corr. No. of parameters AIC

No No 4 9805.4
2 Yes No 5 9616.3
3 No Yes 5 9723.6
4 Yes Yes 6 9561.7
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FIG. 4. Carbon dioxide production plotted against oxygen consumption for subject B.D. (increasing curve
with confidence intervals) based on two-dimensional vector smoothing spline. The slope estimates (horizontal
line with sharp fluctuations) were obtained as the ratio of the two slope estimates.
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Figure 4 reveals that there were several time intervals where the dVco2/dVo2
fluctuated sharply. These periods of rapid fluctuations corresponded roughly to the
incremental changes in work load that were introduced to subject B.D. As we stated
in 4, the workload was incremented every three minutes. Thus, the analysis of the
vector.smoothing spline provided information about the design of the experiment. To
identify a pssible threshold, we examined the values ofthe curve where the fluctuations
in d.Vco2/dVo2 were sustained over a period of several breath. We fund that beginning
at Vo 2857 mL/min, there was a large fluctuation in DVco/dVo: for subject B.D.
that lasted about four breaths. These oscillations occurred in the time period from

20.68 minutes to 20.78 minutes.
Our second application of the two-dimensional vector smoothing spline was in

the analysis of the gas exchange data for subject D.S. To analyze the data bivariately,
we once again used a cubic spline and examined four competing models. As for subject
B.D., we again found that the best vector cubic smoothing spline was one that had
correlation in both the observation noise and the plant noise. The estimates of the
observation and plant correlation terms for D.S. were t;o .737 and p--.973, respec-
tively. In this example, we were able to obtain approximate Fieller’s confidence intervals
for d9"co/dgo. The best maximum likelihood two-dimensional cubic smoothing spline
for D.S. is represented graphically by Fig. 5.

Here we see that dVco/dVo reaches a maximum at Vo =2586mL/min. At
Vo2- 2793 mL/min, the rate of change of d’(/co/dVo: drops to.its lowest point. Outside
of the I’o interval (2586, 2793), the rate of change of df’co/dVo2 is relatively constant.
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FIG. 5. Carbon dioxide production plotted against oxygen consumption for subject D.S. (increasing curve)
based on two-dimensional vector smoothing spline. The slope estimates confidence intervals are based on Fieller’s
theorem.
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We can identify an interval where the gas exchange measurements are somewhat
unstable. Thus, the bivariate analysis of the subject’s response allows us to extract
information about the subject which we were unable to do with separate univariate
analyses.

8. Conclusions and directions for further research. In this paper, we have demon-
strated how the state space representation of a smoothing polynomial spline allows us
to extend the model so that two correlated processes can be fitted simultaneously. This
stochastic motivation of the model provides a natural way to incorporate correlation
into the error structure and into the underlying modeled processes. Furthermore, this
work can be extended so that an arbitrary number of simultaneous processes can be
modeled.

Wahba (1985) compares generalized maximum likelihood (GML) and generalized
cross validation (GCV) to estimate the smoothing parameter in a univariate model. In
that work, Wahba points out some shortcomings in the GML approach to arriving at
a "best" smoothing parameter. For our purposes, however, we found that generalized
maximum likelihood provided an easier way to include correlation in our model.

Finally, there is room for much theoretical work to determine what (if any)
optimality conditions this model satisfies.

Appendix A. Filtering and smoothing modifications for diffuse priors. Kohn and
Ansley (1985), (1987) and Ansley and Kohn (1985) have developed methods for starting
the Kalman filter for nonstationary models using diffuse (noninformative) priors. Here,
we derive a start-up method for integrated random walks that is equivalent to Ansley
and Kohn’s method. The advantage is that the motivation and derivation is much
simpler.

For a random walk that is integrated m- 1 times, the state has m elements, and
rn observations are necessary before the state can be estimated from the observations.
Before any observations are taken, the initial state vector can be taken to be zero with
a large covariance matrix,

x(t110) =0
P(t10) I,

where A --> o. After one observation, the upper left-hand element becomes finite while
the lower right-hand block stays infinite. As each new observation becomes available,
the size of the finite upper left-hand block increases by one, and the size of the infinite
block decreases by one; therefore, an inductive procedure can be derived.

To begin the procedure, the innovation at the first time point is the first observation,

with variance

l(tl)=y(t),

V(tl) h + R.

This variance becomes infinite as h c, so the contribution to -2 In likelihood is zero.
The Kalman gain vector is

K(t)
h +R
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The first element approaches one, giving all the weight to the most recent observation
The updated estimate of the state vector is

(tl)

X(tll tl)__
0

with covariance matrix

A

p(tl t,) AI_
1

A+R
[A 0 0].

The upper left-hand corner of this matrix is

A 2 AR
Pll( tl A.tl.: A+R A+R

It is important not to take the limit before the subtraction because of the cancellation
of the A: terms. Now,

The general step of the starting algorithm works with the upper left-hand corner
of P(tilti) for 1 <=i< m. This matrix is by i, and at the completion of the step is
augmented to + 1 by + 1. The modified recursion follows:

(1) The one-step prediction is calculated as usual, except that only the first k
elements need be forecast, and the predicted state vector augmented with zeros,

x(tl t_)--()x(t t_)

(2) The covariance matrix of the one-step prediction approaches as A - since
the large lower right-hand corner block is propagated into the entire matrix by the
state transition matrix. This has implications in the smoothing step to come later,

where

pO)( ti+l ti) + AA,a,

and P()(ti+l[ ti) is the matrix calculated by the usual method with a 0 in the lower
right-hand corner of P(t[t) instead of a h.

(3) Since

HA 31,

the innovation variance becomes

V(ti) V()(ti) + i(2i
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where

(4) The Kalman gain is

V()(t,) r,,"()( t,+, ti) + R.

1
K(ti) [p(O)( ti t_,)H + AA61]V()+A

and the updated state vector, for large it approaches

1
x(ti ti) x(ti It,-,) / - A,I( ti).

(5) The updated state covariance matrix is

p(O)(ti ti_l) + AAAy-K(t)a[e()(t It,-,) /
Putting all terms over the common denominator V()(t)+it6i, the terms in the
numerator containing it2 cancel. Keeping only the terms in the numerator and
denominator that are multiplied by it gives in the limit, for large it,

V() 1p(O)(ti It,) p(o)(ti It, )/-- AiAT---- [p(O)(ti ]ti_l)HTAi + AiHP()(t ti_l) ].-’ i
This completes the modification of the first m steps of the Kalman filter in the

univariate case. The smoothing is carried out as before from time t. to t,.. The values
for the first m- 1 time points are simply backward predictions starting at time m,

x(t, It.) (-,+,)x(t,+, It.)
e(t Its) I,(-,+)e( ti+ ]t,) (-,+)-

In the two-dimensional case, the upper and lower halves of the state vector and
the upper left-hand and lower right-hand blocks of the state covariance matrix are
built up as in the univariate case. The off-diagonal blocks remain zero until time point
m. Even though Q and R introduce off-diagonal elements in the covariance matrix,
these are dominated by it until the state is determined at time tm.
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TWO-COLOR FOURIER ANALYSIS OF ITERATIVE ALGORITHMS
FOR ELLIPTIC PROBLEMS WITH RED/BLACK ORDERING*

C.-C. JAY KUO AND TONY F. CHAN$

Abstract. The red/black ordering scheme is often used to increase the parallelism of iterative
methods for solving elliptic partial differential equations (PDEs). However, the convergence rates
are also affected, often adversely. This paper provides a unified approach, called the two-color
Fourier analysis, to study the convergence rates of iterative algorithms for elliptic problems with
the red/black ordering. This Fourier tool is used to analyze different types of iterative algorithms,
including the successive over-relaxation (SOR) method, symmetric successive over-relaxation (SSOR)
method, preconditioned iterative methods with SSOR, ILU, and MILU preconditioners, and multigrid
(MG) methods. By comparing the convergence rates of algorithms with the natural and red/black
orderings, it is shown that although the red/black ordering does not affect the rate of convergence
in the context of SOR and MG methods, it slows down the convergence significantly in the context
of SSOR and preconditioned iterative methods.

Key words. Fourier analysis, incomplete fatorization, multigrid method, parallel computation,
preconditioned conjugate gradient, preconditioners, red/black ordering, successive over-relaxation,
symmetric successive over-relaxation
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1. Introduction. An important task of the research on parallel computation
is to seek algorithms that can be conveniently implemented on vector or parallel
computers. One common approach to obtain parallel iterative algorithms for the
solution of partial differential equations (PDEs) is reordering. By reordering, we
rearrange the computational sequences to increase the percentage of computations
that can be done independently [27]. A crucial issue associated with reordering is
how the convergence rate of an iterative algorithm is affected by a reordering scheme.

The multicolor ordering scheme for grid points provides more parallelism than the
natural rowwise or columnwise ordering scheme. It is well known that by using red
and black, two colors to order the grid points in a checkerboard fashion for the 5-
point Laplacian, we are able to separate the coupling between any two red (or black)
points so that the values at all red (or black) points can be updated simultaneously.
Similarly, four colors are needed to separate the coupling between grid points of the
same color for the 9-point Laplacian [1]-[4],[20],[22],[23]. On either vector or parallel
computers, an algorithm with the multicolor ordering is always easier to vectorize or
parallelize than its naturally ordered counterpart so that such a reordering is attractive
for parallel implementation. There are numerous discussions on the implementation
of iterative algorithms with the red/black ordering on vector and parallel computers
in the literature, for example, in [1],[5],[8],[11],[23],[27],[28], and [33].

In this paper, we examine how the convergence rate of an iterative algorithm is
affected by the red/black ordering. Our study includes the successive over-relaxation
(SOR), symmetric successive over-relaxation (SSOR), ILU, and MILU preconditioners
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for preconditioned iterative methods, and multigrid (MG) methods. The convergence
rates of these algorithms are analyzed by a unified approach called the two-color
Fourier analysis. Although the two-color Fourier analysis has been used in analyzing
the SOR and MG methods by Kuo, Levy, and Musicus [20],[21],[23], we believe that
results for the SSOR iteration and the SSOR, ILU, MILU preconditioners are new.

Fourier or modified Fourier analysis has been used successfully to analyze numer-
ical methods for elliptic PDE problems for years. We can conveniently study the
effects of operators on Fourier modes if the numerical method of interest is applied
to a simple model problem that consists of a constant-coefficient PDE on a regular
domain with appropriate boundary conditions. The model problem for second-order
self-adjoint elliptic PDEs is the Poisson equation on a square with Dirichlet boundary
conditions. For the model Poisson problem, the SOR iteration was analyzed with
Fourier-like basis functions by Frankel [18] and Young [30]. Brandt used Fourier anal-
ysis to study the error smoothing property for multigrid methods [10]. Stiiben and
Trottenberg performed a two-grid analysis to analyze both the error smoothing and
the coarse-grid correction with Fourier basis functions [29]. Fourier analysis has also
been applied to the analysis of the 5-point or 9-point SOR iteration with the natural
or multicolor ordering [3],[20],[22]-[24], preconditioners for elliptic problems with the
natural ordering [13], and problems arising from the domain decomposition context

Due to the multicolor ordering scheme, the resulting system of iteration equations
is not spatially homogeneous but is periodic with respect to grid points. Consequently,
the Fourier modes are not eigenfunctions for the multicolor system, and therefore a
straightforward Fourier analysis does not apply. When these Fourier modes are op-
erated by periodic operators, there exists a coupling between high and low frequency
components. By exploiting the periodic property, we reformulate the conventional
Fourier analysis as a two-color Fourier analysis. From this new viewpoint, compo-
nents in the high frequency region are folded into the low frequency region so that
there exist two, i.e., red and black, computational waves in the low frequency region.
The coupling between the low and high conventional Fourier components is therefore
transformed into a coupling between the red and black computational waves with the
same frequency in the low frequency region. With this new Fourier tool, the spec-
tral representation of operators with the red/black ordering can be easily derived and
interpreted. For the model Poisson problem, the two-color Fourier analysis is exact
for Dirichlet boundary conditions and, with some modifications, is also applicable to
periodic boundary conditions. The two-color Fourier analysis can be generalized to
the multicolor Fourier analysis, which applies to ordering schemes with more than two
colors [22].

The determination of the optimal relaxation parameters of the SOR method with
the multicolor ordering and their corresponding convergence rates for both 5-point
and 9-point Laplacian operators have been intensively investigated [3],[22]-[24]. It has
been found that if the relaxation parameters are appropriately selected, the numbers
of iterations required for the red/black and natural orderings should be of the same
order. In the context of MG methods, the red/black Gauss-Seidel smoother provides
a better smoothing rate than the lexicographical Gauss-Seidel smoother [29]. Hence,
the red/black reordering does not deteriorate the performance for these two types of
algorithms.

However, the same conclusion does not apply to the SSOR iteration and precon-
ditioned iterative methods. The optimal relaxation parameter and its corresponding
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convergence rate of the SSOR iteration depends highly on the ordering [7],[19],[32].
The naturally ordered SSOR method has the same order of convergence rate as the
SOR method and can be accelerated to give an even faster convergence rate by the
Chebyshev semi-iterative or conjugate gradient procedure [9],[19],[32]. In contrast,
for the red/black ordering, it has been observed that the optimal relaxation parame-
ter for the SSOR method is 1 so that the resulting scheme reduces to a forward and
backward Gauss-Seidel relaxation which converges much slower [19]. Here, we use the
two-color Fourier analysis to analyze the red/black SSOR method and determine its
optimal relaxation parameter 1 analytically. We also perform a quantitative study
of the eigenstructure of the preconditioned Laplacian operator with the SSOR, ILU,
and MILU preconditioners. The results indicate that the condition number of the
preconditioned operator with the red/black ordering is, in general, one order higher
than that of its naturally ordered counterpart. Hence, for SSOR and preconditioned
iterative methods, the convergence rate is greatly sacrificed in order to obtain more
parallelism.

This paper is organized as follows. The two-color Fourier analytical approach is
described and the model problem is formulated accordingly in 2. Section 3 analyzes
the convergence rates of the SOR and SSOR iterations. Section 4 studies the eigen-
structure of the preconditioned Laplacian operator with the SSOR, ILU, and MILU
preconditioners. Then, we perform a two-grid analysis to understand the convergence
behavior of the multigrid method in 5. Section 6 compares the convergence rates of
iterative algorithms with natural and red/black orderings. Related research work and
extensions are given in 7 and 8.

2. Preliminaries.
2.1. Two-color Fourier analysis. Consider a two-dimensional sequence uj,k

defined on a grid

(2.1) h {(jh, kh) 0 < j,k < M, M h-i even}

with zero boundary values, i.e., uj,k 0 if j, k 0 or M. We can expand it with
Fourier series as

(2.2) uj,k Z Z fi,’ sin(rjh)sin(rprkh).
=I =i

As usual we call the grid point with index (j, k) the red or black point, depending on
whether j / k is even or odd. The function u,k at the red and black points defines
two sequences: the red sequence Ur,j,k and the black sequence Ub,j,k. They can be
expanded in Fourier series, respectively, as

(2.3a) ur,j,k Z fir,,n sin(rjh)sin(/rkh), j + k even,

(2.3b) Ub,j,k Z fib,,n sin(rjh)sin(rprkh), j + k odd,

where

Kb K-- {( rl) I2 +y < M- l, ,rl > l or7-- M-, 1< < M--l},
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and

It is straightforward to check that the Fourier coefficients t,, tM_,M_rt in (2.2)
and tr,,, tb,,n in (2.3) are related via

2b,, 1 --i fM-,M-

(2.4b) fi,.,,, 2,n, (, 7) --,-
We can interpret (2.4) as follows. Through the red/black decomposition (2.3), the
component (M- , M- /) in the high frequency region is folded into the component
(, y) in the low frequency region so that there exist two computational waves in the
low frequency region. The original and the folded two-color Fourier domains are de-
picted in Fig. 1. Note also that Kr and Kb differ only by a single element (M/2, M/2)
and, therefore, at the frequency (M/2, M/2) we have only a scalar tr,M/2,M/2, which
is considered as the degenerate case.

2.2. Model problem: A two-wave formulation. Consider the discretized
two-dimensional Poisson equation on the square [0, 1] 2 with grid spacing h,

1
(2.5) -(uj-l,k + uj+,k + uj,k- + uy,k+ 4uj,k) fj,k, 1 < j, k <_ M 1,

where M h- is even and Uj,k is given for j, k 0 or M. Without loss of generality,
we only consider the case where u,k is zero on boundaries, since a nonzero Uj,k on
the boundary can always be moved to the right-hand side and treated as part of the
driving function. In addition, since the driving term fj,k with j, k 0 or M does
not appear in (2.5), it can be viewed as zero. Consequently, the red/black Fourier
series expansion (2.3) for both uj,k and fj,k is well defined. By substituting (2.3) into
(2.5) and relating the Fourier coefficients of red and black waves, we can transform
(2.5) from the space domain into the red/black Fourier domain. It is a block diagonal
matrix equation, in which the equation for a nondegenerate frequency (, r/) can be
written as

[ 1 --c,n(2.6a) L -c, 1

where

(2.6b) c,,
cos(rh) + cos(rprh)

Since (, r/) E K, 0 < c, < 1. Only the nondegenerate case will be considered in
this paper, since the degenerate case can be analyzed similarly and, in general, it does
not change the conclusion for each case.

We can use the familiar matrix approach to derive the same result. Consider a
general coefficient matrix with the red/black ordering expressed in block form:

Dr -C ]-CT Db
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(O,,c)

e
(0,0) (,0)

(a)

(o,)

(o,o) (,o) e

(b)

FIG. 1. (a) Conventional and (b) folded two-color Fourier domains, where Th and yrh.
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Let the singular value decomposition for Dr, Db, and C be

Dr VJrUT, Db YJbVT, C UOVT,

where matrices U and V (with scaling constants) are defined by the two-color Fourier
series expansion (2.3). Then,

is orthogonal and

w w=-CT Db Db

Since r,/b, and ( are diagonal, (2.7) can be permuted to block diagonal form with
2 2 diagonal blocks. For the system (2.5) scaled by -h2/4, Dr and Db are identity
matrices and the 2 2 diagonal blocks are of the form

where a,u is defined in (2.6b).
We will use the shift operator notation to represent various operators discussed in

this paper, since the conventional matrix notation hides useful geometrical information
of variables defined on two-dimensional grids. For example, we express the local
Laplacian operator Aj,k at grid point (jh, kh) as

Ez + E + Ey + E(2.8) Aj,k 1
4

where Ez and Ey are shift operators along the x- and y- directions. The system (2.5)
can therefore be written as

h2

(2.9) Aj,kUy,k 71 fy,k.

We use A to denote the global operator, which consists of local operators A,k, 1 <_
j, k < M- 1 associated with zero boundary values. Besides, .(, r/) is used to denote

(2.10) (, 1) -c,nl -c,nl ] (’ /) K,

which is the coefficient matrix in the frequency domain as given by (2.6). An equiva-
lent point of view for the global operator A is to treat it as a homogeneous operator
defined on an infinite two-dimensional grid and to impose the zero boundary condi-
tions by requiring that input sequences be synthesized with Fourier components given
by (2.3) only. By adopting such a viewpoint, the operator algebra [16] can be conve-
niently applied to manipulate A while its frequency domain expression remains the
same.

3. Analysis of SOR and SSOR methods.
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3.1. SOR iteration. For the model problem (2.5), the red/black SOR iteration
can be written as

(3.1)

where

-+1/2

n+l
Uj,k

(E + ES,.,:i,k (w)
1 -w + Z + Eu + EI),
1,

(j, k) red,
(j, k) black,

Sb,j,k (W) { 1, (j, k) red,
1 -w + (Ez + El-1 + Eu + E-), (j, k) black,

are the local SOR iteration operators at red and black points, and

{w, (j,k) red, pb,j,k(W)={O, (j,k) red,Pr,j,k(w) O, (j, k) black, w, (j, k) black,

can be viewed as the local injection operators at red and black points scaled by the
parameter w. As before, we denote their corresponding global operators by St, Sb,
Pr, and Pb respectively.

By using the red/black Fourier series expansion (2.3), we can transform (3.1)
from the space domain to the frequency domain and obtain a block diagonal matrix
equation. For each nondegenerate frequency (, y), the iteration equation can be
written as

(3.2)
Ub,

[&(.,.olg(...o + P(.,.I] A..,
1 0 1 w w ,7

wa,7 1 w 0

4 w2,n w fb,,n
where a,, is given by (2.6b).

For the error, equation (3.2) is a homogeneous equation, and the error dynamic
can be completely understood by studying the SOR iteration matrices

[ l-w w,, ].(a’a) (’") &(’")(’") (1 -),,, -+,,,
The objective is to find the optimal relaxation parameter w* that minimizes the spec-
tral radius p of the matrix Srb with respect to all possible and y and its corresponding
spectral radius.

To do so, let us first consider fixed and . The spectral radius p,,(w) of
rb(, , w) can be found by solving the quadratic equation

,,() (,,,) ,, ( + ,,),, + (1 ) 0,



774 C.-C. J. KUO AND T. F. CHAN

so that

(3.4) p,u(w) max IA,v(w)l a.,+[:a -4(-1)]1/2 2

2

w* < w < 2,,rt

O<w<_

where

1 + (1 a,,)1/2
It is easy to see from (3.4) that when 0 < w,n < 2, p,n < 1. In addition, the
relaxation parameter w w*,n minimizes pC,n, which takes the value w,n 1.

Next, let us vary the values of and r/, and determine the optimal relaxation
parameter for (, r/) E K. Since the procedure is standard, only the results are
summarized [23],[31]. The optimal relaxation parameter is

2
(3.5) w*

1 +(1 2 1/2, a,n,max
(,r,max)

max a,n cos(rh),

where a,,max occurs at the lowest frequency (, 7) (1, 1). Its corresponding spec-
tral radius is

PoR(red/black ordering Dirichlet b.c.) -w* 1 .. 1- 2rh.

With this optimal relaxation parameter w*, the eigenvalues of rb are distributed
along a circle of radius w* 1 in the complex plane. The results in (3.5) and (3.6)
are in fact special cases of the general SOR theory by Young [30],[31].

3.2. $SOR iteration. One SSOR iteration with the red/black ordering consists
of one red/black SOR iteration followed by one black/red SOR iteration. Hence, the
corresponding iteration matrix can be written as

(3.7)

where r and b are given in (3.2). Note that we can rewrite the frequency domain
red/black SOR iteration matrix as

(3.8) b(, r/, w)r(, },w) I w(I wL(, rl))-I fl(,

where I is the 2-by-2 identity matrix, .(, /) is the frequency domain Laplacian
defined by (2.10), and

Similarly, the frequency domain black/red SOR iteration matrix can be written as

(3.9) r(, r/,W)b(, r/,w) I w(I wl)(, y))-tA(, r/),

where 0(, r/)- T(, r/). Combining (3.7)-(3.9), we have

(3.10) ssoR(, },w) I co(2 co)(I cog](, r}))-(I wL(, r/))- ft(, r/).
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The optimal relaxation parameter is selected to minimize the spectral radius of SssoR,
or equivalently, to maximize the smaller eigenvalue of the second term in the right-
hand side of (3.10). It is easy to see that w(2- w) takes the maximum value when
w 1. In addition, it will be shown in 4.1 that w 1 maximizes the smaller
eigenvalue A,,_ of the matrix

(I w(, r/))-I (I w,(, r/))-l.(, r/),

for (, r/) E K. Thus, the optimal relaxation parameter is 1, with which the spectral
radius of the SSOR iteration becomes

(3.11) PsoR(red/black ordering; Dirichlet b.c.) cos2 rh 1- r2h2.

4. Analysis of preconditioners. An important class of iterative methods for
solving elliptic PDEs is obtained by first preconditioning the system of equations and
then solving the preconditioned system with effective iterative methods [9]. One such
example is the preconditioned conjugate gradient (PCG) method. It is well known
that the rate of convergence of a preconditioned iterative method depends on the
condition number as well as the distribution of the eigenvalues of the preconditioned
system [7],[9].

For the model Poisson problem with the natural ordering, Chan and Elman [13]
used Fourier analysis with basis functions ei2’rjhei2r’lkh to obtain all eigenvalues
of the preconditioned Laplacian with the ILU, MILU, and SSOR preconditioners.
Here, we analyze the eigenstructure of the model problem (2.5) with the red/black
ordering. The two-color Fourier analysis with basis functions sin(rjh)sin(prkh) is
used to determine all eigenvalues of the preconditioned system. Note that different
basis functions are chosen for these two orderings. For the red/black ordering, since
the stencils of iterative operators are symmetric, either sine or complex sinusoidal
functions can be conveniently used as basis functions, and the resulting analysis is
exact for Dirichlet and periodic boundary conditions, respectively. For the natural
ordering, since the stencils of iterative operators are usually not symmetric, only
the complex sinusoidal functions can be conveniently used as basis functions. Such
an analysis is exact for periodic boundary conditions but, in general, is not exact
for Dirichlet boundary conditions. However, experimental results indicate that the
eigenvalue distribution of the preconditioned system is not sensitive to the change of
boundary conditions [13].

Three different types of preconditioners, i.e., the SSOR, ILU, and MILU precon-
ditioners, are studied below.

4.1. SSOR preconditioner. Suppose that we define the following local opera-
tors:

(4 la) Lj,k ( O, (j, k) red,
1/4(E. + E; + E + E), (j,k) black,

+ E + E + E-), (j, k) red,(4.1b) Uj,k O, (j, k) black.

It is easy to see that their corresponding global operators L and U are related to
A by A I (L + U). Then, the global SSOR preconditioner with the red/black
ordering is of the form [6]

(4.2) Qs (I wL)(I wU),
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where w is the relaxation parameter. By using the two-color Fourier analysis, we can
transform it to the frequency domain

-wa,, 1 0 1 -wa,n 1 + w2a,n

where ae,, is defined as in (2.6b). From (2.10) and (4.3), we find that the SSOR
preconditioned operator Q-A has the spectral representation

(4.4) (i(,7)(,7)= I 1 -wa,, +w2a,n -a, +wa,n -w2a, ],-a, + wa,, I

which has two eigenvalues

1 1 2 21 + +

When 0 < w < 2, the eigenvalues , are not only real but also positive and, there-
fore, QiA corresponds to a symmetric positive definite (SPD) matrix suitable for
the conjugate gradient method. The condition number a of the operator QiA is
determined by

a(QA max,.

which is o be minimized by choosing an appropriate relaxation parameter 0 < < 2.
To deermine he condition number, i is convenien o rew_rie (4.5) as

x2y x
A+(x, y) 1 -- 4- (x2y2 4y + 4)1/2,

where 0 _< x a,u < 1 and 0 < y w(2- w) <_ 1. By taking the partial derivative
with respect to y for A+, we find that A+ and A_ are monotonically decreasing and
increasing, respectively, for given x. So, y 1 gives the smallest condition number
and the optimal relaxation parameter is 1. The corresponding eigenvalues in (4.5)
become

1 1 2(4.6) A,n,+ 1--a,n 4- -a,n.

The maxima of Ae,n,+ are 1, and the minimum of Ae,n,_ is 1- cos2(rh) r2h2, which
occurs at (, r/) (1, 1). Therefore, the condition number of the SSOR preconditioned
Laplacian is

1 1
(4.7) ,(Q-A)

1 cos2(rh) r2h2 O(h-2)"

The distribution of the eigenvalues A,n,+ given by (4.6) is plotted as a function of
a,n in Fig. 2(a). The surface plot of the eigenvalue A,n,_ as a function of (0, )
(,-rh, rprh) is presented in Fig. 2(b). Note that the condition number of the Laplacian
is

1 + cos(rh) 4
1 cos(rh) r2h2"

Hence, for small h, the red/black SSOR preconditioner only reduces the condition
number of the original matrix by a factor of 4.
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FIG. 2. (a) The eigenvalues A+ o] the SSOR-preconditioned system as functions of a,n and
(b) the surface plot of A+ as a unction o (0, qb) with h 0.05.
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4.2. ILU preconditioner. An incomplete factorization for a matrix can be de-
termined by imposing specific sparse patterns and constraints for elements on the
factorizing matrices as well as their product. Since the construction of a matrix spec-
ifies not only a system of equations but also an ordering scheme for the variables,
the incomplete factorization depends highly on the ordering. In this and the follow-
ing sections, we study the spectra of two well-known preconditioners, i.e., the ILU
and MILU preconditioners, which are constructed based on incomplete lower/upper
triangular factorization.

The ILU and MILU factorizations were originally defined in [25] and [17], respec-
tively. We summarize their definitions as follows. It is required for both the ILU and
MILU factorizations that the factorizing lower and upper triangular matrices have the
same sparse patterns as the lower and upper triangular parts of the original matrix.
Besides, the off-diagonal nonzero elements of the original matrix should have the same
values as the corresponding elements of the product matrix. The major difference be-
tween them is that the ILU factorization requires that the diagonal elements of the
original and product matrices be also the same whereas the MILU factorization re-
quires that the row sum of the product matrix differ from the row sum of the original
matrix by a small quantity ch2, where c is a constant independent of h.

The factorizing operators generally have different coefficients associated with dif-
ferent grid points due to the boundary effects. However, these coefficients usually
reach their asymptotic constant values for the region sufficiently far away from bound-
aries. In the following analysis, we ignore the boundary effect and analyze the pre-
conditioned system with the asymptotic preconditioners.

For the ILU factorization, consider the following local operators:

1, (j,k) red,
Lj,k 1 1/4 (E + E + E/ + E), (j, k) black,

Uj, { I- 1/4 (E +E + Eu + (j, k) red,
(j, k) black.

With the red/black ordering, the global operators L and U correspond to lower and
upper triangular matrices. Since the operator Lj,k (or Uj,k) has nonzero coefficients
for the terms 1, Ez, E-, Ey, and E-, the sparse pattern of L (or U) is the same as
that of the original matrix A for the lower (or upper) triangular part. We define the
global operator QI to be the product of the lower and upper global operators

QI LU.

Let R QI A. Then R consists of the local operators

0,
R:i,k (EEy / EIEy + E.E / E;1E)

2 -2 2 -2+ E +E +E +E

(j, k) red,

(j, k) black,

for points not close to the boundaries. Note that the operator (QI)j,k has the same
coefficients as Aj,k (i.e., Rj,k 0) for terms corresponding to 1, Ex, E, Ey, and

E-, which constitute the nonzero terms for the sparse matrix A. Note that the
sparse patterns of L, U, and QI described above are consistent with the sparsity
conditions required by the ILU factorization. We conclude that QI is the desired ILU
preconditioner for the Laplacian with the red/black ordering.
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In the Fourier domain, we have

Therefore, the ILU preconditioned operator Q-/1A has the spectral representation

107x(’)(’) 0 43]4 2

which has two real and positive eigenvalues

1, g ,,.
The condition number of the ILU preconditioned Laplacian can be determined by

(4.9) a(QTIA) max’n IA’nl max,,n -(1 a,n) 1 2),. =O(h-
min,v IA,ul min,u 34-(1 ,u) r2h2

where the maximum value occurs when a,n 0 and the minimum value [1-
cos2(rh)] occurs at (, y) (1, 1). By the ILU preconditioning, we reduce the con-
dition number of A approximately by a factor of 4. The distribution of the two
eigenvalues , (4.8) as a function of a,n and the surface plot of the eigenvalue
4(1 a2
5 ,) as a function of (, ) (rh, rh) are shown in Figs. 3(a) and 3(b).
The corresponding plot of the natural ordering case can be found in [13], where the
condition number of A is reduced approximately by a factor 2(2 +

4.3. MILU preconditioner. For the MILU factorization, consider the follow-
ing local operators:

(j, k) red,
(j, k) black,

(j, k) red,
(j, k) black,

where ch2. The sparse patterns of L and U given above are the same as those
for the ILU factorization, but they have different weighting coefficients. The global
operator QM is defined to be the product of the lower and upper global operators

QM LU.

Let R QM A. Then R consists of the local operators

+ y- [-1/4 + (ExEy + EEy + ExE; + E’E)
+6(E2 + E-2 + Ey2 + E-2)],

(j, k) red,

(j, k) black,

for points not close to the boundaries. Note that (QM)j,k has the same coefficients
as Aj,k (R.i,k 0) for terms Ex, E-, Ey and E-, which are nonzero off-diagonal
entries of the matrix A. However, unlike the ILU case, the matrices A and QM do
not have the same diagonal entries. Instead, we find that the sum of coefficients of
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FIG. 3. (a) The eigenvalues of the ILU-preconditioned system as functions of c,n and (b) the
surface plot of the nonconstant eigenvalue as a function of (0, ok) with h 0.05.
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the local error operator R.i,k equals 6. This implies that the row sums of matrices A
and QM differ by a quantity of 5. By definition, QM is the MILU preconditioner for
the Laplacian with the red/black ordering.

The Fourier transform of QM gives

Hence, the MILU preconditioned operator has the spectral representation

1 [ i(l+l-a’") -a,,(i+ ’’-1 ]1+6 i+6

which has the eigenvalues

(4.10) 25(1 q- 5) q- (1 a,v)(1 -b 2i) +/- [(1 a,, 26a,u)2 q- 463a,v(2 q- 6)]1/2
+ +

Note that if 5 0 (i.e., c 0 ), (M(, 7) is a singular matrix that cannot be used as
a preconditioner. For c > 0, since

(4.11) 463a,n(2 q- 6) << (1 a,, 26a,,)2,

as h goes to zero, we can simplify (4.10) as follows:

26(1 + 6) -b (1 a,n)(1 / 2i) :k (1 a,v
26(1 + i)(2 / 6)

For small h and positive c, 1- a,n 26a,, is positive. So, A,n,+ and A,n,_ are
the larger and smaller eigenvalues, respectively. Then, the condition number of the
MILU preconditioned Laplacian is found to be

max,, [A,n,+,(QIA)
min,n IA,v,_
max:,u 5(1 a,, + ) + (1 a:,,)(1+2 6) 1

(4.12) 6(2 + 6) 2ch O(h-2)’

where the maximum value (1 + 5)2 occurs when a,, 0.
For fixed h, the optimal parameter c and the corresponding condition number

,(QIA) can be determined by solving (4.10) numerically. The condition number
,(QIA) is plotted as a function of the parameter c with different h in Fig. 4.

For small c c <_ 5 ), the condition number behaves very close to (2ch2)-1 as
predicted by (4.12). For c >> 5, condition (4.11) is no more valid, and we see that
,(QwlA) remains approximately the same for a wide range of c. Thus, the condition
number is not sensitive to the selection of the relaxation parameter, as long as it is
in the appropriate range. For these values of h used in Fig. 4, the optimal condition
number is achieved when c ,, 5. Thus, we know from the above analysis that the
condition number of the original Laplacian is improved approximately by a factor of
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FIG. 4. The condition number of the MILU-preconditioned system as a function of the param-
eter with (a) h 1/5, (b) h 1/10, (c) h 1/15, and (d) h 1/20.

8c/2 4. This improvement is about the same as that for the red/black ordered
SSOR and ILU preconditioners.

The distribution of the eigenvalues A,v,+ given by (4.10) with 5 5h2 (i.e., c 5
is plotted as a function of a,v in Fig. 5(a). Note that the eigenvalue A,v,_ is nearly a
constant. The surface plot of the eigenvalue ),u,+ as a function of (, ) (rh, rprh)
is shown in Fig. 5(b).

5. Analysis of the multigrid (MG) method. Multigrid (MG) methods pro-
vide one of the most effective ways for solving elliptic PDEs. The multigrid iteration
is often modeled by a (h, 2h) two-grid iteration process so that its mechanism can
be easily understood. The efficiency of the two-grid (or multigrid) iteration is based
on a simple idea- to treat error components of low and high frequencies differently.
Suppose that we partition the Fourier domain into two regions of which the low
frequency region contains 1 _< , r] < M/2 and the high frequency region contains
M/2 <_ <_ M-1 or M/2 _< y g M-1. The mechanism of the two-grid itera-
tion with the damped Jacobi or the lexicographical (naturally ordered) Gauss-Seidel
smoother can be easily explained. That is, the high frequency error is smoothed at
the fine grid, whereas the low frequency error is corrected at the coarse grid. Thus,
the study of the error smoothing over the high frequency region provides a rough
estimate of the convergence behavior of the multigrid iteration. This is known as the
smoothing rate analysis [10].

It is known that MG with the red/black Gauss-Seidel smoother performs better
than MG with the damped Jacobi or the lexicographical Gauss-Seidel smoother for
the model Poisson problem [29]. However, the efficiency of the red/black Gauss-
Seidel smoother cannot be appropriately explained by the smoothing rate analysis.
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FIG. 5. (a) The eigenvalues of the MILU-preconditioned system as functions of a,n and (b)
the surface plot of the nonconstant eigenvalue as a function of (0, ) with h 0.05.
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To see this, let us examine the red/black Gauss-Seidel iteration matrix in the two-color
Fourier domain

0 cz,v ]0

which is obtained from (3.3) with w 1. The smoothing rate # is usually defined as

# max P[RBGS(, W)] cos2(rh) " 1 r2h2,

where

{ M M }Khigh (, r/)" , r/ ( I,-- _< _< M- 1 or -- _< r/_< M- 1

and the maximum value occurs at y M- 1. This shows that the red/black
Gauss-Seidel smoother has a very poor smoothing rate as compared to the natural
ordering case for which the smoothing rate is 1/2 [10].

Since the smoothing rate analysis does not explain how the MG method with the
red/black Gauss-Seidel smoothing works, it is essential to perform a complete two-
grid analysis, which includes both smoothing and coarse-grid correction. A two-grid
analysis was performed by Stiiben and Trottenberg by using modified Fourier analysis
[29]. Here, we use the framework of two-color Fourier analysis to analyze this method.
Our objective is to give a clearer explanation of the physical mechanism behind this
method rather than to rederive the specific result obtained in [29]. We will show that
the two-color two-grid iteration process asymptotically reduces to a one-color two-grid
iteration process that is much easier to understand.

5.1. Framework of the two-color two-grid analysis. We summarize the
two-grid iteration model, which is discussed in detail in [29], as follows. Let Lh and
L2h be the 5-point discretizations of the Laplacian on grids flh and t2h. Consider
the full-weighting restriction operator Ih from th to fl2h and the linear interpolation
operator Ih2h from fl2h to gth, which are usually represented in stencil form as

(5.1) I"
16 8 16

8 4 8

16 8 16

2h hI
4 2 4

4 2 4 2h

Then, a (h, 2h) two-grid iteration matrix with the red/black Gauss-Seidel smoothing
can be written as

Th (SlBOS)2Kh(SpBGS)I, Kh Ih i2hL2hh ih2hLh,

where Ih is the identity matrix, Pl and v2 are the numbers of presmoothing and
postsmoothing iterations. We want to determine the spectral radius 2hp(Th )and,
more importantly, to explain how the two-grid iteration (5.2) works.

In the current context, (, /) is nondegenerate if 1 < , r/< M/2 and degenerate if
M/2 or l M/2. We consider only the nondegenerate case, and the degenerate

case can be treated similarly [21]. Let , be the Fourier coefficient of the error,
and let #, and , be the Fourier coefficients of the error defined at the red and
black points, respectively. Through the iteration (5.2), four Fourier components
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,M-?, M-,, and M-,M- with 1 _< , y < M/2, are coupled together. Hence,
the spectrum of Th can be analyzed by focusing on a subspace spanned by these
four components. Stiiben and Trottenberg used the unit vector of these four Fourier
components as a basis. Here, we use a different basis obtained by

where

(M , r/)(I, r]l) (, M y)

Note that the new basis is basically obtained by folding the conventional Fourier
domain into two-color Fourier domain as shown in (2.4), and therefore the above
transformation maps the coupled four Fourier components ,, ,M-n, M-,n, and
M-,M- into red and black waves with indices (, ) and (I, I) (Fig. 6).

We choose the convention that each 4 x 4 frequency domain matrix describes a
mapping from a vector space spanned by

onto itself for the rest of this section. To simplify the notation, the abbreviations

+ +
cos rh cos rprh, / cosrh cosh,

are used. We also omit the subscripts , r], t and yt for a, 6, and / and the
arguments , y for frequency domain matrices.

5.2. Analysis of elements for two-grid iteration. The building blocks for
the two-grid iteration process (5.2) are analyzed in this section. In the two-color
Fourier domain, the red/black Gauss-Seidel iteration can be represented by

(5.3) tB(S= J 0 0 I 0 2

where 0 is the 2 x 2 zero matrix, I is the 2 x 2 identity matrix, and

In addition, the frequency domain matrices for operators Ih, Lh, and Lh in (5.2) are

and

h2

(5.4b) L -, 5 2a2
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(a)

(0,)

(0,0) (x,O)

(b)

FIG. 6. Four coupled Fourier components in (a) conventional and (b) two-color Fourier domains.
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In (5.3) and (5.4), there is no coupling between vectors (?,v, D,r/)T and (’,v’, D’,v’) "T
The coupling between them comes from the full-weighting restriction and linear in-
terpolation operations. The decomposition, commonly used in the multirate signal
processing context [15], is very useful for understanding the physical mechanism of
interpolation and restriction operators, and for deriving their frequency domain ma-
trices. Conceptually, we decompose the restriction procedure Ih2h into two steps.
Step 1. Lowpass filtering or averaging at every point of fh, where the

weighting coefficients are specified by stencil Ih of (5.1).
Step 2. Down-sampling or injecting values from h to "2h.
The interpolation operator Ih2h is also decomposed into two steps.
Step 1. Up-sampling values from -2h to "h, by which we assign 0 to points

that belong to ’h ’2h
Step 2. Lowpass filtering at every point of fh, where the weighting coeffi-

cients are specified by stencil Ih2h of (5.1).
It is relatively easy to find a frequency domain matrix representation for each of the
above steps. Combining them together, we obtain

1+ 0 2a 0
1 0 1 +/) 0 2& 111 + 3 1 + 2a 2],/h [1 1 0 0] x

2a 0 1 + fl 0
0 25 0 1+

and

1 + 0 2a 0 1 1 +2hh__ 0 1+ 0 25 1 1 1 1+
2a 0 1 +/3 0

x
0 2a

0 25 0 1 +/) 0 25

Note that in the frequency domain the down-sampling operation adds the high fre-
quency component -,,,, to the low frequency component ,,. This phenomenon
is known as aliasing [15]. On the other hand, the up-sampling operation duplicates
the low frequency component e,, in the high frequency region in the form of-,,,,
which is called imaging [15]. The lowpass filters cascaded with the down-sampling
and the up-sampling operators are basically used to reduce the aliasing and imaging
effects. For example, for low frequency components with rh and rprh close to 0, we
have a 1, /3 . 1, & . 0, and/ -1. Hence, the aliasing and imaging effects
occurring between (,, D(,r/)T and (e,,n,, D(t,r,)T are substantially eliminated by the
associated lowpass filters.."rouc+ fh f2hThe 2hh

where

can be expressed as

]] 1[ -11

(1 + )= (1 + 3)(1 + )/
(1 + )(1 + ) (1 + )=

4a2 4a5 ]4a5 452

2a(1 + )/2-/ 2a(1 + )
25(1 +) ]25(1 + )
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Therefore, from (5.2), (5.4), and (5.5), we obtain the frequency domain matrix for the
coarse-grid correction operator

where

k -[-], k x-[-1,
k12 --[113- 121, 21 --[223- 21].

The remaining task is to combine results of (5.3) and (5.6) so that the spectral radius
p(h) can be determined.

5.3. Two-to-one wave reduction. The analytical determination of the eigen-
values of the two-grid iteration matrix h is, in general, a difficult task since it is
a 4 x 4 matrix. However, if the red/black Gauss-Seidel smoother is used, the whole
process is greatly simplified. When the first partial step of the red/black Gauss-Seidel
iteration, i.e., the Jacobi iteration at red points, is performed, the values of the red
points are updated by the values of their neighboring black points and their original
values are totally discarded. As a consequence, the computational process that follows
is only determined by the initial values of the black points. This is clearly indicated
by the first two zero columns in (5.3).

For the two-grid iteration process (5.2), let us temporarily consider the special
case (, 2) (1, 0). For such a simple case, we find that

(5.7) ,= [ 0 + ]o R:2+R2

and the spectral radius ofh is

(22) (k2 +

The two-to-one color reduction is mathematically clear from equations (5.7) and (5.8),
namely, that (5.8) involves the evolution of black waves only. We can interpret its
corresponding physical mechanism as follows. The two-grid iteration process ,h
consists of two processes

12 kllJ -"/12]2, 22 k2J + k22j2,

which describe the evolution from (b,u,-b,,,y)T to (r,u,-r,,,,)T and (b,u,-b,,,,)T,
respectively. Since the m-fold repetition of Th gives

^2h m . rm-1(Th) ]12 1222 [(22.)]22 "-T2

the convergence of the two-grid method depends entirely on the process 22. Hence,
the two-color two-grid iteration process (5.2) can be equivalently characterized by the
black-wave two-grid iteration process.

For general (vl, v2), since

2h v2 ,2h vo[T[ (ux, u2)] O(IBGS h SRBGS) O(khRBGsVl+v ),
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where the last equality comes from the fact p(AB) p(BA), we can derive that

+
where u u + u2. Let us examine the matrix

+
which represents a one-color two-grid iteration process and, due to (5.6), can be
expressed as

where

26 26

26 26

is the equivalent one-color coarse-grid correction operator in the frequency domain.
Since p(a/q-i) p(/qa), we see that can be viewed as the equivalent one-

color smoother eq, which corresponds to two Jacobi relaxation steps for the blck
component b,v.

5.4. The spectral radius result. The equivalent one-color two-grid iteration
matrix can also be determined for the degenerate cse M/2 or W M/2 [21].
Then, the spectral radius of the two-grid iteration matrix can be found by solving

p(Th)= max P(eq).

In [29], Stfiben and ottenberg reduced their analysis to the determination of the
largest value among all the spectral radii of the frequency domain matrices 2eq.
Since we have p(eq2u-) p(2eq), these two different derivations lead to the
same final result. A closed form of this quantity has been derived in [29, pp. 104-108],
which is summarized as follows:

(5.9) p[Th(u u + u2)] ’ u 1,
u+l() u2.

In the above expression, the maximum of p(Th) occurs at (rh, wrh) (r/2, 0)
or (0, r/2) when u 1 and at (cos-[(u/u + 1)]],cos-[(u/u + 1)]]) when u 2.

By using the two-color Fourier analysis, we can clearly see why MG with the
red/black Gauss-Seidel smoother has a good convergence behavior in spite of its
poor smoothing property for the high frequency components. Through the red/black
Gauss-Seidel iteration, the low and high frequency components are coupled and can
be equivalently formulated as the coupling between red and black waves with the same
low frequency component. It turns out that only the black wave plays n role and that
the low frequency component of the black wave is solved by coarse-grid correction.
Thus, we conclude that the very high frequency components, namely, those with (0, )
close to (r, r), are in fact corrected at the coarse grid rather than smoothed at the
fine grid. Such an explanation is difficult to obtain using the analysis given by [29].
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6. Convergence rate comparison for natural and red/black orderings.
6.1. SOR and SSOR methods. Fourier analysis has been used to analyze the

naturally ordered SOR and SSOR iteration methods for the Poisson problem on a
square with the periodic boundary conditions by Chan and Elman [13]. It is shown
that the optimal relaxation parameters for both cases are the same,

(6.1) w* (natural ordering; periodic b.c.)

and the corresponding spectral radii are

1 + 2 sin(0.5rh)’

(6.2) PsoR(natural ordering; periodic b.c.) 1 -0.5rh,

(6.3) pssoR(natural ordering; periodic b.c.) 1 rh.

For the model Dirichlet problem, Frankel derived a classical Fourier result for the SOR
iteration with the natural ordering [18]. That is, the optimal relaxation parameter is

2
(6.4) w* (natural ordering; Dirichlet b.c.)

1 + sin

and the corresponding spectral radius is

(6.5) PsoR(natural ordering; Dirichlet b.c.) . 1 2rh.

This result was interpreted by LeVeque and Trefethen from a tilted-grid point of view
[24]. Although there is no Fourier result of the naturally ordered SSOR iteration for
the Dirichlet problem, it can be shown by matrix analysis that

(6.6) PssoR(natural ordering; Dirichlet b.c.) <_ 1- rh,

and that the convergence rate is not sensitive to the choice of the relaxation parameter
[19],[32]. Note that (6.1)-(6.3) agrees with (6.4)-(6.6) asymptotically except for the
constant multiplying h in (6.2) and (6.5).

By comparing the above results with those in 3, we can clearly see that for
the SOR iteration the red/black ordering does not effect the choice of the optimal
relaxation parameters (cf. (3.5) and (6.4)) and the rate of convergence (cf. (3.6)
and (6.5)). However, for the SSOR iteration, the situation changes drastically. If the
red/black ordering is used, the acceleration due to the introduction of the relaxation
parameter totally disappears (cf. (3.11), (6.3), and (6.6)).

6.2. Preconditioners. Chan and Elman also applied Fourier analysis to an-
alyze the eigenstructures of the preconditioned system with the periodic boundary
conditions and the natural ordering [13]. Their results are summarized as follows:

(6.7) (QlA)(natural ordering; periodic b.c.) O(h-1),

(6.8) (Q-A)(natural ordering; periodic b.c.) O(h-2),

O(h 2

(6.9) (QA)(natural ordering; periodic b.c.) O(h-) coC0
where Qs, Qx, and (M denote the SSOR, ILU, and MILU preconditioning operators.
Although no Fourier result for the naturally ordered Dirichlet problem is available,
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TABLE 1
Comparison of convergence rates.

ordering SOR SSOR PCG MG
natural O(N1/2) O(N/2) O(N/4) O(1)
red/black O(N/2) O(N) O(N1/2) O(1)

TABLE 2
Comparison of the spectral radii for the MG method.

ordering u=l u=2 u=3
natural 1/2 1/4 1/8
red/black 1/4 2/27 27/512
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these results agree with the known results for the Dirichlet case (see the references
of [13]) and numerical experiments indicate that the eigenstructures for the periodic
and Dirichlet cases behave in a very similar way [13].

By examining (4.7), (4.9), and (4.12), we see that the preconditioned system with
the red/black ordering, in general, does not decrease the order of the condition number
of the original Laplacian. In fact, the condition number is reduced approximately by
a factor 4 for SSOR, ILU, and MILU preconditioners. In contrast, effective naturally
ordered preconditioners such as SSOR and MILU can decrease the condition number
of the Laplacian by an order of magnitude. Thus, as far as the convergence rate
is concerned, a red/black preconditioned iterative method usually converges much
slower than a naturally ordered preconditioned iterative method.

The condition number analysis of the red/black ordered preconditioners is consis-
tent with the experimental results reported by Ashcraft and Grimes [5] and to the
best of our knowledge, no such analysis has been reported before.

6.3. MG methods. So far, there is no exact Fourier result for the two-grid
analysis of the model Dirichlet problem with natural ordering. However, a simplified
local Fourier analysis that assumes ideal interpolation and restriction operators and
ignores the boundary conditions has been performed by Brandt [10]. The smoothing
rate # of one lexicographical Gauss-Seidel relaxation is found to be 1/2 by such an
analysis. When the total number u of the smoothing iteration is small, we can roughly
estimate the spectral radius of two-grid iteration matrix from the smoothing rate by

1
(6.10) pMc(natural ordering) #u ()v.
Therefore, from (5.9) and (6.10), we see that the red/black Gauss-Seidel smoother
has a better smoothing rate than that of the lexicographical Gauss-Seidel smoother.

6.4. Summary of comparison. We summarize the above comparison in Table
1, where each entry denotes the number of iterations required and N is the number of
unknowns. The spectral radii of the MG method, which are calculated by (5.9) and
(6.10), are also compared in Table 2.

7. Related work. Most research work on iterative algorithms with the multi-color ordering has been focused on the SOR method. To achieve the efficiency of
the SOR iteration, the determination of the optimal relaxation parameter is crucial.
However, except for a few simple cases such as the model Poisson problem, this is,
in general, a difficult task. A local two-color Fourier analysis has been proposed by
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Kuo, Levy, and Musicus [23] to design a local relaxation scheme that uses different re-
laxation parameters for different finite-difference equations associated with each grid
point. The four-color SOR iteration applied to the 9-point Laplacian has been inde-
pendently studied by Adams, LeVeque, and Young [3] and Kuo and Levy [22]. The
technique used by Adams, LeVeque, and Young is to change the variable of iteration
number to a new variable known as the "data flow time" defined by Adams and Jor-
dan [2]. By using such a technique, the multicolor ordering scheme can be related
to the natural ordering scheme and then analyzed by a modified Fourier analysis.
In [22], Kuo and Levy used a four-color Fourier analysis to design a two-level SOR
scheme that includes an outer block SOR iteration and an inner point SOR iteration.
The four-color Fourier analysis is a natural generalization of the two-color Fourier
analysis presented in this paper. In addition to the four-color ordering, O’Leary has
considered several other ordering schemes for the 9-point Laplacian and has shown
that the convergence rate of the SOR iteration with these orderings is no worse than
that for the natural ordering [26].

8. Conclusions and extensions. We conclude our study simply as follows.
Although some algorithms such as the SOR and MG methods can be reordered to get
more parallelism without sacrificing their convergence rates, some algorithms such as
the SSOR and preconditioned iterative methods do have a trade-off in achieving more
parallelism and faster convergence.

A natural question that arises from this research work is: what is the "intrinsic
property" of these algorithms that makes them behave so differently with respect to
the reordering? A better understanding of this fundamental issue should help us to
know more about parallel computation and its limitation. The question of the poor
performance of the red/black SSOR, ILU, and MILU preconditioners can be partly
answered by the observation that at each iteration the red/black preconditioners use
only local information, whereas the naturally ordered preconditioners do make use of
some global information.

The preconditioned iterative methods such as the PCG method are among one of
the most effective methods for solving elliptic PDEs in a sequential machine. However,
since effective preconditioners such as the naturally ordered SSOR and MILU schemes
cannot be easily parallelized, they are not as attractive for parallel computers. It is
an interesting and important research topic to find preconditioners that are easily
parallelizable and give satisfactory convergence rates.
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Abstract. In the past several years, domain decomposition has been a very popular topic, mo-
tivated by the ease of parallelization. However, the question of whether it is better than parallelizing
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In this paper it is shown, with some numerical examples, that the answer is affirmative in the case
of iterative solutions of elliptic problems by preconditioned conjugate gradient iteration. Specifically
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1. Introduction. In the past several years, domain decomposition methods for
solving elliptic partial differential equations have attracted much attention. The main
impulse for the enormous interest in these methods has come from the arrival of
parallel computers. Besides the ease of parallelization, domain decomposition allows
us to treat complex geometries or to isolate singular parts of the domain.

In the majority of domain decomposition methods, the matching of the solution
on the subdomains to an overall solution is done by an iterative process. A large
class is based on the preconditioned conjugate gradient method (PCG) for solving
the reduced equations on the interfaces between the subdomains. The efficiency of
these methods is determined by the preconditioner used. This approach involves a
solve on each subdomain in each iteration step, and the cost could be expensive if the
number of iterations is not kept at a minimum. Therefore, doubts have been raised
on the efficiency of these methods as compared to a parallelization of traditional
preconditioned conjugate gradient iterations on the whole domain.
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One aspect that has generally been ignored is the gain in sequential computational
complexity that domain decomposition can yield as a divide-and-conquer technique.
When the work for solving a problem grows more than linearly with its size, splitting
it up in two subproblems of half the size will yield a faster method provided that
the subsolutions can be efficiently combined to obtain the solution of the original
problem. In this paper, we show that this can be exploited for incomplete factorization
preconditioners.

Specifically, in 2, given a method for constructing a preconditioner M on the
whole domain (such as the ILU- and MILU-type methods, which give a condition
number for the preconditioned system of O(h-2), O(h-1), respectively), we show
how to construct a domain decomposed preconditioner based on applying the same
method in the subdomains and using an appropriately chosen preconditioner for the
interface. We hereby stress the importance of the preconditioner on the interface, for
a badly chosen one can adversely affect the overall convergence rate. One that we have
found to be very successful is the boundary probe preconditioner [7]. This domain
decomposed preconditioner for the original domain can yield a faster convergence rate
with roughly the same operation count per iteration step, as compared to traditional
preconditioners.

In 3 we stress the importance of an appropriate factorization of the subdomain
preconditioners in order to minimize the number of arithmetic operations per iteration
step. In 4 we show some numerical experiments to illustrate our main points.

Another instance of where a parallel algorithm, when executed sequentially, turns
out to be better than the traditional sequential algorithms is the parallel method for
solving the symmetric eigenvalue problem as proposed in [12].

2. Domain decomposed preconditioners. We formulate this approach for
the simplest case of a domain F/split into two subdomains F/1 and "2 sharing the
interface F.

Consider the problem:

Lu f on ,
U Ub on 0,

where L is a linear second-order elliptic operator.
Given a preconditioning method on , we would like to construct a preconditioner

that can be inverted in a domain decomposed way. To do this, we order the unknowns
for the internal points of the subdomains first and those on the interface F last. Then
the discrete solution vector u (u, u2, u3)T satisfies the linear system:

(i) Au 0 A22 A23 u2 f2
A31 A32 A33 u3 f3

The matrix A can be factored in block form:

(2) A A22 I A2Ae3
A31 A32 S I

where

S A33 A31A:A13 A32A#A23.
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The matrix S is the Schur complement of A33 in the matrix A. It corresponds to the
reduction of the operator L on Ft to an operator on the internal boundary F. Suppose
we apply the preconditioning method to each subdomain Fi and obtain Bii. One way
to derive a preconditioner for A is by replacing Aii in (2) by the approximations Bii
and replacing the $chur complement by a preconditioner M.

We therefore arrive at the following preconditioner:

(3) M B22 I B21A23
A31 A32 M I

An advantage of the algebraical approach as expressed by (3) is that it allows an easy
combination of preconditioners of any kind for the elliptic problems on the subdo-
mains, as, e.g., incomplete factorizations or a number of multigrid cycles. However,
care must be taken in the scaling of the preconditioners on the subdomains and on
the interface to the unchanged off-diagonal blocks. The rate of convergence of the
preconditioned conjugate gradient method is determined by the eigenvalue spectrum
of M-1A [10], which is given by:

(4)

with

B11All 0 0
0 BA22 0
0 0

-M-1A31BA13

BllA13M-1A32P2

BA23M-1A32P2
_M-1A D--I

32-22 223

(5) Pi (I- BlAii)
and

(6) ,- A33 A31BllAI3 A32B21A23
From (4) and (5) we see that if the BlAii, 1,2, and M-I, with given by (6),
are close to the unity matrix then the eigenvalue spectrum of M-1A is a perturbation
of the spectra of BlAii, 1,2 and of M-I. Therefore it is not enough that
the condition number of BlAii is close to one, but the eigenvalues of B1Aii must
be clustered around one. For many commonly used preconditioners (e.g., ILU or
multigrid preconditioners) this is indeed the case. For an extensive theoretical study
of the eigenvalue spectrum, we refer to [16] and [17].

For M we can take any of the preconditioners for the Schur complement that were
proposed in the literature L13], [15], [2], [6], [7], [1], [18]. We have found that a good
overall preconditioner for S for general second-order partial differential equations is
the boundary probe preconditioner [7]. Several experiments with this preconditioner
have been performed [18]. The main motivation for this approach is the observation
that, in the case of the Laplace operator, the elements of the matrix S decay rapidly
away from the main diagonal [15]. It is therefore reasonable to consider a k-diagonal
approximation to S. However, it would not be efficient to calculate the elements of S
in order to do this.
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Instead, as proposed in [7], a (2k / 1)-diagonal approximation to S can be con-
structed by multiplying S by 2k / 1 "probing" vectors vj, j 1,..., 2k + 1. The idea
is motivated by sparse Jacobian evaluation techniques [11]. For the case k 0 and
k 1 the probing vectors are the following:

k 0 vl (1, 1, 1, 1, 1, 1, 1,...)T,
k 1 vl (1, 0, 0, 1, 0, 0, 1,...)T,

V2 (0, 1, 0, 0, 1, 0, 0,’" .)T,
V3 (0, 0, 1, 0, 0, 1, 0,...)T.

The case k 0 corresponds to a scaling of each row of the matrix S by the sum of
the elements of the row. For k 1, if S were indeed tridiagonal, all of its elements
would be found in the vectors Svj, j 1, 2, 3.

This approach for probing a matrix is valid for any matrix S and will yield a good
banded approximation, provided that the elements of S decay away from the main
diagonal. In the case of the Schur complement this is inherently related to the fact
that the operator S is predominantly local. If the discretization stencil used extends
over one gridline in each direction, the most important coupling of a gridpoint on the
interface will be with its immediate neighbours, and a tridiagonal approximation for
S will suffice.

The probing technique asks for 2k / 1 products Svj. This implies (2k / 1) solves
on each subdomain. However, as indicated by (4), it suffices to have a preconditioner
for given by (6). Since approximates S, it will also have the property that it is
dominantly local. When the matrices Aii are replaced by approximate factorizations,
which correspond to more local operators, the diagonals of S will decay even more.
So the probing technique can be applied here also. However, the product vj now
only involves approximate solves and thus can be performed cheaply. Another prob-
ing technique used to construct a sparse approximation to the Schur complement is
proposed in [1].

Preconditioners of this kind were first proposed by Bramble, Pasciak, and Schatz
[5], [4]. They are constructed by replacing the bilinear form of the weak formulation
of the differential equation by a spectrally equivalent form that can be inverted in
a domain decomposed way. Algebraically it results in a preconditioner of the form
(3) where the off-diagonal blocks are also replaced. As subdomain preconditioners,
constant coefficient or separable approximations are used. Numerical experiments
with these preconditioners are reported in [4] and in the survey paper by Keyes and
Gropp [18]. This method is also studied in [24]. Preconditioners of the form (3), with
the Neumann-Dirichlet preconditioner [2] and with the trace preconditioner [13] are
studied in [3]. In [22] and [21] Meurant proposes preconditioners of the form (3) de-
rived from block preconditioners. The interface preconditioner here follows naturally
from the recursive construction of sparse approximations to the Schur complements
as they arrive in the block Cholesky decomposition of the discretization matrices.

3. Minimizing the operation count per iteration step. In each step of a
preconditioned conjugate gradient iteration, the following system must be solved:

(7) z r.
Straightforward implementation of this step using the block LU factorization (3) in-
volves two solves on each subdomain with the matrix Bii in each iteration step, one
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in the forward elimination step and one in the backsubstitution. This implies that
the work per iteration step roughly doubles as compared to a PCG iteration with the
same preconditioner on the whole domain. This is a relatively high price for a domain
decomposed method to pay in the sequential case. This increase in work can only be
overcome by a reduction of the number of iteration steps by a factor of two, which is
not achievable for many problems. In the parallel case, to be competitive, the gain
from ease of parallelization must compensate for this factor when compared with a
straigthforward parallelization of a traditional PCG method for the whole domain

Here we describe a general technique to save this factor of two by an appropriate
factorization and an appropriate ordering of the unknowns when the matrices Bii can
be expressed in an LU factorization:

B LiUi.

This then gives the following factored form for the preconditioner M:

(8) = L2 U2 LlA23
A31U"1 A32U"1 M I

Written this way, the solution of (7) still takes four solves with the matrices Li and
four with U, or two solves on each subdomain. However, the product A3iU-lyi
involves only a few components of the vectors U-lyi. More specifically, for a five-
point stencil, we only need the components of U(lyi adjacent to the gridpoints on
the internal interface.

Ordering the unknowns linewise in the direction of the internal edge, with the lines
ordered going towards the interface, we obtain that the product A3iUlyi requires
only the bottom right-hand corner of U-I. The rest of the solution in the interior
is not needed. An analogous assertion holds for the product LYlA3zk3 When the
domain is split into more than two subdomains, it is not clear how this can be done.

A similar situation also occurs for the domain decomposed fast Poisson solver
on a rectangle [8], [9]. Similar techniques to save the factor of two were used by
Meurant in the construction of domain decomposed preconditioners based on block
preconditioners [22], [21], [23] using alternating LU and UL factored preconditioners
on the subdomains. In the two subdomain case, this corresponds to the technique we
propose.

4. Numerical experiments. In this section we present some numerical experi-
ments that will illustrate the point of view we made earlier. We consider second-order
self-adjoint differential operators:

0 (a(x,y)OU) 0 (b(x,y) Ou)Lu= + +c(x,y)u.

The equation is discretized using a standard five-point second-order discretization
stencil [14] on a equidistant grid. In our examples, the domain is the unit square
and is divided in two rectangular strips:

[0, [0, 0. 1, [0,
Taking n internal gridlines in each direction with gridsize h 1/(n + 1), the system
for the whole domain is of the order n x n and for the subdomains of the order n n/2.
The interface has n internal points.
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For the preconditioner on the interface, we take M Mp(, 1), the boundary
probe preconditioner on S with k 1 (tridiagonal approximation). As approximate
factorizations on the subdomains we use the ILU preconditioner [20], denoted by
Bii ILU, or the MILU preconditioner with h2 [14], denoted by Bii MILU.
PCG iteration with the ILU preconditioner has a computational complexity of O(h-3)
and with the MILU preconditioner of O(h-2’5), so we can expect that the divide-and-
conquer effect in domain decomposition will yield a faster method.

Example 1.2 In this example, we illustrate the relation between the eigenvalue
spectrum of M-1A and the eigenvalue spectra of BIA, B2A22, and M-I. The
operator, the gridsize, and the preconditioners for this example are summarized in
the following table.

a e5xy,
b e-5xy,
(?"

1-t-x+y

h 1/16, M Mp, Bii MILU
n 15,

The eigenspectra are plotted in Fig. 1.
(1) BA
(2) B2A22,
(3) MI5
(4) M-A,
(5) .r-A.

M is the MILU preconditioner on the whole domain f, with the natural ordering
of the unknowns. The numbers to the right of the eigenspectra are the condition
numbers, max/Amin, of these matrices. From line 3, we immediately see that
the probing preconditioner yields a ver good approximation to S. As indicated by
(3) we see that the eigenspectrum of M-A is a small perturbation of the union of
the eigenspectra of BA, BlA22, and r-. The spectrum of M, is tightly
clustered around 1 and lies fully within the spectra of BXAI and BA22. This

leads to a good spectrum for M-A with a condition number that is smaller than for
the sequential preconditioner.



800 TIMELY COMMUNICATION

102

10

10

I0-I

10-2

10-3

10-5

10-6

10-7

I0-8
0 1’2 1 16 18 20

2 DD ILU on whole domain ...
3 MILU on whole domain
4" DD MILU on whole domain

FIG. 2

Example 2. In this example, we show that our domain decomposed preconditioner
yields a faster convergence than an analogous preconditioner applied to the whole
domain for smooth problems.

The problem is the following:

a -exy,
b -e-xy,
C IWx+y

h 1/32, M Mp, Bii ILU
n 31, Bi MILU

The right-hand side of the discrete equations is taken such that the exact discrete
solution ue satisfies

(Ue)ij Xi

As a starting guess we used u, 1. In Fig. 2 we plot ek --Ilu-ull versus the
iteration count k. We compare the following cases:

(1) M ILU,
(2) M, with B ILU,
(3) M MILU,
(4) M, with B +-- MILU,

where M denotes the sequential preconditioner on the whole domain.
For both choices for the preconditioner on the subdomains, the domain decom-

posed preconditioner has a slightly faster rate of convergence. Several other experi-
ments that we have done with other operators have all confirmed this point.

Example 3. In this example, we show a more dramatic gain, achieved for a problem
with discontinuous coefficients.

The coefficients of the equation and the preconditioners are

a -d(x,y),
b -d(x,y),
c=O,

h 1/16, M Mp, ]ii +-- ILU
n 15,
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with

d(x, y) 1000, y > 0.5,
d(x, y) 500.5, y 0.5,
d(x, y) 1, y < 0.5.

The exact discrete solution and the starting guess are as in Example 2. Figure 3 gives
ek Iluk- uell 2

versus the iteration count k. We compare the following precondi-
tioners:

(1) M ILU,
(2) M, with Bii *--- ILU,
(3) ILU PCG on just one subdomain with the exact value of the solution on the

interface.
For this problem, the domain decomposed preconditioner yields a much better

convergence than the analogous preconditioner on the whole domain. Comparing
it with the PCG iteration on just one subdomain, we see in the beginning of the
iteration that it is somewhat slower than PCG on the subdomain. After some itera-
tions, the rate of convergence is about the same. This illustrates clearly how domain
decomposition allows us to exploit the smoother coefficients within each subdomain.

In [18] Keyes and Gropp also find that the Bramble-Pasciak-Schatz preconditioner
with constant coefficient or separable preconditioners on the subdomains outperforms
the corresponding preconditioner on the whole domain in number of iteration steps.
The same observation holds for the domain decomposed block preconditioner INVkP
as compared to the one domain version INV [22].
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EXPERIENCE WITH A MATRIX NORM ESTIMATOR*

NICHOLAS J. HIGHAMt

Abstract. Fortran 77 codes for estimating the 1-norm of a real or complex matrix were presented
by Higham in [ACM Trans. Math. Software, 14 (1988), pp. 381-396]. The codes have found use in
various applications and have been adopted by two program libraries. Further observations about the
norm estimation algorithm and experience in using it are reported here. In particular, an example
is given where the algorithm requires nearly the maximum possible number of iterations.

Key words, matrix 1-norm, condition number estimation
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1. Introduction. In [9] Higham presented two Fortran 77 codes for estimating
the 1-norm of a real matrix or a complex matrix. The codes are in the NAG library
at Mark 13 [13, Chap. F04], are being used for all the condition number estimation
in LAPACK [3], and have been used with research or production codes by several
workers [1], [2], [5], [6], [12]. Because of this wide use of the routines we feel it is
worth reporting experience and insights accrued since the work in [9] was done. We
describe here a new example of slow convergence of the norm estimation algorithm,
point out that it is a special case of a more general iteration for estimating matrix
norms, summarize the practical performance of the estimator, and describe several
interesting applications.

First, we recall the original algorithm of Hager [7], on which the estimators in [9]
are based. Our notation is as follows: e is the vector of all ones, ej is the jth column
of the identity matrix, and sign(y) means i 1 or -1 according as yi _> 0 or
y<0.

ALGORITHM 1. Given B E lRnn this algorithm computes and y Bx such
that /_< 118111 with I]ylll/llxlll .

X e//t
repeat

y=Bx
sign(y)

z BT
Ilzll <

quit
end
x ej, where Izjl Ilzll (smallest such j)

end

An important feature of the algorithm is that it requires only a means for eval-
uating matrix-vector products Bx and BT--it does not require explicit access to
the matrix B. Of course, if B were available explicitly we could simply compute
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To derive Algorithm 1, Hager regards IIBI[1 as the maximum of F(x) IIBxlll
over the unit ball S in the 1-norm and, since F is nondifferentiable at points x where
Bx has a zero component, he applies an optimization technique based on subgradients.
A subgradient of F at x is any vector g such that

F(y) >_ F(x) + gT(y x) for all y E S.

See [7]-[9] for further details of the subgradient-based derivation. An alternative
derivation relying on a simple heuristic argument is given in [9].

Hager notes that Algorithm 1 requires at most n + 1 iterations, since F(x)
IlYlI zTx increases strictly on each stage and so each of the vertices ej is visited
at most once. He proves that the final vector x is a local maximizer for F as long as
y Bx has no zero components.

We noticed recently that Algorithm 1 is a special case of an iteration investigated
in [14] for estimating the mixed subordinate norm

(1) IIBIl ,e max B e ]Rmxn

#o Ilx[l 

where I1" I1, and I1" are arbitrary vector norms. The iteration is

(2) xk+ h(zk) h(BTg(Bxk)),

where g and h are subgradients of the -norm and the norm dual to the a-norm,
respectively. With a 1 this iteration reduces to the one in Algorithm 1. In
[14] it is proved that iteration (2) converges in a finite number of steps if one of the
a- and -norms is polyhedral (this class includes the 1- and a-norms, but not the
2-norm), but no properties of the limit point are determined. In [15] the special case
where a oc, / 1, and B is symmetric positive definite is examined in detail.
Unfortunately, the results in [14] and [15] do not seem to provide any new insight into
Algorithm 1.

Two key aspects of the behaviour of Algorithm 1 are as follows.
(1) The estimates produced by the algorithm are frequently exact (q, IIBII),

usually "acceptable" (/

_
IIBII/x0), and sometimes poor ( < IIBII/10). Several

families of matrices are known for which /IJBII can be arbitrarily small [8], [9].
(2) The algorithm almost always converges after at most four iterations [7]-[9].
Based on these, and other observations, the following changes to Algorithm 1

were made in [9]. We will refer to the modified algorithm as Algorithm EST.
Definition of estimate. To overcome most of the poor estimates, is redefined as

{ }Ilwlll where w By, vi (-1)i+ 1 +(3) max Ilyll , i1 ’11 
The vector v is considered likely to "pick out" any large elements of B in those cases
where such elements fail to propagate through to y.

Convergence test. The algorithm is limited to a minimum of two and a maximum
of five iterations. Also, convergence is declared after computing if the new is the
same as the previous one (which signals that convergence will be obtained on the
current iteration) or if the new IlYlI is no larger than the previous one. The latter
event can happen only in finite precision arithmetic and indicates that a vertex ej is
being revisited--the onset of "cycling."
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In the following, all comments about Algorithm EST apply also to a version
applicable to complex matrices [9], whose main difference from Algorithm EST is
that it does not have the test for repeated vectors.

Experience subsequent to the development of Algorithm EST has confirmed that
the above modifications work well, and we are not aware of any way to improve the
algorithm’s performance. We have applied Algorithm EST to the test matrices in
the collection [10], for values of n up to 100. This collection contains a wide variety
of matrices (for example, real, complex, well-conditioned, ill-conditioned, structured,
contrived, practically occurring), and many of them are parametrized. Our experi-
ments led to a new discovery, which is described in the next section.

2. Number of iterations. As mentioned above, Algorithm 1 usually requires
at most four iterations and it never requires more than n/ 1. In our numerical experi-
ments we found one particular family of matrices from [10] for which, depending on n,
up to n iterations were required (the matrices are B- inv(fiedler(seqm(-1, 2, n)))in
the notation of [10]). Consideration of this example led us to construct a symmetric
n n tridiagonal matrix Tn(a) (tij) for which it can be proved that n iterations
are required by Algorithm 1 if 0 _< a < 1. The matrix is defined by

2, i= 1,
ti i, 2_<i_<n-1,

--tn,n-1 + 0, n,

(i+1)/2-a) ifiisodd,
ti,+l -/2 if is even.

To illustrate,

-(1

-1
-1
a

-(2 c) 4
-2

-2
5

-(3 c) 3

Note that, for all a, an optimal x for Algorithm 1 is x en-1, that is,
IITn(a)ll. It is straightforward to show that if Algorithm 1 is applied to Tn(a) with
0 _< a < 1 then x ei-1 on the ith iteration, for 2,..., n, with convergence on
the nth iteration. The same would be true of Algorithm EST if it were not limited to
five iterations. For n _> 5, after five iterations we have y5 Tn(a)e4, so Ilyhll 8-a.
Since IITn(c)ll 2n- 2- a, we have

--+0 as rz --+ oo.
IlT, (o ) 2n- 2-

For a _> 1 we obtain convergence to x e on the second iteration and, similarly,
the underestimation ratio Ily2111/llTn(1)lll - 0 as n . For a < -1 Algorithm 1
requires n- 1 iterations, and x ei on the ith iteration. Fortunately, in all cases
the "extra vector" v in (3) enables Algorithm EST to produce a good norm estimate.
For a < 1 we have

IT, ( )llvl _>
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which implies

n2

and hence

(n2 -na)/(n) 1

II%()ll 2n- 2- a 3

For a > I it does not seem possible to obtain a concise lower bound for IIT,()vll, but
a rough analysis indicates that the extra estimate cannot differ greatly from
(and this is supported by numerical tests). In conclusion, Algorithm EST produces
an acceptable estimate of [[%()11 for n and . We are not aware of any matrices
for which the limit of five iterations in Algorithm EST is responsible for the algorithm
producing a poor estimate.

3. Worst-case norm estimates. A class of matrices B(O) is given in [9] for
which /[IB(O)II can be arbitrarily small for Algorithm EST. In practice, rounding
errors sustained in constructing B(O) usually make the computed matrix one for which
a good estimate is returned. Apart from the matrices B() we have found exceedingly
few matrices for which the estimate is less than llBll. Here we list a few of the
worst cases. Where A B-1 is specified we used Algorithm EST to estimate IIA-II,
which involves solving linear systems with A and AT as coefficient matrices. QR(B)
denotes the triangular QR factor of B. The matrices are specified using the notation
of [10]; they are of orders 16, 8, 50, and 100, respectively.

A vand(seqa(-1, 1, 16)),
A vand(seqa(-1, 1, 8)),
B QR(chebspec(50)),
A vand(100),

/IIBII 0.199,
/IIBII o.88,
")’/IIBII o.326,
")’/IIBII, 0.207, 6.66 x 1049.

In the last exanple Algorithm EST detected cycling. This matrix A is so violently
ill-conditioned that the computed quantities in Algorithm EST may have no correct
significant digits (the same applies to the "exact" IIA-1111 with which we compare
"!). These results were obtained using our PC-MATLAB implementation of Al-
gorithm EST. PC-MATLAB uses IEEE standard arithmetic with machine epsilon
2-52 10-16. Different results might be obtained in another computing environ-
ment. To indicate the sensitivity of these worst-case estimates to rounding errors we
mention that when A in the last example was scaled to A/3 Algorithm EST produced
an exact estimate!

4. Applications. The most obvious application of Algorithm EST is to the
estimation of the norm condition number p(A) IIAIIplIA-IIB, p 1,. We
summarize three other applications in which the algorithm has been found to be
useful.

(1) In [12] a hybrid algorithm is developed for computing the polar decomposition.
Algorithm EST is used to decide when to switch from one iteration to another by
testing the convergence criterion IIX[Xk- IIl < 1, where Xk E ]Rnxn. By using
Algorithm EST formation of the matrix product X[Xk is avoided.

(2) When a square linear system Ax b is subject to perturbations AA and Ab
satisfying inequalities IAAI _< E, IAbl _< f, a bound for the change in x can be
derived that involves the condition number

;E ,f(A, b) IA-IEIxl + IA-lf Iloo
Ilxll
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The following idea from [1] shows how s,f(A, b) can be estimated with the aid of
Algorithm EST. Defining z (EIx + f)/llXllo and Z diag(z) we have

aF,I(A, b) ]l [A-Iz [] It IA-Ize IIo
[[ IA-Zle [Ioo [ [A-Z[ I[

where B (A-1Z)T. To apply Algorithm EST we just need to evaluate products
Bx Z(A-Tx) and BT A-I(z), which is easily done given the ability to solve
linear systems involving A and AT. LAPACK [3] uses Algorithm EST to provide an
estimate of E,y(A, b) in routines for the solution of Ax b by Gaussian elimination
with iterative refinement.

(3) The componentwise perturbation analysis mentioned in (2) can be extended
to least squares problems [2], [4], [11] (i.e., to rectangular A and E), and a bound is
obtained that contains the terms

I IA+I(EIxl + f) II and I (ATA)-IIETIrl l
I1 11 

where A+ is the pseudo-inverse of A and r b- Ax. As in (2), each of these terms
can be reduced to the form IIBII1, where it is straightforward in the context of solving
a least squares problem to evaluate Bx and BT.

Acknowledgments. I thank Des Higham for poiming out an oversight in my
original analysis of the Tn (a) example. The associate editor Robert Skeel also offered
useful comments.
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A BLOCK ORDERING METHOD FOR SPARSE MATRICES*

JAMES O’NEILt AND DANIEL B. SZYLD$

Abstract. Block iterative methods used for the solution of linear systems of algebraic equations
can perform better when the diagonal blocks of the corresponding matrix are carefully chosen. A
method is presented based on combinatorial considerations which permutes the rows and columns
of a general matrix in such a way that relatively dense blocks of various sizes appear along the
diagonal. The method is particularly useful when no natural partitioning of the matrix is available.
Two parameters govern the method which is O(n + ,) in time and space, where n is the order of the
matrix and v is the number of nonzeros in the matrix. Numerical test results are presented which
illustrate the performance of both the ordering algorithm and the block iterative methods with the
resulting orderings.

Key words, sparse matrices, block methods, partition, ordering
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1. Introduction. Efficient methods for the solution of large sparse linear alge-
braic systems of equations of the form

(1) Ax b,

where A is an n n real general matrix and x and b are n-vectors, have been studied
and successfully implemented during the last few decades. High-quality software now
exists for the solution of (1) using different direct or iterative methods. For exam-
ple, ITPACK [11] contains programs for several classical iterative methods, including
Jacobi, Gauss-Seidel, successive overrelaxation (SOR) and others; see Hageman and
Young [10], Varga [19], or Young [20] for their descriptions. For direct methods,
SPARSPAK [8] is usually recommended for the symmetric case and MA28 [3] for
the nonsymmetric case. In addition, the recent package NSPCG [13] contains many
nonsymmetric preconditioned conjugate gradient procedures.

Classical block iterative methods, which we briefly review in the next section,
are attractive, since they combine the properties of (point-) iterative methods for
very large systems (such as those arising from the discretization of three-dimensional
differential equations or from massive electronic circuit simulations) with those of
direct methods for the solution of smaller systems in each of the diagonal blocks. In
fact, if the diagonal blocks in question are very dense, codes for full factorization are
used, and no overhead, as is typical of sparse matrix codes, is incurred. In addition,
using a block method can, in many cases, reduce the spectral radius of the iteration
matrix [19, Thm. 3.15], and, depending upon the method of solution of the diagonal
blocks and the machine architecture, the overall convergence time can be greatly
reduced.

The question remains of how to best partition the matrix A into blocks. The
block structure of a matrix depends upon its zero-nonzero structure and not upon
the values of its entries. In other words, the partitioning of the set In {1,... ,n},
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which determines the block structure, corresponds to the grouping of nodes in the
graph of the matrix [4], [8], [15], [17]. In cases where the matrix corresponds to
the discretization of a differential equation on a regular domain, a regular partition
of the domain provides a corresponding partition of the matrix [19, Chap. 6], [14].
Similarly, when large finite element structures are partitioned into substructures, each
substructure may correspond to a block of the matrix. If the domain is irregular,
or the matrix does not correspond to a differential equation, no systematic way of
partitioning has been available. In this paper we remedy that situation; we present a
method that partitions In in such a way that relatively dense blocks of various sizes
appear along the diagonal. The algorithm presented, called PABLO (PArameterized
BLock Ordering), is linear in time and space and thus contributes very little overhead
to the overall computation. If a natural partition of the graph of the matrix exists, the
partition produced by PABLO is still competitive in the sense that if the same block
iterative method is used with both partitions, the numbers of operations required for
convergence are quite similar. In 5, we present some results illustrating this.

Other algorithms have been devised which permute and partition a matrix in order
to improve the behavior of a sparse direct factorization; see, for example, the nested
dissection algorithm by George [7], [8], [15]; and the recent paper by Pothen, Simon,
and Liou [16]. To our knowledge, our work represents the first time a partitioning
algorithm has been specially designed for block iterative methods.

In 2.2 we review the notation and concepts of graph theory needed for the de-
scription of PABLO. The crux of our method, described in detail in 3, is to choose
groups of nodes in G, the graph of the matrix, so that the corresponding diagonal
blocks are either full or very dense. The choices are made by starting a group with
a given node in G and adding a new node to that group if either of two criteria are
satisfied. The first criterion is that the new group must be in some sense as full as
the group without the new node. This is accomplished by computing the ratio of the
number of edges to the total number of possible edges in the resulting subgraph. This
ratio must be no less than a specified parameter, a, multiplied by the corresponding
ratio for the graph without the new node. The second criterion is that the new node
must be adjacent to more nodes in the group than outside the group.

In this paper we introduce PABLO and show that it is an effective tool for par-
titioning matrices into blocks. This is a preprocessing step before the use of block
iterative methods, and since it is successful even when a natural partition exists, it
can be used as a "black box" for all cases.

2. Preliminaries.
2.1. Block iterative methods. Let us consider the partitioning of

In= {1,...,n}
k k 1, q. Of course,into q mutually disjoint subsets Jk {Pk,’",Ps} C In, "",

-,qk=l sk n. Consider the permutation r Of In, where r(1) p, r(2) p21, r(sl)
p11, r(sl + 1) p,...,r(sl + s2) p2,...,r(n) pqq. Let us call P the per-

mutation matrix corresponding to r [2], [8], [19]. Then the system (1) is equivalent
to

(2) (pApT)px Pb.

The matrix and vectors in (2) can be partitioned according to the sets Jk as pictured
below, where the matrix PAPT is partitioned into a q x q array of smaller matrices,
and Px and Pb are partitioned into vectors composed of q subvectors.
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(3)

All A12 AIq xl b
A A A x b

Aql Aq2 Aq Xq q
Block iterative methods such as block Gauss-Seidel, block Jacobi and block SOR

are generalizations of the corresponding point-iterative methods [19], [20]. Let
denote the kth subvector, of dimension sk corresponding to Jk, of the vector Px at
the rth iteration. The Gauss-Seidel method, as applied to (3) and described by the
following set of equations, is representative of the methods to be considered.

r r--1(4) y bk Aksxs Aksxs

s:l s:k+l

(5) AkkXk y,
where it is assumed that the sk sk diagonal blocks, Akk, are nonsingular. The
study of convergence for this and similar block methods is analogous to that of point
methods and can be found in [10], [19], [20].

2.2. Graph theory for matrix structures. The use of graph theory for the
analysis of matrix structures had been applied primarily to irreducible matrices (see
[2], [19], for example); however, during the last two decades, its use has been extended
to the analysis of Gaussian elimination and sparse matrices in general [3], [8], [15],
[17]. In this section we review some concepts of graph theory associated with matrix
structures, present our notation, and introduce new definitions needed to describe the
formulation of our block partitioning method.

A graph G is defined as an ordered pair (V, E), where V is a set of vertices and E
is a set of pairs of elements of V that represent edges in the graph. The graph G(A)
induced by a square matrix A [aij], of order n, has IV I- n, where a vertex i, in
V, corresponds to row (or column) in the matrix A. If a matrix A is nonsingular,
it can be permuted in such a way that aii 0 [6], [9]. In our method, the matrix
A is first permuted so that its diagonal is zero free, and, without loss of generality,
we assume that aii - 0 for all i. If A cannot be permuted so that aii 0 for all
i, then the matrix is symbolically singular, and that fact will be discovered during
the mentioned step. An edge (i, j) E E if and only if aij 0 and = j (given the
assumption above that aii 0). For nonsymmetric matrices the edges are directed,
and we consider the ordered pair (i, j), while in the symmetric case, the edges are
undirected and (i, j) E E (j, i) E.

A vertex v is said to be adjacent to a vertex w if (v, w) e E or (w, v) e E. The
degree of a vertex v, deg(v), is the number of vertices adjacent to v. A clique is a
graph where (i, j) E Vi j, i, j V. In the case of a matrix-induced graph G(A),
a clique corresponds to a full matrix, that is, to a matrix where aij 0 Vi, j In.

Given S c_ V, we call G(S) (S,F) a section subgraph of (V, E) in which the
set of edges, F, consists of exactly those edges in E with both endpoints in S [8, p.
38]. In the case of a matrix-induced graph G(A), the section subgraph G(S) is the
graph induced by some submatrix or block. We define the fullness of G(S), Cs, as

For k 1,...,q
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the number of edges in F divided by the number of edges in a clique with the same
number of vertices as in S. Thus, s 2 IFI/(ISI2 -ISI) for undirected graphs,
and Cs =IFI/(ISI 2 -I SI) for directed graphs. Note, 0 _< Cs _< 1 for any G(S), and
s 1 if and only if G(S) is a clique.

Consider a graph G (V, E) partitioned into q section subgraphs G(Wk)
(Wk, Ek), where [Jqk=lWk Y and Wr g Ws for r s. The sets of nodes
Wk correspond to the sets Jk and to the permutation r, which determines them as
described in 2.1. Note that (.J=l E C_ E and that equality does not hold in general.
If equality holds, the permutation r has reduced the matrix to block diagonal form,
where Ars 0, r s in (3).

A path (of length k) joining two nodes i, j E V is a set of k "consecutive" edges
(i, i), (i, i2), "", (ik-,j). A subgraph G(S) (S,F) is said to be strongly con-
nected if for every pair i, j E S there is a path from to j formed by elements in
F. The decomposition of a graph into its strongly connected components is unique.
Efficient algorithms to determine this decomposition are available (see [6], [9], [18]).
Given the strongly connected components of the graph one can build the correspond-
ing sets Wk. and the permutation r by which A can be transformed to lower (upper)
block triangular form, i.e., At8 0, r > s (r < s) in (3). Once this is done, the linear
system (3) is decoupled into q smaller linear systems.

3. PABLO algorithm. The PABLO algorithm partitions a graph G (V, E)
into q subgraphs G(Vk) (Vk,Ek), where Jqk= Vk Y as described in 2.1 and
2.2. The goal is to establish easily computable criteria to define the sets Vk in such
a way that G(Vk) is tightly connected by some measure, which would imply that the
diagonal blocks are relatively full. This in turn will, in some cases, result in faster
convergence rates for block iterative methods [19, Thm. 3.15]; see also 5. In our
method, the matrix is first permuted into its block triangular form, and the core of
the algorithm is applied to each nontrivial diagonal block. Thus, we assume in our
description that the matrix is irreducible, that is, that its graph is strongly connected.

We describe the algorithm constructively, selecting the nodes for each of the sets
Vk, k 1,..., q. Note that q, the number of blocks, is not known a priori, but is in-
stead computed by PABLO as the number of groups of nodes obtained at completion.
Let V be the set of vertices of the (strongly connected) graph. Furthermore, consider
three sets P, Q, and C that form initially a partition of V. We may then view the
block partitioning algorithm, PABLO, as a series of operations that manipulate the
elements of the sets of the partition until no other operations can be applied. Alter-
natively, PABLO can be viewed as a search [1] to mark the nodes of the graph in a
specific order. The set P contains those vertices that will be assigned to the current
block and, at the end of the step, becomes the current Vk. The set Q, contains vertices
(in the current connected component) which are adjacent to at least one vertex in P
and are thus considered "eligible" to be added to the block. The set Q is maintained
as a queue so that nodes closer to the nodes already added to P will be investigated
first. The set C consists of those unassigned vertices in V neither in P nor in Q.
The use of the set Q allows us to limit the search for new additions to P to a set of
"eligible" nodes. It is the use of this set which allows the algorithm to have a linear
time complexity.

Consider the vertices that are not yet part of a completed block. For the vertex i,
let deg(i) be the number of edges of the form (i, j) or (j, i), for some j, and let in(i),
at every point in the algorithm, be the number of edges of the form (i, j) or (j, i)
where j P. Clearly, in(i) <_ deg(i) at all times. The definitions of in and deg imply
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Produce a representation for G, the graph induced by the matrix 1
Initialize all nodes as unmarked 2
Find the (strongly) connected components of the graph 3
Place all components of one node in block, mark these nodes 4
For each remaining connected component do 5

let C {vertices in connected component} 6
repeat 7

let P , and Q q) 8
choose from C a node c, mark it, and place it in P 9
move to Q all nodes in C adjacent to c 10
update in for all nodes in Q 11
set Cp 0 12
repeat 13

choose the node p from the head of Q 14
calculate p(p) 15
if (pw(p) >_ aCp)or (in(p)/deg(p) > [3) then 16

mark p and move p to P 17
add to the rear of Q all nodes in C adjacent to p 18
update in for all vertices in Q that are adjacent to p 19
update Cp 20

else 21
move node p from Q to C 22

endif 23
until Q { 24
designate those nodes in P to be in a block 25
for all nodes c in C do 26

update deg(c) to reflect the marking of the nodes added to P 27
until C q} 28

endfor 29

FIG. I. PABLO" Block ordering algorithm.

that the symmetric permutation for a nonsymmetric matrix, A, which is produced by
PABLO will differ from that produced for the symmetric matrix (IAI / IATI), where
IAI is the matrix with entries laijl and AT is the transpose of A. To start the method,
we set P Q q} and C V. We choose some node c from C, mark it, and add it
to the set P. We set Cp, the fullness of G(P), to zero (recall we do not include the
self-edges). We then move to the rear of Q all those vertices in C that are adjacent
to the vertex just added to P and increment in for those vertices. Next, we take a
node p, from the front of Q, calculate CPu{p}, the fullness of G(P U (p}), and add p
to P if either of the following two criteria is satisfied.

(1) The fullness of G(P U (p)) is at least some fraction of the fullness of G(P);
that is, ePiC{p} -- (P, where 0 _< c.

(2) The node p is adjacent to more nodes in P than in QtJC; that is, in(p)/deg(p)
> /,where0 < <1.

If we exhaust the set Q, we define the current Vk P. If the set C is also empty,
then we have numbered all the nodes in the (strongly connected) graph. If, however,
Q is empty but C is not, then there is no vertex satisfying the criteria above, and
for all vertices c in C that are adjacent to vertices in Vk, we update deg(c). This
operation is done to reflect the fact that nodes in Vk no longer have an effect on the
unmarked vertices in C. For all unmarked nodes, we set in to 0 and then set P q}
and repeat the method (with k k + 1) as if C represented a new graph.

The complete algorithm is given in Fig. 1.
The existence of the two parameters a and allows the user to tailor the block-
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partitioning and thereby the solution of the system of equations to particular time
and space requirements. The choice for a gives the user some control over how densely
connected the blocks will be. The value for a can vary from zero to infinity. If a 0,
then the first criterion is essentially disabled, for the addition of any vertex into P
will satisfy Cp >_ 0. When a > 1, the fullness of P must increase. If the graph is
undirected, the first criterion cannot be satisfied once the second node is added, unless
vertices are added via the second criterion. Thus, a value greater than one is very
restrictive and will result in small blocks. Empirically, the values of a producing the
best block partitionings lie between 0.7 and 1.2. Larger values of a yield smaller, but
more tightly connected, blocks. See [12] for results supporting this range of values for
O.

By varying the value of , the user can admit to P those vertices that are tightly
connected to vertices within P but whose inclusions into P do not preserve the fullness
of G(P). A value of 0 allows any vertex to be added to the block. This will of
course yield one block for each (strongly) connected component. A value of/3 1.0
would allow a vertex q to be admitted to P only if all the edges with which q is
incident have their other endpoints in P, that is, if in(q) deg(q). This is similar to
the first criterion with a 1.0; however, if P is tightly connected, and [P I>> deg(q),
then even if in(q) deg(q), the addition of q may lower Cp, and the first criterion
would not be met, despite the fact that the addition of q to P is desirable. Since all
of the vertices adjacent to q are in P, it is clear that q should be added to the current
block; the second criterion allows this to occur. A natural choice for is 0.5; that is
to say, add a node q to P if there are more edges between q and vertices in P than
edges between q and vertices not in P. In order to admit a node q to P, a value
greater than 0.5 would require that the number of edges directed into P from q be
greater than the number of edges not directed into P from q, whereas a value of less
than 0.5 would allow vertices with more edges to nodes outside of P than to nodes in
P to be added to P. As one might expect, larger values of/3 produce a larger number
of small, but tightly connected, blocks, whereas smaller values yield a smaller number
of large, but less densely connected, blocks.

4. Complexity. We present an analysis of the algorithm PABLO as described
in Fig. 1. We first show that the algorithm PABLO will always terminate and then
show the complexity of the two main loops in PABLO, namely, ll and 12 (see Fig. 1).
Table 1 summarizes the complexity analysis of the algorithm, where "i is the number
of edges in the connected component Fi, n is the number of nodes, and is the total
number of edges, i.e., the number of nonzeros in the matrix. The following analysis
shows that the complexity of the algorithm is proportional to and n. In 5 this
linearity is illustrated with a series of experiments. Note that the linearity would be
lost if the search for nodes to be added to P were unrestricted and not just limited
to Q. It is easy to verify that PABLO’s space requirements are also proportional to
and n.

LEMMA 4.1. The algorithm PABLO always terminates.

Proof. We first point out that the number of nodes, n, and the number of edges,, are finite, and there are at most n connected components. At any given time,
the size of Q is bounded. The loop /2 (see Fig. 1) terminates, since the value of
the ordered pair (number of unmarked nodes, size of Q) is lexicographically smaller
at the end of each iteration than it was at the end of the previous iteration. The loop
l1 terminates because the size of C decreases by a least one in every iteration (cf. line
9 of the algorithm in Fig. 1). El
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TABLE 1
PABLO complexity analysis.

Operation Timing
Initializttion
Finding (strongly) connected components
Finding components with one node
Updating Cp
Marking nodes of new P
Updating degrees of nodes in C not added to P

O(n+t)
O( + ) ([S] o [, . ])
O(no. of components) = O(n)
O(1) = O(n)
o(,)
o() to eac =,. 0(,)

PABLO Timing Complexity O(n +

Since we have shown that the method terminates, we turn now to the analysis of
the complexity of its execution. The initialization steps in lines 1 and 2 (in Fig. 1)
can be performed in O(n + ) and O(n) time, respectively, while finding the strong
components of a graph takes also the same order of operations [18], [1, p. 176]. The
heart of the algorithm is the loop 12.

LEMMA 4.2. The complexity of the loop 12 in the algorithm PABLO is 0(), i.e.,
it is proportional to the number of nonzeros in the matrix.

Proof. Let -y be the number of edges in the component G(F). In 12, nodes are
moved from Q to P and between Q and C. A vertex q can be added to Q at most
deg(q) times. A vertex q is added to Q only when some vertex p has just been added
to P, and there is an edge between p and q. Since a node that has been added to
P is marked and cannot be added to P in a subsequent step, it follows that if q is
subsequently removed and then added again to Q, it is only because of its adjacency
with some other vertex, i5. Therefore, there can be at most ’qer deg(q) 2/
additions to Q. Since on each iteration of/2 a node is moved from Q to either P or
C, there are then at most 27 additions to C and P. Since C must be empty at the
termination of/1, it follows that all the nodes in F will have been added to a P
(perhaps not the same P, however) in O(7) time. This is done for all the (strongly)
connected components, and since ’ y < , the number of nonzeros in the entire
matrix, the number of operations for this step is O(). The updates of the value of in
are bounded by the number of edges in the entire graph, namely, , since only those
adjacent to p, which is only marked once, have to be processed at the step in line 19.
Thus, the loop 12 takes O() operations.

Similar analyses for the updates of in and deg in lines 11 and 27 yield a complexity
of O() for the loop ll. The overall complexity of the PABLO algorithm is then
O(n + v).

5. Experimental results. In this section we illustrate with sample experimen-
tal results, obtained on a Convex C1 computer at Duke University, that PABLO is an
effective algorithm as a preprocessor of linear algebraic systems of equations before the
application of a block iterative method. In all experiments reported here, the values
of a 0.5 and 3 1.0 have been used. The point we wish to stress is that the main
application envisioned for PABLO is in the cases where no good partitioning of the
matrix is known to the user. For example, consider the finite element discretization of
order 3025 of a graded L-shaped region [8, Chap. 9] with -1 in the off-diagonal posi-
tions and ji laijl+.O1 in the ith diagonal position. This represents a discretization
of a Dirichlet problem. Table 2 presents statistics on the solution of that linear system
using different methods. The number of blocks indicates the number of diagonal block
systems that must be factored and then solved for each block iteration. The table also
presents the number of operations required to factor all of the diagonal blocks. The
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number of iterations to reach convergence and the number of operations per iteration
are also provided. The total number of operations is then the product of the number
of iterations times the number of operations per iteration, plus the operations needed
to factor the diagonal blocks. Both in the case of Gauss-Seidel and SOR, the block
method with the ordering provided by the PABLO algorithm requires, as expected,
fewer operations than the point method. Results presented for each SOR method are
those with the value of w for which convergence was attained with the fewest number
of operations.

TABLE 2

Operation count .for different methods. L-shaped grid.

Graded L-shaped

Point Gauss-Seidel
PABLO Gauss-Seidel
Point SOR, w 1.91
PABLO SOR, w 1.87

Number
of blocks

640

640

Factor diag.
blocks (ops.)

27,363

27,363

Number
of iter.

5,603
3,040
229
141

Solve
(ops./iter.)

44,691
47,027
53,766
56,102

Total
(ops.)

250,403,673
142,989,443
12,312,414
7,937,745

We also performed a series of experiments on the 9-point discretization of the
Laplacian operator on a square grid. In this case, we can compare the performance
of the partition produced by PABLO with those of the natural partitions of the grid.
The 10 10 grid is shown in Fig. 2 together with dashed lines grouping the nodes
chosen by the algorithm PABLO. The rows and columns corresponding to these nodes
form the diagonal blocks to be factored in a block iterative method. Table 3 presents
the same kind of statistics as in Table 2 for different SOR methods in the case of a
30 30 grid, a matrix of order 900. We point out that the block iterative method
using the partitioning performed by PABLO takes fewer operations than if the blocks
corresponding to lines of the grid are used. The results with other partitions reported
in Table 3 correspond to squares of 2, 3, 5, 10, and 15 nodes per side. It can be seen
that for some block partitions, the corresponding iterative method required slightly
fewer operations than the one corresponding to the partition produced by PABLO.
In other words, the performance of the partition produced by PABLO is close to the
best observed. Again, results presented for each SOR method are those with the value
of w for which convergence was attained with the fewest number of operations.

TABLE 3

Operation count for different methods. 30 x 30 grid.

30 30 grid Number
SOR method w of blocks
Point 1.80
Line 1.76 30
"2 2 squares" 1.75 225
"3 3 squares" 1.71 100
"5 x 5 squares" 1.64 36
"10 10 squares" 1.54 9
"15 x 15 squares" 1.50 4
PABLO 1.75 154

Factor diag.
blocks (ops.)

4,380
8,325

16,900
51,012
174,960
368,804

9,627

Number
of iter.

94
74
62
55
45
32
28
66

Solve
(ops./iter.)

19,088
19,208
19,088
19,888
24,848
37,880
50,352
19,688

Total
(ops.)

1,794,272
1,425,772
1,268,133
1,110,740
1,169,172
1,387,120
1,778,660
1,309,035

Figure 3, obtained with data from different grid sizes of the 9-point discretiza-
tion of the Laplacian, illustrates the linearity of the PABLO algorithm, confirming
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the analysis in 4. We point out that in PABLO, no floating point operations are
performed, only assignments and conditional statements are needed. Thus the "op-
eration count" in this graph refers to operations that take about 10 times less time
than a floating point operation.

FIG. 2. Groups of nodes chosen by PABLO in a 10 x 10 grid.

Ops.

500000 ’1"i

450000- "400000
.......""

350000 ..........
300000
25OO0O
200000 """150000
100000 ""

.....
50000 ,..........

00" ,,
100 200 300 400 500 600 700 800 900

Order ofthematrix

FIG. 3. Assignments and conditional statements in PABLO.
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FIG. 4. Zero-nonzero structure of "steam" in its original order.

Results similar to those in Tables 2 and 3 were observed with matrices from other
applications. For example, in the case of circuit simulation, one can partition the
circuit into certain groups of devices. This partitioning can be performed by the user
when the size of the circuit is manageable, say with 100 components. In this case,
since the user has knowledge of the values in the matrix, the choice is more informed
and a block iterative method converges faster than the same method using the parti-
tion generated by PABLO, which takes into account only the location of the nonzeros.
Nevertheless, both execution times are of the same order of magnitude. When the
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FIG. 5. Zero-nonzero structure of "steam" permuted by PABLO.

circuits are larger, unless the circuit is made up of small, fairly independent pieces,
the human task becomes enormous and using PABLO to partition the matrix is an
attractive alternative. We have observed in all these experiments and in others [12],
that PABLO does effectively cluster nonzeros around the diagonal, at the expense of
scattering the remaining (fewer) off-diagonal elements away from the diagonal. We
include an example small enough to show the permutation produced by PABLO in
detail; see also Fig. 2. Figures 4 and 5 represent the zero-nonzero structure of an
80 80 matrix called "steam" from the Harwell-Boeing sparse matrix collection [5] in
its original order and permuted by PABLO, respectively. The asterisks (*) represent
the nonzero entries, while the periods (.) represent the null entries. The numbers
labeling the rows and columns in Fig. 5 indicate the number of the row (or column)
in the original ordering.
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6. Conclusion. We have presented a heuristic algorithm to permute and par-
tition any matrix in such a way that the diagonal blocks are dense. This partition
provides a convergence of classical block iterative methods that is faster than that
exhibited by many other orderings. The method presented, PABLO, is based exclu-
sively on the zero-nonzero structure of the matrix, and thus it may overlook numerical
properties that could be taken into account in the partition. PABLO chooses the ele-
ments of the partition one at a time from a set of "eligible nodes." This feature makes
the algorithm linear in time and space and thus of minimal cost compared to the cost
of the solution of the linear system. For this reason, and based on its performance in
numerous experiments, PABLO can be readily used as a general purpose preprocessor
before any block iterative method is applied.

Acknowledgments. We would like to thank James T. Wilkes for his valuable
help in producing the results reported in Fig. 3, Donald Erdman for his comments
on the performance of PABLO on his circuit simulation codes, and Professor Stanley
Eisenstat of Yale University for his pointed questions and comments, which helped
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A TIME-STEPPING ALGORITHM FOR PARALLEL COMPUTERS
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Abstract. Parabolic and hyperbolic differential equations are often solved numerically by time-
stepping algorithms. These algorithms have been regarded as sequential in time; that is, the solution
on a time level must be known before the computation of the solution at subsequent time levels can
start. While this remains true in principle, it is demonstrated that it is possible for processors to
perform useful work on many time levels simultaneously. Specifically, it is possible for processors
assigned to "later" time levels to compute a very good initial guess for the solution based on partial
solutions from previous time levels, thus reducing the time required for solution. The reduction in
the solution time can be measured as parallel speedup.

This algorithm is demonstrated for both linear and nonlinear problems. In addition, the con-

vergence properties of the method based on the convergence properties of the underlying iterative
method are discussed, and an accurate performance model from which the speedup and other quan-
tities can be estimated is presented.

Key words, time stepping, time dependent, hyperbolic, parabolic, partial differential equation
(PDE), parallel computer

AMS(MOS) subject classifications. 65W05, 65M20

1. Introduction. One route to achieving the computing power required by sci-
entists and engineers today is through the use of parallel computers. However, to use
parallel computers effectively, existing algorithms must be reexamined to take advan-
tage of inherent parallelism, and new algorithms must be developed and analyzed.

Time-stepping methods are commonly used to numerically solve parabolic and
hyperbolic partial differential equations (PDEs). In these methods, the solution to a
PDE is determined at a specified set of times tl < t2 < < tN in sequence beginning
with tl; the solution at one time level is completed before the solution at the next time
level is started. The discretization in space can be, for example, by finite differences
or by finite elements, and the discretization in time is by one-sided finite differences.
The alternative approach of solving on all time levels simultaneously is not considered
practical [9].

Time-stepping algorithms can be either explicit or implicit [1]. In explicit algo-
rithms, the solution at each point in space depends only on the solutions at previous
time levels, which are known. A high degree of parallelism can be achieved because
the solution at each point on a time level can be calculated independently; however,
explicit methods often suffer from severe restrictions on the size of the time step. In
implicit algorithms, the solution at a point depends on the solutions at other points
on the same time level, which are unknown. Although implicit methods do not suffer
the same stepsize restriction as explicit methods, the degree of parallelism that can
be achieved is reduced by the communication and synchronization requirements of
solving simultaneously for each unknown at a time level [6].

Another method for the solution of time-dependent PDEs is waveform relaxation,
which was originally introduced as a numerical method for circuit simulation [4].
In this method, the space variables are discretized, and the time variable remains
continuous. The resulting system of initial value problems is then solved using a

Received by the editors January 18, 1989; accepted for publication, September 1, 1989. This
work was supported by the Applied Mathematical Sciences program, U.S. Department of Energy,
Office of Energy Research, and was performed at Sandia National Laboratories, operated for the
U.S. Department of Energy under contract DE-AC04-76DP00789.

Sandia National Laboratories, Albuquerque, New Mexico 87185.
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line relaxation technique, such as Jacobi, Gauss-Seidel, or successive overrelaxation
(SOR). The degree of parallelism that can be achieved depends on the relaxation
technique used; however, any relaxation technique requires a substantial amount of
communication and memory [5].

Finally, we mention the windowed relaxation methods described in [7] and [8]: In
these methods the spatial domain is divided among the processors, and within each
subdomain, each processor computes iterates on several time levels (the window) be-
fore communicating the results to other processors. In a distributed memory machine,
the effect of windowing is to decrease the number of messages and increase the size
of the messages, thereby increasing the processor efficiency.

In this paper, we introduce a method of parallelization for implicit time-stepping
algorithms. It is applicable to a wide range of problems (linear and nonlinear) and
can be coupled with a wide range of existing algorithms, including finite-element and
finite-difference algorithms. Furthermore, the parallelism in our method is indepen-
dent of any parallelism of the algorithm with which it is coupled. In 2, we present
the parallel time-stepping method. The method is analyzed in 3, and a performance
model is developed. In 4, the method is demonstrated for both linear and nonlinear
problems, and the performance is compared with the predictions of the model. In 5,
we summarize the paper.

2. The parallel time-stepping method. The parallel time-stepping (PTS)
method is a means by which parallelism can be introduced into a time-stepping algo-
rithm that uses an iterative method to find the solution at each time level. Specifi-
cally, while one or more processors are computing the solution on one time level, other
processors can use intermediate solutions from this time level to improve the initial
guesses for the solution on later time levels. The PTS method is very general in that
it can be used with either linear or nonlinear PDEs, with any discretization of a PDE,
and with any iterative method for the solution at a time level. The parallelism of the
PTS method is independent of any parallelism available in the iterative method with
which it is coupled; however, to simplify the presentation in this section, we assume
that only one processor is assigned to each time line. An example including both
space and time parallelism is included in 4.

We introduce the PTS method by considering the numerical solution of a linear,
parabolic PDE that has been approximated by the sequence of linear systems

(1) AnUn fn + BnUn-1, n 1,...,N,

where un and fn are vectors in am, An and Bn are m m matrices, and u0 is given.
The subscript n denotes a time level, and the vector un denotes the approximate
solution to the PDE at a discrete set of points on that time level. We note that the
vector Un-1 must be known before we can compute the vector Un.

Iterative methods, such as SOR and multigrid, are often used effectively in the

solution of (1). If we let U(nk) Qn (U(nk-1),Un--1) denote the update step of such

an algorithm, a serial time-stepping method for the solution of (1) can be stated as
follows.

METHOD 1 (SERIAL TIME STEPPING). Serial time stepping (STS) for the solution

of (1) is given by

for n 1,...,N do
set k 0
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set U(n) Un-1

until convergence do
compute k k + 1

co,  ut 
end until

set un U(nk)
end for

u) is the initial condition)

The number of iterations required for convergence at each time level is a function,
in part, of the iteration function Qn and the initial guess u(n). If we assume that
Q, is the best iteration function available for the solution of this problem, the only
improvement that can be made is the quality of the initial guess. To this end, let us

that the function Rn (u(n), un-1) can be used to refine the initial guess atsuppose

time level tn. Idle processors in a parallel computer might then use Rn to improve the
initial guesses on time levels tn+l,""", tN while the solution is being computed on time
level tn. For example, suppose we use three processors to solve on three time levels.
Processor 1 solves the problem at the first time level by repeated evaluations of the
iteration function Q1, and after each evaluation of Q1, sends the approximate solution
to processor 2. Processor 2 uses this approximate solution at time level 1 to generate
a new initial guess using the function R2. This initial guess is then sent to processor 3,
which treats it as an approximate solution at time level 2 and generates a new initial
guess for time level 3 using R3. After processor 1 has solved the problem on time
level 1, processor 2 begins the solution process at time level 2 using its (improved)
initial guess and the iteration function Q2 while processor 3 continues to improve its
initial guess using R3. Finally, after processor 2 has solved the problem at time level
2, processor 3 solves the problem at time level 3 using Q3.

Pseudocode for the PTS method is given below. The first loop in the pseudocode
contains the evaluation of the function P and is executed until the solution on the
previous time level has converged. The second loop corresponds to the loop in the
serial time-stepping method and is executed until the solution on the current time
level has converged.

METHOD 2 (PARALLEL TIME STEPPING). If N processors are available for the
solution of (1), then the parallel time-stepping (PTS) method for processor n is given
by

set k 0

set U(n) to the initial condition

if n 1 then
until convergence on processor n- 1 do

compute k k + 1
(k-l) from processor n- 1receive n-

compute u(k) Rn (u(nk-) n-l(k-1))
send u(nk) to processor n + 1

end until
end if
set Un-1 U(n-1
set 0
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set U(nO) U (nk)
until convergence do

compute + 1

compute (l) Qn Un Us-1

send n
() to processor n + 1

end until

set Un u
There are many possible choices for the function Rn. For example, Rn might

correspond to a multigrid algorithm in which a different combination of grids is used
than for Qn. (This would be useful because iterative methods eliminate different
frequencies at different rates and different frequencies can propagate forward in time
at different speeds.) One practical choice for the iteration function Rn is to set it
equal to Qn. There are several reasons for this. First, we assume that Qn was chosen
because of desirable convergence properties for the problem to be solved. Second,
because the Rn+I,"’, RN are used concurrently with Qn, setting Rn Qn results in
a load balanced algorithm. (Note that in many cases, the amount of work required
for one application of the functions Qn and Rn does not depend on n.) Third, the
task of implementing the algorithm is simplified. Throughout the remainder of the
paper, we will take Rn Qn.

In practice, we have P (< N) processors available for the solution of (1). In this
case, processor p begins by computing the solution at time level tp. When work has
been completed on this level, it begins refining the initial guess on time level tp+p
and eventually computes the solution there. This process continues until the solution
has been computed on each of the N time levels.

We note from the pseudocode above that processor n cannot begin work until a
message has been received from processor n- 1, which occurs after processor n- 1
has completed one iteration. To formalize this, we introduce the concept of the delay
at time level n, dn, which we define to be the number of iterations that processor
n- 1 completes before processor n starts. For the pseudocode listed above, dl 0
and dn 1, n 2,...,N. In the case of P (< N) processors, the delays dn are
unknown a priori for n P + 1,..., N.

Even though we have developed the PTS method for a linear, parabolic PDE
with a finite-difference discretization, it is clear that the method can be used to
parallelize any time-stepping algorithm, including those for nonlinear problems, those
for hyperbolic PDEs, and those that use finite-element discretizations. The PTS
method is demonstrated for a variety of problems in 4.

3. Analysis. The parallel time-stepping method is very general. We have not
specified the type of equation, the method of discretization, or the iterative solution al-

gorithm. Thus, no one proof of convergence of the iteration U(n) Q(U(nk-l) )n--1

k 1, 2,’’ ", can be constructed. However, for a linear PDE, the convergence of the
serial time-stepping method (for a choice of discretization and iterative solution al-
gorithm) implies the convergence of the parallel time-stepping method because the
iteration defined by Q will converge for any initial guess.

We can develop a model for the behavior of the parallel time-stepping method
for linear PDEs. (Models can also be developed for nonlinear problems, but they are
highly problem dependent.) We assume that a linear PDE has been reduced to the



828 DAVID E. WOMBLE

form

(2) AnUn fn + Bnun-1, n 1,... ,N,

where un and fn are vectors in Rm, An and Bn are m m matrices, u0 is known,
and An is nonsingular. We let

un A’(fn + B,un-)

be the solution to (2) at time level n and define an iterative method for obtaining u
by

(3) u ,u_

To guarantee the convergence of u(nk) to u, we require that Qn satisfy the Lipschitz
condition

IIQ. (u, v) Q. (u, v)II _</. Ilu u II, /= < 1,

for all u and v in Rm and some norm II" II on Rm. These definitions form the traditional
framework for the study of the STS method. To study the PTS method, we adopt
the convention that u(0k) u0, k 1,..., , and define

A fn + nUn--1 ), k= l,"’,In_-dn,u)’*= (._)A f+u_ ), k>I_-d,

where dn is the delay defined in the previous section, and In- is the number of
iterations required for convergence of the iteration (3) to the solution of (2) at time
level n- 1. In the notation of Method 2, In is the number of times Rn is evaluated
plus the number of times Qn is evaluated. The vector uk)’* is thus the solution to (2)
with the true solution at time level n- 1 replaced by the most recent iterate, and we
note that uk)’* Qn(uk)’* (k+d)

n- ). Finally, we define ek) by

)= { lu)-u)’*l’ =,...,,,
0, k > I..

For k between 1 and In, ek) is the norm of the difference between the iterate uk)

(),,and the "apparent" true solution Un which we refer to as the apparent error. For
k > In, we set ek) 0 to simplify error bound on later time levels.

We now derive a bound for ek) Applying the Lipsehitz condition on Qn for n 1
yields

and for n > 1,

(n) <_
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Applying the above calculations recursively yields

(4)

We note from (4) and the definition of e(nk) that if d, I,-1, then we recover the
traditional error bounds for the STS method. Using induction, we can also conclude
from (4) that the PTS method converges (for linear problems).

We also note from (4) that the effect of the error on one time level can be magnified
at all later time levels on which the computation is proceeding simultaneously. For
many practical problems, this magnification factor is greater than one. Hence, our
upper bound on the error allows the possibility that the PTS method on N processors
requires more time to solve a problem than does the STS method on one processor.

The upper bound on the error (4) is not tight; however, the error can be approx-
(k) asymptotically approach u* along a vectorimated. Because, the iterates, un_l, n-1

lying in the subspace spanned by the eigenvectors corresponding to the largest eigen-
value, the distance between consecutive iterates asymptotically approaches 1
Replacing the term 1 + n-1 in the upper bound with 1 n-1 yields

Thus, e(nk) is approximated by a(nk), the solution to the recursion

(k-l) (r(k-l+d.) (k-l+dn)
(5) O.(nk) nO’n "gr" n n--1 n--1

0 otherwise

for k 1, 2,... and n 1, 2,... with the initial conditions

k)a 0, k 0, 1,...,

where

, , (dn-1)O’(nO) IlUn n-lll -" nO’n-1 n- 1,2,...

and e corresponds to the convergence criterion. This recursion can be solved in closed
form; however, this form does not yield additional information. Instead, we will
evaluate the recursion relation numerically for specific cases. The approximations for
the error will be used to predict speedups, which will be compared with experimental
results in the next section.

The delays can be used to generalize the model to the case of P (< N) processors.
For example, to model the one processor case (STS method), we can set dn equal to

In, the minimum k such that a(nk) 0. To model the P processor case, the delays on
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the first P time levels are arbitrary, and the delay at time n (> P) is chosen so that
computation does not start until the solution on line n- P has been completed. We
note that the maximum number of processors that can be used without at least one
processor being idle at all times must satisfy

n+P

(6) P <_ In E dj
j=n+l

for all n between 1 and N- P. This relation states that the processor assigned to
time level n cannot complete its calculations before each of the remaining processors
is assigned a time level and begins iterating.

The most common performance measure is speedup. It is normally defined as the
time required for one processor to solve a problem divided by the time required for
P processors to solve the same problem. The time to solve a problem using either
Method 1 or Method 2 is proportional to the "effective" number of evaluations of Qn,
that is, the number of evaluations of Qn that are not overlapped with computations on
previous time levels. The effective number of evaluations of Qn is given by nN=l En,
where En In --In- + dn. If we denote by In(P) the number of iterations and by
En (P) the effective number of iterations required for convergence at time level n and
by dn(P) the delay at time level n in the P processor case, S(P), the speedup on P
processors, is given by

S(P) (n= I’(1)) / (n=l En(P))
I, (1) IN(P)+Edn(P

n--1 n--1

For some problems, I(1) I(1) IN(l) are constant. In this case, there is
a "steady-state" solution of (5) in which I(P) I(P) IN(P) are constant,
and d(P)= I(P)/P, and the "steady-state" speedup is given by

(8) SS(P) lim S(P) P x I(1)/I(P).
The steady-state speedup is an asymptotic value for the speedup (as the number of
time levels at which the solution is desired increases). The "transient" nature of the
speedup for a small number of time levels is due to the fact that none of the iterations
at the first time level can be overlapped with iterations at previous time levels.

We now look at the effect of the parameters in the model on the performance of
the PTS method. The delays, the terms IIA-BnlI, and the convergence factors n
have the largest effect, while the effect of the other parameters is minimal. The results
presented in the remainder of this section are obtained by numerically evaluating the
recursion relation (5). The values of the parameters used in the evaluation of (5) are
close to values seen in many applications, and the effects shown in the remainder of
this section are observed over a range of values for the parameters.

The delay is a function of both hardware and software. It depends on the number
of processors, the number of iterations that each processor requires for convergence,
and the time to "start up" a processor on a new time level. In almost all cases, we
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want the minimum delay possible; nevertheless, it is instructive to consider the effect
of the delay on the number of iterations. As the delay dn is decreased, the error
introduced as the result of error at the previous time level is increased, and we expect
that the number of iterations required for convergence In will increase. However,
the numerical evaluation of (5) indicates that the "effective number of iterations,"
En In In-1 + dn, will be reduced. This is shown in Fig. 1.

120

110

100

50"

50

20

10

FIG. 1. The effect of the delay d2 on the number of iterations I2 and the effective number of
iterations E2. (/2 .9, c2 .09, Ilu -ul .1, e .00001.) Note that I1 88.

The terms IIAZB. I( are determined by the PDE and the method of discretization.
We see from (5) that increasing the value of IIA1Bnll magnifies the effect of the error
at the previous time level. The result is that the number of iterations required at
each time level increases, the delays dn (n > P) increase, and the speedup decreases.
Noting equation (8) and the effect of the delays on the number of iterations shown in
Fig. 1, we expect the decrease in speedup to be much more severe for a large number
of processors. This effect is shown in Fig. 2. There is a slight "staircase" nature to
the curves, which is due to the fact that dn and In are integers.

The convergence factors/n are determined by the iterative method chosen and
affect both the number of iterations required for convergence and the magnification of
the error on the previous time level. As n approaches one, errors from previous time
levels are introduced faster than they can be eliminated. Thus, the effective number
of iterations increases, and we expect the speedup to decrease. On the other hand, as
/n approaches zero, the number of iterations required for convergence decreases, and
we see from equation (6) that the number of processors that can be used effectively
decreases. Thus, we expect a decrease in the speedup. The overall effect of changing
/n on the steady-state speedup is shown in Fig. 3. We note that the speedup achieves
its maximum on the interior of the interval (0, 1), and that the PTS method performs,
best with relatively good iterative algorithms. As before, the staircase nature of the
curves is due to the fact that dn and In are integers.
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FIG. 2. The effect of IIAIBnll on the steady-state speedup. (/n --.9, 117- uT,_ll .1,
.00001, P 16.)

16-

12

0,6

FIG. 3. The effect of fin on the steady-state speedup. (IIABII 1, 117,- uT_ll .,
.00001, P 16.)
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4. Experimental results. In this section, we present three examples of the
PTS method. The first example is a parabolic PDE and an iterative method for
which the parameters in the model, equation (5), can be calculated analytically. This
allows direct comparison of the performance of the PTS method with the predictions
of the model. The second example is a nonlinear, parabolic PDE with multigrid as
the underlying iterative method. This example demonstrates that the PTS method
is applicable to a wide variety of problems. In the third example, we demonstrate
that the PTS method can be effectively coupled with a parallel implementation of
an iterative algorithm at each time level. All numerical results were obtained on the
NCUBE/ten hypercube. For ease of programming, we assume that the number of
processors to be used is a power of two, although this is not a requirement for the
PTS method.

EXAMPLE 1. The first example is the PDE

Ou Ou
-Ox---- + 3, (x, t) e (0, 1) (0, 5),

(9) u(x, 0) 0, x e (0, 1),

t) t), t e (o,

We let Ax 1/64 and At 5/200 and replace (9) with the finite-difference approxi-
mation

--Ui+l,n At- 2ti,n ti--l,n Ui,n ti,n_
/ 3,Ax2 At

1,...,63, n=1,...,200,

ui,o 0, 1,...,63,

Uo,n 3nAt UM,n, n 1,’.., 200.

This yields a linear system of the form (1), which we solve with SSOR iteration with
the near optimal relaxation parameter w 1.8. The parameters needed to evaluate
equation (5) can be calculated analytically. They are

n- 1,...,200.

For the convergence criterion, we let e 1 10-6. Convergence can be checked
explicitly because the true solution to (9) is known.

The problem was solved numerically using different numbers of processors. The
results and the predictions of the model are shown in Table 1. Note that problem (9)
satisfies the requirements necessary to compute the steady-state speedup. As was
stated in the previous section, the steady-state speedup is an asymptotic value for the
speedup as the number of time levels on which the solution is desired increases.

We make two observations based on Table 1. The first is that with only 200 time
steps, we cannot use more than 200 processors. The second observation is that the
model is most accurate for P << N 200. One reason is that the delays are larger,
and small errors in modeling the delay have a smaller effect. (We recall that the delays
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TABLE 1
Comparison of the per]ormance o] the PTS method for Example 1 with the predictions of the

model. The predictions are in parentheses.

1 12,000 (12,200)
2 6,118 (6,121)
4 3,168 (3,201)
8 1,847 (1,915)

16 1,234 (1,319)
32 872 (1,137)
64 634 (1,137)
128 489 (1,137)

S(P)
.00 (.00)
1.96 (1.99)
3.79 (3.81)
6.49 (6.37)
9.72 (9.25)
13.7 (10.7)
18.7 (10.7)
4.5 (o.7)

SS(P)
1.00 (i:00)’
e.oo (.oo)
3.90 (3.87)
6.53 (6.78)
9.50 (10.8)
13.9 (15.2)
19.1 (20.0)
27.6 (23.6)

are dependent, in part, on the hardware and must be modeled.) Another reason is
that we used the approximation

IIQ,(u, v) Q,(u, v)ll =/,llu ull, fin<l,

which is most accurate for a large number of iterations (with equal to the spectral
radius of Q,). For P 128, there is an average of less than three effective iterations
per time step.

EXAMPLE 2. As a second example, we choose Burgers’ equation:

Ou Ou Ou
-fffix u

Ox Ot
0, (,) e (0, ) x (0, 5),

(10) u(x, O) sin(rx), x e (0, 1),

(0, ) 0 u(1, ), e (0, 5).

We let Ax 1/128 and At 5/200 and replace (10) with the finite-difference ap-
proximation to get

Ui+l,n 2Ui,n -b Ui--l,n Ui,n Ui--l,n lti,n Ui,n--1 fi,n,u
Ax2 ui,n Ax At

(11) i--1,...,127, n--1,...,200,

ui,0 sin(irAx), 0,..., 128,

UO,n 0 U128,n, n 1,..., 200.

We note that upwind differencing has been used for the term Ou/Ox.
As an iterative method for the solution of (11), we choose multigrid iteration

with a weighted Jacobi smoothing step and a weighting factor of w .95. Because
multigrid iteration requires a linear equation, we delay ui,n in the nonlinear term by
one cycle. We consider the iterations to have converged if the residual is less than
1.0 x 10-5. Table 2 shows the results obtained by running the PTS algorithm for
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TABLE 2
The performance of the PTS algorithm for Example 2 with .01.

z_,n=zEn S(P)
1 5,346 1.00
2 2,732 1.96
4 1,341 3.99
8 765 7.00
16 570 9.38
32 505 10.6
64 487 11.0
128 487 11.0

this problem with u .01 on different numbers of processors. There are no predicted
results because the problem is nonlinear.

We note that the performance of the PTS algorithm for Example 2 is somewhat
worse than that for Example 1. The reason for this is that fewer iterations are required
at each time step in Example 2. Thus, fewer processors can be used effectively.
In" general, for problems that have steady-state solutions, the number of iterations
decreases as n increases (as in Example 2), and as a result, fewer processors can be
used effectively at later time levels.

EXAMPLE 3. The third example is a linear, parabolic PDE that arises in the
study of grain-boundary diffusion [3]. The dimensionless equation with parameters
approximating the diffusion of chromium in gold is

(12) 0.01
\Ox2 + y2 -, (x,y,t) e (0,1) 0, x (0,1),

with boundary conditions

Ou
(x 0 t)=

Ou Ou
o-7 x(x, 0, t) + 0.1N(x, 0, t), x e (0, 1), t e (0, 1),

0-- x,-,t =0, xe(O, 1), te(0,1),

u(O, y, t) l, y e (0, ) t e(0,1),

(1)u(1, y,t)=O, ye 0, te(0,1),

and initial conditions

(x, , 0) o, (1)xe(0,1], ye 0,

u(O, y, O) 1,
1
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TABLE 3
The performance of the PTS algorithm for Example 3. Pz and Py are the numbers of processors

in the x and y direction, respectively, and Pt is the number of time levels on which iterations are
carried out simultaneously. The total number of processors used is Pz x Py x Pt. Run times are in
seconds, and speedups are given in parentheses.

11
22
44
88

1 2 4 8 16
467. (1.00) 264. (1.77) 178. (2.62) 145. (3.22) 124. (3.77)
135.(3.46) 76.1(6.13) 52.0(8.98) 42.6(11.0) 35.9(13.0)
47.3 (9.87) 26.6 (17.6) 18.4 (25.4) 15.0 (31.1) 12.6 (37.1)
24.1 (19.4) 13.8 (33.8) 9.44 (49.5) 7.73 (60.4) 6.64 (70.3)

u(x, 0,0)= 1- x, x e (0, 1).

We let Ax 1/32, Ay 1/64, and At 1/32, and replace (12) with an implicit
finite-difference approximation (implicit Euler difference in time, central differences
in space where possible, one-sided differences otherwise) to get a system of linear
equations of the form (1). As a parallel iterative algorithm for the solution at each
time level, we choose Jacobi iteration because of its inherent parallel nature and
consider the iterations to have converged when the residual is less than 1.0 10-3.
Table 3 shows the run times and speedups for runs with various combinations of
processors in the space and time directions.

Even though Jacobi iteration is considered a highly parallel algorithm, a problem
size of 32 32 is small and communication overhead is significant. We see from Table
3 that if only a small number of processors are available for the solution of (12), then
they are most effectively used by the parallel Jacobi algorithm to solve at one time
level. However, if a large number of processors are available, then they are most
effectively used when the Jacobi iteration is coupled with the PTS method. This
effect would be more pronounced if we had chosen an iterative method with a less
efficient parallel implementation, such as multigrid or SOR.

We can also see from Table 3 that the total speedup is approximately equal to
the speedup obtained in the space variables times the speedup obtained in the time
variable.

5. Summary. In this paper, we have presented a technique by which parallelism
in the time direction can be introduced into implicit time-stepping algorithms. The
attraction of the technique is that it can be coupled with a wide variety of algorithms
and that the parallelism introduced in the time direction is independent of any paral-
lelism in space. Thus, the number of processors that can be efficiently applied to the
solution of a time-dependent PDE is increased by at least an order of magnitude.

We also presented a performance model of the method for linear problems. Based
on this model, we were able to predict the effect of algorithm parameters, such as
the convergence rate and the number of processors used, on the speedup. In 4, this
model was found to be in good agreement with the actual performance of the method.

Finally, we demonstrated the PTS method for linear and nonlinear problems and
for three common iterative methods. We found that the method was very effective for
a small number of processors and remained effective while the number of processors
was less than the number of time levels on which the solution was desired and less
than the number of iterations required for convergence on a time level. We also
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demonstrated that the PTS method can be effectively coupled with parallel iterative
algorithms for the solution at each time level.

Acknowledgments. The author thanks E. F. Brickell and D. E. Amos of Sandia
National Laboratories for their help in the analysis of equation (5).
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THE EFFECT OF TIME CONSTRAINTS ON SCALED SPEEDUP*

PATRICK H. WORLEYt

Abstract. Gustafson, Montry, and Benner introduced the concept of scaled speedup to char-
acterize the capabilities of distributed-memory multiprocessors. They argued that, for a fixed-size
problem, the behavior of the speedup of an algorithm as a function of the number of processors, the
speedup curve, can be too pessimistic a measure of a multiprocessor architecture. Instead, they mea-
sured the speedup of algorithms when the size of the corresponding problem grew with the number
of processors. They referred to the resulting function as the scaled speedup curve.

The scaled speedup curve is a function of how the size of the problem is allowed to grow. In this
paper, it is demonstrated that allowing the size of a problem to grow to fill the available memory can
produce dramatically different results from allowing the size of a problem to grow subject to satisfying
an upper bound on the execution time. In particular, if a constraint on the execution time is enforced,
then the scaled speedup curve is often very similar to the speedup curve for a fixed-size problem.
It is shown that no more than 50 processors can be used efficiently for some common problems in
scientific computation when using the current generation of distributed-memory multiprocessors. For
other problems, it is shown that the scaled speedup curve indicates that massively parallel computers
will be useful even if the execution time is constrained. In all of the cases examined, a meaningful
interpretation of the scaled speedup curve depends on a constraint on the execution time.

Key words, limits on parallelism, linear partial differential equations, massively parallel com-
putation, problem scaling, scaled speedup

AMS(MOS) subject classifications. 65M, 65N, 65W, 68Q

1. Introduction. Distributed-memory MIMD multiprocessors with a moder-
ate number of processors (< 100) have proven to be cost-effective computer architec-
tures for solving many of the compute-intensive problems in scientific computing [6],
[11], [12]. Multiprocessors with orders-of-magnitude larger numbers of processors can
also be cost-effective [9], [16], but it is unclear whether this sort of massive parallelism
is as useful as the more moderate amount of parallelism currently being exploited.

The tool most commonly used to argue for or against multiprocessors with very
large numbers of processors is the speedup curve [2], [17]. The speedup of an algorithm
on a multiprocessor with P identical processors is the ratio

s Te’
where T1 is the execution time of a serial implementation of the algorithm on one
of the processors and Tp is the execution time of a parallel implementation of the
algorithm that uses all P of the processors. The speedup curve is the graph of the
speedup as a function of the number of processors. This curve is a measure of the
performance of a family of multiprocessors, one for each number of processors. When
the processors are identical across the family and the interconnection topology varies
in a natural way as a function of the number of processors, then this family represents

Received by the editors December 27, 1988; accepted for publication (in revised form) November
9, 1989. This research was supported by the Applied Mathematical Sciences Research Program, Office
of Energy Research, U.S. Department of Energy under contract DE-AC05-84OR21400 with Martin
Marietta Energy Systems Inc.

Mathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge,
Tennessee 37831-8083.

Multiple Instruction Multiple Data is one category of Flynn’s multiprocessor taxonomy [5]. If
a computer is an MIMD multiprocessor, then both the instruction a processor is executing and the
data it is using can be different from those of other processors at any given moment.
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the scaling of a multiprocessor architecture. The maximum value reached by the
curve indicates the maximum speedup achievable by the associated architecture for
the given algorithm.

For a fixed-size problem, there is a law of diminishing returns when using an
increasing number of processors to calculate the solution. There is only so much work
to be done, and rarely can all of it be done in parallel. Details of this type of behavior
can be derived from the upper bound on the speedup described by Amdahl in [1]:

(2) <
s q-(1-s)/P"

P is the number of processors and s is the fraction of the work that cannot be paral-
lelized. Inequality (2) is referred to as Amdahl’s law.

Two implications can be drawn from Amdahl’s law. First, if s is nonzero, then
the speedup is bounded from above by l/s, independent of the number of processors
in the multiprocessor. Second, if the right-hand side of Amdahl’s law is a good model
of the speedup curve, then only a relatively few processors are needed to achieve most
of the maximum speedup. For example, if s .1, then the speedup cannot exceed 10,
and 36 processors achieve 80 percent of this value.

The right-hand side of Amdahl’s law is not a good model of the speedup curve
for MIMD multiprocessors. The performance of a parallel algorithm is degraded
whenever fewer than P processors are busy during the execution of the algorithm, not
just when only one processor is busy. Moreover, there is often an overhead involved
when exploiting parallelism, and processors must execute instructions that do not
exist in the serial implementation. But generalizations of Amdahl’s law have been
developed by numerous researchers that lead to the same type of conclusions implied
by Amdahl’s law. For examples, see [17, pp. B29-B34].

Recently, Gustafson, Montry, and Benner argued that the analysis of fixed-size
problems can be misleading when evaluating a multiprocessor architecture [9]. Instead
of the fixed-size analysis described above, they proposed examining the speedup curve
when the size of the problem increases with the number of processors.2 They referred
to this as the scaled speedup curve. The implications of the fixed-size analysis do not
change unless s decreases as a function of P, but this is exactly what is observed in
practice for many algorithms [9]. The theoretical analyses of both Amdahl and Fox,
described by Messina in [17], support these results for many algorithms in scientific
computation if the problem size increases sufficiently fast as a function P.

In this paper we examine the effect of two different assumptions on how the
problem size grows. The first assumption, the one used in [9], allows the size of the
problem to grow to fill the available memory. We will refer to this as the memory-
constrained case. The second assumption allows the size of the problem to grow
subject to an upper bound on the execution time. We will refer to this as the time-
constrained case. In previous work [23], [24] we proved that the execution time will
grow without bound as a function of the problem size, independent of the number
of processors and of the algorithm used, for certain common problems in scientific
computation. We also argued that similar conclusions apply to most problems in
scientific computation. For example, the result holds whenever (a) the solution to
a problem includes some scalar quantity that cannot be calculated exactly (using
available information) without using an infinite amount of data, (b) the size of the

A similar approach was used by Moler in [18].
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problem is allowed to increase only if the error in the calculated solution decreases,
and (c) if the size of the problem grows unboundedly, then the error goes to zero.
When these assumptions are satisfied, there will be a largest problem that can be
solved and still satisfy a given time constraint, and the scaled speedup for the time-
constrained case will not exceed some constant determined by this largest problem.
The memory-constrained case is not limited in this fashion.

The theoretical analysis in [23] is relatively tight, but the lower bounds on the
execution time can be quite small because they hold for an optimal parallel algorithm
and an unlimited number of processors. To determine whether this distinction between
the memory-constrained case and the time-constrained case has practical import, we
examine scaled speedup curves for some simple algorithms used to approximate the
solution of model linear partial differential equations (PDE). In 2 we introduce the
multiprocessor model used to describe and analyze the parallel algorithms. In 3 we
analyze an explicit finite-difference algorithm for a scalar hyperbolic PDE in two space
dimensions. We then generalize the results to the corresponding problems in other
space dimensions. In 4 we analyze an implicit finite-difference algorithm for a scalar
elliptic PDE in one space dimension. We also discuss how to generalize these results
to the corresponding problems in higher dimensions.

Another tool used to evaluate the performance of an algorithm on a multiprocessor
is the efficiency,

S
(3) E=p.
It measures the fraction of the maximum possible speedup that is achieved. The
efficiency is useful when deciding how best to allocate processors among independent
programs in order to maximize throughput. The efficiency and scaled efficiency curves
are defined in an analogous manner to the speedup and scaled speedup curves. We
will also mention the effect of time and memory constraints on the scaled efficiency.

2. Multiprocessor model. To facilitate comparison with the empirical results
of Gustafson, Montry, and Benner [9], the following multiprocessor model is based on
the NCUBE family of hypercube multiprocessors [4]. The model is not too different
from distributed-memory MIMD multiprocessors available from other manufactur-
ers [4], and similar conclusions can be drawn for these architectures.

The following general assumptions are basic to the analysis in this paper.
1) We assume that we are analyzing a family of distributed-memory MIMD

multiprocessors.
2) We assume that all processors in this family are identical, and that all pro-

cessors have the same amount of local memory. We will refer to the number
of floating point numbers that can be stored in this local memory by M.

3) For each example algorithm, we assume an interconnection topology that is
natural for the algorithm. The underlying assumption is that these inter-
connection topologies can be embedded in the interconnection topologies of
the multiprocessors in the family. In all examples, it will be sufficient if the
interconnection topologies of the multiprocessors are binary hypercubes [21].

4) We assume that the time required to send k floating point numbers between
neighboring processors can be described by the expression

(4) t a+k..
a is the startup time required to send any message and/ is the incremental
transmission time per floating point number [4], [7].
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The following specific assumptions permit us to calculate the scaled speedup curves.

a) We assume that all floating point numbers have 8 bytes.
b) We assume that .45 Megabytes of local memory are available for program

data storage per processor. Thus, there is enough memory to store 56,250
floating point numbers.

c) We assume that binary floating point addition, subtraction, multiplication,
and division instructions all take approximately 8 #sec to execute in the
(compute-intensive) type of programs that we will be analyzing. This is
equivalent to a rate of .125 Megaflops for each processor. We will refer to the
execution times of these operations by f(+), f(_), f(.), and f(/) respectively.

d) We assume that the communication startup time a is 376 #sec, and that the
incremental transmission time fl is 24 #sec.

e) We assume that computation and communication on the same processor are
not overlapped. For example, if, during the execution of an algorithm, an
addition operation is executed and a floating point number is sent to a neigh-
boring processor, then the time required to execute these two operations is3

(5) + + Z).

These specific assumptions are not important to the analysis, but some assumptions
are necessary to complete the analysis.

The model described above (assumptions 1)- 4) and a)- e)) allows us to identify
when the bounds on performance established in [23] and [24] begin to affect actual
algorithms. Different assumptions will change the analysis, and changes in multipro-
cessor technology will alter some of the conclusions drawn here. But the qualitative
behavior indicated by the theory is independent of the architectural parameters, and
the issue is only when the intrinsic limitations on the parallelism begin to affect per-
formance.

3. Hyperbolic examples.
3.1. Two space dimensions. Consider the following hyperbolic equation in two"

space dimensions with periodic boundary conditions and a constant forcing function,.

0.
)o o

t) u(x, t) + t) c(6) +

for (x,y,t)e [0,1] x [0,1] x [0,1],

0
u(x, y, O) h(x, y), --u(x, y, O) g(x, y) for (x, y) e [0, 1] [0, 1],

u(O, y, t) u(1, y, t) for (y, t) e [0, 1] x [0, 1],

u(x, O, t) u(x, 1, t) for (x, t) e [0, 1] x [0, 1],

3 If communication and computation can be overlapped, then the execution times reported in
the rest of this paper would, at most, be halved, and the speedups doubled. For example, the
time required to add two floating point numbers together and send a floating point number to a
neighboring processor is always bounded from below by max{f(+), a +/}, which is never less than
half of the value of (5). Permitting overlap changes our conclusions very little.
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where 0 < a << 1 and time is in units of seconds. Assume that we want the solution
on a uniform mesh at time T 1,

(7) ((i/ks, j/ks, 1)li,j E {1,...,Ns} },

where As is the distance between consecutive locations in each spatial coordinate di-
rection and N2 is the total number of locations, N2 (1/As)2. Assume that values of
the data functions h and g are available on the mesh ( (iAs, jAs)i, j (1,..., Ns }.

We approximate u(x, y, t) on the mesh at time T 1 by timestepping using the
standard second-order centered finite-difference formula,

(2"(At) ) ._)+
(: + . A)" (a): (,L, + _, + u,+ + ,

( " (t) )+ :t "C Vi, j{1,...,N} Vk{1,...,Nt},

where At is the length of the timestep and Nt 1/At. ui,j-k is an approximation to
u at the location (iAs, jAs, kAt) By periodicity, k fi,j for all j and k, andNs,j

fik ,0 for all and k This scheme requires approximations to the solution ati,Ns
times (k- 1)At and kAt in order to calculate an approximation to the solution at
time (k + 1)At. To start the process, we use a slight modification of (8) to calculate
the solution at time At from the initial data [15, pp. 565-566]. If we precompute the
constant factors, then the serial complexity of the calculation is approximately

(9) ( (+) + a. f(,)). N:. N.
The stability condition for this algorithm is AtlAs g 1/ e for some positive
< 1/ [:0].
The computation of the approximation at time (k + 1)At from the approximation

at times (k- 1)At and kAt is easily parallelized. Assume that the multiprocessor has
P processors and can be configured as a toroidal mesh with four nearest neighbors per
processor and two communication channels between neighboring processors (allowing
duplex communications). If Ns / is an integer, then partition the square [0, 1] x [0, 1]
into P equal subsquares, map the subsquares and data onto the processors in such a
way as to preserve the topology of the problem domain, and assign the calculation of
the solution at the locations in each subsquare to the corresponding processor. Then
each processor needs to receive only Ns/ floating point numbers from each of its
neighbors in order to finish its calculation of the next timestep.4 Since computation
and communication are not overlapped, the total execution time for this parallel
implementation is

(0) (.(+) + a. 1(,)). + a. , +Z. .N.

4 Mappings based on partitioning the problem domain into hexagons or rectangular strips have
also been used to generate parallel implementations [19]. For the assumed values of a and , the
mapping described here is better than either of those alternatives when P >_ 16 and Ns >_ 64.
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A similar implementation can be described if Ns/V is not an integer, and expres-
sion (10) is then a lower bound on the execution time. Note that when more than

Ns2 processors are used to parallelize this algorithm, the execution time begins to
increase. The decrease in computation time is more than offset by the increase in the
time spent in interprocessor communication. This fact follows from the number of
messages that must be sent (and so is true for any interconnection topology) and from
the assumed speeds of communication and computation. In consequence, we will not
consider using more than Ns2 processors.

For a fixed number of processors, the execution time of this parallel algorithm is
a function of only At and As. The optimal choice of At and As either minimizes
the approximation error subject to a bound on the execution time or minimizes the
execution time subject to a bound on the approximation error, depending on which
constraint is more binding. We will consider the first definition initially. For a stable
algorithm, minimizing the truncation error of the discretization [20] is a good heuristic
for minimizing the approximation error. Without a priori knowledge of the solution
function, the best approximation to the truncation error has the form

(11) C" ((1 + 4. a). (At) 2 + 2.

Thus, the optimal values of At and As are calculated by minimizing (11) subject
to the stability condition and the bound on the execution time, and they satisfy the
condition AtlAs 1//. It is straightforward to show that this condition is also
satisfied by the choice of At and As that minimizes the execution time with respect to
a bound on the approximation error. For the rest of the analysis, we will assume that

AtlAs 1/x/, with the understanding that this is a good approximation to what
would be used in practice. Equivalently, we are assuming that Nt x/" Ns. Thus, the
number of timesteps Nt is an unbounded monotonic function of the size of the spatial
grid N2s. By (9) and (10), this implies that the execution time will grow unboundedly
as a function of the serial complexity, regardless of the number of processors used.

3.1.1. Fixed-size speedup curves. To begin the calculation for a given time-
step, enough memory must be available to hold the approximate solution at the two
previous timesteps. Thus, the entire computation can proceed on one processor as long
as a little more than 2. N2 floating point numbers can be stored, and the maximum
value of Ns for a serial implementation of the algorithm is approximately v/M/2. By
our assumptions, this corresponds to Ns 167, or As .006. This assumes that
the solution is required only at time T 1 and that the size of the memory is the
active constraint in determining the size of the problem. If, instead, the solution of
the problem must proceed at least as fast as real time, then the execution time must
be no greater than one second when approximating the solution at time T 1. In
this case the maximum value of Ns for a serial implementation of the algorithm is

(12) N ,. ( 6 f(+) / 3 f(.)

and As .048.
Figure 1 contains the graphs of the speedup curves for these two fixed-size ex-

amples. As expected, both curves level off long before the maximum number of
processors Ns2 is reached. The time-constrained example has a maximum speedup of
approximately 19, using 441 processors. The efficiency is less than 50 percent when
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P > 15. In contrast, the memory-constrained example has a maximum speedup of
approximately 1,201, using 27,889 processors. The efficiency falls below 50 percent
only when P > 998.

3.1.2. Memory-constrained scaled speedup curve. Next, we let the size of
the problem grow to fill the available memory as the number of processors increases.
Since each additional processor adds the capacity to store M additional floating point
numbers, the bound on N8 is now

(13) N8 V/28 125. P.

We will refer to this as the memory-constrained model. This function is graphed in
Fig. 2.

Figure 3 contains the graph of the memory-constrained scaled speedup curve.
This function grows linearly as a function of P with a slope near one,

(14) S
(6. f(+) / 3. f(,)). M P .9914. P.

(6 f(+) / 3. f(,)). M + 8. (a //. v/M/2)
Thus, very good speedup and efficiency are maintained for any number of processors.
This analysis does not indicate any limit to the number of processors that can be used
effectively, but the execution time for the memory-constrained model is

(15)

x/-. (6f(+) + 3f(,)). - + 4 a +/. / 484v/ seconds,

and any time constraint will eventually be exceeded as P increases. Figure 4 contains
the graph of the execution time of the memory-constrained model as a function of
P. The execution time is approximately 7.9 minutes when one processor is used, and
it increases to over four hours by the time 1,000 processors are used. If 1,000,000
processors are used, then the execution time is approximately 134 hours.

3.1.3. Time-constrained scaled speedup curve. Finally, we let the size of
the problem grow to satisfy the real-time bound on the execution time. To satisfy the
time constraint for the P processor parallel implementation, we need

( N2 ( Ns)) "x/’Ns <1(16) (6.f(/)/3.f(,)).--- + 4. a+/.
This bound on Ns is graphed in Fig. 2. We will refer to this as the time-constrained
model. Since P is constrained to be less than or equal to Ns2, there is a largest problem
that can be solved, regardless of the number of available processors. For this problem,
N cannot be larger than 422. Note that this is larger than either of the two fixed-size
examples, so we expect more promising results for the time-constrained model.

Figure 3 contains the time-constrained scaled speedup curve for this problem and
the speedup curve for the fixed-size problem N 422. The maximum speedup is
approximately 7,669, using 178,084 processors. The efficiency does not fall below
50 percent until P > 1,108. The time-constrained scaled speedup curve has many
of the same characteristics as fixed-size speedup curves. There is an upper bound
on the maximum number of processors that can be used, and most of the speedup
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is achieved when using significantly fewer processors. Moreover, the speedup curve
for the maximum size problem N8 422 is a reasonable approximation to the time-
constrained scaled speedup curve.

In conclusion, unlike for the memory-constrained model, an unlimited number of
processors cannot be used. But tens of thousands of processors can still be utilized
effectively. If 50 percent utility is required, then a maximum of 1,108 processors can
be used, but half of the maximum possible speedup is not achieved until approximately
21,000 processors are used.

3.2. Generalizations.
3.2.1. Other parallel implementations. The parallel implementation used in

3.1 is not optimal, although it does appear to be fairly good. But, (8) specifies a par-
tial order constraining when values can be calculated in any parallel implementation.
In particular, it is clear that at least Nt parallel "steps" are required to calculate the
solution at time T 1 using any parallel implementation. Thus, the execution time
must grow at least linearly in Nt, which, by the stability condition, must grow at least
as fast as x/" Ns. Because of this, the behavior of the time-constrained model will
be qualitatively the same for ny reasonable parMlel implementation.

Note that the choice of the parallel implementation is closely tied.to the intercom
nection topology. For the given algorithm, there is little to be gained by increasing
the connectivity, but decreasing the connectivity can change the decision of how best
to partition the domain. For example, if the two-dimensional example is to be solved
on a ring topology, then the natural parallel implementation uses a strip partition of
the spatial domain (as long as N > P). This increases the communication cost for
large problem sizes and the time-constrained model becomes more pessimistic, but
the results do not change qualitatively.

3.2.2. Other problems. The analysis described in 3.1 can be extended easily
to handle other PDEs that are discretized using traditional explicit finite-difference
and finite-element schemes. Nothing we have done is particularly sensitive to either
the boundary conditions, if they are local, or the shape of the domain. Using different
differential operators, or systems of differential operators, will change the number
of arithmetic operations, the coefficient of , and (less likely) the coefficient of a in
expression (10) by some fixed amount. Thus, the quantitative results will be scaled,
but the qualitative results are unchanged as long as Nt is a similar increasing function
of the size of the problem.

3.2.3. Stability. The stability condition is an active constraint in the minimiza-
tion problem that determines the optimal As and At for the algorithm described in
3.1, but there would be little change in the analysis if the algorithm were uncondi-
tionally stable. For example, assume that the algorithm is stable even when the ratio

AtlAs is arbitrarily large. Now we can use an arbitrarily large number of processors
even when the execution time is bounded if we keep At fixed and make As sufficiently
small. But, decreasing As for a fixed At at most decreases the truncation error to
one third of its previous value, and the serial complexity for this choice of At and As
becomes arbitrarily large. The same decrease in the truncation error can be achieved
by decreasing At and As equally by a factor of 1/V, at the cost of only increasing
the serial complexity by a factor of 3. v. If the speedup is measured relative to the
execution time of the serial algorithm that achieves the same error bound (using the
optimal choice of At and As), then the time-constrained scaled speedup is at most
increased by a factor of 3. by allowing As 0 and P , and at the cost of the
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efficiency going to zero. Thus, the practical limits on the number of processors that
can be used do not change significantly.

3.2.4. Other space dimensions. It is simple to extend the analysis in 3.1
to second-order centered finite-difference schemes for the corresponding scalar hyper-
bolic PDEs in other space dimensions. For a general d-dimensional cube, the serial
algorithm has a complexity of

(17) (2. (d + 1) f(+) + 3. f(,)). Nds Nt.

Assume that we are using a multiprocessor whose interconnection topology is a d-
dimensional mesh supplemented by links between corresponding processors in oppos-
ing faces of the mesh. If we partition the spatial domain into d-dimensional subcubes
and map the blocks onto processors in the natural way, then the resulting parallel
algorithm has an execution time of

(18) (2.(d+l).f(+)/3.f(,)).--f- / 2 d. ( / i. pl/d Nt.

The stability condition for this algorithm is AtlAs <_ 1/x/ e for some positive
e < 1/-, and the optimal choice of At and As satisfies AtlAs ,, 1/x/-. Thus,
Nt , v/- Ns. The memory-constrained model assumes that

lid

The memory-constrained scaled speedup is

(20) S (2.(d+l).f(+)+3.f(,)).M .p
(2. (d + 1). f(+) + 3. f(,)). M + 4. d. (a + Z" (M/2)(d-)/d)

and the execution time of the memory-constrained model is

(21)

v/. (2(d + 1). I(+) + 3f(,)) -- + 2d. c + Z.
1/d

Thus, the memory-constrained scaled speedup is always a linear function of P, and
the memory-constrained model always indicates that any number of processors can
be used. But, the execution time of this model increases linearly in p1/d, and any
time constraint will eventually be violated. The larger d is, the slower this growth is,
and the more optimistic we expect the time-constrained model to be. For example,
Figs. 5 and 6 contain the memory-constrained and time-constrained scaled speedup
curves for the cases d 1 and d 3, respectively.

For d 1, time-constrained model is more pessimistic than before. The maximum
number of processors that can be used is 1168, which provides a speedup of 76, and the
efficiency falls below 50 percent when P > 43. In contrast, for d 3 the maximum
number of processors that can be used is 12,487,168, which provides a speedup of
approximately 441,668, and the efficiency only falls below 50 percent when P > 7, 000.
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4. Elliptic examples.
4.1. One space dimension. Consider the following elliptic equation in one

space dimension with Dirichlet boundary conditions,

2
(22)

Ox2 u(x) a(x) u(x) g(x) for x e [0,1],

o

where a(x) is a nonnegative function. Assume that we want the solution on a uniform
mesh,

(23) {jAs[j E {1,...,Ns)},

where As is the distance between consecutive locations and N8 is the total number
of locations, Ns (l/As 1). Assume that values of the functions a(x) and g(x)
are also available on this mesh.

We approximate u(x) by replacing the differential equation (22) by the standard
second-order centered finite-difference scheme and solving the resulting coupled sys-
tem of linear equations:

fij is an approximation to u at the location jAs, aj a(jAs), and gj g(jAs). We
will also refer to this system by the matrix equation At , where A is a symmetric
positive-definite tridiagonal N x N matrix, is the vector of approximate solution
values, and is the vector of data.

There are numerous techniques for solving this matrix equation. If a point iter-
ative method is used [10], [25], then the analysis is very similar to that described in

3. Each step of the iteration involves a weighted average of values associated with
neighboring mesh locations, and the number of iterations is approximately a linear
function of N for some positive a. Many of the standard serial and parallel algo-
rithms for this problem have a structure similar to that outlined in Fig. 7. When
Ns + 1 is an integer power of two this description applies to multigrid5 [3], Gaussian
elimination using the nested dissection ordering of the rows and columns of A [8],
and cyclic reduction [13]. The approach can be modified to work even if Ns is not a
power of two. We will use the cyclic reduction algorithm for our analysis. The serial
complexity of the cyclic reduction algorithm is almost three times as large as that of
the best known serial algorithm for this problem [13], but the parallel implementation
described below is a competitive parallel algorithm [14]. A rough comparison of this
parallel algorithm with the best serial algorithm can be calculated by dividing all
speedup values in the rest of this section by three.

Since multigrid only approximately reduces the system in step 1), steps 0) 5) will need to be
repeated a number of times until the process converges.
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0) LetN=Ns/l.
1) Given a tridiagonM system of N- 1 equations representing N- 1 mesh locations, generate

a new tridiagonM system of N/2- 1 equations whose solution is the even numbered values
of the solution vector of the larger system. Set N N/2.
There is now one equation for every location on a coarser mesh. We will refer to this as the
active mesh during this stage of the algorithm. Each new equation is a weighted sum of
the original equation corresponding to that mesh location and the equations corresponding
to the mesh locations on either side of it in the original fine mesh.

2) Repeat step 1) until the system is reduced to a single equation, saving all of the intermediate
systems.

3) Solve the one equation and set N 2.
4) Use the solution of the system of size N/2 1 to solve for the remaining unknowns in the

tridiagonM system of size N- 1. Set N 2. N. We will refer to the corresponding mesh
locations as being active during this part of the algorithm.

5) Repeat step 4) until the original problem is solved.

FIG. 7. Outline of the cyclic reduction algorithm for the one-dimensional elliptic problem.

The details of cyclic reduction can be found in Hockney and Jesshope [13, pp.
286-298]. For now, assume that N =_ Ns + 1 is an integer power of two. Step 1)
requires 4 additions, 6 multiplications, and 2 divisions per new equation, and step 1)
is executed log2 N- 1 times. Step 3) requires 1 division, and is executed once. Step
4) requires 2 additions, 2 multiplications, and 1 division per new solution value, and
step 4) is executed log2 N- 1 times. Thus, the serial complexity is

(25) (6f(+) + 8f(,) + 3f(/)). (N 1) (4f(+) + 6f(,) + 2f(/)). log2 N + f(/)
For simplicity, we will assume that the same complexity holds when N is not an integer
power of two. This algorithm requires storage for approximately 7. Ns floating point
values.

Most of the work in steps 1) and 4) of the algorithm can be done in parallel.
Assume that the multiprocessor has P processors and can be configured as a binary
hypercube with two communication channels between neighboring processors. Par-
tition the interval [0, 1] into P equal subintervals, map neighboring subintervals to
neighboring processors, and assign the calculation of the solution at the locations
in each subinterval to the corresponding processor. As long as there is at least one
active mesh location associated with each processor, each processor needs to receive
only four floating point numbers from each of two neighbors to finish the current
iteration of step 1), and one floating point number from each of two neighbors to
finish the current iteration of step 4). During these stages of the algorithm only a
linear array interconnection topology is being used by the parallel implementation.
For some iterations of steps 1) and 4) the active mesh is too coarse for all processors
to have active mesh locations, and some processors will be idle. But, if some care
is taken when mapping the subintervals to the processors, the processors that need
to communicate will only be a distance of two apart [14]. That is, the information
must pass through only one intermediate processor. This uses the entire hypercube
interconnection network.

If both N and P are integer powers of two and N >_ 2. P, then the execution
time of this parallel implementation is

(26)

(6"f(+)+8"f(*)+3"f(/))’(N-P )p +log2P + o.(4.1og2N+4.1og2P-8)

+ /3.(10.log2N+10.1og2P-26) (4.f(+)+5.f(,)+f(/)).
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This is a lower bound on the execution time otherwise. Thus, as in the examples in
3, the execution time of this parallel algorithm will grow unboundedly as a function
of the serial complexity, regardless of the number of processors. But now the lower
bound on the execution time is a logarithmic function of the serial complexity, and the
growth is much slower. For this implementation there is no advantage to having more
than N/2 processors. While more can be used, the execution time begins to grow
due to the additional time spent in interprocessor communication. Each processor
needs to hold at least 7. Ns/P floating point values, but at least one needs to hold
7. Ns/P + 4. log2(N/P floating point values.

4.1.1. Fixed-size speedup curves. The algorithm can be executed on one
processor as long as approximately 7. N floating point numbers can be stored. If
the size of the memory is the only limitation on the size of the problem, then the
maximum value of Ns in a serial implementation of the algorithm is approximately
M/7. By our assumptions, this corresponds to N 8035, or As .00012. If the
execution time of the problem must be less than one second, then the maximum value
of N8 in a serial implementation is 7,362, or As . .00014. This time constraint is
arbitrary for this problem since there is no corresponding real time. But some bound
will hold in practice, and this one is appropriate given the earlier analyses. Unlike
the example in 3.1, the effect of the memory constraint is comparable to the effect
of the time constraint. For the rest of this section, we will consider only the fixed-size
problem N 8035.

Figure 8 contains the graph of the speedup curve for this fixed-size example. While
over 4,000 processors can be used, the speedup begins decreasing when more than 403
processors are used, due to the presence of the terms that grow as a function of P.
The maximum speedup is approximately 29, using 403 processors. The efficiency is
less than 50 percent when P > 38.

4.1.2. Memory-constrained scaled speedup curve. If the size of the prob-
lem grows to fill the available memory, then Ns satisfies

(27) 7. +4.log2 M

when P > 1. A good approximation to the maximum value that satisfies this in-
equality is Ns MP/7, or N 8035. P by our assumptions. We will refer to
this as the memory-constrained model. For large M, a good approximation to the
memory-constrained scaled speedup is

(28) S
C.M+7.(C+8.+20.).log2P "P’

where C (6. f(+)+ 8. f(.)+ 3. f(/)), and a good approximation to the execution
time of the memory-constrained model is

M
(29) C. + (C + 8. + 20.).1og2P.

By our assumptions, these approximations correspond to a scaled speedup of

(30) S
301.5 + ];g2 P
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FIG. 8. Scaled speedup curves for the one-dimensional elliptic problem.

and an execution time of approximately (1.09 + .0036. log2 P) seconds.
Figure 8 contains the graph of the memory-constrained scaled speedup curve. The

speedup appears to grow linearly as a function of P with a slope near one, in agreement
with (30) for the numbers of processors considered. Thus, like all of the previous
memory-constrained examples, very good speedup and efficiency are maintained for
any practical number of processors. Figure 9 contains the graph of the execution
time of the memory-constrained model as a function of P. Note that, unlike the
previous graphs, this is a log-linear graph with a small linear scale. For this problem
the execution time hardly increases at all. The execution time is approximately 1.09
seconds when one processor is used, and increases to only 1.18 seconds when 1,000,000
processors are used. Thus, the implications of the memory-constrained model are both
optimistic and believable.

4.1.3. Time-constrained scaled speedup curve. To satisfy a one second
bound on the execution time, Ns must satisfy

(31)

(6.f(+) + 8.f(,) + 3. f(/)). (Np- P + log2 P) + a.(4.1og2N+4.1og2P-8)

+/. (10. log2 N + 10. log2 P- 26) (4. f(+) + 5. f(,) + y(/)) <

when P > 1. We will refer to this bound on Ns as the time-constrained model.
While the model has a maximum size problem that can be solved, the size of the
time-constrained model grows almost as fast as the memory-constrained model for
all numbers of processors examined. Figure 8 contains the time-constrained scaled
speedup curve for this problem. The time-constrained scaled speedup is just as op-
timistic as the memory-constrained scaled speedup, indicating no practical limits on
the number of processors that can be used. This is in distinct contrast with the
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FIG. 9. Execution time in seconds for scaled speedup models versus number of processors for
the one-dimensional elliptic problem.

fixed-size speedup curve, which was very pessimistic. The decision as to whether a
massively parallel processor is appropriate for this problem is very sensitive to the
degree to which a scaled analysis is appropriate.

4.2. Generalizations.

4.2.1. Other interconnection topologies. Increasing the connectivity of the
interconnection topology can decrease the execution time of the algorithm in 4.1.
For example, if the interconnection topology is fully connected, then all interproces-
sor communications is between neighboring processors, and two of the three log2 P
terms in (26) disappear. But, this at most halves the time spent in interprocessor
communication, and the results of the analysis change very little.

In contrast, decreasing the connectivity of the interconnection topology changes
the results of 4.1 significantly. To indicate the degree to which the conclusions can
change, assume that the multiprocessor family can support only a one-dimensional
mesh interconnection topology. In this case processors must send messages progres-
sively further as the active mesh becomes coarser in steps 1) and 4) of the algorithm.
The execution time of this modified parallel implementation is

(32)

(6f(+)+8f(*)+3f(/))’(N-P )+log2P + a.(41og2N-41og2P+4P-6)

+ /. (10 log2 N 10 log2 P + 10P 45) (4f(+) + 5f(.) + f(/)).

This,. expression grows linearly as a function of P, and the fixed-size example
is even more pessimistic than before. This is indicated by the speedup curve in
Fig. 10. The speedup begins decreasing when P > 26. The maximum speedup is
approximately 11, using 26 processors, and the efficiency is less than 50 percent when
P>21.
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FIG. 10. Scaled speedup curves for the one-dimensional elliptic problem when a one-dimensional
mesh opology is used.

Figure 10 also contains the graph of the memory-constrained scaled speedup.
While there is still no upper bound on the number of processors that can be used,
there is now an upper bound on the achievable speedup. For our assumptions, the
maximum speedup is approximately 627 and the efficiency falls below 50 percent when
P > 614. Even this limited amount of speedup comes at the cost of an increase in
the execution time. The execution time for one processor is still approximately 1.09
seconds, but it increases to approximately 29 minutes when P 1,000,000.

The graph of the time-constrained scaled speedup is also in Fig. 10. Since the
expression for the execution time has a term that is linear in P, at some point an
increase in P will decrease the size of the problem that can be solved and still satisfy
the time constraint. This occurs when P 282, and N8 1,014,163. This is a
practical limit to the number of processors that can be used. The basic assumption
behind the time-constrained scaled speedup analysis is that the goal is to solve larger
problems, subject to the time constraint. For P > 282, the size of the problem can
no longer increase, and there is no advantage to using more processors. The speedup
is 138 when P 282, and the efficiency is 49 percent.

In general, if a multiprocessor family is limited to a k-dimensional mesh inter-
connection topology, then the execution time will have a term that grows like p1/k.
Thus, a scaled speedup analysis indicates that the utility of a large number of pro-
cessors will increase monotonically as a function of k, with the one-dimensional mesh
and the hypercube topologies representing the limiting cases. Note that the fixed-size
analysis always indicates that relatively few processors can be used, independent of
the interconnection topology.

4.2.2. Higher space dimensions. An analysis similar to that of 4.1 follows
for the generalizations of (22) and (24) to higher dimensions if a multigrid solver is
used. For example, consider a single V-cycle of a multigrid algorithm that uses a point
iterative relaxation scheme and local interpolation operators for projecting the solu-
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tion between grids [22]. The serial complexity of this algorithm has the approximate
form

(33) C.d. Nd,

where d is the dimension. For a multiprocessor with a hypercube interconnection
topology and a parallel implementation that preserves the topology of the problem
domain, the execution time of the parallel algorithm has the approximate form

(34) C1 d -- + C2 d.
p1/d "f" C3 d log2 Ns + C4 log2 P

for positive constants C1, C2, C3, and C4.
A multigrid algorithm will require multiple iterations to solve the problem, but

the number of iterations required by a well-designed multigrid algorithm will be either
independent of Ns or a very slowly growing function of Ns. Thus, it is reasonable to
assume that (34) is the correct form for the execution time of the complete parallel
algorithm. Just as in the one-dimensional example, this expression has a term that
grows like log2 P and a term that grows like log2 Ns. Thus, we expect a fixed-size
example to be very pessimistic and the memory-constrained and time-constrained
models to be very optimistic. Similarly, if the multiprocessor family is limited to
a k-dimensional mesh interconnection topology, then the execution time will have a
term that grows like p1/k, and even the memory-constrained model may indicate a
practical limit on the number of processors that can be used.

5. Conclusions. The speedup curves for the current workload are often the most
appropriate measures to use to decide how many processors to buy when buying a
new multiprocessor or upgrading an old one. But, if the sizes of some of the problems
are expected to grow, then scaled speedup curves can also be appropriate measures.
Since the time-constrained scaled speedup curve and the memory-constrained scaled
speedup curve are intrinsically different, it is important to identify how a problem will
grow. For any practical problem, there will be some bound on the execution time that
must be satisfied. And, for the algorithms and multiprocessor families analyzed here,
a time constraint tends to be more limiting than the memory constraint. In all cases
examined, an indication of how the execution time varies for a memory-constrained
model is necessary to interpret the memory-constrained scaled speedup curve. For
this reason, we argue that including a bound on the execution time is necessary when
defining scaled speedup curves.

For certain problems, the time-constrained model is very pessimistic, indicating
that massive parallelism is unlikely to be useful. For other problems, the model
indicates that tens of thousands of processors could conceivably be useful, although
for that number of processors the analysis is somewhat simplistic. We have ignored
costs like loading the program and data and unloading the results. Additionally,
there will usually be an upper bound on the size of a problem that is useful to
solve, and this will need to be incorporated in a realistic analysis. The examples
described here seem to indicate that simple problem and architectural parameters may
be sufficient to categorize whether massive parallelism will be useful. For example,
the higher the number of space dimensions, the more likely it is that a large number
of processors can be used for the hyperbolic examples. For the elliptic examples, the
interconnection topology of the multiprocessor determines how many processors to
use. Since parabolic problems have traits of both the hyperbolic and elliptic problems,



TIME-CONSTRAINED SCALED SPEEDUP 857

we expect both the number of space dimensions and the interconnection topology to
be important when determining how many processors can be used for these problems.

Note that the definition of the scaled speedup curve can be generalized by al-
lowing the algorithm to vary as a function of the number of processors, with only
the problem being fixed. Thus, we assume that there is an underlying family of al-
gorithms, each one "best" for a given number of processors. This will not normally
be a useful measure for a system administrator. The choice of algorithms is not his
to make, and he must evaluate the impact of increasing the number of processors on
the current programs. It is also not an interesting generalization for the examples we
have analyzed since the standard serial algorithms are easily parallelized. But, the
theory described in Worley [23], [24] is algorithm-independent. Thus, for problems to
which the theory applies, the qualitative behavior of the generalized time-constrained
scaled speedup curve is the same as before.

Acknowledgments. We thank Michael Heath, Charles Romine, and the anony-
mous referees for their helpful suggestions on the presentation of the material in this
paper.
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EFFICIENT POLYNOMIAL PRECONDITIONING FOR THE CONJUGATE
GRADIENT METHOD*
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Abstract. This paper formulates and compares procedures for reducing computation in carrying out
m-step or polynomial preconditioning in the conjugate gradient method. These procedures are based on
corresponding ones for one-step preconditioning given by Bank and Douglas [Appl. Numer. Math., (1985),
pp. 489-492], Conrad and Wallach [Numer. Math., 27 (1979), pp. 371-372], and Eisenstat [SIAM J. Sci.
Statist. Comput., 2 (1981), pp. 1-4], and apply, in particular, to SSOR preconditioning. Comparisons are
made based on operation counts, storage, and parallel and vector properties, and it is concluded that the
Eisenstat procedure is the most effective. Numerical experiments on a parallel computer are also given.

Key words, conjugate gradient method, polynomial preconditioning, Bank-Douglas procedure, Conrad-
Wallach procedure, Eisenstat procedure, parallel computers, SSOR
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1. Introduction. We consider the system of equations

(1.1) Ax=b

where A is symmetric and positive definite. Conrad and Wallach (1979), Eisenstat
(1981), and Bank and Douglas (1985) have proposed ways to reduce the computation
in carrying out SSOR and other preconditionings in the conjugate gradient iteration
for (1.1). These three approaches were analyzed and compared in Ortega (1988a), but
in all of these previous works attention was restricted to "one-step" preconditioners.
In order to perform ruth degree polynomial preconditioning (Johnson, Miccheli, and
Paul (1983)), it is necessary to do m steps of a subsidiary iteration (for example,
SSOR) at each conjugate gradient iteration. Adams (1985) used the Conrad-Wallach
procedure for SSOR preconditioning in this context.

In the present paper, we will formulate and compare m-step versions of the
Bank-Douglas and Eisenstat preconditioning procedures. We also extend the analysis
of Ortega (1988a) by comparing storage requirements and parallel properties of the
three procedures. Finally, we give the results of numerical experiments performed on
an 18 processor Flexible Computer Corp. Flex/32.

2. The m-step preconditioned conjugate gradient procedure. We begin by reviewing
(see, for example, Adams (1985) and Ortega (1988b)) m-step preconditioning. We first
write the preconditioned conjugate gradient method for (1.1) in the form (r= b-Ax
given, and k 0, 1,

(2.1a) Mk =rk

(2.1b)

(2.1c) pk +/kpk-1

t ,/,-, (to o)

(p-’ =o)
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(2.1d) ak yk/(pk, Apk)
(2.1e) rk+ rk olkApk

(2. lf) xk+l=xk+akpk

Here (x, y)= xT‘y is the usual inner product and M is the preconditioning matrix. We
will be interested in the case in which M has the form

(2.2) M=P(I/H+... + H"-I)-1

where A-P-Q is a splitting of A and H-p-1Q. The use of M in (2.1a) is then
equivalent to carrying out the subsidiary iteration

(2.3) ki+l--Hkiwp-lrk=ki/p-l(rk--Aki), i=0,...,m-1, ok=0
for the equation A rk and setting k ~kr,. For polynomial preconditioning (Johnson,
Miccheli, and Paul (1983)), k would be obtained by inserting the appropriate multi-
pliers into (2.3). For simplicity, we will focus our attention on m-step preconditioning
since the extension to polynomial preconditioning presents no difficulties.

We will consider splittings in which

(2.4) P= (-L)-(- L7‘)
where A D- L-LT" with L strictly lower triangular and D, /, and/ diagonal. In
particular,/ w-lD and/ 2D-D gives SSOR preconditioning.

3. The Conrad-Wallach (CW) procedure. In the CW procedure, the subsidiary
iteration (2.3), with P given by (2.4) and/ 2/- D, is carried out in the "alternating"
form

for i=0,..., rn-1

(3.1a) (l)--L)8k :(--D)k +LT‘k +rk, save LBk +rk

(3.1b) (l)--Lr)ki+,=(l)--D)Ski /LSki /rk save Lrki+,

wheretok 0andk ~kr,,. In this case, the preconditioning step, (2.1a), is replaced by
(3.1). The "saves" in (3.1), which are the key to the Conrad-Wallach procedure, are
based on the observation that in (3.1a), LSki/rk is computed in the course of the
solution for 8k and can be saved for use in (3.1b). Similarly, LT‘k+I can be saved in
(3.1b) for use in (3.1a) at the next iteration.

The evaluation of Apk for (2.1) is achieved by

(3.2) Apk Dpk Lpk L7‘pk.
From (2.1c)

(3.3) LTpk-- LTk / flkLTpk-1

and LT‘k is the quantity saved in (3.1b) the last time through the loop. If we assume
that Lrpk-1 has been saved from the last conjugate gradient iteration, then the
evaluation of LT‘pk by (3.3) saves the multiplication by LT‘ in (3.2). This is a more
efficient form of the Conrad-Wallach procedure than the straightforward one analyzed
in Ortega (1988a) for rn 1. Another savings results for 0 by setting L8ok + rk =/8ok,
which is true by (3.1a), in (3.1b) to obtain

(3.4) (E3- Lr)k 68ok, save LT‘lk.
This would be used in place of (3.1b) for i=0 and saves one vector addition over
forming the right-hand side of (3.1b).
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4. The Eisenstat (E) procedure. The E procedure is based on the change of variable

(4.1) i (/- LT)x, (/-- L)-lb.

The conjugate gradient iteration is then applied to the system

(4.2) Ax= b, A= (D- L)-IA(D LT)-
and for one-step preconditioning can be written in the form (o= (/_L)-lro, k
O, 1,...)

(4.3a) tk= )k

(4.3b) 3’ t, e), /3e 7/’- (/30 0)

(4.3c) t +/3- (- 0)

(4.3d) (/- LT)p
(4.3e) z 3p (3 2/- D)

(4.3f) (/-L)w =z

(4.3g) ak pk + h/k (__k)
(4.3h) ak "Yk/ (k, ak)

(4.3i) k+ =k_akak

(4.3j) xk+l=xk+akpk.

The key to the E procedure is the evaluation of Ap. Since, with D 2/- D,

(4.4) A=(-L)+(-LT)-
we have

(4.5) A-- (J- LT)-lfi+ (J-- L)-I[ -/(5- LT)-I].
Thus, with p (/ LT)-lfi, we need to solve the systems

(4.6) (/- LT)p fi, (/-- L)w fi- Op.

This is done in (4.3d) and (4.3f), and then ak=fik is.computed in (4.3g). The
preconditioning has been reduced to a multiplication by D, which is (4.3a), and the
other steps in (4.3) correspond to those of (2.1).

We now wish to incorporate m-step preconditioning into (4.3). Thus, we take m
steps of the subsidiary iteration (2.3) with P given by (2.4). In the context of the E
procedure, it is natural to transform the subsidiary iteration by the same change of
variable, (4.1), used to obtain (4.3). Hence, with

(4.7) t (/- LT), k (/_ L)-lrk

(2.3) becomes

(4.8) t+l t + 5(k AtT), 0, , m 1, to 0

where A is given by (4.2).
In order to carry out the subsidiary iteration (4.8) efficiently, we need to avoid

the multiplication by A and this can be done in exactly the same way as in the E
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procedure (3.3); indeed, we just apply the formulas (4.3d)-(4.3g) with tk replacing k.
(In light of (4.7), we also replace pk by k.) Then the subsidiary iteration takes the form

(4.9a) tlk "^kDr.

For/=l to m-1

(4.9b) (/-- tr)/k t/k

(4.9c) Z/k t/k--//k

(4.9d) (/- L)w/ z
k(4.9e) ak k+Wk (=At,)

(4.9f) tk+a =t/k +/(k ak).

Finally, at the termination of the loop, we set

(4.9g) tk =tk

Thus, for m-step preconditioning, we replace (4.3a) by (4.9). In the case that m 1,
(4.9) reduces to the original (4.3a).

We note that in the case that/) =/ 2/)- D we can replace (4.9e) and (4.9f) by

(4.9h) t/k+1 z/k +/(k _w/k)

which results from substituting a/k into (4.9f) and then using (4.9c).

5. The Bank-Douglas (BD) procedure. Bank and Douglas (1985) gave another
approach to the efficient implementation of one-step preconditioning in the conjugate
gradient method. Ortega (1988a) gave the BD proc,edu,re in the following slightly
modified form (Bank and Douglas assumed that D-D). Here, k=0, 1,..., and
so b D Lr)Xo.
(5.1a) (b- t) :s + Lx

(5.1b) t=b

(5.1c) (b--Lr)k=tk

(5.1d) Yk (t, k), /3k ]/k/k-1 (0 0)

(5.1e) p +/3pk-1 (p-1 0)

(5.f) v =t +/v-l- (b- D) (v-’ 0)

(5.g) 1/2 r/(p, v-1/2Dp)

(5.1h) s+ s- av
(5.1i) x+l=x+ ap

In the original BD procedure, D D. In this case (5.1a) is changed to

(5.2) (/-L)=s+Lx, save t=s+L(x+),
which eliminates the need for (5.1b). In either (5.1a) or (5.2), a key observation is that
Lx is not evaluated explicitly; rather, L(x +) is obtained during the course of the
solution.
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The steps (5.1a)-(5.1c) carry out one-step preconditioning and we wish to replace
these by m-step preconditioning. A natural approach to this is to use a way proposed
by Bank and Douglas to carry out stationary iterations (see also Ortega (1988a)). This
gives the following version of the subsidiary iteration (2.3), which would be inserted
after (5.1c) and used together with (5.1a)-(5.1c) when m > 1.

s0k=rk lk k t0k=tk 81k k

For i=lto m-1

(5.3a) sk sk_ tk_l + (/ D)8 k
(5.3b) (I L)8 k =sk+Lk

i+1/2

(5.3c) tk

(5.3d) (/- Lr)8/k+l tk
(5.3e) /k+l /k "- 8/k+l.
At the end of (5.3) we would set k=k, and tk=tk._l. Again, if/ D, (5.3c) would
be eliminated and (5.3b) modified as in (5.2).

Unfortunately, this version of the subsidiary iteration has several problems. First,
the initial condition and (5.3a) call for So

k rk, which is not computed in (5.1). Thus,
it is necessary to compute r

g
sk + Lxk at the expense of an additional multiplication

by L and a vector addition. Once rk is computed, we can overcome a second problem,
namely, that the computation of yg by (5.1d) is not correct if m > 1. Hence, we revert
to the original Yk (k, rk) of (2.1b). A third problem is the following. In the one-step
procedure (5.1), a key relation is that

(5.4) vk Apk + Lpk (=(D- Lr)pk)
so that vk is a "partial" Apk. It is shown in Ortega (1988a) that the vk defined by (5.10
satisfy (5.4), and the key to the equality is the relation (5.1c) between k and tk.
However, if k_ rk is produced by (5.3), this relation no longer holds’, instead, we
have (5.3d) and (5.3e). We can partially circumvent this problem by replacing (5.1f) by

(5.5) It
k (/-- LT)k "-I- flkIl k-1 --()-- O)k.

The relation (5.4) can then be shown to hold but the quantity (-LT)k is not
produced in (5.3). We can obtain it by combining (5.3d) and (5.3e) to give

(5.6) tr/k+l=t/k+tr/k, i=1,2,.. ",m--1

where tr/k= (/-Lr)/k and trek =tok. Thus, we can compute the tr/k at the cost of one
more vector addition per inner iteration.

As an alternative to using the stationary Bank-Douglas iteration (5.3) in conjunc-
tion with (5.1), we can implement the preconditioning step (2.1a) by (5.3). In this case,
the loop for (5.3) would run from i= 0 to m- 1 and the initial conditions would be

Skl rg, o t_,-8o--0
which imply, by (5.3a), that So r. Note that r is computed in (2.1) so no extra work
for it is needed. We will call this procedure BDSlm. A variation of this, which we call
BDS2,, allows us to save a multiplication by Lr in the evaluation of Ap, as in the
CW procedure. In this case, we would use (5.6) to compute r, (/-LT")k. Then

(5.7) (l-Lr)pk=(l-Lr)k+flg(l-Lr)pk-1
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and

(5.8) Apk (]- LT)pk- (- D)pk- Lpk.

Here, there is a trade-off between saving the multiplication by LT and the extra
operations from (5.6) and (5.7), as well as the storage for (D-LT)pk- between
iterations.

Still another alternative is to use the stationary Eisenstat procedure (4.9) in (5.1);
that is, we replace (5.1b) in the Bank-Douglas procedure (5.1) by (4.9). Now the
relation tk--(D--LT)k is automatically satisfied, by (5.1c), so that (5.4) holds. We
will call this combination the BDEm procedure.

6. Comparison of the procedures. We first compare the operation counts. It was
shown in Ortega (1988a) that the operation counts ofthe one-step BD and E procedures
are

(6.1) BD 21 + 5d + 5v + 41, + 2ip

(6.2) E 21 +4d +4v+ 3/, + 2ip

where is a multiplication by either L or LT, d is a multiplication by a diagonal matrix,
v is a vector addition, ip is an inner product, and l, is a linked triad (vector+ scalar
times vector). Scalar operations such as divisions have been ignored in these counts.

For the one-step Conrad-Wallach procedure, using (3.3) in the evaluation of Apk

and (3.4) in place of (3.1b), the operation count is

(6.3) CW 31 + 4d + 4v + 41, + 2ip

which has one less l, one less v, and one more l, than the count without using (3.3)
and (3.4) given in Ortega (1988a). It was also shown in Ortega (1988a) that the operation
count of the stationary CW procedure (3.1) is 21 + 4d + 5v per iteration, except for the
first iteration in which ok =0. However, this first iteration is included in (6.3) for the
one-step CW procedure so that the m-step CW procedure has an operation count of

(6.4)
CWm 3/+4d + 4v + 4/, + 2ip +(m- 1)(21+4d + 5v)

(2m + 1)l + 4md + (5m 1)v + 41, + 2ip.

For the E procedure, the operation count for (4.9b)-(4.9f) is

(6.5) (d + l+ v)+(d + v)+(d + l+ v)+(3v+d) =21+4d+6v

per iteration. Since, again, the first step of the preconditioning is included in (6.2), the
operation count for the m-step E procedure is

(6.6)
Em 21 + 4d + 4v + 31t + 2ip + (m 1)(2/+ 4d + 6v)

2ml +4md + (6m 2)v + 31t + 2ip.

For the BDE procedure, the operation count for each stationary iteration is again
given by (6.5) so for the m-step procedure we have

(6.7) BDEm 2ml+ (4m + 1)d + (6m 1)v + 41, + 2ip.

The operation count for the subsidiary iteration (5.3) and including (5.6) is
21 + 4d + 7 v. We also need to add one and one v to (6.1) to account for the computation
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of rk --sk + Lxk, as discussed previously. Thus, the operation count for the m-step BD
procedure is

BDm 31 + 5d + 6v + 41t + 2ip + (m 1 )(2/+ 4d + 7v)
(6.8)

(2m + 1 )l + (4m + 1)d + (7m 1 )v + 41, + 2ip.

Note that (6.8) does not reduce to (6.1) if m 1, because of the computation of rk.
For the BDSI,, procedure, the operation count for each iteration of (5.3) after

the first is 21 + 4d +6v, since (5.6) is now not used. For the first iteration of (5.3) (that
is, 0) the initial conditions imply that two v and one d may be saved in (5.3a), one
v in (5.3b), and one v in (5.3e). Combining these counts with the remaining steps of
(2.1) then gives

(6.9)
BDS1 (21 + d + 2v + 31, + 2ip) + (2/+ 3d + 2v) + m 1 )(2/+ 4d + 6v)

(2m + 2)/+ 4md + (6m 2)v + 3l, + 2ip.

For the BDS2m procedure, which uses (5.6)-(5.8), each iteration of (5.3) and (5.6)
after the first requires 2/+4d +7v, whereas the first requires 21 + 3d + 2v since (5.6) is
not needed for i=0. One in the conjugate gradient iteration is replaced by an
additional l, for (5.7). Hence

(6.10) BDS2m (2m + 1)l + 4md + (7m 3)v + 41, + 2ip.

For comparison we also give the operation count of a straightforward (SF)
implementation using (2.1) with (3.1) but not with (3.4). If (3.4) is used, the count can
be lowered by one and two v. We summarize the operation counts in Table 1. The
m-step E procedure is slightly more efficient than the BDE procedure, and both are
more efficient than the others.

SF
CW
E
BDE
BD
BDS1
BDS2

TABLE
Operation counts for m-step preconditioning.

(4m + 1)l+4md +6my+ 31, + 2ip
(2m + 1)l+4md +(5m 1)v + 4/, + 2ip
2ml + 4md + (6m 2)v + 31 + 2ip
2ml + (4m + 1)d+(6m- 1)v + 41 + 2ip
(2m+ 1)/+(4m+ 1)d+(7m- 1)v+4/t+2ip
(2m + 2)/+ 4rod + (6m 2)v + 31, + 2ip
(2m+l)l+4md +(7m-3)v+41,+2ip

We next compare the amount of storage that each method requires. First, consider
the conjugate gradient method with no preconditioning; this is (2.1) with (2.1a) deleted
and r. Clearly, storage is required for p, r, and x, which are saved from iteration
to iteration. Temporary storage is also required for Ap. (On some vector machines,
additional temporary storage may be required in the formation of Ap, depending on
the storage of A.) We assume that pk overwrites pk-1 in (2.1c) and similarly for r k+l

and x k+l. Hence, ignoring the few scalar positions required, the total storage is, in
addition to the matrix A and the right-hand side b,

(6.11) Sc 4 n-vectors.

The storage required for A is dependent on whether symmetry is utilized; this may
affect the efficiency of the codes, especially on parallel and vector machines. Also, in
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(6.11) and in all the other algorithms, one of the temporary vectors can occupy the
location of b if so desired. Since all of the algorithms require storage for A and b, we
will give in the following the additional storage needed, as in (6.11).

For the CW procedure, we also need three vectors of storage for /-1, /, and
/-D. Again, p, r, and x are saved from iteration to iteration, as is Lrp to use (3.3).
Two other temporary vectors, sl and s2, are also needed for (3.1) and (3.4). Once the
preconditioning is complete, occupies sl, and Lr occupies S2. Then LT[k replaces
LT[k- according to (3.3). At this point, s and s_ are free and the remainder of (2.1)
is equivalent to the conjugate gradient iteration in storage, with the formation of Ap
by (3.2) using s2. For m-step preconditioning, consider a typical,, step of (3.1). and
LT have been saved in s and s2 from the previous step. Then (D- D) overwrites Sl
and the sum of this and Lr overwrites s. Next, L8 + r overwrites s and 8 overwrites

s2. (/- D)i can then overwrite s2 and the sum with L8 + r can overwrite Sl. Finally,
LT can overwrite s2 and can overwrite Sl. Thus, the storage for the CW procedure
is, assuming that D is also stored,

(6.12) Sew- 9 n-vectors.

Along the same lines, Vaughan (1988) has given a detailed analysis of the storage
requirements of the other procedures. These are summarized in Table 2, which shows
that the E procedure has the minimum storage requirements.

TABLE 2
Storage vectors for m-step preconditioning.

Method Storage Comments

CW 9
E 7
BDE 11
BD 14
BDS1 10
BDS2 12

Provided that D is stored
Provided that D is stored

10 for one-step preconditioning

Finally, we consider the properties of the procedures on parallel and vector
machines. All have vector and parallel properties as good as the conjugate gradient
iteration itself, with the possible exception ofthe solution of the systems with coefficient
matrices D-L and/-L. The major cost of the solution of the triangular systems,
as well as multiplication by A, has been incorporated into the operation counts by the
cost, l, of multiplication by a triangular matrix. But on vector and parallel machines
there can be an important difference between multiplication by a triangular matrix
and solution of a triangular system. Thus, on these machines, the additional l’s in the
operation counts, beyond the 2ml needed for solution of the systems, may not be as
significant since they reflect matrix multiplication. This may have the effect of making
the different procedures perform more uniformly than their operation counts would
indicate.

7. Multicolor orderings and SSOR. One approach to solving the triangular systems
on vector and parallel machines is by means of multicolor orderings (see, e.g., Ortega
(1988b)), and the use of such orderings changes the operation counts of some of the
procedures, as we next discuss. With a multicolor ordering with c colors, the matrix
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A has the block form

(7.1)
All A12 Ale1A=

AI Acc
where, if the number of colors is chosen correctly, the diagonal blocks Aii will be
diagonal or have some simple block diagonal form. This allows SSOR to be carried
out in a vector or parallel form since the diagonal blocks are easily inverted and the
main effort in the SSOR iterations is multiplication by the off-diagonal blocks.

Whatever the structure of the diagonal blocks in (7.1), there is an economy of the
following form associated with block SSOR. Consider first block Gauss-Seidel (to 1),
and let xk be the current block Gauss-Seidel iterate and 8k be the result of the forward
block Gauss-Seidel sweep. Then

8k=Al b,- Z A,jik- A0x i=l,...,c
j=l j--i+l

j=i+l j=l

In particular,

(7.2) X =Acc’ be- Ac8 S ck
j=l

so that the computation of Xc
+1 may be bypassed, saving the multiplications by

Ac, , A,_. Similarly at the beginning of the next iteration

(7.3) +1 =x

and the computation of 8+ may be bypassed, saving the multiplications by
A, , Ac. In the case of a multicolor ordering in which the blocks A. are diagonal,
if the nonzero off-diagonal elements of A are spread uniformly over the Aj (as is
approximately the case for our test problems of the next section), then the savings in
(7.2) amounts to

(7.4)
c 1 _2

c(c-1)/2 c

where, again, is the work of a multiplication by L or Lr. Thus, if 2 (red/black
ordering), the savings is while for c 3 and c =4, as used in the next section, the
savings are l and 1/21, respectively. On subsequent steps of the iteration, these savings
are doubled by use of (7.3).

If to # 1, the same savings in hold. It is no longer the case that xk+lc =6k but by
using 03 to(2-to) in the step to compute 8kc, we obtain xk+l instead, as shown, for
example, in Ortega (1988b, p. 175). (Note that we do not obtain 6, which is not
needed. Note, also, that we require a separate copy of D, corresponding to o3, to be

k+2stored.) The analogous situation holds in obtaining Xl on the next SSOR step. Thus,
in the first SSOR step we save 1/2c of the computations leading to the contribution
2d +2v in the SF operation count and 1/c of 4d +6v in each subsequent SSOR step.
Combining these savings with those in l, the operation count given in Table 1 for the
straightforward procedure is changed for multicolor orderings to

(_2c) (_4c) (_4c) () 45
d+ 6- mv+-v+31,+2ip.(7.5) 5- l+ 4- (m-l)/+ 4- md+2c c
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The CW procedure already saves the multiplications by all of the Aij, i> j, on
the backward step, not just the Aci as indicated in (7.2), and obtains only the savings

k+in the vector operations necessary to obtain xc instead of 8k, as discussed in the
previous paragraph. In the other procedures, there are no savings. Thus, the use of
multicolor orderings reduces primarily the operation count of the straightforward
procedure and, slightly, that of the CW procedure.

8. Numerical experiments. In this section, we report on numerical experiments
for SSOR preconditioning on an 18 processor Flexible Computer Corp. Flex/32, a
local memory machine that uses a shared memory for communication. Results are
given for two model problems. The first is ux, + Uyy + U,y 0, which is Laplace’s equation
with a mixed derivative term added. The domain is the unit square with Dirichlet
boundary conditions, and the equation is discretized using standard second order finite
differences. (See Ortega (1988b) for a detailed description.) The second problem is a
two-dimensional plane stress problem in which a square plate (with Young’s modulus
3.5904 and Poisson ratio 0.32) is fastened to a rigid body along one side, and a unit
point load is applied to the top of the other side. It is discretized with triangular finite
elements using linear basis functions and has two unknowns at each grid point. (See
Adams (1982) for a detailed description.) In both problems, the initial approximation
to the solution is zero, and the convergence test is (rk, <- 10-6. A relaxation parameter
of to 1 is used in all the experiments. If to 1, some savings are available (for example,
D-D=O in the CW procedure (3.1)) but they have not been used and the codes are
all written for general to.

For implementation of the methods on p processors, the grid of unknowns is
divided into p rectangles, each of which is assigned to a processor. The linked triads
and the vector adds can then be done in parallel with each processor calculating the
part that corresponds to the unknowns that it has been assigned. The partial inner
products done by each processor are combined in global memory. The matrix-vector
multiply requires synchronization of the processors after the calculation of p, which
is stored in the shared memory, to ensure using the current value of p for the
matrix-vector multiply.

In order to implement SSOR preconditioning in parallel, a multicolor ordering
of the unknowns has been used, as discussed in the previous section. The SSOR passes
require synchronization after each color of unknown is updated so that these updated
values can be used to update the unknowns of the remaining colors. The mixed
derivative problem uses a four-color ordering. Because there are two unknowns at
each grid point, the plane stress problem requires six colors in order that the diagonal
blocks of (7.1) be diagonal. We have chosen to use a three-color ordering in which
both of the unknowns at a grid point are the same color. In this case, the matrix D is
block diagonal with 2 2 blocks and we have reformulated (3.1a) as

(I-/-’L)8 (I- I-’D) + )-’(LT+ r)
and similarly for (3.1b). For SSOR preconditioning I-/-D (1- to)I, which allows
a savin,gs in computation. The matrices /-aL and I-LT are not formed explicitly,
only D-. The analogous savings are obtained in the E p,rocedure (and, hence,
the BDE procedure) by reformulating (4.9) in terms of k D-t.

We first give in Table 3 times for serial codes on a single processor, using the
natural ordering of the unknowns. The final three columns are the ratio of times to
that of a straightforward implementation of one-step SSOR preconditioning that reflects
the operation count in Table 1. The number of unknowns corresponds to 60x60,
86 x 86, and 120 x 120 grids for the mixed derivative problem, and 32 x 32, 44 x 44, and
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TABLE 3
Serial one-step preconditioning. Natural ordering.

Problem

Time relative to SF

Unknowns Iterations CW BD E

Mixed derivative 3600 44 0.894 0.790 0.706
7396 62 0.893 0.790 0.706
14400 85 0.892 0.787 0.701

Plane stress 2048 59 0.739 0.576 0.564
3872 80 0.727 0.566 0.555
8192 115 0.726 0.564 0.552

64 x 64 grids for the plane stress problem. (Recall that there are two unknowns per
grid point for this problem.) As Table 3 shows, the E procedure was the fastest,
although the BD procedure was a close second on the plane stress problem. Note that
all procedures performed relatively much better on the plane stress problem. This is
because the coefficient matrix of the plane stress problem is much less sparse; con-
sequently, the l’s in the operation counts weigh relatively more and it is primarily l’s
that are saved by all of the procedures, relative to the straightforward (SF)
implementation.

For m-step preconditioning, we have implemented the CW, E, BD, and BDE
procedures, but not BDS1 and BDS2 since their behavior should be similar to the BD
procedure. In the implementation of the E and BDE procedures, we have used (4.10)
in place of (4.9e) and (4.9f) since 3 =/ for SSOR preconditioning. Serial results for
m 2, 4, and 6 are shown in Table 4. The ratios shown in Table 3 are relatively
insensitive to problem size and the same is true of m-step preconditioning; con-
sequently, we have given results only for the smallest problems in Table 4. Again, the
E procedure is the best, as predicted, and the BDE procedure is a close second.

As in Table 3, the results in Table 4 are given relative to the SF implementation.
The number of iterations decreases as m increases but not rapidly enough to compensate
for the additional time required for the preconditioning. For example, the time for the
plane stress problem with 2048 unknowns using the CW procedure was 322s for rn 4
compared with 216s for m 1. However, addition ofthe polynomial parameters reduced
the time for m 4 to 213s. In practice, of course, we would use polynomial precondition-
ing instead of just m-step, but that adds nothing to this study of the comparison of
different ways to save computation.

TABLE 4
Serial m-step preconditioning. Natural ordering.

Time relative to SF

Problem m Iterations CW BD BDE E

2 32 0.834 0.951 0.773 0.745
Mixed derivative 4 23 0.797 0.929 0.768 0.737

3600 6 19 0.778 0.916 0.765 0.732

2 43 0.671 0.723 0.577 0.572
Plane stress 4 31 0.630 0.688 0.580 0.574

2048 6 25 0.617 0.680 0.582 0.575
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TABLE 5
Mixed derivative, 3600 unknowns, m 1, iterations 53, relative time and speedup.

Number of processors

Method 2 4 8 16

CW 0.961 0.967 0.967 0.978 0.971
1.00 1.88 3.75 6.95 13.17

BD 0.838 0.849 0.848 0.874 0.871
1.00 1.87 3.73 6.78 12.80

E 0.761 0.763 0.760 0.771 0.774
1.00 1.89 3.78 6.98 13.08

TABLE 6
Mixed derivative, 3600 unknowns, m 2, iterations 38, relative time and speedup.

Number of processors

Method 2 4 8 16

CW 0.848 0.854 0.857 0.858 0.857
1.00 1.90 3.78 6.94 12.99

BD 0.973 0.974 0.979 0.989 0.995
1.00 1.91 3.79 6.90 12.83

BDE 0.829 0.849 0.852 0.853 0.849
1.00 1.87 3.72 6.82 12.82

E 0.790 0.803 0.805 0.812 0.817
1.00 1.88 3.75 6.83 12.70

TABLE 7
Mixed derivative, 3600 unknowns, m 4, iterations 27, relative time and speedup.

Number of processors

Method 2 4 8 16

CW 0.850 0.853 0.855 0.854 0.850
1.00 1.92 3.82 6.97 12.97

BD 1.017 1.031 1.030 1.035 1.040
1.00 1.90 3.79 6.88 12.68

BDE 0.908 0.943 0.944 0.944 0.935
1.00 1.86 3.69 6.73 12.60

E 0.852 0.861 0.865 0.868 0.874
1.00 1.91 3.78 6.87 12.64
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TABLE 8
Plane stress, 2048 unknowns, m 1, iterations 88, relative time and speedup.

Number of processors

Method 2 4 8 16

CW 0.827 0.826 0.845 0.850 0.866
1.00 1.93 3.80 7.49 14.12

BD 0.657 0.655 0.669 0.677 0.684
1.00 1.93 3.82 7.47 14.21

E 0.623 0.626 0.638 0.640 0.648
1.00 1.92 3.79 7.49 14.20

TABLE 9
Plane stress, 2048 unknowns, m 2, iterations- 63, relative time and speedup.

Number of processors

Method 2 4 8 16

CW 0.819 0.819 0.838 0.841 0.857
1.00 1.93 3.83 7.56 14.28

BD 0.923 0.913 0.937 0.944 0.950
1.00 1.95 3.86 7.59 14.52

BDE 0.690 0.680 0.697 0.698 0.709
1.00 1.96 3.87 7.66 14.54

E 0.668 0.675 0.689 0.696 0.706
1.00 1.91 3.79 7.44 14.12

TABLE 10
Plane stress, 2048 unknowns, m 4, iterations 48, relative time and speedup.

Number of processors

Method 2 4 8 16

CW 0.814 0.819 0.836 0.838 0.851
1.00 1.93 3.84 7.60 14.39

BD 0.949 0.946 0.971 0.979 0.985
1.00 1.95 3.86 7.58 14.51

BDE 0.699 0.696 0.714 0.715 0.729
1.00 1.95 3.86 7.64 14.44

E 0.681 0.691 0.704 0.715 0.723
1.00 1.92 3.82 7.45 14.19
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Tables 5-10 give parallel results for m 1, 2, and 4. Note that Tables 5 and 8
contain no listing for the BDE procedure since this only applies when m > 1. Again,
the times are relative to the straightforward implementation, and we have only used
the smallest problem sizes: 3600 and 2048 unknowns. Note that the single processor
times do not agree with those in Tables 3 and 4, even though the single processor
codes have been stripped of all parallel overhead. This is due to the savings that the
multicolor orderings allow in the straightforward implementation, as discussed in the
previous section. Note also that the iterations given in Tables 5-10 are higher than for
the corresponding problems in Tables 3 and 4. This is due to the multicoloring order;
there is a trade-off between the parallelism of multicolor orderings and the degradation
in the rate of convergence.

The parallel properties of the different procedures are roughly the same, as shown
by the speedups. There are variations in these speedups, however, and no one procedure
is uniformly superior. The E procedure has the best times in most cases although the
BDE procedure is quite close for the plane stress problem. For the mixed derivative
problem, however, the CW procedure becomes the best for m 4. This is due to the
multicolor ordering and the resulting small savings on vector operations in the CW
procedure, as mentioned in the previous section. For the mixed derivative problem,
the cost of multiplication by L or LT is so small that these savings become noticeable.
We also note that for m > 1, the BD procedure is sometimes worse than the straightfor-
ward approach. This is primarily due to the reduced operation count for SF using
multicoloring.

Additional numerical results are given in Vaughan (1988) for larger sizes of the
plane stress and mixed derivative problems, as well as some other problems from
structural analysis. Experiments on a 64 processor Intel iPSC/1 hypercube for these
problems are also reported. In all cases, the results are similar to those presented here.

9. Conclusions. We have analyzed the CW and E procedures, and four different
versions of the BD procedure. On the basis of the operation counts (Table 1) and
storage (Table 2), we conclude that the E procedure is the most efficient for either
one-step or m-step preconditioning. Our limited numerical experiments substantiate
this conclusion except in a few cases where the CW procedure is best, due to the use
of multicolor orderings on a problem with a very sparse matrix.
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Abstract. Computing the singular values of a bidiagonal matrix is the final phase of the standard
algorithm for the singular value decomposition of a general matrix. A new algorithm that computes all the
singular values of a bidiagonal matrix to high relative accuracy independent of their magnitudes is presented.
In contrast, the standard algorithm for bidiagonal matrices may compute small singular values with no
relative accuracy at all. Numerical experiments show that the new algorithm is comparable in speed to the
standard algorithm, and frequently faster.
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1. Introduction. The standard algorithm for computing the singular value
decomposition (SVD) of a general real matrix A has two phases [7]:

(1) Compute orthogonal matrices P1 and Q1 such that B PAQ1 is in bidiagonal
form, i.e., has nonzero entries only on its diagonal and first superdiagonal.

(2) Compute orthogonal matrices P_ and Q2 such that E PBQ2 is diagonal
and nonnegative. The diagonal entries tri of E are the singular values of A. We will
take them to be sorted in decreasing order: tri >-cri/l. The columns of Q Q1Q2 are
the right singular vectors, and the columns of P PIP2 are the left singular vectors.

This process takes O(/I 3) operations, where n is the dimension of A. This is true
even though Phase 2 is iterative, since it converges quickly in practice. The error
analysis of this combined procedure has a widely accepted conclusion [8], and provided
neither overflow nor underflow occurs may be summarized as follows:

The computed singular values tri differ from the true singular values of A by no
more than p(n).e. Ilall, where Ilall--, is the 2-norm of A, e is the machine
precision, and p(n) is a slowly growing function of the dimension n of A.
This is a generally satisfactory conclusion, since it means the computed singular

values have errors no larger than the uncertainty in the largest entries of A, if these
are themselves the results of previous computations. In particular, singular values not
much smaller than IIAII are computable to high relative accuracy. However, small
singular values may change completely, and so cannot generally be computed with
high relative accuracy.

There are some situations where the smallest singular values are determined much
more accurately by the data than a simple bound of the form p(n)e IIAI[ would indicate.
In this paper we will show that for bidiagonal matrices the singular values are
determined to the same relative precision as the individual matrix entries. In other
words, if all the matrix entries are known to high relative accuracy, all the singular
values are also known to high relative accuracy independent of their magnitudes. This
will follow from an analogous theorem about the eigenvalues of symmetric tridiagonal
matrices with zero diagonal.
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In such situations it is desirable to have an algorithm to compute the singular
values or eigenvalues to the accuracy to which they are determined by the data. In
this paper we present an algorithm for computing all the singular values of a bidiagonal
matrix to guaranteed high relative accuracy, independent of their magnitudes. Our
algorithm is a variation of the usual QR iteration that is used in the standard SVD
algorithm. Briefly, it is a hybrid algorithm ofthe usual QR iteration with a "zero-shifted"
QR modified to guarantee forward stability. Numerical experience, which we report
below, shows that it is generally faster than the standard algorithm, and ranges from
2.7 times faster to 1.6 times slower counting reduction to bidiagonal form (7.7 times
faster to 3.4 times slower not counting reduction to bidiagonal form).

This perturbation theory and algorithm also apply to some classes of symmetric
matrices. For example, they may be applied to symmetric tridiagonal matrices with
zero diagonal; such matrices arise by reducing skew-symmetric matrices to tridiagonal
form. Another class where the perturbation theory applies, so that small relative
perturbations in the matrix entries only cause small relative perturbations in the
eigenvalues, are scaled diagonally dominant symmetric matrices. A symmetric matrix
H is scaled diagonally dominant if H DAD, where D is an arbitrary diagonal matrix
and A is symmetric and diagonally dominant in the usual sense. This class includes
all symmetric positive definite matrices that may be consistently ordered [1], a class
that arises in the numerical solution of elliptic partial differential equations. In par-
ticular, this class includes all symmetric positive-definite tridiagonal matrices. As before,
we can exhibit algorithms to compute the eigenvalues of H to their inherent accuracy.
This work will be reported on elsewhere [1].

The rest of this paper is organized as follows. Section 2 presents perturbation
theory for the singular values of a bidiagonal matrix, and shows that small relative
perturbations in the nonzero entries of a bidiagonal matrix can only cause small relative
perturbations in its singular values. We also present theorems that say when an
off-diagonal entry can be set to zero without making large relative perturbations in
any singular value; these theorems are the basis of the convergence criteria for the
new algorithm. Section 3 presents the algorithm, which is QR iteration with a "zero
shift," modified to be forward stable. This forward stability combined with the perturba-
tion theorem of 2 shows that QR can compute all the singular values with high
relative accuracy. Section 4 discusses convergence criteria for the new algorithm, since
the convergence criteria for the standard algorithm can cause unacceptably large
perturbations in small singular values. It also discusses the practical algorithm, which
is a hybrid ofthe standard algorithm and the algorithm of 3. Details ofthe implementa-
tion, including high-level code for the entire algorithm, are presented in 5. Sections
3, 4, and 5 may be read independently of 2. Section 6 shows how to use bisection,
Rayleigh quotient iteration, and various other schemes to compute the singular values
of a bidiagonal matrix to high relative accuracy. Bisection will be used to verify the
results in 7, which discusses numerical experiments. Section 7 also addresses the
implications of our results for the "perfect shift" strategy for computing singular
vectors. Section 8 contains a detailed error analysis of the new algorithm. Section 9
discusses the accuracy of the computed singular vectors; a complete analysis of this
remains an open question. Sections 6-9 may be read independently. Sections 7 and 8
depend only on 3-5. Section 10 contains suggestions for parallel versions of the
algorithms presented, open questions, and conclusions.

2. Perturbation theory for singular values of bidiagonal matrices. We say a is a
relative perturbation of a of size at most r/ if 16al--< r/lal. If A and 6A are matrices,



ACCURATE SINGULAR VALUES OF BIDIAGONAL MATRICES 875

we will let IAI and 16AI denote the matrices of absolute entries of A and 6A. We will
say that 6A is a componentwise relative perturbation ofA of size at most
where the inequality is understood componentwise.

In this section we will prove three perturbation theorems for singular values of
bidiagonal matrices. The first theorem is needed to prove that our new QR iteration
does not disturb any singular values, and the second two theorems justify our new
convergence criteria (see 4 below).

The first theorem shows that if B is a componentwise relative perturbation of
size of the n-by-n bidiagonal matrix B, then the singular values o’I of B +B will
be relative perturbations of the singular values tri of B of size less than about (2n 1)7,
provided (2n- 1)r/ is small compared to 1. More precisely we will show that

’<(l--r/) 1-2n(1 r/)"-I r_-< r
(recall that o’I and o-i are sorted in decreasing order). This will follow as a corollary
of a more general result for symmetric tridiagonal matrices with zero diagonal.

The last two theorems say when we can set an off-diagonal entry of a bidiagonal
matrix B to zero without making large relative perturbations in the singular values.
They are based on a simple recurrence for estimating the smallest singular value of a
bidiagonal matrix; if setting an off-diagonal entry of B to zero cannot change this
recurrence significantly, we show that no singular value can be changed significantly
either.

The proof of the first theorem depends on Sylvester’s Law Of Inertia [6, p. 297]:
SYLVESTER’S LAW OF INERTIA. Let A be symmetric and U be nonsingular. Then

A and UAUr have the same number of positive, zero, and negative eigenvalues.
In particular, suppose A is symmetric and tridiagonal, with diagonal entries

a,..., a, and off-diagonal entries bl,’", b_. Then via Gaussian elimination
without pivoting we can write A-xI LDLr, where L is unit lower triangular and
bidiagonal, and D is diagonal with entries d given by the recurrence [15, p. 47]

d a-x,
(2.1)

di ai x bi_/ di_.
This recurrence will not break down (d 0 for some i< n) as long as x is not one of
the n(n- 1)/2 eigenvalues of leading submatrices of A. Then by Sylvester’s Law of
Inertia, the numbers of eigenvalues of A less than x, equal to x, and greater than x
are precisely the numbers of d that are negative, zero, and positive, respectively.

We will also need the following classical eigenvalue perturbation theorem due to
Weyl.

THEOREM 1 [15, p. 191]. Let A>--_ ">--A, be the eigenvalues of the symmetric
matrix A, and A’=>... > A’ be the eigenvalues of the symmetric matrix A + 6A. Then
-ll6a[[-< Amin(6a) =< A’- Ai =< Amax(6a) <--116all. Here, Amin and Amax denote the smallest
and largest eigenvalues, respectively.

Now we present our central result of this section (a slightly weaker version
originally appeared in an unpublished report [12]).

THEOREM 2. Let J be an n-by-n symmetric tridiagonal matrix with zero diagonal
and off-diagonal entries bl,’", b,-l. Suppose J+ 6J is identical to J except for one
off-diagonal entry, which changes to abi from bi, a O. Let 6 max (loci, la-ll). Let Ai
be the eigenvalues ofJ sorted into decreasing order, and let A be the eigenvalues ofJ + 6J
similarly sorted. Then

(2.2) --< t < ti-’-
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In other words, changing any single entry of J by a factor a can change no eigenvalue
by more than a factor

Proof. Assume without loss of generality that a > 0, and no bi is zero, since
otherwise J is block diagonal, and each diagonal block may be analyzed separately.
The recurrences corresponding to (2.1) for J-xI and J/ 6J-xI may be written as
follows:

u -x,
and

Uk+l --x b2k/ Uk,

V --X,

Vk+l --X- bk/ Vk, k # i,

Vi+l-’-x-o2b2i/vi.

Since both J and J / 6J have nonzero off-diagonals, they must have simple eigenvalues
[15, p. 124] Ai and A’i, respectively. As long as x is not one of the n(n-1) eigenvalues
of leading principal submatrices of J and J + 6J, no division by zero will occur in these
recurrences. Also, u, 0 if and only if x is an eigenvalue of J, and v,- 0 if and only
if x is an eigenvalue of J + 6J.

Our goal is to show that each Ai is the ith eigenvalue of some symmetric matrix
J(Ai) that differs from J + 6J by a matrix X J+ M-J(Ai) satisfying

(l.-1-1)hi<hmin(X)<hmax(X)(-l)hi if
(2.3)

(l-1)imin(X)-lmax(X)(g-l-1)i if

together with Theorem 1 these inequalities will yield the desired result.
We construct J(hi) as follows. Let

wj uj. a
(-1)’- if j_-< i,

Wj Uj a (-1)i-j-1

Note that the wj satisfy the recurrence

(--1)
W --X

Wj+ --XOl
(-1)i-j-I b}/ wj

Wi+ --XOI a2bEi/ Wi,

(-1)i-
Wj+

if j> i.

if j< i,

-b]/wj if j> i,

or

wj+l -x xj+ b/wj if j < i,

Wi+ --X Xi+ a2bZi/ wi,

Wj+l---x-xj+l-b]/w if j> i,

which is the recurrence for J(x) J/ t3J-X where X =diag (Xi) Xi (t =t=1-1)x. Now
set x Ai. Since the wj and uj sequences have the same signs by construction (including
ll W 0), Ai is the ith eigenvalue of J(Ai). Furthermore, Amax(X) and Amin(X) clearly
satisfy (2.3) above.

As an immediate corollary we get the following corollary.
COROLLARY 1. Let J be an n-by-n symmetric tridiagonal matrix with zero diagonal

and off-diagonal entries bl ", bn-1. Let J + 6J have off-diagonal entries
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n-1albl," ", a,-lb,-1, a,#O. Let t =l-Ii=l max (la,l, lai ). Let A be the eigenvalues of
J sorted into decreasing order, and A be the eigenvalues ofJ + 6J similarly sorted. Then

A’< t. Ai.i"--"

_For example, if 1-,/<= [al-<--1 + n, no eigenvalue can change by a factor exceeding
(1- -/.
We can apply Theorem 2 to prove a similar theorem for singular values of

bidiagonal matrices by noting that for any matrix B the eigenvalues of

B’=[ OB BT]o
are the singular values of B, their negatives, and some zeros (if B is not square)
[8, p. 286]. Suppose now that B is n by n and bidiagonal with diagonal entries sl, , s,
and superdiagonal entries el," ", e,_l. Then by permuting the rows and columns of
B’ to appear in the new order 1, n + 1, 2, n + 2,..., n, 2n, we see B’ is orthogonally
similar to the tridiagonal matrix B" with zeros on the diagonal and off-diagonals
sl, el, s2, e2, , e,_, s,, [7, p. 213]. Thus the singular values of B are the absolute
values of the eigenvalues of the matrix B", which is of the form required by Theorem
2. This proves Corollary 2.

COROLLARY 2. Let B be an n-by-n bidiagonal matrix and suppose ,Bii+ B,=
ol2i-lBii, tBi,i+l at- Bi, i+, 012i Bi.i+l, aj # O. Let c I-[_"-1 max (1,1, I -’ [). Let r, >...>

tr,, be the singular values orB, and let cr >-. >- o", be the singular values orB + B. Then

O’i < l O"--<--O’i---_

For example, if 1-1 <= I% <- 1 + rl, then no singular value can change by more than a

factor of g (1 rl -2".
That this result is essentially best possible may be seen by considering the n-by-n

matrix

B(/)

1-n /3(l+n)..

fl(l+ r/)
l-r/

When/3 >> 1, the smallest singular value is approximately fl-"(1 -(2n- 1)7).
This theorem may be contrasted with the following classical perturbation bound

for singular values, where it is only possible to bound the absolute perturbation in the
singular values of a perturbed general matrix.

THEOREM 3 [8, p. 286]. Let o"1 >--" >- tr, be the singular values ofA, and tr >-. >-

tr’ be the singular values ofa+ a. Then Itr-cr,[<= IIall.
One caveat about the use of Corollary 2 in practice is that phase 1 of the SVD

algorithm, reduction to bidiagonal form, may produce completely inaccurate bidiagonal
entries. Sometimes, however, the reduction to bidiagonal form is quite accurate, so
that the singular values of the-original matrix can be computed accurately (see [1] for
discussion).

In 6 we will show how to use recurrence (2.1) in practice to compute the singular
values of a bidiagonal matrix with guaranteed high relative accuracy. This method,
although not competitive in speed on a serial machine .with the algorithm of the next
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section, can be used to efficiently verify the accuracy of the singular values computed
by another method. The algorithm based on (2.1) may also be parallelized easily
(see 6).

The second result of this section tells us when we can set an off-diagonal of B to
zero without making large relative changes in the singular values. This theorem will
justify one of the convergence criteria we describe in 4 below.

First we discuss a simple recurrence for approximating the smallest singular value
of a bidiagonal matrix, which also appeared in [9].

LEMMA 1. Let B be an n-by-n bidiagonal matrix with nonzero diagonal entries

Sl,"" ,sn and nonzero off-diagonal entries ei,’", en-1. Consider the following

forj-n-1 to 1 step-1 do

(2.4)
AJ--’lSJl’(AJ+l/(AJ+l + [e I))

forj=l ton-1 do

[-’j+ "-] Sj+ 11 (/(+ lej I)).
Then B-[I L min j and B-[I - minj m. Furthermore, letting E =- min ([I B-111 ;1,
B-’II ), we hae

-/’
-1< rmin(B) < 1/ -2.) -1/. I1-111 =" [[-II

< (B) < /

Proof By means of pre and postmultiplication by unitary diagonal matrices with
diagonal entries of unit modulus, we may assume that s > 0 and e < 0. Then B-1 is
easily seen to have positive superdiagonal entries, so that [B-ll] ]]B-u]] and
]B-} ]]urB-]]l, where u is the vector of all ones. v= B-’u and wr= urB- are
easily computed by back and forward substitution. Thus ]]B-1ll=maxv] and
]]B-l=max ]w[. Modifying these back and forward substitution recurrences to
compute A 1/v and i 1/w yields the recurrences in (2.4). Since the eigenvalues
of

H=
B 0

are the positive and negative singular values of B,

118-111 118-111 Ilg-ll[ max (liB-Ilia, IIB-TII)= max (llB-’[l, liB-Ill,),
proving the inequality min(B) in (2.5). The other inequalities are standard norm
inequalities.

From Lemma 1 it is clear that if [e /A+I < 1, then changing e to 0 can make
a relative change of at most in A and all subsequent A, i<j. Thus the first upper
and lower bounds on min(B) in (2.5) can change only by a factor of as well. Similar
comments apply if ]e/] < 1. This suggests the following criterion for setting e
to 0:

Convergence Criterion 1. Let < 1 be the desired relative accuracy of computed
singular values. Then if either ]e/A+ or ]ej/] , set e to 0.

recurrences"
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Now we will state and prove a theorem that justifies this criterion. We will only
prove the theorem for the case lej/Aj+l[<- r/; the case le/ml-<, is analogous. First
we need some notation. Let b(r/) be the unique positive solution of

(2.6) exp (b)-2b- 1

it is easy to see that 4(r/) is asymptotically r//21/2 for small rt and that for all
b(r/)<_-r//2/2. Let B be a bidiagonal matrix as in Lemma 1 with singular values
tr ->_. => or,, let U B except for entry ej which is zero, and let tr or, be the
singular values of U. Let 5(r/) be the interval of tr’s such that

(2.7) -b(r/) <-In

5(r/) is essentially the set of tr that differs from tr by a relative perturbation of at
most r//2/2. Some of these intervals may overlap; let c(rt) denote the collection of
disjoint intervals made of connected components of U 5(r/). Now we may state
Theorem 4.

TIOREM 4. Let B and U be bidiagonal matrices as described above, and suppose
lea/a+l <-ft. Then each singular value tr of B lies in the connected component of
containing (q). In particular, if that connected component consists of m overlapping
intervals r ), then

(2.8) -m4(r/) <_-ln (trl/o’) _-<

Therefore, the relative perturbation caused in tr by setting the off-diagonal entry in 6B to
zero is at most nq/2/2 ifnq << 1, and ifo’ is sufficiently separatedfrom the other singular
values, at most rl / 2/2.

For example, this theorem lets us conclude that setting r/to 0 in

1 1

can change the singular values 2/, 1, and 2-1/2ff by at most factors of 1 + r if r is
small, independent of . Indeed, if D is any bidiagonal matrix this theorem guarantees
that we can set r to 0 in

without making relative perturbations larger than r in any singular value.
The proof of this theorem will depend on a sequence of technical lemmas. The

first is a trivial consequence of Taylor’s theorem.
LMMA 2. Let f and g be continuously differentiable functions on the non-

negative real axis, with f(t)< g(t) for positive and sufficiently small. Let
inf { > 0" f(t) _>- g (t) }, and if no such exist. Then if is finite, f’() >- g’().

We will use contrapositive of this result to show whenf< g for all t; iff() _>- g(
would imply that f’(sc) < g’(sc), then f must be less than g everywhere.

In our case, we define f(t) and g(t) as follows. Write

where K is j by j, R is n-j by n-j, and C elf r, where l= (0,..., 0, 1) r and
f= (1, 0,..., 0)r. Assume as in Lemma 1 that ej < 0. Let

U(t)=[K C(t)]R
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where C(t)=-thj+llf r so that U(0)= U and U(r/)= B. Let tr’i(t) be the ith largest
singular value of U(t). Then we first let

(2.9a) f(t)=-cb(t) and g(t)=ln (crl(t)/cr)

and apply Lemma 2 to prove the first inequality in (2.8), and then let

(2.9b) f(t)=ln (tr’i(t)/cr’i) and g(t)=(t)

to prove the second inequality. In order to apply Lemma 2 to draw this conclusion,
we need to compute the derivatives of the functions in (2.9a), (2.9b).

LEMMA 3. Unless g( t) is a singular value of R,

min n
(((t)/)_ 1),

0 <ln ((t)) < max x
((,(t)/j)_ 1),

0

oo We begin with a simplifying assumption. We assume K and R have no
common singular values. If this is not true, consider a sequence of problems with
K K, R R and where K and R have distinct singular values; the general result
will follow from continuity.

We may define a singular value (t) and its singular vectors u(t) and v(t) of
U(t) by the equations Uv=u and uru=vr (where we have suppressed the
argument t). Using the fact that u ru v rv > 0, we see from Ov + U u + and
from fi TU + UTO VT + T that

u v u u

Now paition ur (u(, u) and vr (v(, v) conformally to B, whence

Kvl + CVz ux,
and

u(K v(,
(z.10) u(C +  v2.
Now

By rearranging the recurrence (2.4) for/j+l we see that A+, IIR-/II; Thus

U dV2 -U lfrv2(2.11) d’(t) UUl+ UU2 IlR-rflll(UU+ uu2)
Now we derive another expression for v2 in order to eliminate it from (2.11). Since

RTRv= Rru= 2V2- cTu ff2V2 +u,llR-fll? l,
we may solve for v2 as follows provided is not a singular value of R"

and so

(2.12)

d
--ln (r(t))=d(t)/cr(t)
dt

=t"
(/T/1)2 IIR-Tfll 2 (R-wf)r(cr2(RrR)-’--I)-lR-rf

Since is a unit vector, the second factor in this expression is between 0 and 1. It
cannot be zero because otherwise CrUl O, Rv2 cru:, and uR rv, and so cr would
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be a singular value of R contrary to assumption The third factor is strictly between
0 and 1. The last factor is a Rayleigh quotient and so bounded by the extreme eigenvalues

)2 --1,of the matrix in the middle i.e. mini ((tr/trRj)2 1)-l, andmaxj ((tr/trR --1) where

O’R are the singular values of R. This is in turn bounded by the extreme values of
1/ ((tr/tr )2 1). This proves the lemma, l1

LEMMA 4. (0)=0 and (0)--2-1/2. b(t) satisfies the differential equation

( .13a)
exp (2b(t))- 1

and l, (t) ck (t) satisfies the differential equation

(2.13b) (t)
1-exp (-2,(t))"

Proof Simply differentiate the defining equation (2.6) for tk(t). El
Proof of Theorem 4. Now note that ln(trl(0)/er)=0 and its derivative

&l(0)/tr(0)=0 as well since try(t) is an even function of t. Since b(0)=0 and
4(0)- 2-1/2, we see that (2.8) is true (for m 1) for sufficiently small r/. To show it is
true for all r/, we assume to the contrary that there is some positive r/ for which it is
false, and let : be the infimum of all these r/. Then tr(:) will be on the boundary of
Cg(r/), which means [In (rl(:)/o’) will be at least 4(se) for all j. From Lemma 3 we
see this implies

-t d

exp (-2b(:)) <-7 In (tr(:)/o"i) <
exp (2b(:))- 1

But we also have from Lemma 4 that

(:) and t()
1-exp (-2@(:)) exp (2(:))- 1

Therefore, the choice (2.9a) off and g yields f(:) < (:), so f(:) cannot equal g(:).
The choice (2.9b) yields the same conclusion. Therefore, r’i(:) cannot lie on the
boundary of cg(sc) as supposed. This completes the proof of Theorem 4. E1

The third result in this section supplies a convergence criterion that may occasion-
ally succeed in setting an off-diagonal entry to zero before Convergence Criterion 1.
However, it may only be applied when singular vectors are not computed, since it may
cause rather large perturbations in them. Let

[D ] and B’=[D ](2.14) B=
0 0

where [0, , 0, e] r, and D is bidiagonal. Let o"1 =<" <- tr be the singular values
be the singular values of B’. Let i(r/) be the interval of o-’sof B and o1 -<" =< o-

such that I-’,1 -< ,I, and let (r/) be the collection of disjoint intervals that are
the connected components of U ii(r/). Now we may state Theorem 5.

THEOREM 5. Let 0< r/<1 be a relative error tolerance, and suppose gap=-
Crmin(D)-Isl>0 in (2.14). If
(2.15) [el2<=.5.rl.gap (O-min(D)+lsl)--.5. r (O’2min(D)--ISI2),
then each singular value tr of B’ lies in the connected component of (rl) containing
i(rl). In particular, if that connected component consists of rn overlapping intervals

(rI), and mrl << 1, then Icr-tril is at most about m" rl" cry.
Proof We consider two cases: se/[gap(o’min(D) + Is[)] -> .5, and se/[gap(o’min(D) +

Is[)] < .5. In the first case (2,15) implies e2< rise or e < r/s. Then by Theorem 3 setting
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e to 0 in B can change no singular value by more than rts], proving the theorem in
this case.

Now consider the second case. Instead of directly comparing the singular values
of B and B’, we compare the eigenvalues of BBT‘ and B’B’’, which are the squares
of the corresponding singular values. First we show that the smallest eigenvalues of
BB7‘ and B’B’7‘ must be close. The smallest eigenvalue of B’B’7‘ is s2. By Theorem 1,
BB T has one eigenvalue less than s2+ se<-(O-2min(D)-s2)/2, and the rest exceeding
the same quantity. By the gap theorem [15, 11-7-1], the smallest eigenvalue trn of
BB 7" satisfies

2s2e2

2min(D) s2= s2

proving the theorem for the smallest eigenvalue.
Now we consider the larger eigenvalues of BB Since se/[gap(min(D) -Isl)] < ,5,

Theorem 4.12 of [16] applies and we conclude that the larger eigenvalues of BBT are
the same as the eigenvalues of DDT + E + E2, where

0 e

so that IlE II e:, and IIE=II 2sae/[gap(min(D) -Isl)3 ws ; E2 is in general non-
symmetric. By the Bauer-Fike theorem [8] each eigenvalues of DDT +E + E2 is within

min(D)-s2)+s2min(D
of an eigenvalue of DD This completes the proof.

This theorem justifies the following.
Convergence Criterion 2. Let B [ ] (or B [g ]) where Y= [0,..., 0, e] r

(or [e, 0,..., 0]r). Let < 1 be the desired relative accuracy of the computed
singular values. Then if gap=mn(D)-lsl>O and lel2.5, n gap. (m,(D)+ls])
5 n"min(O)-[s[), set e to zero. From (2.5), we may approximate min(O) with
the lower bound min<, /(n- 1) /2 (or min> aj/(n- 1)/2).

The following example shows that Convergence Criterion 2 may sometimes set e
to zero before Convergence Criterion 1. Consider B [ .]. Convergence Criterion
1 demands that ]el to set it to zero, whereas Convergence Criterion 2 demands
only that [el (3/8)/2, which may be much larger.

This same example also shows why we do not want to use Convergence Criterion
2 when computing singular vectors. The right singular vectors of B and B’ differ by
O(lel), not O(e12).

In practice, we may estimate min(O) using (2.4) and (2.5), and indeed we need
only run the recurrences once to apply both Convergence Criteria 1 and 2.

3. QR iteration with a zero shift. The standard algorithm for finding singular
values of a bidiagonal matrix B is the QR algorithm applied implicitly to BrB [7].
The algorithm computes a sequence B of bidiagonal matrices staing from Bo B as
follows. From B the algorithm computes a shift 2, which is usually taken to be the
smallest eigenvalue of the bottom 2-by-2 block of BB. Then the algorithm does an
implicit QR factorization of the shifted matrix BB-2I QR, where Q is ohogonal
and R upper triangular, from which it computes a bidiagonal B+ such that Bri+1Bi+l
RQ+2L As increases, B converges to a diagonal matrix with the singular values
on the diagonal.



ACCURATE SINGULAR VALUES OF BIDIAGONAL MATRICES 883

The roundoff errors in this algorithm are generally on the order of e llBII, where
e is the precision of the floating point arithmetic used. From Theorem 3 of the last
section, this means we would expect absolute errors in the computed singular values
of the same order. In particular, tiny singular values of B could be changed completely.

In this section we present a variation of this standard algorithm that computes
all the singular values of a bidiagonal matrix, even the tiniest ones, with guaranteed
high relative accuracy. We will call this the "implicit zero-shift QR" algorithm, since
it corresponds to the above algorithm when tr 0. However, it is organized in such a
way as to guarantee that each entry of Bi+l is computed from Bi to nearly full machine
precision. Then Corollary 2 of the last section implies that the singular values of B
and Bi+l all agree to high relative accuracy. When Bi/l has finally converged to a
diagonal matrix, these diagonal entries must therefore also be accurate singular values
for the initial B Bo. Exactly how to detect this convergence is an interesting issue
and discussed in the next section.

The rest of this section is organized as follows. First we review the standard
algorithm for singular values of a bidiagonal matrix. Then we show how it simplifies
when the shift is zero. Next we discuss an error analysis of the resulting implicit
zero-shift QR algorithm which shows that it computes each entry of B/I with high
relative accuracy (the details of the error analysis are in 8). Finally, we discuss the
asymptotic convergence rate.

The final algorithm is a hybrid of the standard QR and implicit zero-shift QR.
Standard QR is used when the condition number of B (the ratio of the largest to
smallest singular values) is modest. In this case the roundoff errors are guaranteed to
make acceptably small perturbations in the smallest singular values of B. Ifthe condition
number is large, we use implicit zero-shift QR instead. The hybrid algorithm will be
discussed more fully in the next section.

In order to summarize the standard QR algorithm, we need some notation. Let
J(i,j, O) denote the Given’s rotation in entries and j by angle 0. In other words,
J(i,j, O) is an n-by-n identity matrix except for rows and columns and j whose
intersections consist of the following 2-by-2 rotation matrix"

[cos0 sin0]-sin0 cos0

Given the vector x, choosing 0 so that xj/x tan 0 means that the ith and jth entries
of J(i,j, O)x will contain +v/-((x2+y) and 0, respectively.

We will illustrate the algorithm on a 4-by-4 example, where we use x and + to
indicate nonzero entries and 0 and blank to indicate zero entries. Initially B is in the
form

X X

X X

XxX
We begin by postmultiplying Bi by J1--J(1, 2, 01), where 01 will be discussed in a
moment. This introduces a nonzero entry in the (2, 1) position:

i 1

(3.1) BiJ1--
x x

x x
x
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BiJ will now be pre and postmultiplied by a sequence of Given’s rotations whose
purpose is to "chase the bulge" indicated by "4-" off the end of the matrix. Choose
02 so that J2 -= J(1, 2, 02) introduces a zero in the (2, 1) entry of J2BiJl:

x x +

(3.2) J2BiJ1
0 x x

x x
x

Next choose 03 in J3 -= J(2, 3, 03), 04 in J4 -= J(2, 3, 04), 05 in J5 -= J(3, 4, 05), and 06 in
J6 -= J(3, 4, 06), to give the following sequence of transformations:

x x 0 x x

X X
J4J2niJJ3

x x 4-
Jg Ja--BiJ--= + x x 0 x x

X X

X X

X X
J4J2B,J3Js

x x 0

X X

+ x

B,+,-= J6J4J2BiJ,J3J

The usual error analysis of Given’s rotations [18, p. 131-139] shows that the computed
Bi+l is the exact transformation of a matrix Bi+E where IIE[I is on the order of
p(n) e Bi II, P(n) a modest function of n.

To choose 01 we compute a shift r2 that is generally the smallest eigenvalue of
the bottom right 2-by-2 submatrix of BBf. 01 is then chosen so that J1 introduces a
zero into the (2, 1) entry of Jrl(BfBi-cr2I). It is easy to see that this means that

(BTi B,),2
(3.3) tan 0,- o.2_ (B/rBi)l
This choice of shift, called Wilkinson’s shift, guarantees at least linear convergence
and generally yields asymptotic cubic convergence of the off-diagonal entries of B to
zero [15, p. 151]. This is assuming arithmetic is done exactly.

Now let us take r--0. Let us also drop the subscript on B for simplicity of
notation From (3.3) we see that tan 01 -b12/b so that the result of the first rotation

bl 0
/(1) /(1) b23B(1) BJ u21 ’22

b33 b34
b44

(for a 4-by-4 matrix) is

We let the superscript on the matrix and its entries indicate that J1 has been applied.
Comparing to (3.1) we see that the (1, 2) entry is zero instead of nonzero. This zero
will propagate through the rest of the algorithm and is the key to its effectiveness.
After the rotation by J2 we have

b(2) b(2)11 12

0 022

(2)
13

_(2)
u23

b33 b34
b44

B(2) J2BJ
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Note that

--(1)O22(2) O23t’(2) [_COS 02022 COS 02623
i.e., it is a rank-one matrix Therefore, postmultiplication by J3 to zero out the (1, 3)
entry will also zero out the (2, 3) entry:

(2) /,(3) 011 u12

/(3)
’22B(3) J2BJJ3

0 0
/(3) /(3) b34,32 t33

b
Comparing to (3.2) we see that there is an extra zero on the superdiagonal. Rotation
by J4 just repeats the situation" the submatrix of J4J2BJ1J3 consisting of rows 2 and 3
and columns 3 and 4 is rank one, and rotation by J5 zeros out the (3, 4) entry as well
as the (2, 4) entry. This regime repeats itself for the length of the matrix.

The following algorithm incorporates this observation. It uses a subroutine
ROT(f, g, cs, sn, r) which takes f and g as inputs and returns r, cs cos 0 and sn sin 0
such that

-sn cs g

ROT(f, g, cs, sn, r): takes f and g as input and returns cs, sn, and r, satisfying (3.4).

if (f= O) then
cs O; sn l r=g

elseif (Ifl > Igl) then
t= g/f; tt=x/l + 2

cs 1/ tt; sn t*cs; r=f*tt

else
t=f/g; tt=x/l+t2

sn 1/ tt; cs t,sn; r= g,tt
endif

Barring underflow and overflow (which can only occur if the true value of r itself
would overflow), ROT computes cs, sn, and r to nearly full machine accuracy (see 8
below for details). It also uses fewer operations than the analogous routine "rotg" in
LINPACK [5].

IPLICIT ZERO-SHIFT QR ALGORITHM. Let B be an n-by-n bidiagonal matrix
with diagonal entries sl,. ., s and superdiagonal entries el," en-. The following
algorithm replaces s and e by new values corresponding to one step of the QR iteration
with zero shift"

oldcs 1

f-- S1
g=el

for i=l,n--1
call ROT(f, g, cs, sn, r)
if (i 1) ei- oldsn, r

f= oldcs* r
g Si+l*sn
h Si+l*CS
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call ROT(f, g, cs, sn, r)

f:h
g: ei+l
oldcs cs
oldsn sn

endfor
en-1 h*sn
s, h*cs

It is straightforward to verify that this algorithm "chases the bulge" in the manner
described above. It is remarkable that outside the two calls to ROT, there are only
four multiplications in the inner loop. This is to be contrasted with the usual QR
algorithm, which in addition to two calls to ROT has twelve multiplications and four
additions. Thus the inner loop is much more efficient than the standard algorithm.
Note also that it is parallelizable, because n/2 rotations can be done at once. Since
data need only be passed serially along the diagonal, it can also be implemented in a
systolic array. However, the algorithms in 6 seem much better suited to parallel
processing.

This algorithm may be expressed in the following terser but equivalent form:

oldcs 1
cs=l
for i=l,n-1

call ROT(si,cs, el, cs, sn, r)
if (i # 1) el_ oldsn , r
call ROT(oldcs*r, si+*sn, oldcs, oldsn, si)

endfor
h s.*cs
en-1 h,oldsn

s. h, oldcs

The initial form will be more convenient for the error analysis in 8.
This algorithm is also much more accurate than the standard algorithm. The source

of the extra accuracy is the absence of possible cancellation, which means all roundoff
errors appear multiplicatively (there is an addition in ROT, but it is harmless). Our
model of arithmetic is the usual one"

(3.5) fl(xo y) (x y) l + e),

where is one of +, -, and/, fl(x y) is the floating point result of the operation o,
and lel -< e, where e is the machine precision. This would appear to eliminate machines
like the Cray and Cyber from consideration, since those machines do not conform to
(3.5) for addition and subtraction when cancellation is involved, but since we only
need to use (3.5) for multiplication (as well as square root, division, and addition of
positive quantities in ROT), this analysis covers those machines as well. We also
assume overflow and underflow do not occur (we return to these issues in 8).

We present two theorems about the accumulation of error in the algorithm. The
proofs are given in 8. The first theorem develops a bound for the relative error in
the computed si and ei of the form cne (c is a modest constant) and uses it with
Theorem 2 of 2 to show that the relative difference between the singular values of
the bidiagonal matrix B and the output matrix B’ ofthe implicit zero-shift QR algorithm
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is cn2e/(1-cn2e). In other words, the relative error in the computed singular values
can only grow with the square of the dimension.

THEOREM 6. Let B be an n-by-n bidiagonal matrix and B’ the matrix obtained by
running the implicit zero-shift QR algorithm on B. Let the singular values of B be

’>. > Then iftrl >" > trn, and the singular values of B’ be o’1 o’n.

(3.6) to --- 69n2e < 1,

the relative differences between the singular values ofB and the singular values ofB’ are
bounded as follows:

I-w

Let Bk be the matrix obtained after k repetitions of the implicit zero-shift QR algorithm,
and let Crkl >=’’" >= Crk, be its singular values. Then if condition (3.6) holds we have

I’- ’1 -<
(1 -w)

1 o’ 69knee" o’,

where the approximation to the last upper bound holds if kw << 1.
This result is actually rather pessimistic, as our second result shows" when we

approach convergence in the sense that all rotations are through angles bounded away
from r/2, errors do not accumulate at all and the error in the computed e and s is
bounded by c’.e, c’ another modest constant. With Theorem 2 this yields an error
bound on the computed singular values of the form c’ne/(1 c’ne).

THEOREM 7. Let B be an n-by-n bidiagonal matrix and B’ the matrix obtained by
running the implicit zero-shift QR algorithm on B. Assume that all the rotation angles 0
during the course of the algorithm satisfy sin 0 _-< r < 1. Let the singular values of B be
O" O’n, and the singular values of B’ be o- >-_. >- o-’. Then if

88he
(3.7) w--

(1_ .)< 1

the relative differences between the singular values ofB and the singular values of B’ are
bounded as follows"

o- O- o-i
1--to

Let B be the matrix obtained after k repetitions of the implicit zero-shift QR algorithm,
where we assume all rotation angles 0 satisfy sin 0 _-< " < 1. Let o- >=... >-o’ be the
singular values of B. Then if condition (3.7) holds we have

( 1 ) 88kne
Iri crki <l )----------- 1 o" o’i,(1 -to (1 _.)2

where the approximation to the last upper bound holds if kto << 1.
Note that - can easily be monitored by the algorithm as it proceeds.
The standard algorithm does not always achieve this accuracy for three reasons.

First, the convergence criteria in the standard algorithm can change small singular
values completely (this is discussed in detail in the next section). Second, rounding
errors committed while "chasing the bulge" with a large shift can obscure small matrix
entries and small singular values. Third, roundoff errors when the shift is zero result
in nonzero entries appearing and propagating in those off-diagonal entries of intermedi-
ate results that should be zero, and that are kept zero by the new algorithm. This third
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effect seems mild, however, and as a result the standard algorithm sometimes computes
small singular values with higher relative accuracy than the usual bound p(n)e[[A[[
would lead us to expect (see, for example, the numerical examples of Class 1 in 7).

The pattern of zeros above the diagonal during the QR sweep also appears when
applying QR to a symmetric tridiagonal matrix. This pattern can be exploited to give
fast, square root free versions of the algorithm (see [15, p. 164] for a discussion).
Unfortunately, this does not yield forward stability and high accuracy as it does for
the bidiagonal case.

Finally, we discuss the asymptotic convergence rate of the algorithm. It is well
known that unshifted QR on a symmetric matrix is essentially the same as inverse
iteration [15, p. 144]. Therefore we can conclude that the last off-diagonal element
en-1 should converge to zero linearly with constant factor 2 2o’n_l/o-. If there is a cluster
of m small singular values isolated from the remaining ones, e-m will converge to

2 2zero linearly with constant factor tr,_,+l/O’_,.

4. Convergence criteria. In this section we discuss convergence criteria for the
new algorithm, and describe the practical version of the algorithm, which is a hybrid
ofthe usual shifted QR and the implicit zero-shift QR. After showing that the LINPACK
convergence criteria [5] are unsatisfactory, we restate the convergence criteria of 2.
The same analysis leading to the convergence criteria will lead to a criterion for
switching from zero-shift QR to shifted QR without damaging any tiny singular values.
The switching criterion depends on a user specifiable tolerance tol, which is the desired
relative accuracy in the singular values (tol should be less than 1 and greater than the
machine precision e). The resulting hybrid algorithm will therefore run about as fast
as the standard algorithm on matrices without any tiny singular values. We will also
discuss convergence criteria in the case where we are only interested in absolute
precision in the singular values. Finally, we discuss the impact of underflow on the
convergence criteria.

We begin by discussing the convergence criteria used in the current version of the
algorithm [5], and explain why they are unsuitable for our algorithm. The code in
LINPACK has two tests for setting entries of the bidiagonal matrix B to zero. Recall
that Sl,"-, sn are the diagonal entries of B and el,’", e,-1 are the off-diagonal
entries. The first test is

(4.1) if (le, + le,-l + Is, le, + le,-l), set s, to 0.

This rather enigmatic looking test works as follows. If Is, < .5 e. (le, + [e,-l), the test
will be satisfied and si set to zero. In other words, (4.1) is a way of asking whether
one number is less than roundoff error in another number without needing to know
the machine precision e explicitly. The other convergence test is

(4.2) if (Is, + Is,-l + le,-l Is, + Is,-l), set e,_l to 0.

Both tests compare an entry x of B with its two nearest neighbors on the other diagonal,
and set x to zero if it is negligible compared to those neighbors. One justification for
these tests is that roundoff error during the rotations could make the matrix indistin-
guishable from one with a zero in x’s position. Also, they clearly introduce errors no
worse than p(n)ellAll. (Both these tests may be unnecessarily slow for these purposes
on machines where the quantities le, + le,-l + Is, I, le, + le,-l, Is, + Is,-ll + le,-l and
Is, l+ls,-l are computed and compared in extended precision registers, where the
effective e is much tinier than in working precision.)

Both tests are unsatisfactory for our algorithm. Test (4.1) introduces a zero singular
value where there was none before, so it is clearly unsatisfactory. The following example



ACCURATE SINGULAR VALUES OF BIDIAGONAL MATRICES 889

shows why (4.2) is also unsatisfactory. Suppose rt is sufficiently small that in floating
point arithmetic 1 + r/= 1. Consider the matrix

B(x)

l 1

1 x

1 1

When x =r/ it is easy to verify that the smallest singular value of B(r/) is about r/3.
Test (4.2) would set x to 0, but B(0) has a smallest singular value of about ve/x/,
which is utterly different

Our convergence criteria must guarantee that by setting some ei to 0 (clearly no
nonzero si can ever be set to zero), no singular value is perturbed too much. Let ff
denote a reliable estimate or underestimate of the smallest singular value. Such a is
provided by the recurrences for IIB-111L and IIB-’II-1 in (2.4). Then the simplest
acceptable convergence criterion would only set e to zero if it were less than tol,E.
However, this method is overly conservative, and generally waits much too long to set

ei to 0. Much better estimates are given in 2 and justified by Theorems 4-5. We repeat
them here.

Convergence Criterion la. Let/zj be computed by the following recurrence ((2.4)
from 2)"

(4.3)

If ej //xjI =< tol, set e to 0.

for j 1 to n 1 do

Convergence Criterion lb. Let A be computed by the following recurrence ((2.4)
from 2)"

(44)

If le/A+ -< tol, set e to 0.

for j n- 1 to 1 step-1 do
,j--Isl.

Convergence Criterion 2a. Let/xj be computed from (4.3). If singular vectors are
not desired, and ee._=<.5, tol. [(min<, tz /(n-1)1/2)2- Is,12], set e,_ to zero.

Convergence Criterion 2b. Let A be computed from (4.4). If singular vectors are
not desired, and e12<.5"= tol. [(min>l /(n-1)1/2)e [sl2), set e to zero.

We have divided the criteria of 2 into separate parts, because we will apply them
in separate situations; see 5.2.

These criteria are more expensive than the standard LINPACK criteria, but avoid
situations such as setting x to 0 in B(x) in the last paragraph, and recognizes that
setting x to zero in

is harmless if Ix[ _-< tol, independent of D.
Now we consider how to decide whether to use implicit zero-shift QR or standard

shifted QR. In order to estimate the rounding errors that would occur during shifted
QR, we need an estimate of IIBII, We will use max (Is, I, le, I), which is easily seen
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to underestimate liB by no more than a factor of 2. In terms of K, 6., and tol, our
decision algorithm is

if (fudge tol (K/ 6. <= e)
use the implicit zero-shift QR

else
use shifted QR

endif

The test asks whether the rounding errors e. 6. that shifted QR could introduce are
greater than the largest tolerable perturbation tol. o-. The factor fudge -> 1 is a fudge
factor that makes zero-shifting less likely on tight clusters .of singular values; we
currently use fudge min (n, rn) if the original matrix was n by m.

In practice there is one further test for using the implicit zero-shift QR. If the
above test chooses shifted QR, we must still compute the shift 0-2, which is the smallest
eigenvalue of the bottom 2-by-2 matrix of BB. From (3.3), we see that the tangent of
the first rotation angle is given by

s*e el(o- )-10
1

S1 S1
2uso if 0"-/Sl 1 rounds to -1, the first rotation is the same as in implicit zero-shift QR

and we might as well use it, since it is faster and more accurate.
The choice of tol may be made by the user, or chosen automatically by the program.

If tol is chosen close to 1, we almost always pick shifted QR, which still computes the
singular values with good absolute accuracy, so only the smallest singular values will
be inaccurate. If we choose tol near e, we will almost always use implicit zero-shift
QR unless all the singular values are very close together, and therefore sacrifice the
cubic convergence of shifted QR. See 7 for descriptions of numerical experiments
on the effect of varying e. Choosing tol near 1 is useful for quickly obtaining estimates
of singular values for rank determination. Note that as singular values converge and
are deflated off, 0- may be reestimated so that if tol is not too small, by the time all
the small singular values have converged, the algorithm is doing shifted QR.

Note also that if we are only interested in computing the smallest singular value
or values, 0- provides a test for stopping the iteration early. If one or several small
singular values have been deflated out, and the 0- for the remaining matrix exceeds
them sufficiently, we are guaranteed to have found the smallest singular value. A similar
idea is expressed in [17].

Finally, we consider computing the singular values to guaranteed absolute accuracy
instead of guaranteed relative accuracy. As stated in the Introduction, this is what
standard shifted QR guarantees. However, the convergence criteria (4.1) and (4.2) in
the current standard implementation are much more stringent than necessary to meet
this goal. Instead of comparing levi or Isl to its neighbors to see if it is negligible, it is
only necessary to compare to 6. I[BII. In other words substituting

(4.5) if (Isil <-tol,6.) set s to 0

for (4.1) and

(4.6) if (levi_-< tol,6.) set e, to 0

for (4.2) will also guarantee absolute accuracy but possibly speed convergence consider-
ably. In practice, our code uses the input parameter tol to choose between absolute
and relative accuracy: if tol is positive, it indicates that relative accuracy tol is desired,
and if tol is negative, it indicates that absolute accuracy toll. 6- is desired.
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Underflow must also be accounted for in the convergence criteria to ensure
convergence. For it may happen that the quantity to be subtracted from e,-1 in the
course of driving it to zero may underflow, so that en_l never decreases. On machines
with IEEE arithmetic, this may occur if all entries of B are denormalized. To prevent
this, we make sure the convergence threshold to which we compare lejl is at least
rnaxit*A, where maxit is the maximum number ofQR inner loops the code will perform,
and A is the underflow threshold (the smallest positive normalized number). If the
matrix has singular values near A or smaller, this technique could destroy their accuracy;
in this case the matrix should be scaled up by multiplying it by maxit/e before applying
the algorithm, and multiplying the computed singular values by e/maxit afterwards.

5. Implementation details. In this section we discuss a number of details of the
implementation of the code: Chasing the bulge up or down; applying the convergence
criteria; SVD of 2-by-2 triangular matrices and robust shift calculation; deflation when
Si -’-O.

Finally, we present high-level code for the entire algorithm.

5.1. Chasing the bulge up or down. A bidiagonal matrix may be graded in many
ways, but most commonly it will be large at one end and small at the other. The implicit
zero-shift QR algorithm tries to converge the singular values in order from smallest to
largest. If the matrix is graded from large at the upper left to small at the lower right,
and the "bulge" is chased from upper left to lower right as in 3, then convergence
will be fast because the singular values are "ordered" correctly, i.e., the diagonal matrix
entries are fairly close to their final values. If, however, the matrix is graded the opposite
way (from small at the left to large at the right) then the algorithm will have to invert
the order of the matrix entries as it converges. This may require many more QR steps.
To avoid this, the implementation tests for the direction of grading (simply comparing
[s and [snl), and chases the bulge in the direction from large to small. If a matrix
breaks up into diagonal blocks that are graded in different ways, the bulge is chased
in the appropriate direction on each block. The algorithm in [17] does this as well.

In order to avoid the possibility that the code might frequently change bulge
chasing directions, and so converge very slowly, we only choose the direction of bulge
chasing when beginning work on a submatrix disjoint from the previous one. Whether
this is the optimal strategy is a question of future research.

This means the singular values may be quite disordered in the final converged
matrix, and so must be sorted at the end (along with the singular vectors if desired).
The LINPACK SVD uses bubble sort at the end, which could require O(n2) swaps of
singular vectors. Since the LINPACK SVD always chases the bulge down, the singular
values tend to converge in nearly sorted order, so bubble sort is relatively efficient.
The new algorithm, in which the singular values could converge in any order, uses
insertion sort instead, which does at most 2n moves of singular vectors.

5.2. Applying the convergence criteria. In 4 we presented four convergence
criteria. Since applying the convergence criteria costs approximately as many floating
point operations (O(n)) as performing a QR sweep, it is important to test criteria only
when they are likely to be satisfied. Our decision is based on the following empirical
observation: When chasing the bulge down (up), the bottommost (topmost) entry
s,(s) often tends to converge to the smallest singular value, with e,_(el) tending to
zero fastest of all off-diagonal entries. Therefore, when chasing the bulge down, we
expect Convergence Criteria la and 2a to be successful, and possibly lb but only for
the bottommost entry e,_. Convergence Criteria 2b and lb for the other off-diagonal
entries are not as likely to succeed. Conversely, when chasing the bulge up, we only
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apply Convergence Criteria lb, 2b, and la for el. One advantage of this scheme is that
testing 2a (for en-1, and if the test succeeds, for e,_2 too) costs only a few more
operations after testing la, since they share the same recurrence from (4.3). Similarly,
2b (for e, and if the test succeeds, for e2 too) is very cheap after applying lb.

5.3. SVD of 2-by-2 triangular matrices and robust shift calculation. The need for
the singular value decomposition of 2-by-2 triangular matrices, or at least the smallest
singular value of such a matrix, arises in two places in the code. The first time is when
calculating the shift. As stated in 3, the standard choice of shift, called Wilkinson’s
shift, is the smallest eigenvalue of the bottom 2-by-2 block of BBT. It is easy to see
that this is the square of the smallest singular value of the bottom 2-by-2 block of B.
The second need for the SVD of a 2-by-2 triangular matrix arises when the code has
isolated a 2-by-2 block on the diagonal of B. Even though this appears to be an easy
case for the algorithm in 4, it turns out that roundoff can prevent convergence when
the singular values are close. This is the case in

when lal and Icl are close and b is much smaller, just larger than e. lal. It happens
that on machines with sloppy arithmetic, roundoff can cause b to be no smaller after
one step of QR than before, so that the algorithm never converges. It is also difficult
in this situation to compute the singular vectors accurately, just as eigenvectors
corresponding to multiple eigenvalues are difficult to compute.

To get around these difficulties, we have written a subroutine that takes the entries
a, b, and c of B and returns the two singular values as well as the left and right singular
vectors. Barring overflow and underflow, the returned values are accurate to nearly
full machine precision, even for nearly coincident singular values. The algorithm is
comparable in speed to a straightforward implementation that does not attain similar
accuracy. This property is based on the fact that the algorithm uses formulas for the
answer that contain only

products, quotients, and square roots,
sums of terms of like sign,
differences of computed quantities only when cancellation is impossible, and
the difference lal-Icl, which, if cancellation occurs, is exact (except possibly on
a Cray or Cyber).

It is straightforward to use these properties to show that the final result is correct to
nearly full precision.

The code is also robust in the face of over/underflow. Overflow is avoided where
possible by using formulas in terms of ratios of matrix entries, and choosing the
formulas so that the ratios are always bounded by 1 in magnitude. As a result of these
precautions, overflow is impossible unless the exact largest singular value itself over-
flows (or is within a few units in the last place of overflowing). Underflow (of the
conventional "store zero" variety) can damage the results only if the data and/or
results are themselves close to the underflow threshold, specifically less than the
underflow threshold divided by e. Gradual underflow [2] makes the calculation of the
singular values impervious to underflow (unless the final results themselves underflow)
and the singular vectors much less susceptible to underflow problems.

5.4. Deflation when si =0. The standard SVD algorithm [5] has special code to
handle the case when si O. This code does a simplified sequence of rotations (similar
to implicit zero-shift QR) to introduce a zero on the superdiagonal of the bidiagonal
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matrix (adjacent to the zero on the diagonal) and so break it into two smaller problems.
It is easy to see that the implicit zero-shift QR algorithm does this deflation automati-
cally, yielding one zero on the superdiagonal for each zero on the diagonal, but at the
bottom (or top) of the matrix, rather than where the original zero occurred. This occurs
after one pass of the algorithm, at which point both sn and en-1 will be zero if chasing
the bulge down (sl and el will be zero if chasing the bulge up) meaning that the zero
singular value has been deflated exactly.

We can see this as follows. Assume we are chasing the bulge down. Whenever
si+l 0, both g and h will be set to 0, causing the sn returned by the second call to
ROT to be 0. At the end of the loop, both f= h and oldsn sn will also be zero. In
fact, it is easy to see that from now on both h and the f at the bottom of the loop will
be zero: at the top of the next loop iteration, the zero value of f causes the first call
of ROT to compute cs 0; this causes h si+ cs to be zero and the pattern repeats.
Also, when oldsn =0 (which happens when Si+ "-0), e,_ is set to zero on the next
iteration, i.e., si+ =0 implies ei becomes zero. Finally, at the end of all the loop
iterations, h is still zero implying both e,_l and sn are set to zero. Note that when f
is zero, as it frequently is in this case, the first call to ROT need only set cs O, sn 1,
and r g; this is what the first "if" branch in ROT does.

Finally, we present a high-level description of the entire algorithm. In the interest
of brevity we omit the code for updating the singular vectors or for the absolute error
convergence criterion.

e machine precision
A underflow threshold (smallest positive normalized number)
n dimension of the matrix
tol relative error tolerance (currently 100e)
maxit maximum number of QR inner loops (currently 3n2)

Bidiagonal singular value decomposition.

Compute o’ O-min(n using (2.4)
max (Is, I, le, I)

thresh max (tol. , maxit
/* any e, less than thresh in magnitude may be set to zero */
Loop:

/* Find bottommost nonscalar unreduced block diagonal submatrix of B */
let be the smallest such that levi through le-[ are at most thresh, or n if
no such exists
if 1, goto Done
let i’ be the largest less than such that leil <-- thresh, or 0 if no such exists
i=i’+1
/* Apply algorithm to unreduced block diagonal submatrix from / to -*/
if =/+ 1, then

/* 2-by-2 submatrix, handle specially */
compute SVD of 2-by-2 submatrix, setting e_ to 0
goto Loop

endif
if submatrix from / to disjoint from submatrix of last pass through Loop, then

/* Choose bulge chasing direction *!
if Is_/I-> Is-I, then

direction "down"
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else
direction "up"

endif
endif
/* Apply convergence criteria *!
if direction "down", then

Apply convergence criterion lb to er-1
Apply convergence criterion l a
Apply convergence criterion 2a to er_l and possibly ev_2

else
Apply convergence criterion la to e_/
Apply convergence criterion lb
Apply convergence criterion 2b to e_/and possibly e_/+

endif
/* Compute shift */
if fudge, tol,_ / <= e, then

/* Use zero shift because tiny singular values present */
shift 0

else
if direction "down", then

S=$7

shift smallest singular value of bottom 2-by-2 corner
else

S S_/

shift smallest singular value of top 2-by-2 corner
endif
if (shift eps, then

/* Use zero shift, since shift rounds to 0 */
shift --0

endif
endif
/* Perform QR iteration */
if shift 0, then

if direction "down", then
do implicit zero-shift QR downward
if er-l -<- thresh, set er_ 0

else

else

do implicit zero-shift QR upward
if [e_/I -< thresh, set 0

endif

if direction "down", then
do standard shifted QR downward
if er-l --< thresh, set er_l 0

else
do standard shifted QR upward
if [e_/I =< thresh, set e_/= 0

endif
endif
goto Loop
Done: sort singular values
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6. Other methods for computing accurate singular values. In this section we discuss
other methods for computing the singular values of a bidiagonal matrix B to high
relative accuracy. These methods include bisection, Rayleigh quotient iteration, and
iterative refinement. They are not competitive in speed with QR for computing all the
singular values on a serial machine, but can efficiently verify whether or not a computed
singular value is accurate. We have used them to verify the numerical results presented
in 7. However, they are extremely easy to parallelize and will probably be among
the best parallel algorithms for this problem.

All the algorithms are based on bisection for the symmetric tridiagonal eigen-
problem, which we discuss first. Bisection is in turn based on Sylvester’s Law of Inertia,
or equivalently, Sturm sequences [15, p. 52]. As explained in 2, the number of negative
di in recurrence (2.1) is the number of eigenvalues less than x, a quantity we will
denote by v(x). v(x2)-v(xl) is therefore the number of eigenvalues in the interval
Ix1, x2), so this method can easily verify whether an interval contains any eigenvalues.
The identification of the singular value problem for the bidiagonal matrix B with the
eigenvalue problem for a symmetric tridiagonal matrix with zero diagonal later in 2
makes it clear that we can use the same method to count the number of singular values
in any interval [x, x2).

What remains is an error analysis to show that the function v(x) is accurate. This
is provided in [12, p. 35]"

Let v(x) be the computed number of eigenvalues less than x for a symmetric
tridiagonal matrix A. Barring over/underflow, the computed value of v(x) is
the exact value of v(x) for the perturbed matrix A+6A where
2e[offdiag (A)[+ exL Here, offdiag (A) refers to the off-diagonal part of A. If A
has a zero diagonal, this bound may be improved to [6A[ <_-1.5.

Therefore, by Theorem 2 or Corollary 2, if the computed value of v(x) is k, there
must be at least k singular values of B less than x/(1-(3n- 1.5)e) and no more than
k singular values less than x. (1-(6n-2)e)/(1-(3n-l.5)e); we assume he<< 1. If
the computed value of v(x2) v(x) is j, there must be at least j singular values in the
interval [x. (1 -(6n 2)e)/(1 -(3n 1.5)e), x2/(1 -(3n 1.5)e)].

There is one other important feature of the computed v(x). In exact arithmetic,
since v(x) is the number of eigenvalues less than x, v(x) must be a monotonic increasing
function of x. It is by no means clear that the computed values of v(x) should also
be monotonic. This is significant because a failure in monotonicity could cause an
algorithm to misestimate the number of eigenvalues in an interval, although a bisection
routine that begins with an interval [x, X2) where v(x2)-v(x) is positive can always
maintain an interval over which the computed value of v increases. It turns out,
however, that as long as the arithmetic is monotonic, the computed value of v(x) will
be monotonic [12, p. 27]. By monotonic arithmetic we mean that if a b => c d in
exact arithmetic, then fl(a b)>=fl(co d) as well. This holds in any well-designed
arithmetic, such as the IEEE Floating Point Standard 754 [10]. We have only shown
that monotonicity holds if the recurrence is computed exactly as follows, with the
order of evaluation respecting parentheses"

a (a- (b_/a_))- x.

Now we briefly consider Rayleigh quotient iteration and iterative refinement. Both
algorithms begin with a small interval containing a singular value, and refine it as does
bisection. The major difference with bisection is in the zerofinder used to refine the
intervals. As long as they are implemented in a componentwise backward stable way
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(i.e., they compute the correct result for a bidiagonal having only small relative
perturbations in each entry), then Corollary 2 and Theorem 2 guarantee the relative
accuracy of the computed singular values.

7. Numerical experiments. The numerical experiments we discuss here compare
the algorithm of 3-5 with the LINPACK SVD [5]. Both codes were run in double
precision on a SUN 3/60 with an MC68881 floating point coprocessor, which imple-
ments IEEE standard 754 floating point arithmetic [10]; the machine precision e

2-532 1.1 10-16 and the range is approximately 10 +/-38. In order to guarantee reliable
timings, each matrix tested was run sufficiently often that the total elapsed time was
about 10 seconds. Singular vectors were computed by identical calls to drot [5] in both
algorithms.

The codes were compared with respect to
accuracy,
total number of passes through the inner loop of QR iteration,

(half the number of Givens rotations performed)
elapsed time when computing singular values only,
elapsed time when computing both left and right singular vectors as well,
elapsed time including bidiagonalizing the input matrix, and
elapsed time excluding bidiagonalizing the input matrix.

Also, the dependence of the new algorithm on the parameter tol (see 4) was investi-
gated. At the end we comment on the implications of our results for the "perfect shift"
strategy for computing singular vectors.

The LINPACK code was modified to explicitly use the machine precision e in
the stopping criteria rather than implicitly as in (4.1) and (4.2). Specifically,

(7.1) if (Is,l e*(le, l+lei-ll)), set s, to 0

was used in place of (4.1) and

(7.2) if (le,_,l < *(Isl+18-ll)), set ei-1 to 0

was used in place of (4.2). Thus since both the new algorithm and modified LINPACK
code use stopping criteria with e appearing explicitly, there is no danger that the
extended precision registers on the MC68881 would cause tests like (4.1) and (4.2) to
be executed with a smaller effective e than expected, which could slow convergence.

The LINPACK code also used a corrected shift calculation rather than the
erroneous one in [5]. The version in [5] computes f= (sl+ sm)*(sl-sm)-shift; this
should be f= (sl + sm)*(sl-sm)+ shift instead (the corrected version is distributed by
netlib [4]).

It turns out that the results depend strongly on the form of the bidiagonal matrix.
For example, the standard SVD behaves entirely differently on matrices graded from
top to bottom than on matrices graded in the opposite direction. Therefore, we present
our results on twelve separate classes of bidiagonal matrices, since this seems to be
the only fair way to compare results. The classes are as follows.

Class 1. These eight matrices are graded in the usual way from large at the upper
left to small at the lower right. All matrices have a 1 in the upper corner, and each
superdiagonal entry Bi,i+l equals its neighbor B, on the diagonal. Four of the matrices
are 10-by-10 and have a constant multiple between adjacent entries on the diagonal
and superdiagonal: 10 lo, 105, 102, and 10. The other four are 20-by-20 and are obtained
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from the first four by simply repeating each entry once, e.g., a diagonal containing 1,
10-1, 10-2, ", 10-90 becomes 1, 1, 10 -1, 10-1, 10-2, 10-2, ., 10-9, 10-9.

Class 2. This class is identical to Class 1 except the order of the entries on the
diagonal and superdiagonal are reversed. Thus these matrices are graded from small
at the upper left corner to large at the lower right.

Class 3. These eight 20-by-20 and 40-by-40 matrices are obtained by abutting
those in Class 1 with their reversals in Class 2. Thus each matrix is small at the upper
left, large in the middle, and small again at the lower right.

Class 4. These eight 20-by-20 and 40-by-40 matrices are obtained by abutting
those in Class 2 with their reversals in Class 1. Thus each matrix is large at the upper
left, small in the middle, and large again at the lower right.

Class 5. These eight matrices are obtained from Class 1 by reversing the order
of the superdiagonals. Thus the diagonal is graded from large at the upper left to small
at the lower right, and the superdiagonal is graded in the opposite direction.

Class 6. These eight matrices are obtained from Class 5 by reversing the order
of both the diagonals and superdiagonals. Thus the diagonal is graded from small at
the upper left to large at the lower right, and the superdiagonal is graded in the opposite
direction.

Class 7. These sixteen matrices are all small on the diagonal and mostly large on
the off-diagonal. Eight of them are 10-by-10 with l’s on the off-diagonal and a constant
diagonal, equaling 10 -2, 10 -4, 10 -6, 10 -8, 10 -1, 10 -12, 10 -14, and 10 -16, respectively.
The other eight 20-by-20 matrices are obtained by putting two copies of each of the
first eight together, and "connecting" them by setting the middle off-diagonal entry
Blo, to be 10 -15 times the value of the diagonal entries.

Classes 8-11. The ten 20-by-20 matrices in each class are generated by letting
each bidiagonal entry be a random number of the form r. 10i, where r is a random
number uniformly distributed between -.5 and .5, and is a random integer. In Class
8, is uniformly distributed from 0 to -15. In Class 9, is uniformly distributed from
0 to -10. In Class 10, is uniformly distributed from 0 to -5. In Class 11, is identically
0. Thus in Class 11 each matrix entry is simply uniformly distributed on [-.5, .5].

Class 12. This one 41-by-41 matrix is graded as in Class 1, with the ratio of
adjacent entries being 10-1.79. Each off-diagonal entry is identical to the diagonal
entry below it. This very dense grading leads to different convergence properties than
for the matrices in Class 1, which is why we put this example in a separate class.

Thus Classes 1-6 and 12 consist of graded matrices, Class 7 consists of matrices
larger on the off-diagonal than the diagonal, and Classes 8-11 consist of random
matrices with random exponents.

First we discuss the accuracy of computed singular values. With tol 100e 10-14

the new algorithm always converged in fewer than maxit 3n2 passes through the QR
inner loop and computed all singular values to nearly full accuracy. Accuracy was
determined using the method in 6: If tr is a computed singular value, the number of
singular values in the interval tr(1 he), tr(1 + he)) were counted. Overlapping inter-
vals were joined into larger intervals. The number of computed singular values in each
interval was then compared with the true number of singular values in each interval.
This accuracy test was passed in all cases but one singular value out of 2041 singular
values of all 105 matrices. In other words, 2040 singular values were computed with
a relative error of about 10 -14 or better; the exceptional singular value (in Class 11)
had a relative error a little less than 3. 10 -14.

The accuracy of the singular values computed by the LINPACKSVD were
determined by comparison with the singular values from the new algorithm. This data
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is presented in Table 1. We called agreement to at least fourteen digits with the verified
correct results of the new algorithm "all digits correct"; the notation "% all digits" in
Table 1 means the percentage of such singular values. The notation "% m-n digits"
in Table 1 means the percentage of singular values computed with m to n correct
digits. 0 digits means that the order of magnitude is still correct. -1 digits means
correct to within a factor of 10. The column "% nonzero, no digits" gives the percentage
of computed singular values that were nonzero and had incorrect orders of magnitude.
The column "% zero, no digits" gives the percentage of computed singular values that
were exactly zero, even though the matrix was nonsingular.

One striking feature about this table is the difference between Classes 1 and 2.
The only difference between the matrices in Classes 1 and 2 is the order of the entries.
When the entries are graded from large to small, the standard SVD gets all the singular
values correct. Indeed, it was constructed to perform well on matrices graded in this
fashion. When they are graded in the opposite way, only 42 percent are fully correct
and another third have fewer than four digits correct. Three percent are computed as
0 even though all matrices tested were nonsingular. This happens because the standard
SVD always "chases the bulge" from top to bottom. When the matrix is graded from
large to small, this works well, but when it is graded in the opposite way as in Class
2, the algorithm must "reorder" all the matrix entries, and in doing so must combine
tiny entries with large entries, thereby losing precision. The same thing happens for
Class 4. The new algorithm avoids the need to reorder by always "chasing the bulge"
from the large to the small end of the matrix. This is also done in the algorithm in
[17] (see 5 for details). The nonzero singular values that are not even order of
magnitude correct are off by factors of 10 -53 and 10 -57 (Class 7) and 10 -5 (Class 8).
The last column indicates how often the computed singular values were exactly zero,
when in fact none of the test matrices were singular.

We evaluated the computed singular vectors by computing the norm ofthe residual
BV- U,, where B is the bidiagonal matrix, V contains the right singular vectors, U
the left singular vectors, and the singular values. The norm was the maximum absolute
matrix entry. In all cases for both new and old SVD this measure never exceeded
1.1 10-14 100e, which is quite good and as expected from both algorithms (it is easy

TABLE
Accuracy of singular values from LINPACK SVD.

% all % 12-14 % 8-12 % 4-8 % 0-4 % -1 % nonzero, % zero,
Class digits digits digits digits digits digits no digits no digits

100 0 0 0 0 0 0 0
2 42 14 11 0 29 0 3
3 99.5 .5 0 0 0 0 0 0
4* 59 11 4 2 21 0 2
5 94 0 0 0 0 0 0 6
6 94 0 0 0 0 0 0 6
7 90 .5 0 .5 0 7
8 80.5 4.5 5 3 .5 .5 5
9 80 6.5 7 2.5 0 0 3
10 91 4.5 3 1.5 0 0 0 0
11 98 2 0 0 0 0 0 0
12 100 0 0 0 0 0 0 0

* The algorithm did not converge for one of the test matrices (this matrix was not counted in computing
the percentages).
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to show the convergence criteria for both algorithms leave the residual near the roundoff
level). We do not yet have a complete perturbation theory or better accuracy tests for
the singular vectors (see 9 for further discussion).

Table 2 provides a measure of the difficulty of the different problem classes that
is independent of matrix dimension. The usual rule of thumb for the number of QR
sweeps it takes to compute the SVD is two sweeps per singular value [15, p. 165]. If
convergence always takes place at the end of the matrix, this means there will be two
sweeps on a matrix of length i, for n, n 1, , 3 (two-by-two matrices are handled
specially). Here, n is the dimension of the original matrix. Thus counting one QR
sweep on a matrix of length as "QR inner loops," we expect an average of about
n(n + 1) "QR inner loops" for the entire SVD. Thus the quantity "QR inner loops"
divided by n(n + 1)/2 should be a measure of the difficulty of computing the SVD of
a matrix that is independent of dimension, and we expect it to equal two on the average.
For each of the twelve problem classes, and for the three algorithms old SVD (LIN-
PACK), new SVD without singular vectors, and new SVD with singular vectors, the
minimum, average, and maximum of the quantity "QR inner loops" divided by
n(n+l)/2 are given in Table 2. Recall that we use different convergence criteria
depending on whether or not we compute singular vectors, which is why we have
different columns for these two cases.

TABLE 2
QR Inner Loops/(n(n + 1)/2) for old and new SVD algorithms with tol-- 100e 10 -14.

Old SVD New SVD without vectors New SVD with vectors
Class Min Avg Max Min Avg Max Min Avg Max

.60 .90 1.33 .09 .36 .91 .09 .49 1.11
2 .60 1.94 3.07 .09 .36 .91 .09 .49 1.11
3 .61 .85 1.19 .56 .82 1.19 .56 .82 1.19
4 .32 1.04 1.80 .31 .58 1.00 .35 .60 1.04
5 .07 .45 1.11 .09 .54 1.29 .09 .57 1.42
6 .07 .40 .93 .09 .54 1.29 .09 .57 1.42
7 .10 1.32 2.31 .10 1.04 1.85 .10 1.04 1.85
8 .41 .64 .95 .25 .47 .75 .26 .49 .77
9 .79 .94 1.29 .51 .73 .89 .57 .75 .93
10 1.07 1.29 1.57 .98 1.19 1.47 1.04 1.22 1.48
11 1.97 2.26 2.52 2.07 2.20 2.38 2.06 2.20 2.41
12 1.53 1.53 1.53 2.96 2.96 2.96 2.96 2.96 2.96

It is interesting to note in Table 2 that only in Class 11 is our expectation of two
QR sweeps per singular value for the standard SVD nearly fulfilled. Recall that Class
11 has matrices all of whose entries are uniformly distributed between +.5. Otherwise,
either the average is much lower or there is a great variability in the number of QR
sweeps needed (Class 2). The same comments hold for the new algorithm, except for
Class 12, which was chosen to make the new algorithm look as bad as possible. Even
so, it is within a factor of two of the old algorithm.

Table 3 gives timing comparisons between the old and new algorithms. The results
depend on whether singular vectors are computed (Job v in Table 3) or not (Job nv).
There were several statistics collected. First, the number of QR inner loops for each
algorithm was counted, and the ratio of QR inner loops for the new algorithm to QR
inner loops for the old algorithm computed; these statistics (minimum, average, and
maximum ratios, the same for the other statistics) are shown in columns 3-5 of Table
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TABLE 3
Timing comparisons of old and new SVD algorithms with tol 100e 10-14.

Class Job

Ratio of times
Ratio of inner loops (with bidiagonalization)
New SVD/Old SVD New SVD/Old SVD
Min Avg Max Min Avg Max

Ratio of times
(without bidiagonalization)

New SVD/OId SVD
Min Avg Max

nv .15 .37 .77 .69 .77 .85 .29 .41 .63
v .15 .48 .84 .67 .75 .87 .26 .49 .77

2 nv .10 .18 .34 .37 .58 .82 .14 .23 .37
v .10 .23 .36 .37 .51 .66 .13 .26 .34

3 nv .86 .96 1.02 .91 .94 .96 .73 .77 .80
v .86 .96 1.03 .95 .97 1.01 .88 .95 1.03

4 nv .44 .60 .99 .72 .85 1.02 .40 .58 1.15
v .44 .63 1.10 .69 .78 1.03 .46 .63 1.10

5 nv .67 1.23 2.00 .97 1.06 1.12 .94 1.76 3.42
v .67 1.26 2.00 1.01 1.09 1.16 1.06 1.33 1.77

6 nv .67 1.29 2.00 1.03 1.07 1.11 1.11 1.72 3.16
v .67 1.33 2.00 .99 1.11 1.24 .98 1.33 1.56

7 nv .10 .80 1.00 .51 .91 1.12 .16 1.03 3.32
v .10 .80 1.00 .44 .89 1.14 .15 .93 2.04

8 nv .38 .79 1.61 .81 .92 1.07 .45 .75 1.32
v .40 .82 1.64 .74 .91 1.20 .47 .82 1.47

9 nv .52 .78 .97 .78 .89 .96 .48 .69 .87
v .52 .81 1.02 .72 .89 1.01 .54 .80 1.00

10 nv ..62 .94 1.19 .78 .90 .98 .53 .77 .94
v .67 .96 1.21 .76 .95 1.09 .63 .93 1.18

11 nv .89 .98 1.12 .88 .93 1.00 .79 .87 .99
v .86 .98 1.13 .87 .96 1.06 .83 .94 1.09

12 nv 1.93 1.93 1.93 1.13 1.13 1.13 1.37 1.37 1.37
v 1.93 1.93 1.93 1.55 1.55 1.55 1.87 1.87 1.87

3. The timings also depend on whether or not we count the time to bidiagonalize. The
time to bidiagonalize is quite large and can swamp the second, iterative part. Therefore
we computed timing ratios (new algorithm to old algorithm) both with and without
the initial bidiagonalization. The identical bidiagonalization code was used for the old
and new algorithms. We performed the bidiagonalization part of the algorithm on a
different, dense matrix, so that the algorithm and floating point hardware would not
recognize they were dealing with a bidiagonal input matrix and so bypass some of the
work. Columns 6-8 of Table 3 include the bidiagonalization phase, and columns 9-11
exclude it.

Whenever a number less than 1 appears in the table, it means the new algorithm
was faster, and numbers greater than 1 indicate the old algorithm was faster. An
examination of the table shows that on the whole the performance of the two algorithms
is comparable. Counting bidiagonalization, the new algorithm varies from over 2.7
times faster (Class 2) to 1.55 times slower (Class 12). Not counting bidiagonalization
the extremes are 7.7 times faster to 3.42 times slower; the extra overhead ofbidiagonaliz-
ation moderates the extremes. On simply graded matrices (Classes 1-4) and on random
matrices (Classes 8-11) the new algorithm always did better than the old on the average.
With the diagonal and off-diagonal being graded differently (Classes 5-6), the old
algorithm was generally a little faster. In Classes 5-7 the largest ratios occurred in
examples where convergence was very fast with both algorithms, the old SVD’s faster
convergence criterion winning out over the new algorithm’s more careful but more
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expensive convergence test. In Class 7 without bidiagonalization and without comput-
ing singular vectors, there were only two matrices where the old algorithm beat the
new (by factors of 2.42 and 3.32); in both cases both algorithms converged after a
single QR sweep. Thus the difference in times can be attributed to the slower conver-
gence criteria of the new algorithm; in both cases convergence was nearly immediate.
Similarly, in Classes 5 and 6 without bidiagonalization and without computing singular
vectors, whenever the old algorithm beat the new algorithm by more than 32 percent,
the ratio "QR inner loops"/(n(n+l)/2) was less than .17. In Class 7 and many
examples in Classes 5-6 there were generally a few very small singular values and the
rest large and evenly spaced over a range of at most a few factors of 10; the new
algorithm deflated out the smallest singular values after 1 or 2 sweeps and spent the
rest of the time working on the closely spaced singular values. It appears our criterion
for choosing between zero and nonzero shift chooses the zero shift quite often,
sometimes sacrificing cubic convergence until many singular values have been deflated.
The single matrix in Class 12 was therefore chosen with very closely spaced singular
values in order to make the new algorithm perform as poorly as possible; in this
example the average number of (mostly zero shift) QR sweeps per singular value was
2.96 for the new algorithm, whereas the average number of (shifted) QR sweeps per
singular value was 1.53 for the old algorithm, which still computed them all correctly.
We are not currently able to find another criterion permitting more frequent nonzero
shifts while still guaranteeing high relative accuracy. Nonzero shifts for fairly small
singular values frequently do not cause inaccuracy in practice because small rotation
angles prevent mixing large and small magnitude matrix entries; unfortunately this
phenomenon seems hard to exploit systematically.

From Table 3, it appears that Convergence Criteria 2a and 2b are not very effective,
since the ratio of inner loops (columns 3-5) does not change very much when Job nv
(singular vectors are not computed and Criteria 2a and 2b are used) and when Job v
(singular vectors are computed and Criteria 2a and 2b are not used). This is somewhat
misleading, however. Closer inspection of the test cases shows that in Classes 1 and
2, Criteria 2a and 2b cut the ratio of inner loops in half for matrices that have constant
ratios between adjacent diagonal matrix entries. In these cases, the algorithm converges
in a single QR sweep, instead of two QR sweeps. But for the other test matrices in
Classes 1 and 2, where matrix entries come in equal pairs, Criteria 2a and 2b have no
effect at all. The excellent performance on the first set of test matrices is watered down
in the statistics presented. Of course, since this speedup is only for matrices for which
the algorithm is already quite fast, we could simply omit Criteria 2a and 2b altogether;
this would have the advantage of computing identical singular values independent of
whether we also compute singular vectors.

Another interesting feature of Table 3 is the difference between Classes 1 and 2.
Recall that these matrices differ only in the order of the data. In Class 1, the old and
new algorithms are always chasing the bulge in the same direction; in Class 2 they
always chase the bulge in the opposite direction, which degrades the accuracy of the
old algorithm as mentioned above. It also degrades the performance by about a factor
of 2: in Class 1 (without bidiagonalization and without computing singular vectors)
the new algorithm is about twice as fast as the old on the average, and in Class 2 four
times as fast.

We next present some timings for our algorithm with tol 101he 10-2 compared
to the new algorithm with tol 100e 10 -14. This low accuracy requirement speeds
up the algorithm while still providing order-of-magnitude correct singular values; thus
it may be of use for rank determination. Only "Job nv" (singular values only) cases
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were run. The new algorithm with tol 1014e was always faster than the new algorithm
with tol 102e except for two matrices in Class 4 and one in Class 5. In all cases the
computed singular values were good to at least two figures as expected. (See Table 4.)

As mentioned at the end of 4 on convergence criteria, we may use the much less
stringent criteria (4.5) and (4.6) if only absolute accuracy rather than relative accuracy
in the singular values is desired. In Table 5 we show timing comparisons between the
new algorithm where each singular value is computed to an absolute accuracy of
tot. Ilall-100ellall10-4" Ilall, and the new algorithm with a relative accuracy
tolerance tol 100e 10-14 as in Table 3. The format is the same as in Table 3. As
can be seen from Table 5, the absolute convergence criterion almost always leads to
faster convergence than the relative convergence criterion.

TABLE 4
Timing comparisons of new SVD algorithm with tol 1014e 10-2 and tol 102e 10 -14.

Class

Ratio of times Ratio of times
Ratio of inner loops (with bidiagonalization) (without bidiagonalization)
SVD (tol 10-2)/ SVD (tol 10-2)/ SVD (tot 10-2)/
SVD tol 10-14) SVD tol 10-4) SVD tol 10-4)

Min Avg Max Min Avg Max Min Avg Max

.19 .58 1.00 .80 .91 1.00 .33 .65 .95
2 .19 .58 1.00 .79 .91 1.00 .32 .66 .95
3 .47 .70 .84 .88 .95 .98 .68 .81 .92
4 .56 .86 1.05 .94 .99 1.08 .71 .93 1.24
5 .07 .35 1.00 .61 .85 1.00 .19 .54 1.00
6 .07 .35 1.00 .61 .85 1.00 .19 .53 1.00
7 .09 .33 1.00 .46 .70 1.00 .13 .37 1.00
8 .10 .23 .46 .80 .88 .96 .26 .45 .71
9 .07 .20 .40 .77 .83 .91 .21 .36 .57
10 .04 .17 .30 .68 .74 .81 .15 .29 .44
11 .27 .41 .48 .63 .71 .76 .31 .46 .53
12 .14 .14 .14 .68 .68 .68 .21 .21 .21

Finally, we discuss the implications of our results for the "perfect shift" strategy
for computing singular vectors (or eigenvectors). This strategy advocates computing
the singular values (or eigenvalues) by the quickest available method without accumu-
lating singular vectors, and then using these computed singular values as "perfect
shifts" in the QR iteration to compute the singular vectors in one or possibly two QR
sweeps. The hope is that by avoiding the work of accumulating vectors while converging
to accurate singular values, time will be saved by computing the singular vectors
afterwards in one or two sweeps each. Unfortunately, our numerical results indicate
this approach will not work in general. For when our hybrid algorithm chooses to do
an implicit zero shift, it is in fact doing a perfect shift within the limits of roundoff
error. Depending on the distribution of singular values, this can take more or less time
to converge. Therefore we cannot assume one or two sweeps with the "perfect shift"
will result in converged singular vectors, and we could well end up doing as many
sweeps to compute the singular vectors as the singular values. This will not happen
in general, and a clever algorithm might be able to decide when perfect shifts are
useful and then use them, perhaps by keeping track of which deflated subblocks of
the matrix do not require zero shifts and using the perfect shift strategy on them.

8. Detailed error analysis. In this section we present a detailed error analysis of
the implicit zero-shift QR algorithm (Theorems 6 and 7). We begin with the assumptions
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TABLE 5
Timing comparisons with absolute accuracy tol=lOOe. [Iall10-4llal[ versus relative accuracy

tol 100e 10-14.

Class Job

Ratio of inner loops
SVD (absolute tol)/
SVD (relative tol)

Min Avg Max

Ratio of times Ratio of times
(with bidiagonalization) (without bidiagonalization)
SVD (absolute tol)/ SVD (absolute tol)/
SVD (relative tol) SVD (relative tol)

Min Avg Max Min Avg Max

nv .21 .48 1.00 .87 .91 .97 .32 .51 .92
v .17 .40 .77 .76 .83 .89 .32 .47 .74

2 nv .21 .48 1.00 .87 .91 .97 .32 .52 .92
v .17 .40 .77 .76 .83 .89 .31 .46 .75

3 nv .06 .39 .87 .81 .88 .97 .13 .42 .85
v .06 .39 .86 .59 .73 .92 .09 .41 .85

4 nv .03 .25 .70 .82 .88 .94 .11 .30 .71
v .03 .25 .73 .66 .73 .85 .07 .28 .72

5 nv .14 .47 .92 .75 .89 .94 .21 .47 .87
v .14 .46 .86 .68 .85 .91 .26 .50 .85

6 nv .14 .47 .92 .75 .89 .94 .21 .47 .87
v .14 .46 .86 .68 .85 .91 .25 .50 .85

7 nv .82 .94 1.00 .92 .96 .99 .41 .83 .98
v .82 .94 1.00 .92 .96 1.00 .66 .88 1.00

8 nv .26 .40 .64 .82 .88 .93 .32 .43 .55
v .25 .40 .62 .66 .78 .89 .29 .43 .62

9 nv .50 .68 .95 .88 .91 .97 .54 .67 .87
v .51 .68 .93 .78 .85 .96 .53 .68 .91

10 nv .60 .83 1.00 .88 .93 .98 .65 .82 .96
v .61 .83 .97 .78 .90 .97 .62 .83 .95

11 nv .97 1.00 1.00 1.00 1.01 1.02 .99 1.01 1.04
v .97 1.00 1.05 .98 1.00 1.04 .97 1.00 1.05

12 nv .88 .88 .88 .95 .95 .95 .89 .89 .89
v .88 .88 .88 .91 .91 .91 .87 .87 .87

used in the error analysis. Our model of error in floating point arithmetic was given
above in (3.5). It implies that overflow and underflow do not occur; we discuss
susceptibility to overflow and underflow briefly at the end. In our analysis es with
numerical subscripts denote quantities bounded in magnitude by e, where e is the
machine precision. Our analysis will be linearized in the sense that we will replace
quantities such as (1+ el)*(l+ e2) by l+(el+e2) and (1+ el)/(l+e2) by l+(el-e2);
such approximations can be made rigorous by assuming all nei are less than .1 in
magnitude and increasing the final error bound by a factor 1.06 [18, p. 113].

LEMMA 5. Let cos 0, sin 0, and p denote the exact outputs ofROTfor inputs fand
g and exact arithmetic. Now consider the floating point version of ROT applied to the
perturbed inputs f=f(l+e) and =g(l+eg), and let cs=(l+ecs) cosO, sn=

(1 + esn)sin 0, and r= (1+ er)p denote the computed results, where we assume neither

overflow nor underflow occurs. Then we may estimate the relative errors ec, en, and er
as follows:

e ef- eg) sin O + e’ wherele’s[<_--e,

e,, (eg el) cos 0 + e’. where le. <= e,
e eg sin 0 + ey cos2 0 + e’r where le’rl <= e
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Proof. We only consider the case [f[> 11; the other case is analogous. In the
following e’s with numeric subscripts indicate quantities bounded by e which may be
functions of previous ei’s as described in the first paragraph of this section. Then
applying (3.5) systematically to the expressions in ROT, and using the fact that [g/f[ < 1,
we obtain

g
t=(l+eg-ef+el),
tt=(1 + E4). [(1 + e3)" (1 + t2(1 + e2))]

=(1 + 7e5/4)[1 + t2]
(1 + 7 es/4)[ 1 + (g/f)2(1 + 2(eg ef + e 1))] 1/2

= (1 + 7e5/4)( 1 + (eg ef + el)(g/f)z/(1 + (g/f)2))[ 1 + (g/f)]l/2

1 + 9e6/4 + eg ey sin O) sec O,

cs (1 + e7)/tt (1 + 13e8/4 + (ey- eg) sinz O) cos O,

sn=(l+e9)t" cs=(l+21elo/4+(eg-ef )cos2 0)sin O,

r (1 + ell)f" tt (1 + 13e12/4 + eg sin2 0 + ef cos20)p.

To analyze the errors in the implicit zero-shift QR algorithm, we need to investigate
how the errors accumulate from one pass through the loop to the next. It turns out
the errors in f and oldcs are the essential ones.

LEMMA 6. Let f and oldcsi denote the true values off and oldcs at the entry to the
ith iteration of the loop in the implicit zero-shift QR algorithm. Let 01 and 02 be the true

values of the two rotation angles in the ith iteration of the loop. In other words, fi, oldcsi,
01, and 02i are the values that would have been computed had all arithmetic been exact.
Let f(1 + e) and oldcsi(1 / Eoldcsi denote the actual floating point values off and oldcs
at the top of the loop, with all previous loop iterations having been done in floating point
without any overflows or underflows. Then

[eolacsi+l[ 2 cos20li" sin2 02i sin2 02, Iolcs,[
(8.1)

[ 25e/4 ]+
21e/4+21e. sin2 02i/2

In terms of these expressions, we can bound the errors in the computed values of ei and s"

ei "true ei" (1 +eei) and si "true si"" (1 +
where

(8.2) 8e,----F-,oldcs COS
2 02i--2e" COS20li" COS

2 02i-1t- Ej+I "COS
2 01,i+ +20e

and

(8.3) esi Eft COS20li COS 202 + eoldcs, C0S2 02i -Jf- e14
ee, and e, may be further bounded by

(8.4) Ie,I <- Io,s,I / 21fil / +1 / 20e

and

(8.5) I,1 I1 +lo,,[ +25 sin2 02/4+ 15e/2.
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Proof. We apply (3.5) and Lemma 5 systematically to the expressions in the
algorithm. As before, e’s with numeric subscripts denote expressions bounded in
magnitude by e.

Note that at the top of the loop, g is known exactly. Therefore, after the first call
to ROT we have

CS COS 01i (1 + e sin2 Oil + -el),

sn sin 0. (1 e cos2 0i + eE),

r="true r". (1 + eft. cos20li+ e3).
The errors in f, g, and h are given by

f=(1 +e4)" oldcs, r="truef". (1 +eold,+e" cos20li+es),

g (1 + e6) S+l sn "true g"" (1 eft. cos20li+ e7),
h (1 + es) Si+l cs "true h". (1 + e. sinE 01+ e9).

After the second call to ROT we have

cs cos 02" (1 + eold, sin2 02g + 2e. cos2 01" sinE 02 + elO" sinE 02 + ell),

sn sin 02" (1- eold," COS
2 02- 2e. COS

2 0. COS
2 0_ + te2" COS

2 02 + e3),

r="true r". (1 + e. cos2 01 "cos 202i+ eold," COS
2 02i+-el4+-el" sin2 02,).

Since oldcs cs and f- h at the bottom of the loop, we have shown that at the start
of the next loop

f=f+l(1 + e’ sin20i + e9),

oldcs oldcs+l(1 + eotd, sin 02 + 2e cos2 01" sin 0 + telO sin2 02 + ell)

as desired. The expressions for the errors in e and s follow from plugging the above
bounds into the expressions ei-1 oldsn,r and si r.

From (8.4) and (8.5) we see that the errors in the computed e and si are governed
by the errors e and eoldcs,, and that the growths of these errors are governed by the
recurrence (8.1). A simple but somewhat pessimistic bound on these errors is given by
the following lemma.

LEMMA 7. Let eft, F_,oldcs, ee,, and e, be as in Lemma 6. Then

[el<-25(i-1)e/4,

o,,1 -< 113(i- 1)e/4,

lee,[<=(138i-53)e/4,

[e,l<-_(l13i-58)e/4.

Proof Replace the recurrence (8.1) by

Ei+ Ai Ei +

where

sin 01i 0 ]Ai
2 COS20li sin2 02i sin2 02

25e/4
F 21e/4+ 21e. sin 02/2
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and the entries of Ei are upper bounds for levi and eoldcs, I. Taking E 0, this recurrence
has the solution

j= k=j+l

Trivial bounds for Ai and F are

(8.7) IA, L2 cos 01
and If,l 63e/4

A simple induction shows that

F sin20lkI] 12 cos 01k=j+l

1-I sin20lk 0

2 1- I-[ sin0 1
k=j+l

and the rest of the proof is a straightforward computation.
In other words, the relative errors in the computed ei and si are bounded by a

linear function of i, and so the largest relative error is bounded by a linear function
of the matrix dimension n. We can now apply Theorem 2 of 2 to bound the errors
in the singular values of the transformed matrix.

THEOREM 6. Let B be an n-by-n bidiagonal matrix and B’ the matrix obtained by
running the implicit zero-shift QR algorithm on B. Let the singular values of B be
cr >... > o’,, and the singular values of B’ be cr ..= cry. Then if
(8.8) to 69n2e < 1,
the relative differences between the singular values ofB and the singular values of B’ are
bounded as follows"

Let Bk be the matrix obtained after k repetitions of the implicit zero-shift QR algorithm,
and let O’kl >--’’" >- O’k,, be its singular values. Then if condition (8.8) holds we have

IO’i O’ki 1 tri 69kn2e tri,(1 -w)
where the approximation to the last upper bound holds if ka << 1.

Proof Plug the bounds of Lemma 7 into Theorem 2.
Actually, Lemma 7 and Theorem 6 are quite pessimistic, since the upper bounds

in (8.7) are unattainable. In fact, as we approach convergence, we expect the rotation
angles Oil and 02 to approach zero, which means the matrix A should approach zero.
We can use this fact to obtain a much stronger error bound in the region of convergence.

LEMMA 8. Let e, eodc,, ee,, and e, be as in Lemma 6. Assumefurther that all the
rotation angles 0 during the course of the algorithm satisfy sin2 0 =< r < 1. Then

25e

50,re 21,re 21e
[eolac,l-<4(1 ,r)2 2(1,r-----+ 4(1 ,r---’

50,re 21,re 24e
lee’l<=4(1 "r) /-

2(1,r--’-++20e’
50re 21 ,re 23 e

]e’] =4(1 -,r)2+2(1-,r) +2(1 -,r)-25"re 15e

4 2
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Proof. Use the bounds

o]2r r
and

25e/4 ]IFI<- 21e/4+21er/2J"

The rest of the proof is a straightforward computation from (8.6).
These bounds permit us state the following improvement to Theorem 6.
THEOREM 7. Let B be an n-by-n bidiagonal matrix and B’ the matrix obtained by

running the implicit zero-shift QR algorithm on B. Assume that all the rotation angles 0
during the course of the algorithm satisfy sin2 0-<_ r < 1. Let the singular values of B be

tcr >’’’ > crn, and the singular values of B’ be o’1 "= or,. Then if

88He
(8.9) to- (l_r)2< 1

the relative differences between the singular values ofB and the singular values ofB’ are
bounded as follows"

Let Bk be the matrix obtained after k repetitions of the implicit zero-shift QR algorithm,
where we assume all rotation angles 0 satisfy sin 0 <_-r < 1. Let O’kl ’’ O’kn be the
singular values of Bk. Then if condition (8.9) holds we have

1 ) 88kne
o’i- o’kil <- )---’-’-- 1 O"

(1 -to (1 --7") 2
O’i,

where the approximation to the last upper bound holds if kto << 1.
Proof Plug the bounds of Lemma 8 into Theorem 2.
Thus if the rotation angles are all bounded away from 7r/2, the error after k

iterations of the implicit zero-shift QR algorithm can grow essentially only as the
product kn. The algorithm can easily compute r as it proceeds, and so compute its
own error bound if desired. In the numerical experiments in 7, we observed no error
growth at all, and so as is often the case an algorithm behaves much better in practice
than rigorous error bounds can guarantee.

Now we briefly consider over/underflow. Most of the error analysis presented
here can be extended to take over/underflow into account. Techniques for error analysis
in the presence of underflow are discussed in [2]. If over/underflow is handled as
suggested in the IEEE Floating Point Standard [10], then using Sylvester’s theorem
to count the number of eigenvalues less than x (2.1) can be made completely impervious
to over/underflow [12]: If some d ---+-0, then di+ ---t-oo and di+2 "-ai+2, and we count
the number of di whose sign bit is negative (i.e., including -0 and -oo). Rules for
arithmetic with +0 and +/-oo are described in detail in [10].

9. The accuracy of the computed singular vectors. In this section we assess the
accuracy of the computed singular vectors. Just as with the standard SVD, the new
algorithm guarantees a small residual in the sense that both and
are on the order of e ]IBI], where t is the computed singular value and and are
the computed singular vectors. However, in contrast to the singular values, high relative
accuracy in the bidiagonal matrix entries does not guarantee high relative accuracy in
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the singular vectors; we will give a 2-by-2 example to illustrate this. It also turns out
to be impossible to guarantee a tiny componentwise relative backwards error, where
each computed singular vector of B would be the exact singular vector of a small
componentwise relative perturbation B + 8B of B, with 18BI <= "rllBI, "q on the order of
machine precision. We will also demonstrate this with a small example.

In place of such simple a priori forward or backward error bounds, our bounds
will depend on the singular value distribution. Briefly, the closer together singular
values are, the less accurately their corresponding singular vectors can be computed.
This dependency is captured in the well-known "gap" theorem [15, p. 222], which can
be used to show that the angular error in the computed singular vectors corresponding
to o-i is bounded by the largest roundoff error committed divided by the "gap" or
difference between cri and its nearest neighbor o-+1. This well-known bound holds for
the standard SVD applied to dense matrices as well as the new algorithm.

Numerical experience leads us to make the following conjecture for the new
algorithm applied to bidiagonal matrices, which would significantly strengthen the
bound in the last paragraph: the "gap" min Ir- cr+ll in the denominator of the above
error bound can be replaced by the "relative gap" min (Icr cri+ll/o’). Since the relative
gap can be much larger than the gap, the resulting error bound can be much smaller.
For example, if B is 3-by-3 bidiagonal matrix with singular values oh 1, or2 2 10-2,
and or3 10 -2, the old error bounds for the vectors corresponding to the two tiny
singular values are on the order of 102e since the gap is 10 -2. However, the conjectured
bounds are both e since the relative gap between 2.10-2 and 10-2 is 1. Proving this
conjecture rigorously remains an open problem, although a supporting result appears
in [1].

Now we present a 2-by-2 example showing that small relative perturbations in
the entries of a bidiagonal matrix can cause large perturbations in the singular vectors"

A(r/) [1 + r/ e]0 1

As r varies from 0 to e, an easy computation shows that both left and right singular
vectors rotate by 22.5 degrees.

The same example can be used to show that no tiny componentwise relative
backward error bound can hold. Specifically, let and 3i be the left and right unit
singular vectors of

A=[ l+e0 le]
computed by the new algorithm (for ease of presentation we ignore the fact that 2-by-2
matrices are handled specially by the algorithm; this same phenomenon holds for
larger examples as well). Suppose that /i and differ by at most el from the exact
unit singular vectors ui and v of a componentwise relative perturbation A + 8A of A,
where lSAl<=e2lal. Then if e2= o(e2/3), el" ez=(e). In other words,
Therefore, any attempt to prove a small componentwise relative backward error o(132/3)
must permit errors in the computed vectors at least as large as el/3 >> e.

The proof goes as follows. Applying the new algorithm to A (and ignoring the
fact that 2-by-2 matrices are handled specially), we set A1,2 to 0 and get the columns
of the identity matrix as left and right singular vectors. Now we make relative perturba-
tions of size at most e2 e(C > ) in each entry of A (here, lezil <

B=A+SA=[(l+e)(l+e21) e(1 + e22)].0 1 -{- e23
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Compute

26 +2621 e 1BT"B=I+ + O(e2+e)
6 2623

I + e + O(e +
Y

=- I + eC + O(e + e),

where Ixl N 2 + 26/e and lyl 26/e. We consider the eigenproblem for C. Suppose
[1 ]r is an eigenvector of C; we will show

1
1,71 3+462/e,

3+462/e

implying the angle between an eigenvector of C and [1 0]7‘ is 12(e/62) 12(61-). We
compute as follows. If 1 r/] 7- is an eigenvector of C, r/must satisfy r/2 + (x y)/- 1 0
or

+ +1
2

Since I(y-x)/21 <- 1 +262/6, it is easy to see both Ir/I and Ir/-ll are bounded by

1 + 262/e + (( 1 + 262/6)2 + 1 1/2 =< 3 + 462/e

as desired.
Now consider the so far ignored perturbation O(62+6). The gap between

the eigenvalues of C is computed to be ((x-y)2+4)l/2>=2. Thus the perturbation
O(62+ e) can change the eigenvectors by at most O(6 + 6/6). When 62 e ", this is
a perturbation of at most O(62"-1). But when a > , 2c 1 > 1 a and so the perturba-
tion cannot change the lower bound lq(61-) on Ir/I.

Thus a relative perturbation of size 6 (a > ) to A means the right singular vectors
are least 12(61-) f(el) away from the computed right singular vectors. Thus el 62
12(e) as desired.

Since our algorithm handles 2-by-2 matrices as special cases, a 4-by-4 matrix such
as

1 1 0 0

0 6 0

0 0 1 1

0 0 0 1

could be used in the proof, but the computations are more complicated.
As stated above, rigorous error bounds on the computed singular vectors depend

on the singular value distribution, and that the closer together singular values are, the
less accurately their corresponding singular vectors can be computed. The "gap"
theorem [15, p. 222] expresses this dependency by bounding the angular error in the

7‘^computed singular vectors by the residual IIBi- o’iui, B ui- ll (the norm of the n
by 2 matrix [B3i-, B7‘-3]) divided by the gap (here a, 3i and are the
computed singular vectors and singular value). Standard backward error analysis shows
that the residual may be bounded by largest roundott error committed (which is
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p(n)el[Bl], p(n) a modest function of n and e the machine precision). This yields the
error bound

(9.1) max (0(a,, u,), 0(3,, v,))<-p(n)ellBII/gap=-p(n)ellBII/minlo’,-o’,+,l;

here u and v are the exact singular vectors.
The bound (9.1) is true for the standard SVD of a dense matrix as well as the

new algorithm. A natural question is whether the bound can be improved for the new
algorithm applied to the bidiagonal singular value problem. Numerical experience and
Proposition 7 in [1 support the following conjecture.

CONJECTURE. Let B be an unreduced bidiagonal matrix with singular values r
and left and right singular vectors u and v. Let the singular vectors computed by the
new algorithm be fi and t3. Then the errors in t and 3 are bounded by

(9.2) max (O(fii,

The justification for this conjecture is as follows. In 8 we proved that the zero-shift
part of the algorithm is forward stable across a single QR sweep; numerical experience
indicates that it is actually forward stable across many QR sweeps. (It is straightforward
but tedious to show that after k sweeps, rounding errors can grow by at most a factor
which is O(k), but it appears difficult to estimate the constant.) This forward stability
means the accumulated transformation matrices are computed accurately. Thus the
only serious errors are committed on convergence: setting an off-diagonal to zero. If
we use a "conservative" convergence criterion, where only off-diagonals smaller than
E" O’mi are set to zero, the numerator in (9.1) is reduced from p(n)el[nll to p(n)EO’min,
which implies the conjecture. Extending this argument to the stopping criterion
described in 4 appears difficult, and it is possible that with the more conservative
stopping criterion the algorithm will occasionally compute more accurate vectors than
the criterion of 4.

10. Conclusions and open problems. We have described a method for computing
all the singular values of a bidiagonal matrix to nearly full machine precision, and
showed it to be comparable in speed to the LINPACK SVD algorithm. This computation
is justified because small relative errors in the bidiagonal entries (from roundoff in the
algorithm or from previous computations) can only cause small relative errors in the
singular values, independent of their magnitudes. The technique can be extended to
computing the eigenvalues of symmetric positive definite tridiagonal matrices with
high relative accuracy as well 1 ].

A number of open questions remain. First, how accurate are the singular vectors
computed by this algorithm? We cannot generally expect high relative accuracy in all
singular vectors, because clustered singular values can have arbitrarily ill-conditioned
singular vectors. Still, singular vectors might be computable fully accurately as long
as the relative differences between corresponding singular values and their neighbors
are big enough, at least if we use a stopping criterion more conservative than the one
in 4. When in practice is it necessary to compute such accurate singular vectors for
tiny clustered singular values? Do applications demand accurate singular vectors, or
are tiny residuals sufficient, and if so, how tiny?

Second, since we have shown that it is possible to obtain accurate singular values
from accurate bidiagonal matrices, we may ask when it is possible to guarantee accuracy
in the reduction to bidiagonal form. This is clearly not possible in general, but for
some special classes ofmatrices (such as positive definite symmetric tridiagonal matrices
[1]) reduction to bidiagonal form is accurate. It may also be possible for graded
matrices arising from integral equations. For what classes is this true?
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Third, how generally can our implicit zero-shift technique be employed to guaran-
tee accurate singular values and eigenvalues? As mentioned in 3, a similar technique
was used in root-free versions of symmetric tridiagonal QR; can it be modified to
produce a tridiagonal symmetric QR algorithm that guarantees accurate eigenvalues
for at least some interesting classes of symmetric tridiagonal matrices? This question
is addressed in [13].

Finally, what is the best parallel algorithm for high accuracy singular values ? As
mentioned in 3, zero-shift QR can be parallelized, but it is not as easy to see how
to incorporate shifts and convergence testing. In 6, we showed that bisection and its
refinements could be used to compute high accuracy singular values. Such a technique
has been successfully parallelized for finding eigenvalues of symmetric tridiagonal
matrices [14]. Another possibility is an algorithm based on divide and conquer [11],
although it appears difficult to guarantee high accuracy. The answer will probably
depend on whether all or just some singular values are desired; in the latter case
bisection will likely be superior.

The code is available electronically from James Demmel. It will also be incorpor-
ated in the LAPACK linear algebra library [3].

Acknowledgments. The authors acknowledge the suggestions of the referees as
well as various colleagues who over the years have pointed out deficiencies of the
standard SVD, in particular Augustin Debrulle, Cleve Moler, Beresford Parlett, and
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Tennessee, in October 1987.

Note added in proof. A complete proof of the conjecture in 9 may be found in
The Bidiagonal Singular Value Decomposition and Hamiltonian Mechanics, by Percy
Deift, James Demmel, Luen-Chau Li, and Carlos Tomei, Report 458, Computer Science
Department, Courant Institute, New York, 1989; SIAM J. Numer. Anal., submitted.
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USE OF THE p4 AND pS ALGORITHMS FOR IN-CORE
FACTORIZATION OF SPARSE MATRICES*
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Abstract. Variants of the p4 algorithm of Hellerman and Rarick and the p5 algorithm of Erisman,
Grimes, Lewis, and Poole, used for generating a bordered block triangular form for the in-core solution of
sparse sets of linear equations, are considered.

A particular concern is with maintaining numerical stability. Methods for ensuring stability and the
extra cost that they entail are discussed.

Different factorization schemes are also examined. The uses of matrix modification and iterative
refinement are considered, and the best variant is compared with an established code for the solution of
unsymmetric sparse sets of linear equations. The established code is usually found to be the most effective
method.

Key words, sparse matrices, tearing, linear programming, bordered block triangular form, Gaussian
elimination, numerical stability

AMS(MOS) subject classifications. 65F50, 65K05, 65F05

1. Introduction. For solving sparse unsymmetric sets of linear equations

(1.1) Ax=b,

Hellerman and Rarick (1971) introduced an algorithm for permuting A to bordered
block triangular form, which they called the preassigned pivot procedure (p3). A little
later, Hellerman and Rarick (1972) suggested that the matrix should initially be
permuted to block triangular form and that the p3 algorithm should be applied to each
diagonal block; they called this the partitioned preassigned pivot procedure (p4). A
potential problem with both of these algorithms is that, when Gaussian elimination is
applied to the reordered matrix, some of the pivots may be small or even zero. This
leads to numerical instability or breakdown of the algorithm. They intended that small
pivots should be avoided, but the published explanation of their algorithm is lacking
in detail.

Saunders (1976, p. 222) used column interchanges to avoid this difficulty. Erisman,
Grimes, Lewis, and Poole (1985) proposed a cautious variant of p4 that they called
the precautionary partitioned preassigned pivot procedure (pS). p5 avoids structurally
zero pivots away from the border, but does not address problems associated with small
pivots.

Erisman et al. (1985), (1987) performed some extensive numerical tests using as
a benchmark the Harwell code MA28 (Duff (1977), Duff and Reid (1979)), which uses
the pivotal strategy of Markowitz (1957) and a relative pivot test

(k) > (k)(1.2) lakk U max [akj
j>k
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(k) of the kth pivot row. Here u is a preassigned factor, usually seton the elements a kj

to 0.1. The Erisman et al. (1985) tests showed their p4 algorithm encountering zero
pivots and therefore failing in more than half the test cases. This illustrates that
provision for reordering is an essential part of a reliable algorithm. Erisman et al.
(1987) found a full 2 x 2 block that was exactly singular, which illustrates that it is not
sufficient to ensure that the diagonal entries are structurally nonzero. They concluded
(1987) in favour of the standard Markowitz approach, as represented by MA28.

To make this paper self-contained, we summarize the properties of the reduction
to block triangular form in 2 and of the p5 and p4 algorithms in 3 and 4. For
detailed descriptions, we refer the reader to Duff, Erisman, and Reid (1986) or Erisman
et al. (1985). Both algorithms permute the matrix to a form that is lower triangular
with a few "spike columns" projecting into the upper-triangular part. A practical
implementation of p4 or p5 needs some provision for, reordering to avoid small pivots.
We consider this in 5. We have constructed an experimental code to explore these
ideas, and the results are presented in 6. Finally, we present conclusions in 7.

We assume throughout the paper that there is enough main storage for the
computation to be performed without the use of any form of auxiliary storage.

2. Block triangular matrices. Both the p4 and the P5 algorithms start by permuting
the matrix to block triangular form

All
A21 A22

(2.1) A31 A32 A33

AN! AN2 AN3
which allows the system of linear equations

ANN

(2.2) Ax=b

to be solved by block forward substitution

i-1

(2.3) Aiix, b,- Ajxj, i= 1, 2,..., N.
j=l

We assume that each block A, is irreducible, that is it cannot itself be permuted to
block triangular form. There are well-established and successful algorithms for reducing
a matrix to this form (see Duff et al. (1986), Chap. 6, for example), and good software
is available. It is the treatment of the blocks A, that is our concern here.

Because we will subsequently perform a block decomposition of the A, blocks,
we will use the graph theoretic equivalent term "strong component" to identify a block
A, in the following text.

3. The pS algorithm. The P5 algorithm (Erisman et al. (1985)) first permutes the
matrix to block triangular form and then further permutes each strong component to
the form illustrated in Fig. 3.1. The general form is of a matrix

where B is block lower triangular with full diagonal blocks and each column of C has
a leading block of nonzero entries in the rows of a diagonal block of B and extends
upwards at least as far as the preceding column. We refer to the columns of (c) as the
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FIG. 3.1. A strong component @er the application pS. Entries shown as "x" are nonzero and entries
shown as "o" may be zero or nonzero.

"border." For consistency of notation, we refer to any column that projects above the
diagonal as a "spike" column, even though they do not look like spikes in the case of
the p5 algorithm. A border column or a column that is not the first of a diagonal block
is a spike column, and there are no other spike columns. We refer to the part of a
spike column that lies above the diagonal as a "spike."

4. The p4 algorithm. The p4 algorithm leads to the same number of spike columns
as the P5 algorithm, but some of the border columns are moved forward. They still
have the desirable property that each spike acts as the border of a bordered block
triangular matrix in a properly nested set of such matrices. For example, the matrix
of Fig. 3.1 might have the form shown in Fig. 4.1. The two spikes in the middle of the
border have moved forward and become separated. At the outer level, the blocks have
sizes 3, 6, and 5. The first is a full 3 x 3 matrix. The last is a bordered form with inner
blocks that are full 2 x 2 matrices. The middle one is a bordered form with inner blocks
of sizes 4 and 1, the first of which is a bordered form with blocks of sizes 2 and 1.

Our implementation is as described by Duff et al. (1986). Note, in particular, that
this version ensures that the diagonal entries are nonzero unless they are in the border.

Xxx
XXX
XXX

FIG. 4.1. The matrix of Fig. 3.1 after application of p4. Entries shown as "x" are nonzero and entries
shown as "o"may be zero or nonzero.
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5. The treatment of spiked matrices. If Gaussian elimination without interchanges
is applied to any sparse matrix, including those produced by p4 and pS, all fill-in is
confined to the spike columns (if column j is not a spike column, it is inactive during
steps 1, 2,...,j-1 of the elimination). Since this produces triangular factorizations
of the blocks, we will refer to this as "LU."

An interesting property of the matrices produced by p4 and P5 is that they produce
a properly nested set; that is, given any pair of spikes, either the set of rows that are
cut by the first spike on or above its diagonal is a subset of the corresponding set for
the second spike or the two sets of rows do not overlap. Therefore, if Gauss-Jordan
elimination is performed by applying row operations to eliminate any entry in the
lower triangular part of row 2 (that is, entry (2, 1), if present), then any entry in the
upper triangular part of column 2 (that is, entry (1, 2), if present), then all the entries
in the lower triangular part of row 3, then all the entries in the upper triangular part
of column 3, etc., all fill-in is confined to the spikes (that is, the parts of spike columns
that project above the diagonal). Note that if the spikes were not properly nested,
fill-in would lengthen some of them. Gauss-Jordan elimination is sometimes called
"product form of the inverse" or PFI for short. It is more usual to perform the
Gauss-Jordan eliminations column by column.

For numerical stability, Saunders (1976) suggests considering a column interchange
whenever the inequality

is not satisfied, where ul is a small threshold (often 0.001). He took the largest
(k)a kj j k, ", n, as the pivot, but now recommends (private communication) choosing

the first spike column, l, such that

(k)[ > U2 max [a (k)l(5.2) lakl ’= j>-_k
kj I,

where uz is another threshold (usually 0.1), in order that the structure is corrupted
least. Indeed, it is possible for a pivot to fail the test (5.1) and yet pass the test (5.2).
Note that a column interchange may corrupt the property of the previous paragraph
and hence lead to fill-ins that lengthen later spikes.

In both the p4 and PS algorithms, even after column interchanges, we have the
block form

where B and E are square and the second block column contains all the border columns.
We assume that implicit factorization of this block form is used (see George (1974);
see also Duff et al. (1986), p. 61); that is, B is factorized and the Schur complement
E-DB-1C is formed as a full matrix and factorized using conventional interchanges,
but C and D are stored in their original form without fill-ins. The Schur complement
is formed naturally when LU or Gauss-Jordan factorization is used and there is no
need to calculate B- explicitly, but note that the number of operations for forming it
by the two methods is usually different. Where B has a block structure, we could also
use an implicit factorization for B so that no fill-in is held in its off-diagonal blocks,
but have not done this in our experiments because we found that the inner borders
were too small to justify the extra complication.
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6. Numerical experiments. For our numerical experiments, we have taken the
matrices studied by Erisman et al. (1985) and included a few more. We have applied
the Harwell code MA28, which performs Gaussian elimination with the ordering of
Markowitz (1957) and threshold pivoting. We have used the usual value, u 0.1, for
the threshol.d. MA28 transforms the matrices to block triangular form so that fill-in is
confined to the strong components, but implicit factorization of the strong components
(see end of 5) is not available for MA28. We passed the strong components to the
Harwell code MC33 that has options for p4 and p5 ordering. We then applied the
algorithms of 5 with (ul, u2) values of (0.1, 0.1), (0.001, 0.1), and (0.0, 0.0).

The first comment that is worth making concerning our experience is that the
block triangular form usually has few nontrivial strong components. Many matrices
that occur in practice are irreducible (have only one strong component) and those that
are reducible usually have many trivial strong components. The chemical engineering
problems considered by Erisman et al. are all reducible and we show the sizes of their
strong components in Table 6.1. We also show in Table 6.2 the sizes of the strong
components for the linear programming bases BP0, , BP1600 in the Harwell set of
sparse matrices. We also use a set of matrices from Francois Cachard of Grenoble.
These matrices arose in the simulation of computing systems (Cachard (1981)) and
are all irreducible. The matrices in the test set have some entries that are numerically
zero. We processed this data to remove zeros so that the number of entries is less than
indicated in the set distributed by Duff, Grimes, and Lewis (1987). In most instances,
the runs on the BP matrices showed the same trend as the other sets and did not add
to our understanding of the algorithms. We have therefore omitted tables for most of
the BP runs. We have also run the remaining problems referenced in the papers of
Erisman et al. and have found the relative performance similar to the results displayed.

When the p4 and p5 algorithms are applied to the strong components, the final
border plays a very important role. Most of the spikes lie within it, as Tables 6.3-6.5
and Figs. 6.1-6.2 show. For the P5 algorithm, this implies that most of the diagonal
blocks are of size 1. We have observed that those not of size 1 are usually of size 2.

TABLE 6.1
The sizes of the strong components of Westerberg’s matrices.

No. of
components

Order of size or 2 Other sizes

67 66
132 55 77
156 133 23
167 90 77
381 5 375
479 165 308
497 291 92;57;57
655 197 452
989 269 720
1,505 403 1,099;3
2,021 521 1,500



918 M. ARIOLI, I. S. DUFF, N. I. M. GOULD, AND J. K. REID

TABLE 6.2
The strong component sizes for BP0, , BP1600. All the matrices have order 822.

No. of No. of
components components

Identifier of size or 2 of size 3 to 9 Other sizes

BP0 822 0 None
BP200 658 12 32, 39, 40
BP400 575 14 22, 161
BP600 523 11 12, 18,216
BP800 475 15 33,244
BP1000 446 13 33, 56, 19, 207
BP1200 426 17 33, 65,220
BP1400 390 12 372
BP1600 431 16 32, 69,217

TABLE 6.3
The numbers of spikes and border sizes for Westerberg’s matrices.

Component No. of Border Border
Order size spikes size, p5 size, p4

67 66 14 13 11
132 77 6 4 3
156 23 4 4 3
167 77 6 4 3
381 375 75 53 52
479 308 61 42 38
497 92 19 18 16
497 57
497 57
655 452 93 66 54
989 720 98 84 77

1,505 1,099 148 127 116
2,021 1,500 205 175 160

TABLE 6.4
The numbers ofspikes and border sizes for the Grenoble

set of irreducible matrices.

No. of Border Border
Order spikes size, p5 size, p4

115 19 15 15
185 28 28 28
216 25 25 24
216 25 25 24
343 52 52 42
512 55 55 50

1,107 283 113 100
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TABLE 6.5
The numbers of spikes and border sizes for strong components of sizes 10 or

more from the BP matrices.

Component No. of Border Border
Identifier size spikes size, p5 size, p4

BP200 32 4 2 2
39 4 3 2
40 7 3 3

BP400 22 5 2 2
161 30 21 17

BP600 12 4 3
18 4 3 2

216 42 27 21
BP800 33 9 6 4

244 49 38 30
BP1000 33 9 7 5

56 13 10 6
19 2 2 2

207 51 32 26
BP1200 33 9 5 4

65 15 14 8
220 49 34 25

BP1400 372 83 54 45
BP1600 32 9 5 4

69 20 16 8
217 44 29 24

FIG. 6.1. The matrix of order 67 from the Westerberg set after application of pS.
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FIG. 6.2. The matrix of Fig. 6.1 after application of p4.

In all the tables describing the p4 and p5 experiments, we indicate by flop count
the number of multiplications, divisions, and additions performed, and we count only
the fill-in blocks B and E of (5.3) since we are using the implicit form ofthe factorization.

Our experience with Gauss-Jordan elimination, as described in 5, is that it does
indeed often involve less fill-in, but the additional elimination steps lead to a very
substantial increase in operation counts; see Tables 6.6 and 6.7. So substantial is this
increase that we do not consider this variant further.

TABLE 6.6
Comparison between Gauss-Jordan (GJ) and LU on Westerberg’s matrices,

using the p4 algorithm and thresholds u =0.1 and u2 =0.1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros GJ LU GJ LU

67 294 53 113 7.4 3.2
132 413 5 17 1.2 0.9
156 362 8 14 0.4 0.2
167 506 13 20 1.3 0.9
381 2,134 1,332 2,708 834 137
479 1,888 704 1,307 336 44
497 1,721 129 254 16 8.0
655 2,808 1,447 2,704 931 119
89 3,518 2,889 4,098 2,345 171

1,505 5,414 6,177 7,474 6,060 368
2,021 7,310 13,225 19,506 23,714 1,756
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TABLE 6.7
Comparison between Gauss-Jordan (GJ) and LU on Grenoble matrices, using

the p4 algorithm and thresholds u 0.1 and u 0.1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros GJ LU GJ LU

115 421 153 373 43 13
185 975 388 1,085 239 77
216 812 299 571 121 25
216 812 339 3,000 320 127
343 1,310 935 1,853 569 89
512 1,976 1,278 2,515 1,235 161

1,107 5,664 6,731 11,382 14,849 1,744

To discover whether our code is sensitive to the way that the choice is made when
the heuristics of the algorithms say that more than one column is equally good (that
is, sensitivity to tie-breaking), we ran several problems with their columns randomly
permuted. We found little sensitivity. For example, 10 runs of the Grenoble case of
order 512 had p5 borders varying between 51 and 55 and fill-in with LU factorization
(ul u2= 0.1) varying between 2,594 and 3,008.

It can be seen from Tables 6.3 and 6.4 that the p4 algorithm leads to relatively
few spikes being moved forward from the border. We might therefore expect that it
would not make a large difference to the fill-in or operation count. This is confirmed
in Tables 6.8 and 6.9. Usually, but not always, moving spikes forward leads to an
improvement. We therefore prefer the p4 algorithm.

We have stressed the need for interchanges to avoid small pivots. This is essential
if accurate solutions are to be obtained, as is illustrated in Tables 6.10 and 6.11, where
the relative residuals are

(6.1)
Ib, l+Zlalll’

i--1,2,...

TABLE 6.8
Comparison between p5 and p4 on Westerberg’s matrices, using LU

factorization and thresholds u =0.1 and u =0.1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros p5 p4 p5 p4

67 294 125 113 3.1 3.2
132 413 21 17 0.9 0.9
156 362 15 14 0.2 0.2
167 506 17 20 0.9 0.9
381 2,134 2,712 2,708 139 137
479 1,888 1,576 1,307 53 44
497 1,721 301 254 8.2 8.0
655 2,808 3,776 2,704 177 119
989 3,518 4,317 4,098 199 171

1,505 5,414 11,761 7,474 750 368

2,021 7,310 22,395 19,506 2,064 1,756
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TABLE 6.9
Comparison between p5 and p4 on Grenoble matrices, using LU factorization

and thresholds Ul O. and u O. 1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros p5 p4 p5 p4

115 421 373 373 13 13
185 975 1,085 1,085 77 77
216 812 619 571 27 25
216 812 3,014 3,000 132 127
343 1,310 2,657 1,853 132 89
512 1,976 2,996 2,515 193 161

1,107 5,664 13,848 11,382 2,151 1,744

TABLE 6.10
Comparison between u =0.0, 0.001, and 0.1 on Westerberg’s matrices, using p4 and LU factorization

with u2 0.1. The arithmetic is IBM double precision.

Max. relative residual No. of col. interchanges

Order Nonzeros u 0.0 u 0.001 u 0.1 Ul 0.0 ul 0.001 ul 0.1

67 294 5 x 10-15 5 x 10-15 6 x 10-15 0 0 0
132 413 3 10-9 10-11 2 10-15 0 2 2
156 362 4 x 10-15 9 10-16 9 10-16 0
167 506 3 10-9 2 10-13 4 10-15 0 2 3
381 2,134 fails 4 10-1 10-12 0 2 6
479 1,888 10-6 4 x 10-11 4 x 10-14 0 6 10
497 1,721 fails 4 10-11 4 10-14 0 0 3
655 2,808 3 10.-7 6 x 10-11 10-13 0 6 10
989 3,518 4 10-7 7 10-12 4 x 10-14 0 28 39

1,505 5,414 10-7 3 10-1 10-13 0 42 63
2,021 7,310 4 10-6 10-9 2X 10-13 0 56 77

TABLE 6.11
Comparison between u 0.0, 0.001, and 0.1 on Grenoble matrices, using p4 and LU factorization with

u 0.1. The arithmetic is IBM double precision.

Max. relative residual No. of col. interchanges

Order Nonzeros Ul 0.0 u 0.001 ul 0.1 Ul 0.0 Ul 0.001 ul 0.1

115 421 5 10-l 5 x 10-l 10-13 0 0 11
185 975 2x 10-8 2x 10-8 2 10-12 0 0 16
216 812 10-9 10-9 10-9 0 0 0
216 812 fails fails 4 10-14 0 0 85
343 1,310 10-9 10-9 10-9 0 0 0
512 1,976 4 10-2 4 10-2 4 10-2 0 0 0

1,107 5,664 fails fails faiIs 0 3 24
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and R is the computed solution. The number of interchanges is shown in the tables.
Interchanges usually lead to an increase in fill-in and operation count (illustrated in
Tables 6.12 and 6.13) principally because of exchanges between the border and
nonborder columns.

For the Westerberg matrices, the choice of Ul 0.1 gives good residuals, without
an excessive increase in fill-in or operation count; the choice Ul 0.001 yields higher
residuals, but they are reasonably satisfactory.

For the Grenoble matrices, the choice Ul=0.001 yields unsatisfactory residuals
in cases 4, 6, and 7, and the choice U1-0.1 yields unsatisfactory residuals in cases 6
and 7. We regard the use of the small value of 0.001 as "living dangerously" and are
not surprised by an occasional poor result, but the last two results with the value 0.1
prompted us to investigate further. We found that they were indeed caused by large
growth in the size of the matrix entries. For case 6 (order 512), we found that increasing
Ul to 0.2 did not help but that increasing it to 0.5 reduced the maximum relative residual
to 1 x 10-6. For case 7 (order 1107), the values 0.2 and 0.5 reduced the residuals to
1 x 10-9 and 6 10-13, respectively. Increasing u2 made little difference to the results.

Comparison between ut
with u. O. 1.

TABLE 6.12
=0.0, 0.001, and 0.1 on Westerberg’s matrices, using p4 and LU factorization

Factorization flop count

Fill-in (thousands)

Order Nonzeros u 0.0 u 0.001 u 0.1 u 0.0 u 0.001 u 0.1

67 294 117 117 113 3.2 3.2 3.2
132 413 18 30 17 1.0 1.1 0.9
156 362 13 14 14 0.2 0.2 0.2
167 506 16 22 20 0.9 1.0 0.9
381 2,134 2,626 2,707 2,708 134 148 137
479 1,888 1,299 1,438 1,307 41 50 44
497 1,721 255 256 254 9.3 9.6 8.0
655 2,808 2,421 2,918 2,704 93 131 119
989 3,518 3,232 2,938 4,098 112 98 171

1,505 5,414 5,834 6,352 7,474 263 260 368

2,021 7,310 16,501 16,353 19,506 1,263 1,178 1,756

U2

Comparison between u
=0.1.

TABLE 6.13
0.0, 0.001, and 0.1 on Grenoble matrices, using p4 and LU factorization with

Factorization flop count

Fill-in (thousands)

Order Nonzeros u 0.0 ua 0.001 U 0.1 ut 0.0 u 0.001 u 0.1

115 421 227 227 373 6.9 6.9 13
185 975 771 771 1,085 42 42 77
216 812 571 571 571 25 25 25
216 812 584 584 3,000 25 25 127
343 1,310 1,853 1,853 1,853 89 89 89
512 1,976 2,515 2,515 2,515 161 161 161

1,107 5,664 10,281 10,784 11,382 1,113 1,265 1,744
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These results illustrate the potential pitfalls with any particular choice of Ul, but
our general recommendation is nevertheless for the value 0.1, which we use for the
later comparisons in this paper. Note that iterative refinement may be used to improve
any solution; in particular, we found it to be successful for the poor factorizations
discussed in the previous paragraph.

We have also worked with the strategy of performing a column interchange
whenever the inequality (1.2) is not satisfied, which has software advantages if storage
by rows is in use. This strategy is equivalent to the use of a value of ul that is greater
than 1.0. We found that it almost always leads to more column interchanges and hence
to more fill-in and work, though its stability properties are better (for instance, we did
not have such serious difficulties with the last two Grenoble matrices).

As an alternative to performing column interchanges, we also considered changing
the diagonal elements t(k)kk whenever they do not satisfy the pivot test (1.2). The solution
of (1.1) may then be obtained using the modification method (see, for example, Duff
et al. (1986), pp. 244-247). This technique has the advantage of allowing predefined
storage structures but when r diagonal elements are altered it has the disadvantage of
requiring the solutions of r + 1 linear systems, each of whose coefficient matrix is the
perturbed matrix. Unfortunately, the size of r is normally about the same as the number
of column interchanges that would otherwise have been performed with ul u2 0.1,
and this makes such an approach prohibitively expensive (see Tables 6.10 and 6.11).

Another alternative is to ignore the pivot test (1.2) but to check the absolute value
of each entry on the diagonal and to increase it by a value /z if it is less than that
value. Usually the Schur complement is full and we can factorize it by an LU
decomposition with interchanges that makes the pivots the largest entries ofthe columns
(or rows). This strategy is particularly useful for pS, because the fill-in can be confined
to the Schur complement. Obviously the solution obtained may be poor, but it is
possible to improve the error by performing a few steps of iterative refinement. In
Tables 6.14 and 6.15, we show results for Westerberg’s matrices and those from Grenoble
using a value for/ of I x 10-8 (approximately the square root ofthe machine precision).

This approach does not guarantee that iterative refinement converges because the
error in the factorization could be too large. For example, with the Grenoble matrix
of order 1107 iterative refinement does not converge, because the factorization is

TABLE 6.14
Results on Westerberg’s matrices, using LU factorization with iterative refinement and pS, incrementing

the pivot by 10-8 if it is less than x 10-8. The arithmetic is IBM double precision.

Flop count (thousands)
Num. iter.

Order Nonzeros Fill-in Factorization Solution steps Error

67 294 125 3.1 1.4 0 5 x 10-15

132 413 15 0.9 0.9 0 8 x 10-1

156 362 13 0.2 0.6 0 3 10-8

167 506 13 0.9 1.1 0 4 x 10-1

381 2,134 2,721 139 33 2 x 10-12

479 1,888 1,478 46 16 4 x 10-11

497 1,721 293 9.1 4.4 0 2 x 10-655 2,808 2,756 106 30 5 10-989 3,518 3,121 104 30 2 10-1,505 5,414 10,172 598 69 3 10-1

2,021 7,310 18,078 1,397 115 2 10-9
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TABLE 6.15
Results on Grenoble matrices, using LU factorization with iterative refinement and pS, incrementing the

pivot by 10-8 if it is less than x 10-8. The arithmetic is IBM double precision (note that the fourth matrix

is very ill-conditiond).

Flop count (thousands)
Num. iter.

Order Nonzeros Fill-in Factorization Solution steps Error

115 421 222 6.9 6.1 8 10-16

185 975 771 42 20 5 x 10-13

216 812 617 27 19 4 10-17

216 812 617 27 80 7 6 10-2

343 1,310 2,657 132 50 2 10-16

512 1,976 2,996 193 265 5 4 10-13

1,107 5,664 12,723 1,458 Diverged

unstable with entries of size 1 1033. Our view is that this approach does not show
sufficient advantages to compensate for the lack of robustness, and we therefore reject
it.

Finally, in Tables 6.16-6.18, we show a comparison between the most satisfactory
of our algorithms, p4 with LU factorization and thresholds ul u2 0.1, and the Harwell
Markowitz code MA28, with threshold u =0.1. The p4 algorithm often involves less
fill-in, but in most cases it requires more operations, sometimes considerably more.

7. Conclusions. We have compared the p4 and p5 variants ofthe Hellerman-Rarick
algorithm and found that p4 is usually better than pS, but not by much. The special
form of Gauss-Jordan elimination that confines fill-in to the spikes themselves usually
requires far more operations than LU factorization and does not always lead to less
fill-in. We therefore prefer p4 with LU factorization.

The use of interchanges is essential if a reliable solution is to be obtained, even
though the interchanges may lead to an increase in computation.

We also tried to maintain the structure during the factorization by modifying the
pivot when it was too small. We examined the possibility of using updating schemes

TABLE 6.16
Comparison between MA28 and p4 on Westerberg’s matrices, using LU factorization and thresholds

U U U2--- 0.1.

Factorization flop Solution flop
Fill-in count (thousands) count (hundreds)

Order Nonzeros MA28 p4 MA28 p4 MA28 p4

67 294 267 113 2.1 3.2 11 8.5
132 413 105 17 0.5 0.9 6.3 5.3
156 362 26 14 0.1 0.2 1.5 1.2
167 506 97 20 0.5 0.9 6.2 5.4
381 2,134 1,941 2,708 25 137 76 102
479 1,888 1,104 1,307 9.8 44 44 54
497 1,721 299 254 2.4 8.0 19 20
655 2,808 2,223 2,704 22 119 80 101
989 3,518 1,194 4,098 7.2 171 69 137

1,505 5,414 1,984 7,474 12 368 109 233
2,021 7,310 2,659 19,506 16 1,756 147 505



926 M. ARIOLI, I. S. DUFF, N. I. M. GOULD, AND J. K. REID

TABLE 6.17
Comparison between MA28 and p4 on Grenoble matrices, using LU factorization and thresholds u u

u2 0.1.

Factorization flop Solution flop
Fill-in count (thousands) count (hundreds)

Order Nonzeros MA28 p4 MA28 p4 MA28 p4

115 421 654 373 5.6 13 20 19
185 975 3,134 1,085 63 77 80 53
216 812 2,544 571 39 25 65 29
216 812 2,156 3,000 25 127 57 128
343 1,310 5,334 1,853 119 89 129 67
512 1,976 11,545 2,515 402 161 265 94

1,107 5,664 39,316 11,382 1,928 1,744 889 403

TABLE 6.18
Comparison between MA28 and p4 on BP matrices, using LU factorization and thresholds u ul u 0.1.

Fill-in
Factorization flop
count (thousands)

Solution flop
count (hundreds)

Identifier Order Nonzeros MA28 p4 MA28 p4 MA28 p4

BP0 822 3,276 0 0 0 0 0 0
BP200 822 3,802 106 25 0.8 1.3 11 10
BP400 822 4,028 266 196 2.0 5.2 20 22
BP600 822 4,172 484 358 3.5 11 30 34
BP800 822 4,534 681 874 5.9 31 41 56
BP1000 822 4,661 766 827 7.1 31 47 63
BP1200 822 4,726 959 843 9.2 37 54 69
BP1400 822 4,790 1,295 1,747 11.4 105 65 91
BP1600 822 4,841 872 734 8.4 34 53 68

but found them to be prohibitively expensive. We also considered iterative refinement
and found this sometimes to be very competitive, but disliked its lack of robustness.

Apart from numerical considerations, Erisman et al. (1985), (1987) found the p5
algorithm to be competitive with the Markowitz algorithm, but were pessimistic about
being able to ensure numerical stability. Our comparisons, using the same threshold
factor in the two algorithms and taking the number of operations into account, confirm
that the Markowitz algorithm is comparable with respect to fill-in and indicate that it
is usually superior with respect to factorization operation count. Of course, it should
be borne in mind that the Hellerman-Rarick algorithms never need access by rows
and are therefore better suited to out-of-core working. They also have a less expensive
analysis phase. For example, on the Grenoble matrix of order 1107, our analysis time
was 1.2 seconds, whereas MA28 took 60 seconds for the phase that performs both
analysis and factorization.

Acknowledgments. We express our thanks to both referees, whose comments have
substantially improved the paper. We are also indebted to Michael Saunders for drawing
our attention to the double-threshold strategy for column interchanges.
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A MODIFIED SCHWARZ-CHRISTOFFEL TRANSFORMATION FOR
ELONGATED REGIONS*

LOUIS H. HOWELLt AND LLOYD N. TREFETHEN

Dedicated to the memory of Peter Henrici.

Abstract. The numerical computation of a conformal map from a disk or a half plane onto an elongated
region is frequently difficult, or impossible, because of the so-called crowding phenomenon. This paper
shows that this problem can often be avoided by using another elongated region, an infinite strip, as the
standard domain. A transformation similar to the Schwarz-Christoffel formula maps this strip onto an

arbitrary polygonal channel, and a slightly modified transformation maps an elongated rectangle onto an
arbitrary closed polygon. By using robust and efficient software for numerical integration and solution of
the parameter problem, high-accuracy maps of distorted regions with aspect ratios as high as thousands to
one are constructed. The modified mapping method has natural applications in fluid mechanics and electrical
engineering.
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generation
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1. Introduction. The Schwarz-Christoffel transformation

(1.1) f(z) A (z’- zj) dz’ + B
j=l

provides an explicit representation of any conformal map of the unit disk or the upper
half plane onto any simply connected polygonal region, with or without corners at
infinity. There are two well-known computational problems associated with the use of
this formula for computing such maps numerically. First, the integral cannot be
evaluated analytically except in special cases, and must be approximated by some
numerical procedure. Second, while the parameters yj are determined by the angles
at the vertices wj of the polygon, the corresponding "prevertices" z =f-l(wj) cannot
be determined, in general, a priori and must be obtained iteratively via the solution
of a system of nonlinear equations. SCPACK, a robust Fortran package for solving
these problems, was provided a few years ago by Trefethen [28], [29] and has been
widely used for a variety of applications. Other successful implementations of the
Schwarz-Christoffel formula include those of Reppe [26], Davis [3], Floryan [10],
Hoekstra [19], and Dias [5].

Standard Schwarz-Christoffel programs fail, however, on some seemingly very
simple polygons. They cannot, for example, map a rectangle with an aspect ratio of
only 20 to 1, or most other regions with a similar degree of elongation. The reason for
this is an intrinsic property of conformal maps that sometimes goes by the name of
the "crowding phenomenon" in the literature of numerical conformal mapping (see
[7], [14], [18], [21], [31]). Whenever a disk or half plane is mapped to an elongated
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region, some of the prevertices are located exponentially close together. For aspect
ratios beyond 10 or 20 some groups of prevertices are likely to merge together in finite
precision arithmetic, making the evaluation of (1.1) effectively impossible.

Fortunately, many of the distorted regions that come up in applications are highly
elongated in only one direction. Indeed, the goal in such problems is often to map the
region onto a channel or rectangle for purposes of grid generation or to obtain an
exact or simplified solution; a disk or half plane is introduced only as an intermediate
step. The purpose of this paper is to show that in such cases, the problem of crowding
can be largely eliminated by dispensing with the intermediate domain and mapping
directly from an infinite strip, which can be easily transformed to a rectangle if desired.
In the language of numerical analysis, constructing the conformal map from a strip
to an elongated polygon is often a well-conditioned problem, but conventional
algorithms for it are unstable because they depend upon the solution of an ill-
conditioned subproblem. Our algorithm is stable because it avoids the subproblem.

(a)

(b)

(c)

FIG. 1. (a) Polygons that can be mapped by the standard Schwarz-Christoffel transformation; (b) polygons
that can be mapped by the strip transformation; and (c) polygons that cannot be mapped by either method.
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The capabilities described in this paper are summarized in Fig. l(a)-l(c). Many
polygons, those without extreme elongation in any direction, can be mapped by the
standard Schwarz-Christoffel methods embodied in SCPACK (Fig. l(a)). Polygons
that are highly elongated in one direction (as well as those that are not elongated) can
be mapped by the modified Schwarz-Christottel methods described here (Fig. l(b)).
For polygons elongated in several directions, different methods will be required
(Fig. 1 (c)).

The basis of our algorithm is a formula similar to (1.1) for mapping an infinite
strip onto an arbitrary polygonal channel ( 3), and a variation of this formula for
mapping a rectangle onto a closed polygon ( 6). These formulas are not essentially
new; the first one dates back at least to Woods [33] and has been used previously by
Davis [3], Sridhar and Davis [27], and Floryan [9], 10] for generating computational
grids for internal flow problems. The present work differs, however, in emphasizing
the crowding phenomenon and in considering the mapping of rectangles to closed
polygons as well as other variations. Although it is impossible to be certain in the
absence of a direct comparison of computer programs, we believe that our solution
method is robust enough to permit the mapping of more complicated regions than
those attempted previously. Possible applications of this work include the solution of
two-dimensional potential flow problems, the construction of computational grids, the
calculation of circuit properties in integrated circuit design [30], and the application
of boundary conditions in vortex-method simulations of high Reynolds number flow
[15]. For the last example, boundary conditions in vortex calculations, it would be
natural to combine the conformal map to an infinite strip discussed here with
L. Greengard’s recent algorithm for fast calculation of vortex interactions in such a

strip 17].
A general method for deriving certain types of Schwarz-Christoffel variations,

including the strip formula used here, is presented in 11 ]. An informal survey of such
variations and of applications of Schwarz-Christottel maps can be found in [32].

Although this paper considers only Schwarz-Christoffel maps, similar ideas might
prove useful for more general conformal mapping problems. For example, it would
be natural to investigate variants of the Theodorsen, Wegmann, or Hiibner methods
for mapping an infinite strip onto an elongated region with a curved boundary (see
[18], [31]).

2. The crowding problem. The phenomenon of crowding began to be widely
recognized as an obstacle to successful numerical conformal mapping around 1980;
the term "crowding" itself is due to Menikoff and Zemach [21]. To illustrate this
phenomenon, we will examine a simple example that can be treated analytically. The
Jacobian elliptic function sn (zl m) maps the rectangle with corners -K, K, K + iK’,
and -K + iK’ to the upper half plane, with the images of the corners being +1 and
+rn -1/- (Fig. 2). The constants K and K’ are complete elliptic integrals with parameters
m and ml 1- m, respectively, so only one of K, K’, and m can be specified indepen-
dently. A summary of the properties of elliptic functions and elliptic integrals, including
all of the material used in this paper, can be found in [1].

The conformal modulus/x of the rectangle is K’/2K, and m 1/2 can be used as a
measure of the crowding effect since it is the ratio of the smallest to the largest length
scales in the upper half plane. When/x is large the following asymptotic relationships
hold:

’T/" 1/2. 4 e-’--, g’ "n’p,, rn(2.1) K
2



ELONGATED SCHWARZ-CHRISTOFFEL MAPS 931

K + iK K + iK

-K K

K’/2K

m-1/2 1 1 m-1/2

FIG. 2. Conformal map from a rectangle to the upper halfplane.

Thus for a modulus of only /z 10, for instance, the important length scales in the
upper half plane vary by factors on the order of 1013

It might seem that these difficulties are surmountable, since in this example all of
the crowding occurs near the origin. In floating-point arithmetic the four numbers +1
and +m-1/2 can all be represented to full accuracy, even though the first two may be
many orders of magnitude smaller than the last two. There are several reasons, though,
why this is an unsatisfactory approach. First, many computers have a range of permis-
sible exponents too restricted to deal with conformal moduli greater than 25 or 50.
Second, such a highly distorted mapping would be useless in many applications.
Finally, the direct numerical evaluation of the integral (1.1) in such a situation would
require a highly specialized quadrature algorithm. A natural first step in such an
algorithm would be to change the variable of integration to log (z’), which is in fact
equivalent to using the strip transformation.

Figure 3 shows the crowding effect in the conformal map from the unit disk to a
mildly elongated region. The four rectangles have moduli 1, 2, 3, and 4, and the internal
lines shown are the images of radii to the four prevertices and of equally spaced
concentric circles in the unit disk. Due to the conformal nature of each mapping, the
innermost circle in each plot is nearly similar to the original disk, so in effect these
figures show both the domain and range of each transformation. In particular, we can
see the relative positions of the prevertices, and their angular separations are listed in
the figure. In the bottom plot, with a conformal modulus of only 4, each of the two
pairs of prevertices appears to the eye as a single point. For moduli three or four times
larger than this the pairs fuse together in floating-point arithmetic, and the computation
by standard methods becomes impossible.

It should be emphasized that crowding occurs when any portion of a domain is
elongated. If the rectangles in Fig. 3, for instance, were all extensions of a larger region
to the left, then each one would still experience a crowding effect like that shown in
the figure. A strongly acute outward-pointing corner can cause a similar problem (for
a mild example, see the barb on the arrow in Fig. 10(a)). The methods considered in
this paper do not eliminate these secondary crowding effects, which degrade the local
accuracy of the mapping and may in extreme cases cause the solution method to fail.
In many cases, however, high accuracy can still be obtained in the remainder of the
domain.
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A0 1.5708

A0-,, 0.3449

A0 ,m 0.0719

A0 ,- 0.0149

FIG. 3. Conformal maps of the unit disk onto four rectangles.

3. The strip transformation. In this section we derive a formula for the conformal
map of an infinite strip onto a polygon (3.5); essentially the same formula has been
derived earlier (in different ways) by Davis [3] and by Floryan and Zemach [11]. We
shall not provide a proof that any conformal map of an infinite strip to a polygon can
be represented in this way, but it is true, and a proof can be readily obtained from
the standard Schwarz-Christoffel theorem by means of the transformation e from a
strip to a half plane [3].

Figure 4(a)-4(c) defines the geometry of our strip mapping problem: We want to
find a conformal map f* from an infinite strip of width 1 to an infinite polygonal
channel P*. Our notation is that zf and wj*. =f*(zf) denote prevertices and vertices
for this desired conformal map, while zj and wj =f(z) correspond to the conformal
map onto a polygon P P* obtained during the course of the numerical solution. The
prevertices z lie in counterclockwise order around the strip, starting with zl on the
lower left, proceeding through z4 on the lower right, and ending with zN on the upper
left. The corresponding vertices of the image polygon are denoted by %, and the
turning angle at wj is

Here is the fundamental idea behind the Schwarz-Christoffel map (1.1): the
derivative f’(z) has piecewise constant argument on the real axis, which jumps at each
prevertex zj by -ry. To devise a transformation that maps an infinite strip onto an
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gN gN gM+l gM+l

Z Z 0 Z Z2 ZM Z*II
(a)

\+

111 w2 /_7,4
tOM

(b)

111 111
(C)

tOM

FIG. 4. (a) Prevertices on the strip" solid dots show the correct values zf and open circles show an incorrect
set of values zj; (b) target polygon P* defined by vertices wf" (c) polygon P defined by incorrect vertices

arbitrary polygon, we can utilize the same idea. Specifically, let us derive a function
of the form

(3.1) f(z) A fj(z’) dz’ + B,
j=l

where each factor f maps the strip as shown in Fig. 5. The effect of each of these
factors is to introduce a corner into one side of the strip while leaving the other side
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FIG. 5. A single factor f, shown for yj > O.

a straight line. The product of several such factors will introduce all of the necessary
corners.

The appropriate factors f that meet these specifications are very similar to those
used in the usual Schwarz-Christoffel formula: For zj on the lower side of the strip,

(3.2) f(z) -i sinh - (z- zj) 1 _-<j _-< M,

and for z on the upper side,

(3.3) f(z) {-/sinh [-(z-z) M+ <-_j<-_N.

In each of these factors the effect of the sinh function is to fold the opposite side of
the strip from z onto part of the imaginary axis, while the side containing zg is sent
to the real axis. Each section of the boundary is therefore mapped to a line of constant
argument, and these remain lines of constant argument after the function is raised to
the power yj. This property is necessary if the sides of the target domain are to be
straight lines. The factors of-i in these equations are mathematically unnecessary,
since they can be absorbed into the complex constant A. We have included them,
however, to direct the branch cuts of the f away from the strip. (Conventionally, and
in Fortran, these branch cuts are located on the negative real axis.)

The functions f of (3.2) and (3.3) introduce the required angles at the vertices
on both sides of the channel, but they always produce equal divergence angles at
If we let 0_ and 0+ be the desired divergence angles at -oo and +oo, respectively, then
the additional factor

(3.4) fo(z) exp[1/2(O+ O_)z]

provides the necessary adjustment. The full strip transformation is thus given by

(3.5) f(z) A f I f(z’) dz’ + B,
j=0

where the individual functions f are defined by (3.1)-(3.4).
4. Solving the parameter problem. How can the prevertices z be efficiently deter-

mined? If prevertices z are placed on the correct sides of the strip and in the proper
order, but otherwise distributed at random, then the image polygon will in general
have the correct angles but incorrect side lengths (Fig. 4). Some kind of iteration must
be carried out to find the values z so that the side lengths come out correct.
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As usual in conformal mapping, three real parameters must be specified in order
to make f unique. In mapping an infinite strip to an infinite channel, it is natural that
the ends of the strip should map to the ends of the channel, so two of these are
determined immediately. We have specified the third parameter by fixing z* at the
origin; the remaining N-1 prevertices z2*,’", z* are now the unknowns to be
determined iteratively. If the constants A and B in (3.5) are used to fix the positions
of wl and wN, then there are correspondingly N-1 real geometric conditionsmN-2
side lengths and one angle--needed to completely specify the shape of the channel.

4.1. Solution via side-length iteration. One popular method for determining the
prevertex positions is a simple iterative scheme used by Davis [3] for the standard
Schwarz-Christottel formula. The idea is to make an initial guess for the z and then
improve it by assuming that the length of each side of the image polygon is roughly
proportional to the length of the corresponding interval on the real axis. Thus each
interval between prevertices is adjusted according to the formula

(4.1) (Zj+I--Zj)new:--(Zj+I--Zj)" W+I W]

By iterating this procedure it is hoped that the correct solution can be obtained to the
desired accuracy. This method has also been used by Floryan [9], [10] and Sridhar
and Davis [27], and is quite dependable for many problems. We believe it is not the
best choice for a general algorithm, however, for the following reasons:

When used with the strip transformation, the method gives no information about
the position of z’N, the leftmost prevertex on the top side of the strip. Sridhar
avoids this problem by restricting attention to channels where symmetry implies
z’N= i. Floryan uses a double iteration for the asymmetric case--a one-
dimensional secant iteration determines a value for zN at each step of the global
iteration (4.1).
The proportionality assumption can be violated by difficult problems in at least
two different ways. First, it assumes that only the preimages at the endpoints
of an interval have a major effect on the length of the corresponding side, and
this condition is violated when crowding occurs. Second, if the two singularities
at the endpoints are strong, i.e., the interior angles are acute, then the length
of the side may actually decrease as the prevertex separation increases. Even
with the standard Schwarz-Christoffel formula there are geometries for which
(4.1) fails to converge, and with the strip transformation we have the added
problem that singularities on the opposite side of the strip may also strongly
influence an interval.

Despite these difficulties, the iteration (4.1) often converges within at most
a few tens of iterations, particularly on relatively straightforward problems like
those shown in Figs. 4 and 6. On a region like that shown in Fig. 8, however,
it diverges even when started very near the solution. (Figure 8 actually shows
an example of a map from a rectangle to a closed polygon. The same geometry
can be treated as a channel, though, if the right angles at the ends are replaced
by straight angles. The prevertex z is so far "upstream" in this case that it
does not cause significant problems; the main area of difficulty for (4.1) is at
the other end of the figure. On this example we have used the high-accuracy
adaptive quadrature methods described in 5though somewhat inefficient,
these routines give quite reliable error bounds, so the failure cannot simply be
caused by an inaccurate quadrature algorithm.)
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FIG. 6. Two channels with large N.

Further examples supporting these claims will be presented in a future
paper.
The convergence is only linear, which may be a disadvantage for high-accuracy
computations.
Many Schwarz-Christoffel problems that arise in applications come with addi-
tional conditions to be satisfied. For example, the conformal modulus/x might
be specified in advance and one of the side lengths left unspecified. In such
situations one has a "generalized parameter problem" to solve [30], which may
not be an easy matter if one is using an iteration like (4.1) that is dependent
on geometric insight.

4.2. Solution via secant iteration. In our own calculations we have instead viewed
the parameter problem as a general system of nonlinear equations F(x*)=0 to be
solved numerically; this is an old idea. The normalization described above fixes zl, so
an obvious choice for the N- 1 independent variables might be Re (z2),. ", Re (zN).
This choice leads to a constrainted system, however, since the prevertices on each side
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of the strip must appear in the proper order. To remove the constraints, we have used
a change of variables similar to the one in SCPACK:

Re (ZN), j=l,

(4.2) Xj log (Z Z-I), 2 --<j _--< M,
log (zj Z+l), M+ _-<j _-< N- 1.

As for the dependent variables, we first compute the positions of w,..., WN by
integrating (3.5) and using the constants A and B to fix Wl and wry at their correct
positions. The N-1 functions to be set to zero are then given by

Im log w2*--]* j=l,

(4.3) F= Re log
w-wL]

2NjNM,

Re log
w]-w+]

M+I NN-1.

F1 is an angle, and each of the other involves the logarithm of a side length. The
use of logarithms improves the scaling of the problem when some sides are much
longer than others, as often occurs with elongated regions.

We have experimented with three nonlinear equations packages for solving this
problem: Powell’s subroutine NS01A [25], the Minpack routine HYBRD [22], and an
implementation of Schnabel’s pseudocode from Dennis and Schnabel [4]. All three
are based on a hybrid (dogleg) quasi-Newton algorithm with secant updates. On
average we obtained slightly better results with HYBRD, and in addition one of our
test problems caused Powell’s code to fail. (This diculty was apparently due to an
overly strict stopping criterion rather than a fundamental failure of the algorithm.)
Some of our test problems were quite dicult, involving extremely distorted polygons
like those shown later in the paper; such problems sometimes required several hundred
evaluations of the functions (4.3). The only cases where either HYBRD or Schnabel’s
code failed eventually to find a solution involved severe crowding in regions that were
elongated in more than one direction, as in Fig. l(c). Though for individual problems
there were sometimes wide variations in the number of iterations required by the
different routines, all three gave fairly similar performance when averaged over a
number of different cases.

Dias [5] and Bjrstad and Grosse [2] have used other nonlinear equations packages
for Schwarz-Christoffel problems, with similar results.

In the context of this section, Davis’ algorithm (4.1) can be thought of as an
approximate Newton iteration in which an approximate Jacobian is estimated from
geometrical considerations; our second observation in 4.1 above amounts to the
statement that sometimes this approximation may fail to yield a descent direction.

The secant algorithms converge superlinearly once they are near the solution (see
[4]), but for dicult problems they may take a long time to get near it. Convergence
times seem to be nearly independent of the staing point, a clear indication that we
do not have a good algorithm for picking starting points. To examine the typical
convergence rate as a function of N, at least two different types of problems should
be considered, as shown in Fig. 6. In the first example the geometry becomes progres-
sively more complicated as N increases, while in the second the geometry is roughly
constant, and increasing N merely improves the resolution of the curved part of the
boundary. (There are better ways to approximate curved boundaries; see [9] and [27].)
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In practice, we find that for problems of the first kind the number of iterations required
is roughly O(N), whereas for problems of the second kind it is closer to O(1). Since
each evaluation of (4.3) requires O(N2) operations, and the evaluation of the initial
Jacobian matrix by finite differences requires N evaluations, the total work required
to solve the parameter problem is at least O(N3) in both cases.2 For N less than about
50 the Jacobian evaluation is not the dominant factor in the calculation, however, so
problems with simple geometries typically display behavior closer to O(

5. Evaluating Schwarz-Christoffel integrals. The second numerical problem is the
evaluation of (3.5). This cannot be done analytically, and is somewhat difficult numeri-
cally because ofthe singularity in the integrand at each prevertex zj. A robust integration
scheme must be able to deal efficiently not only with the endpoint singularities that
occur when one of the limits of integration is a prevertex, but also with the nearly
singular situation where a prevertex is very close to the interval of integration. The
latter case is important when there is significant crowding, and also when a nearby
singularity lies on the opposite side of the strip from the interval of interest. Removing
every possible singularity analytically would not be worth the trouble, but neither
would refining the mesh over the entire interval just to deal with a few difficult segments.
In SCPACK, Trefethen [28] used a compound Gauss-Jacobi quadrature algorithm
with considerable success. This method outperforms every alternative we have tried,
but since it lacks an internal error check, we have sometimes found it helpful to
supplement it with more general adaptive quadrature schemes. The first use of general
adaptive quadrature routines for Schwarz-Christoffel integrals appears to be that of
Dias [5] as late as 1986.

Singularities at the endpoints themselves are more of a nuisance than a problem
since they can be directly accounted for by the quadrature algorithm. The first question
is whether we have to integrate them at all. In their program for solving the Schwarzian
differential equation for circular arc polygons, Bjcrstad and Grosse [2] avoid sin-
gularities by integrating to the midpoint of each interval instead of to each prevertex.
Corner positions are then found by calculating where sides intersect. However, this
approach can run into trouble for difficult regions, particularly when the program is
far from a solution to the parameter problem. We have seen examples where the initial
guess for the prevertices yielded an image polygon with some side lengths incorrect
by factors exceeding 1016 In such examples, adjacent corners may become indistin-
guishable even in double precision. By contrast, integrating (3.5) directly from one
corner to the next permits each side length to be determined individually without
cancellation problems.

5.1. Adaptive quadrature. Given that we choose to integrate up to singularities,
there are a number of methods to choose from. We can either use a quadrature rule
that explicitly takes the singularity into account, such as a Gauss-Jacobi or Clenshaw-
Curtis formula, or we can attempt to remove the singularity analytically so that a
standard quadrature rule can be used. QUADPACK [24] includes routines that take
the explicit approach. The most effective of these for our Schwarz-Christoffel problem
is QAWS, an adaptive quadrature subroutine that uses a Gauss-Kronrod formula in
the interior and a Clenshaw-Curtis formula near the singularities. All of the adaptive
QUADPACK routines, however, seem to be written with the assumption that typical
integrals will be very difficult. They use very high-order rules and require a large

The linear algebra required by the secant algorithm can be held to O(N2) per iteration by using secant
updates (see [4]), and is typically negligible compared with the cost of evaluation (4.3).
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number of integrand evaluations--50 for QAWS--even when no adaptive refinement
is necessary. Since many of the integrals involved in any Schwarz-Christottel problem
are not at all difficult, this expense makes QUADPACK less competitive unless high
accuracy is required.

When only moderate accuracy (fewer than eight decimal places) is required in
the evaluation of (3.5), we have obtained better performance by using singularity
removal along with QUANC8, a simple adaptive routine described in [13]. QUANCS,
based on the 8-panel Newton-Cotes formula, is more efficient than the routines in
QUADPACK when many of the integrals are well behaved. For solving the parameter
problem the 8-panel rule seems to be a good compromise between accuracy and speed,
although modified versions of QUANC8 based on lower-order formulas are better for
applications involving shorter intervals of integration, e.g., graphics. The key point is
that for efficiency an integrator must solve simple problems quickly, whereas for
robustness it must include an internal error check and must be able to adaptively refine
its mesh if necessary.

5.2. Compound Gauss-Jacobi quadrature. The problem with the adaptive
integrators described above is that they do not use all of the available information.
Their algorithmic decisions are based solely on the observed behavior of the integrand,
whereas in Schwarz-Christoffel problems we know the precise position and strength
of every singularity before integration begins. Compound Gauss-Jacobi quadrature is
a compromise between fixed-rule algorithms, which are unsatisfactory due to nearby
singularities, and fully adaptive algorithms, which are extremely dependable but
relatively slow. The idea is to use a Gauss-Jacobi formula on each interval that ends
at a singularity and an ordinary Gauss formula on all other intervals, with the rather
arbitrary requirement that no outside singularity may lie closer to any interval than
half the length of that interval [28]. In our program we implement this by splitting
any interval that is too close to a singularity in half recursively, repeating as necessary
until every interval of integration is short enough to be acceptable. The nodes and
weights for the Gauss-Jacobi quadrature rules are calculated using the routine
GAUSSQ by Golub and Welsch [16]; we have found experimentally that the number
of accurate decimal places in the solution is approximately the same as the number
of nodes used on each interval. The primary drawback of the method is that this is
entirely an empirical bound.

In our computations the compound Gauss-Jacobi method has outperformed
adaptive rules by a factor of at least 2. There are several ways in which it could be
improved--for example, by taking the strengths as well as the positions of outside
singularities into account. Perhaps theorems could be developed to establish that a
suitably defined compound Gauss-Jacobi algorithm is guaranteed to be successful; in
the meantime, a virtually foolproof error bound can be obtained if desired by switching
to a high-accuracy adaptive integrator at the end of the solution of the parameter
problem. On the other hand, since graphics do not require high accuracy, we have
also found it efficient to switch to a low-accuracy adaptive method, based on Simpson’s
rule, for plotting the final map. Other low-accuracy integration formulas suitable for
Schwarz-Christoffel mapping are described in a recent paper by Floryan and Zemach
[12].

5.3. Singularity removal. When using a quadrature package that does not explicitly
take singularities into account, it is necessary to remove endpoint singularities from
the integrand analytically. There are two main methods for removing singularities, and
we have found it difficult to pick one as a favorite. If for simplicity we place the
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singularity at 0, the problem is to integrate a function f(x) x’g(x), where g is analytic
at 0 and 3’ >-1, on an interval (0, X). Expanding f(x) in a power series about 0, we
obtain

(5.1) f(x) xVg(O) + x’+lg’(0)+1/2xe+2g"(O)+ O(x’+3).
The first method for removing the singularity is simply to subtract off the leading terms
of (5.1), which can be integrated analytically, and to use a numerical integrator only
on the relatively well-behaved remainder. With just the first term removed the remainder
may have an infinite slope at 0, which is still enough to cause serious trouble for
integrators that assume polynomial behavior. With the first and second terms removed,
though, most polynomial integrators perform quite well near the singularity. The use
of this two-term subtraction for Schwarz-Christoffel problems dates back at least to
Kantorovich and Krylov [20].

The second standard method is to find a change of variables x such that the
integrand is well behaved when expressed in terms of t. In general, we want to choose
ce so that for O, f[x(t)] d[x(t)] will behave like t dt for some small nonnegative
integer /3. A little algebra gives a =(/3+ 1)/(3,+ 1). The new integrand is then
at"-lf(t"), which indeed has the expected leading-order behavior near x =0. Dias [5]
used this method with/3 0, which works quite well for -1 < 2’--< 0. However, we have
found that polynomial integrators still have trouble with the transformed integrand
when y> 0. To see why this happens, let us expand f again and look at what the
change of variables does to the higher-order terms:

(5.2)

(5.3)

(5.4)

Note that the g term can have an infinite-slope singularity when/3 0 and 3’ > 0. The
obvious solution to the problem is to use a larger/3, but there is a trade-off involved
since the resulting large value of a makes the integrand evaluation points cluster near
the singularity, so that the adaptive integrator must work harder at the other end of
the interval. We have found empirically that using/3 0 for 3’ < -0.35,/3 1 otherwise,
tends to give the best results, which are slightly better than those obtained using the
method of Kantorovich and Krylov.

6. Mapping rectangles to closed polygons. When the target domain is a closed
polygon rather than an infinite channel, it is often appropriate to take an elongated
rectangle as the standard region rather than an infinite strip. The aspect ratio of the
rectangle will be equal to the conformal modulus (electrical resistance) of the original
polygon with its four distinguished vertices. We calculate this conformal map by
mapping first from the rectangle to the strip by means of an elliptic function, then
from the strip to the polygon by the strip transformation.

The function s(z)=(1/Tr)logsn (z[m) maps a rectangle onto a strip of width 1,
sending the corners -K, K, K + iK’, and -K + iK’ of the rectangle to the points i, 0,
L, and L+ i, respectively, where K, K’, and L are all functions of rn (Fig. 7). It seems
reasonable to require each corner of the rectangle to map to a vertex of the polygon,

For other approaches to conformal mapping onto rectangles, see [14] and [23].
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K + iK K + iK

1
logsn(zlm)

-K K

I K’/2K

i L+i

FIG. 7. Conformal map from a rectangle to a strip.

and in many applications this is called for since the conformal modulus is required.
However, the formulation of the parameter problem that we used in 4 would not
permit this since, in general, no two prevertices have the same real part. We can avoid
this difficulty, though, since for a closed polygon we no longer need to specify the
images of the ends of the strip. The two extra degrees of freedom thus obtained can
be used instead to fix z* at and require that the two rightmost prevertices have the
same real part. Solving the parameter problem with these restrictions thus gives us an
appropriate value for L, from which m, K, and K’ can be calculated using the known
properties of elliptic functions.

In formulating the parameter problem for this version of the strip transformation,
we again use the constants A and B in (3.5) to send wl and wN to their correct positions.
A suitable set of unconstrained independent variables, corresponding to the new
normalization is

Ilog (Zj+l Z/), I<=j<=M-2,

(6.1) X=]1/2[Iog(zM--ZM-,)+Iog(zM+,--ZM+2)], j=M-1,

[.log (zj+2-zj+3), M =<j =< N-3.

Note that there are only N-3 independent variables, corresponding to the fact that
now only N-3 side length conditions are required to determine the shape of the
closed polygon:

WJ+ WJ l <=j <= k 2,log
wj*.+,-wj*.

(6.2) F=
wj+:- wj+3

_<_jlog
w+2- w+3

k- 1 -< N- 3.

Here wk is the "omitted corner"mif N- 1 corners of the polygon and all of the angles
are known, then the position of the remaining corner is determined and cannot be
specified separately. The side between w and wN is fixed by the constants A and B,
and the two sides that intersect at wk do not enter into the parameter problem, so
exactly N-3 side lengths are sufficient to determine the shape of the polygon.

The best choice of w is problem-dependent, and an improper choice can make
the system of nonlinear equations much more difficult to solve. In Fig. 8, for example,
w7 and w8 would both be poor choices for w. Since the two sides that intersect at w7
are collinear, it is not possible to determine the position of the corner by finding the
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FIG. 8. Conformal map of a rectangle onto a distorted polygon (l 41.812465).

intersection of the sides. To see why w8 is bad, picture a slight distortion of this polygon
in which the distance between Wll and w12 is increased and the horizontal tube is
correspondingly narrowed. This narrowing increases the aspect ratio of the tube
dramatically, so zs and z9 would be far to the right of their correct positions. This will
only affect the dependent variables to a small degree, though, if the distance between
w and w9 is not included in (6.2). The system of nonlinear equations will therefore
be poorly scaled, and the algorithm will probably take much longer to converge. A
much better choice in this case would be w12, which does not introduce any scaling
problems. Several other choices would be equally good, and in fact it is sometimes
helpful to change Wk in the middle of the solution process if the nonlinear equations

4algorithm is making slower progress.
At present, our code leaves the choice of Wk up to the user, but we may be able

to automate this in the future. Figure 9(a)-(b) shows two examples of regions for
which no choice of Wk is very good" the only way to make these problems well scaled
would be to devise a radically different set of dependent variables. Note that the
self-intersecting nature of the first domain does not cause any difficulties; the problem
results from the fact that changing almost any side length slightly can greatly alter the
conformal modulus of the polygon.

7. Variations. The two problem formulations described in 4 and 6 illustrate
some of the choices that can be made with the strip transformation, but by no means
do they exhaust the possibilities. With the channel mapping, for instance, it is not

4 The system of equations for the channel map can be altered in a similar manner, but the presence of
the angle in (4.3) raises complications. One must be careful not to create a set of nonlinear equations with

more than one solution.
It is still possible to calculate accurate conformal moduli for these polygons, however, even though

the parameter problems are slow to converge. So that others may reproduce these examples if they wish,
in the star the width of the strip is 1/20 of the radius of the circumscribing circle, and in the spiral the
width of the strip is exactly half the width of the complementary white space. The regions shown in Figs.
8 and 10(b) have corners exactly: {(-.2887,0.), (.1,.6732), (0.,.4999), (0.,0.), (1., 0.), (1.,.2999), (.3,.3),
(1.5,.3), (1.5,.35), (.3,.35), (1.,.3501), (1., 1.), (0., 1.), (0.,.6001), (.1,.7732), (-.3320,.025)} and {(0., 8.),
(1.8, 8.), (1.8, 0.), (13., 0.), (14., 0.), (14., 1.), (2., 1.), (2., 10.), (0., 10.)}, respectively.



(a)

(b)

FIG. 9. (a) Conformal map ofa rectangle onto a star (p, 163.28151). Note that both ends of the polygon
meet at the lower-left corner (b) Conformal map of a rectangle onto a finite spiral (p 132.70454).
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necessary for either of the divergence angles 0_ and 0+ to be positive; the channel
may be bounded. Figure 10(a) shows an example where both are negative; physically
this could represent an electromagnetic problem with point charges or currents, or a
fluids problem with a source and a sink. (This region has significant secondary crowding
effects near the point of the barb, due to the extremely acute angle there. It is impossible
to plot streamlines much closer to the point than those shown using the integration
methods we have described. The other angles are wide enough to avoid this difficulty,
though there is always some degradation of accuracy near an outward-pointing corner.)

With the rectangle mapping there is no reason why each end of the rectangle must
map onto a single side of the polygon, and there are many possible ways to modify

(b)

(c)

FIG. 10. (a) A channel map with converging ends; (b) enlargement ofthe barb in Fig. 10(a); (c) a rectangle
map onto a polygonal conductor (tx 49.436547).
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the given formulation to deal with unusual cases. In Fig. 10(c), for example, we have
fixed w*_l at instead of w*, and introduced an additional vertex w4 with a turning
angle of 0. Problems like this one could arise in integrated circuit design.

Other straightforward variations of the method described in this paper include
vertices at infinity, the exterior map for a polygon, the map from a semi-infinite strip
to a channel bounded at one end, and various generalized parameter problems as those
described in [30] and [8].

Figure 11 shows a more extreme variation, an infinite logarithmic spiral. To permit
our program to run to completion in a finite time, we truncated the infinite product
in (3.5) by ignoring corners more than three turns away from the point of interest.
This approach yields accurate results since the effect of each singularity decays
exponentially along the strip. The parameter problem for this example is also quite
simple, since the domain is self-similar; we omit the details. A similar formulation was
used by Floryan [10] to map periodic channel configurations. The ideas involved in
this example might possibly be extended to permit the mapping of more complicated
fractal domains, which would have applications, for example, in the study of diffusion-
limited .aggregation.

FIG. 11. Conformal map onto an infinite spiral.

Sridhar and Davis [3], [27], Floryan [9], and Hoekstra [19] have all described
another variation of channel maps for approximating curved boundaries, based on
formulas dating back at least to Woods [33]. Our implementation does not currently
include this variation, but it would certainly be a valuable addition to any future
software package for calculating Schwarz-Christoffel maps.

8. Conclusion. To summarize the central point of this paper: Conformal maps of
highly elongated polygons should be based on a Schwarz-Christoffel formula for an
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infinite strip, not a disk or a half plane. Many of the polygons that arise in applications
are of this typemperhaps most.

The mathematics of the Schwarz-Christoffel formula for an infinite strip is not
new. What is new here is, first, the proposal that such a formula sould be used even
when the polygon is bounded rather than an infinite channel, and second, an algorithm
for numerical integration and solution of the parameter problem that can reliably and
efficiently compute conformal maps to high accuracy (e.g., 8 or 12 digits, except in
regions subject to secondary crowding) even for extremely elongated polygons (e.g.,
with aspect ratios in the hundreds or thousands). The elements of this algorithm are
adapted from the SCPACK package for mapping the unit disk.

FIG. 12. A polygon with 23 sides (i 156.6241139).

We conclude with a final example. The rather difficult 23-sided polygon of Fig.
12 was mapped from a rectangle, to roughly 10-digit precision, in about one hour on
a Sun 3/50 with an MC68881 floating-point coprocessor. Most of this time was spent
in solving the parameter problem, and since the final convergence is quite rapid, the
time is nearly independent of the required accuracy. The same calculation on a
supercomputer would require only a few seconds.

Appendix. Evaluation of elliptic functions. The use of the rectangle mapping
described in 6 requires the efficient evaluation of the function s(z)=
(1/7r) log sn (zlrn) over a wide range of values of z and rn. All of the formulas we use
for these computations are well known and available in standard references, but since
there are several different asymptotic regimes involved, it seems appropriate to give a
brief summary of our methods here. For more information about any of the following
material, see 1].

The parameter rn of the elliptic function sn (zlm) decreases exponentially with
K’/2K, the conformal modulus ofthe rectangle. For highly elongated regions, therefore,
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m may be less than the underflow limit of many computers. First we will deal with
the case where rn is reasonably large; in our own program this means rn > 10 -3.

To start with, the value of L is determined by the solution to the parameter problem
for the strip transformation, so rn e-2L is known immediately. K and K’ are complete
elliptic integrals with parameter m, and can be readily found by means ofthe arithmetic-
geometric.mean (AGM) method. To calculate K we first take

(A.1) ao 1, bo , Co v/-;

ml 1-m is called the complementary parameter. The AGM iteration, defined by the
formulas

(A.2) ai := 1/2( ai_ + bi-1 ), bi := ai_ bi-1 )1/2 c, := 1/2( ai-1 bi-1
is then carried out until at the Nth step c is negligible to the required accuracy. K
is then equal to 7r/2aN; to find K’ the same procedure is followed with m and m
interchanged.

We need to evaluate sn (zlm) at points inside the rectangle with corners -K, K,
K + iK’, -K + iK’. This function has a pole at iK’, but we avoid any difficulties there
by using the identity

(A.3) sn (zl m)
-1

m’/2sn(iK’-zlm)
whenever Im (z) > K’/2. For Im (z) =< K’/2 we can approximate sn (z m) by

(A.4)
1

sn (zl m)- sin (z)- m[z-sin (z) cos (z)] cos (z)

when m is small enough; the relative accuracy ofthis formula is O(m) for Im (z) <= K’/2.
If m is not sufficiently small we can reduce it by applying the descending Landen
transformation as many times as necessary"

(1-- ml,/2 2

(A.5) /z
1 + ml/--5}

(A.6) v 1/2,l+x

(A.7) sn (zlm)=
(1 +/xl/=) sn (v I/x)
1 +/xl/2 sn2 (vl/x)

The effect is to replace m and z by/x (not to be confused with the conformal modulus)
and v, where /x m2/16 and v---z. To avoid cancellation errors, (A.5) should be
evaluated via a power series when m is less than about 10-3.

When L> 11, i.e., m < 10-3, we use a different set of asymptotic formulas to
avoid possible underflow of rn or overflow of sn (zl m). K and K’ are calculated via
the approximations

(A.8) K and K’ 7rL+ log 4,
2

which are accurate to O(m). For Im (z)=< K’/2 the approximation sn (zl m)---sin (z)
has a relative accuracy of O(ml/2), and log (sin z) can be expanded to give

(A.9) s(z) --1 -iz+log -1)
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When Im (z)> K’/2 the identity (A.3) leads to the similar formula

(A.IO) s(z)’-- L+ i+-- /u-log (e2iu- 1)

where u iK’- z.
By the methods described here we can evaluate s(z) (1/7r) log sn (zlm) to close

to full precision (around 15 decimal places in our calculations), for all z in the
fundamental rectangle, for a range of parameters roughly e-2=/<< m <1/2, that is,
O(1) =< L << e -1, where e is the machine precision.
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Abstract. Experimental evidence strongly supports the role of exothermic reaction centers as robust
structures of fundamental importance in both the secondary stages of transition to detonation and the
initiation of detonation. Here it is demonstrated through careful high resolution numerical computation
that the complete range of experimental phenomena observed in the transient behavior following the
formation of a single exothermic reaction center can be found in solutions of the inviscid reactive Euler
equations in a single space dimension with simplified one-step irreversible Arrhenius kinetics. Furthermore,
two new mechanisms for rapid initiation of detonation through the resonant interaction of exothermic
reaction centers are demonstrated.

Key words, reacting shock waves, exothermic reaction centers, transition to detonation
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1. Introduction. Experiments in gaseous phases reveal extremely complex interac-
tions among turbulence, chemistry, and strong compressibility in such important
practical problems as the transition to detonation [1], 12] or direct initiation of
detonation [3]. Different but also rather complex effects are observed in the transition
to detonation in condensed phases as well [4]. Despite the tremendous complexity of
these phenomena, Oppenheim and coworkers (see [5], [6J, for example) have empha-
sized the role of exothermic reaction centers as a robust structure of fundamental
importance in the secondary stages of transition to detonation; such exothermic reaction
centers also form approximate initial data for the experiments regarding initiation of
detonation. A one-dimensional idealization of an exothermic reaction center is a
nonreactive inert square-pulse in the temperature profile at constant volume as depicted
in the graph in Fig. below.

Thus, in a one-dimensional reactive mixture with simplified one-step chemistry
the initial data for an idealized exothermic reaction center are given by an overall
constant density with the mass fraction of reactant having the value one, whereas the
temperature has the structure depicted in Fig. 1.

One principal goal of this paper is to demonstrate through careful high resolution
numerical computations that the complete range of experimental phenomena observed
in the transient behavior following the formation of a single exothermic reaction center
can be found qualitatively in solutions of the inviscid reactive Euler equations in a
single space dimension with simplified one-step irreversible Arrhenius kinetics. The
second objective of this paper is to demonstrate potential new mechanisms for rapid
initiation of detonation through the resonant interaction of exothermic reaction centers.
Here is a brief summary of the contents of this paper. In 2, we present the reactive
Euler equations, the appropriate nondimensional scalings used throughout the paper,
and a description of the numerical schemes. The routes to initiation from a single
exothermic reaction center are presented in 3. There we describe high resolution
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x
FIG. 1. The temperature profile in an idealized one-dimensional exothermic reaction center.

numerical simulations of the time-dependent behavior of solutions of the reactive Euler
equations with initial data consisting of a single exothermic reaction center where we
vary the height and width of the initial temperature profile. We exhibit transient
behavior qualitatively illustrating the subcritical, supercritical, and critical experimental
regimes of initiation. (See the review article by Lee [3] for this terminology.) Thus,
our numerical calculations exhibit the phenomena of strong initiation, strong failure,
initiation through weak ignition effects, and also failure even though secondary weak
ignition effects occur. We also display the effects of expanding geometry for initiation
by comparing calculations in one dimension with those in a cylindrical geometry. We
use the same initial data yielding initiation through weak ignition in a single space
dimension for a computation in cylindrical geometry and observe strong failure due
to the attenuation effects of the expanding geometry. In 4, we describe the results of
numerical experiments illustrating the role ofthe resonant effects ofmultiple exothermic
reaction centers in accelerating the transition to detonation. In the first example we
consider initial data with multiple hot spots that individually lead to failure; we
demonstrate that resonant wave interaction between the hot spots leads to initiation
of the detonation. In the second example, we show that high frequency small amplitude
perturbations over a constant background state lead to dramatic shortening of the
induction time when compared with the homogeneous induction time. Furthermore,
these resonant effects are increasingly prominent when parameters in the equations of
state are varied to more closely approximate condensed phases. These direct simulations
provide supporting evidence for the theoretical explanation of dramatic enhanced
combustion in condensed phases recently developed by Almgren, Majda, and Rosales
[7]. In that work, quantitative simplified asymptotic equations are derived and solu-
tions are found which indicate that the tremendously enhanced combustion in con-
densed phases is driven by resonant nonlinear acoustics on rapid timescales. The results
of numerical calculations that we present at the end of 4 are only the first direct
simulations on this problem and further detailed numerical studies should be done in
the future.

During the last 20 years, there has been considerable activity in the numerical
simulation ofthe initiation and propagation of detonations (see, for example, [8]-[ 13]).
Besides the above-mentioned phenomena we document in this paper, two main features
distinguish our numerical approach from most of the previous work:

(1) We focus on details of the transient behavior of the spatial distribution of the
state variables;

(2) We pay particular attention to the choice of numerical methods.
In most previous work rather dissipative and/or oscillatory numerical methods were
used. Strong purely numerical artifacts in such methods that falsify the physics have
been documented and systematically analyzed recently [14]-[15]. A notable exception
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to the above statements is the work of Oran et al. on weak and strong ignition (see
11]-[ 13]). Through high resolution numerical schemes, this work carefully documents

the role of the transient spatial structure with exothermic reaction centers in weak and
strong initiation in hydrogen-oxygen systems. The simulations of Oran, Boris, et al.
involve the full complex chemistry of hydrogen-oxygen with eight reacting species. As
described by Borisov 16], the origin of exothermic reacting centers can involve either
the fluid mechanical effects of pressure and entropy waves or the effects of complex
chemistry involving fluctuations of activated molecules or radical concentrations and
catalytic generation of radicals. Clearly, the origin of the reaction centers in [11]
combines both the effects of fluid mechanics and complex chemistry. Our calculations
presented in 3 illustrating weak initiation or weak failure through the effects of weak
ignition conclusively demonstrate that purely fluid mechanical effects alone can play
the dominant role in weak ignition regimes, since in this paper we have simplified
single step irreversible Arrhenius kinetics.

Our choice of a split numerical scheme consisting of the random choice scheme
for the hydrodynamics and a separate fractional step for the chemistry is motivated
by the careful numerical test cases developed in 14], 15], and 17]. In particular, the
random choice method keeps contact discontinuities perfectly sharp and this is essential
for the weak ignition effects that we study here. Such a scheme has also been used by
Bukiet [18] in other combustion calculations in both one-dimensional and spherical
geometry. In 1977 Chorin [19] proposed the attractive idea of using the Chapman-
Jouguet theory directly in a Riemann solver with the random choice scheme without
a separate fractional step for the chemistry to remove the stiffness of the system. If
this scheme is applied to the test problems in 3, the method always yields initiation
of detonation in contrast to the rather subtle effects with failure, weak failure, and
weak initiation that we document in 3. Thus, for the problems we study here, we
need to assess the explicit effects of the chemistry in a separate fractional step. Similar
remarks apply for the use of front tracking schemes based on the Chapman-Jouguet
theory to track reaction waves for the specific initiation problems considered here. On
the other hand, it is extremely attractive to use nonreactive shock tracking (see [20],
[21]) to study the interaction of shocks and exothermic reactions centers. Bourlioux,
Majda, and Roytburd [22] will report on the use of such schemes in the numerical
modeling of unstable detonations in the near future.

2. The basic equations of reacting gas flow and the numerical methods. We make
two standard simplifying assumptions. We neglect all the dissipation mechanisms since
they are of secondary importance for the initiation of detonation. For the chemical
interaction we consider the simplest model: there are only two species present, the
reactant and the product, and the reactant is converted to the product by a one-step
irreversible chemical reaction governed by Arrhenius kinetics.

Thus, as a basic description of the reacting mixture we take the one-dimensional
Euler equations with one-step irreversible chemical reaction:

(2.1a) pt -k Up )x O,

(2.1b) (pu), + (pu + (1/y)P)x O,

(2.1c) (pE)t+(puE +(1/y)up)=O,

(2.1d) (pZ), +(puZ), -w,
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where

(2.2)

1 U
2

T++ qoZ,
3/-1 2

p= pT, w= ApZ exp (--).
In these equations, p, p, T, u, E, and Z are, respectively, the gas pressure, density,
temperature, velocity, specific energy, and reactant mass fraction. The variables have
been rendered dimensionless by referring them to a constant state. Velocity is referred
to the frozen acoustic speed at the reference state, and this nondimensionalization
leads to the appearance of factors 1/ y in (2.1). The dimensionless parameters appearing
above are the polytropic exponent y, the heat release parameter qo, and the activation
energy E/. To avoid the cold boundary difficulty we employ the ignition temperature
that is IK above the ambient temperature. It should be pointed out that for the
activation energies we consider the thermal runaway develops on the timescale much
longer than the computational time.

There is an important timescale, the half-reaction time, that is characteristic for
the transition to detonation process. The half-reaction time is defined as follows.

Consider the slowest traveling wave solution of (2.1) compatible with the initial
data. This wave is the Chapman-Jouguet (CJ) detonation (see [4]). For this traveling
wave solution, the reaction rate equation from (2.1) can be rewritten in the form

along the characteristics dx/dt u. Obviously, the multiplication of the rate factor A
by a constant is equivalent to rescaling the time and space variables by the same
constant. In all our calculations except those in 4.2 we scale time and space (with
the corresponding change in A) so that the time unit is the half-reaction time. This unit
is the time required, in the steady solution, for half-completion of the reaction from
the instant of the passage of the fluid element through the shock.

Thus, the calculation of the rescaled rate multiplier involves the following:
(1) Finding the traveling CJ solution. The explicit expressions for the state

variables as functions of Z can be found through rather involved algebraic manipula-
tions (see Fickett and Davis [4, Chap. 2]);

(2) Finding the half-reaction time:

tl/2
1/2

-7- exp

This yields

Anew
Such a scaling is quite standard (see, e.g., [9]). By integrating the characteristic equation

dt
u,

we can find the corresponding spatial interval, the half-reaction length,

t/2
A1/2 u(Z(-Dt)) dt tl/2(D- /,),

,1o
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where D is the CJ detonation speed and t is the post shock particle velocity. It should
be noted that A1/2 may vary widely. For example, for hydrocarbons A1/2 ranges from
0.27-0.29 mm (acetylene) to --25 mm (methane) (see [24]).

For numerical integration of the reactive Euler equations (2.1), a very natural
fractional step scheme is used. The algorithm involves two ingredients per timestep.
In the first fractional step the hydrodynamic part of the problem is solved. Equations
(2.1a)-(2.1c) are advanced by using the uniform sampling method with Z advected
as a passive scalar. In the second fractional step the species equation (2.1d) is advanced
by explicitly solving the ordinary differential equation (ODE) for the mass fraction
given the temperature field from the previous fractional step. Then new temperature
and pressure are found from (2.2) through p, u, Z, and E and the process is repeated.
Computations are performed in the finite interval with reflecting boundary conditions
at the origin and ambient Dirichelt boundary conditions at the other end of the interval.
The same numerical method was employed in our previous work [17] and a similar
method was employed by Bukiet [18]. In 3, we present some simulations in a
cylindrical geometry. We remind the reader that for the spherically/cylindrically
symmetric case, the continuity equation (2.1a) acquires a source type term"

k
p, + (pu) +- pu o,

X

where k-0, 1, 2 for the planar, cylindrical, and spherical cases correspondingly.
Numerically, we treat the source term through an additional fractional step that solves
the ODE for p.

3. Initiation from a single exothermic reaction center. In this section we describe
results of several simulations of detonation initiation or failure from a single initial
temperature pulse. For all the calculations in this section we keep the nondimensional
heat release fixed qo 10. We remind the reader that for given upstream conditions,
qo completely determines values of the state variables at the peak of the traveling
Chapman-Jouguet detonation (also called the von Neumann spike; see [4]). For the
upstream condition given by quiescent gas and for q0 10, the von Neumann pressure
peak is 17.2 in the nondimensional units. Other thermodynamic and chemical param-
eters are also kept fixed for all the calculations y 1.4, E + 10 except for one simulation
( 3.2) where we demonstrate the quenching effects of raising the activation energy.
When we report initial temperature magnitudes in the reaction centers, we give them
in units relative to the quiescent temperature.

We investigate several scenarios of transition to detonation and for each case we
display the numerical results in a uniform format:

(i) The basic trends of the wave development are illustrated on a diagram that
represents the pressure at the front of the wave propagating in the quiescent medium
as a function of time. For brevity we call this diagram the pressure history.

(ii) We carefully select a few time levels (usually 3-4) at which the spatial distribu-
tions of the state variables reveal characteristicfeatures of the process under investigation.
These time instances are marked with "o" on the pressure history and for each one
of these we display the spatial distributions of pressure p, temperature T, and the
reactant mass fraction Z.

A comment on the numerical resolution of.our simulations is in order. We
performed a variety of rather expensive and complex calculations and it was not
feasible to conduct a comprehensive convergence study. Instead, we started each
simulation with coarse grid calculations and did mesh refinements (by doubling) until
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the results of two consecutive calculations were virtually identical. As we might expect,
more violent or unstable evolution scenarios require finer meshes to get full resolution
with a corresponding increase in expense. Finally, we note that for our choice of
parameters the spatial unit is almost the same as the half-reaction width A1/2 0.89, so
the number of zones per unit length essentially corresponds to the number of zones
in a half reacting width.

3.1. Strong initiation. The process in this simulation is initiated by a reaction
center of temperature eight and width of five spatial units. The transition to detonation
here is powerful and rather straightforward.

The pressure history (Fig. 3.1.1) shows an (almost) monotome increase in pressure
at the front. The initial increase gradually slows down until t---15 when it again

20.0 p

16.0

12.0

8.0

4.0

0.0 i0.0 20.0 30.0 40.0
FIG. 3.1.1. The pressure history for the strong initiation.

accelerates to reach the CJ value at t- 28. After that the pressure at the front slightly
overshoots the CJ value. We note that noisy oscillations in the peak pressure are
characteristic for the uniform sampling method. Comparison of pressure and reactant
spatial profiles demonstrates that for all times the reaction wave starts immediately at
the shock. Thus the shock and reaction waves propagate as a single unit. This precisely
corresponds to the supercritical initiation in Lee’s terminology [3]. We note that the
methods of the present paper were used recently by Kapila and Roytburd [25] to study
strong initiation from a smooth initial hot spot.

The slowdown in the pressure increase happens during the development of a
secondary reaction center. This effect is not especially significant for the strong initiation
that we describe here, but is a crucial "weak ignition" effect that is characteristic of
the calculations we present later, so we describe this event in detail. It is apparent
from the Z profile at =9.0 (Fig. 3.1.2) that a reaction center is forming at some
distance from the contact discontinuity where the reactant is ---65 percent burnt. We
emphasize that the width of the less burnt "finger" is about 3, i.e., it contains 25-30
computational zones and cannot be attributed to a numerical error. We will have a
chance to see in the later simulations as well that the formation of a hot spot at some
distance from the contact is a general fact. It can be given a rather simple explanation.
In the presence of a spatial gradient in Z, the maximum of the reaction rate is attained
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0 40 80 120 160 x

FIG. 3.1.2. Pressure, temperature, and mass fraction distributions at 9.0.

not at the contact but at some distance from it. This fact was overlooked by the previous
asymptotic theories of homogeneous initiation that did not provide for spatial gradients
in Z.

At 15.0 (Fig. 3.1.3), the fuel in the secondary reaction center is almost completely
consumed. By this time there is already a fully developed reaction wave. It seems that
the completion of reaction in the secondary hot spot accelerates the front pressure
(see Fig. 3.1.1). After that time the spatial distribution of the state variables experience
just minor quantitative change to develop into a full-fledged CJ detonation. We display
a snapshot at 48.0 (Fig. 3.1.4).

The numerical resolution for the calculations discussed above was taken as 10
meshpoints per length unit. These calculations were a refinement of a coarse mesh
calculation (five meshpoints per length unit) that produced a virtually identical time

history.

3.2. Strong failure. For this simulation we take E+= 15. Of course, by the
appropriate choice of initial data it is possible to demonstrate the strong failure for
E+= 10 as well. We selected a higher activation energy for the present simulation to

contrast it with the simulation of the next section. The temperature in the reaction
center is taken with height six and width one.

After the initial pressure rise, the pressure history demonstrates a gradual pressure
decay that is characteristic for a purely nonreactive shock. We display snapshots of
spatial distribution of the state variables at three times: 6, 26.9, 47.8. The snapshots
confirm that after initial burning the wave behaves like a nonreactive shock. The
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0 40 80 120 160 x

FIG. 3.1.3. Pressure, temperature, and mass fraction distributions at 15.0.

temperature rise caused by the strong initiating shock is cooled down by the rarefaction
wave. The last frames give a clear picture of a nonreactive shock followed by rarefaction
without any appreciable consumption of reactant.

The calculation was performed with resolution four meshpoints per unit length,
which was a refinement of a coarser calculation with an identical time history.

3.3. Weak failure. This simulation is performed with the same initial and chemical
data as the previous one except for the activation energy, which is lowered to E/= 10
(from E/= 15 in 3.2). The pressure history for this case is almost identical to the
one for strong failure and is not presented. The snapshots displayed in this section
are taken at the same times as in 3.2. They should be compared with Figs. 3.2.2-3.2.4.
The snapshots demonstrate the effects of the lower activation energy, which yields less
stiffness in the source terms. Thus, the reaction is appreciable in a broader range of
temperature. For this reason the initial temperature rise produced by compression is
sufficient to initiate the reaction (cf. the Z profile in Fig. 3.3.1). As the reaction proceeds
almost 50 percent of the reactant is consumed at 47 (Fig. 3.3.3). Apparently the
future evolution (beyond the computational time) would lead to formation of a
secondary reaction center in the vicinity of the contact.

Numerical resolution for this simulation was four mesh zones per unit length (the
same as for the strong failure case).

3.4. Weak initiation. For this simulation the chemical data are the same as before
for the case of weak failure, but the initial pulse is taken to be more powerful. The
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0 40 80 120 160 x
FIG. 3.1.4. Pressure, temperature, and mass fraction distribution at 48.0.

temperature is eight at the reaction center with width 2.5. The time evolution reveals
an interesting sequence of events with rich structure.

At the first stage, until time ---25 the pressure history in Fig. 3.4.1 demonstrates a
decrease in pressure that is characteristic for propagation and decay of an unsupported
nonreactive shock. Comparison of the pressure and reactant spatial profiles shows that
up to this time, the reaction wave and the precursor shock travel completely separated
from each other by two to three length units (critical initiation in Lee’s [3 terminology).

p

0.0 i0.0 20.0 30.0 40.0
FIG. 3.2.1. The pressure history for the strong failure.
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0 20.0 40.0 60.0 80.0 x
FIG. 3.2.2. Pressure, temperature, and mass fraction distributions at 6.0.

0 20.0 40.0 60.0 80.0 x
FIG. 3.2.3. Pressure, temperature, and mass fraction distribution at 26.9.
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0 20.0 40.0 60,0 80.0 x

FIG. 3.2.4. Pressure, temperature, and mass fraction distributions at 47.8.

0 20.0 40.0 60.0 80.0 x
FIG. 3.3.1. Weak failure" pressure, temperature, and mass fraction distributions at 6.0.
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0 20.0 40.0 60.0 80.0 x

FIG. 3.3.2. Weak failure: pressure, temperature, and mass fraction distributions at 26.9.

For 25 < < 30 the reaction wave approaches the shock wave. This process causes a
dramatic pressure increase. At t--- 30 the reaction wave reaches the shock wave causing
an even faster pressure increase up to the CJ value. Simultaneously the front accelerates
dramatically.

The snapshot at 10.0 (Fig. 3.4.2) shows the beginning of the secondary reaction
center formation in the vicinity of the contact similar to the one observed at the end
of the weak failure simulation (Fig. 3.3.3). The secondary reaction center expands
spatially (Fig. 3.4.3) and sends pressure waves in both directions. In this figure the
pressure wave has just reflected at the origin. We note that the reactant profile is very
smooth for values of Z close to 1. At 30.0 (Fig. 3.4.4), the reaction wave catches
up with the precursor shock. The reaction zone has its characteristic form but still is
rather wide. The temperature behind the reaction front is still relatively low. By time
=40 (Fig. 3.4.5) the reaction zone narrows and the detonation wave takes a typical

CJ profile. Numerical resolution for this simulation was eight zones per unit length.

3.5. Cylindrical geometry. In this simulation we illustrate a well-known experi-
mental fact that the initiation process of a detonation wave can be quenched through
geometric expansion effects. We took the data of the previous simulation (the weak
initiation) and considered its evolution in cylindrical geometry.

The pressure history (Fig. 3.5.1) shows a fast decay of pressure at the front, much
faster than for the planar case. In the first snapshot at 2 (Fig. 3.5.2) a very strong
rarefaction due to geometric expansion is quite apparent. Its cooling effect (the
temperature drop is ---30 percent) slows down burning so that even in the reaction



962 A.J. MAJDA AND V. ROYTBURD

0 20.0 40.0 60.0 80.0 x
F;G. 3.3.3. Weak failure: pressure, temperature, and mass fraction distributions at 47.8.

15.0

ii.0

3.0 t

0.0 8.0 16.0 24.0 32.0
FG. 3.4.1. The pressure history for the weak initiation.
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0 20.0 40.0 60.0 80.0 x
FIG. 3.4.2. Pressure, temperature, and mass fraction distributions at 10.0.

Z

0 20.0 40.0 60.0 80.0 x
FIG. 3.4.3. Pressure, temperature, and mass fraction distributions at 17.5.
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0 20.0 40.0 60.0 80.0 x
FIG. 3.4.4. Pressure, temperature, and mass fraction distributions at 30.0.

0 20.0 40.0 60.0 80.0 x
FIG. 3.4.5. Pressure, temperature, and mass fraction distributions at 40.0.
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0.0 8.0 16.0 24.0 32.0
FIG. 3.5.1. The pressure history for wave propagation in cylindrical geometry.

0.0 I0.0 20.0 30.0 40.0 x

FIG. 3.5.2. Pressure, temperature, and mass fraction distributions at 2.0.
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center the reactant is not fully consumed. In Fig. 3.5.3 we present one of the later
profiles, 20. The pressure profile is typical for an unsupported unreactive shock.
Hardly noticeable rippling shocks behind the leading shock are caused by the strong
density variations in the beginning of the time evolution. The numerical resolution for
this simulation was 16 meshpoints per unit length.

0.0 i0.0 20.0 30.0 40.0 x

FIG. 3.5.3. Pressure, temperature, and mass fraction profiles at 22.0.

4. Resonant interaction of multiple reaction centers. In the previous section we
studied an important model situation where a single exothermic reaction center leads
to formation of a secondary hot spot and to transition to detonation. It was observed
experimentally (see, e.g., [23]) that transition to detonation is often characterized by
the formation and interaction of several reaction centers. In this section we present a
relevant numerical simulation. We also discuss a new mechanism of hot spot formation
through high frequency wave interaction and resonant amplification. This mechanism
should be particularly significant in condensed phases.

4.1. Initiation from two exothermic reaction centers. The following route of transi-
tion to detonation was observed in experiments [1]. An exothermic reaction center is
formed during initial stages of the transition. The center sends out a strong pressure
wave and a reaction wave that are decoupled. The pressure wave in turn produces
another reaction center that is eventually enhanced by the prior reaction wave. This
enhancement leads to a stronger reaction wave and to eventual transition to detonation.
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We simulate this route numerically with both reaction centers imbedded into the
medium initially. Instead of being separated temporally, the reaction centers are thus
separated spatially.

The chemical data for this simulation are the same as for the weak failure ( 3.3),
qo 10, E+= 10, = 1.4. We consider two reaction centers situated at 0-<x -< 1 and
8-< x =< 10 with the temperature at the hot spots T 6. The pulse at zero is the same
as the pulse for the weak failure case. We remind the reader that because of the
symmetry of the problem, the pulse of width one at the origin is just half the actual
pulse (of width two). Strictly speaking, the initial data with two pulses for x>0
represent three pulses of width two. The results of 3.3 mean that neither of these
reaction centers in isolation can initiate detonation.

The pressure history Fig. 4.1 demonstrates a pressure decrease in the precursor
shock until 20 when the precursor is overtaken by a stronger wave. A similar event
takes place at =42. At =45 the main reaction wave overtakes the leading shock.
This causes a jump in pressure. After that the reaction intensifies explosively, leading
to a full-fledged detonation with overshoot slightly above the CJ value. Closer to the
end of the computational time we observe the onset of noisy low amplitude oscillations
of the peak pressure that are characteristic of the random choice method.

More details of the evolution are revealed by the snapshots. In the first three
figures for comparison we also present pressure distributions for the evolution in the
nonreactive medium. We note that the pressure scales in these graphs are different
because the nonreactive pressures are much lower. At 6 (Fig. 4.2), hot-spot formation
has just started. Both pressure diagrams clearly show two leading shocks traveling to
the right. These waves are the pressure waves sent in the positive direction by the
initial reaction centers. In the reactive case the two leading shocks have a higher
magnitude and move faster. The trailing waves come from the reflection at the origin
and, in the reactive case, from the chemical reaction.

22.0

18.0

14.0

i0.0

0.0 20.0 40.0 60.0
FIG. 4.1. The pressure history for the initiation from two exotherrnic reaction centers.
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0 20.0 40.0 60.0 80.0 x
FIG. 4.2. Pressure, temperature, and mass fraction distributions at 6.0. The top diagram represents the

pressure distribution in the inert medium.

In Fig. 4.3 (t 18.0) the second leading shock of Fig. 4.2, which is being amplified
by the reaction, is about to merge with the leading shock. This event will be the reason
for the jump in the front pressure at 20 (Fig. 4.1). In contrast, the nonreactive
shocks are well separated demonstrating a characteristic N-shape. The secondary hot
spot between the two initial pulses is almost complete, whereas in the secondary hot
spot ahead the reactant is about 40 percent consumed. We use an arrow to mark the
pressure wave that will play an essential role in further development. This wave is
being amplified by the rear hot spot. Then it will enter into resonance with the front
hot spot to eventually overtake the front of the detonation wave. All the way through
its development the front of this shock wave is positioned at the maximum of chemical
reaction (which coincides with the point of maximal slope of Z).

At t- 30.1 (Fig. 4.4) formation of secondary hot spots is completed. There is a
well-defined broad reaction zone. The arrow marked shock is still "sitting" on the
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0 20,0 40.0 60.0 80,0 x
FIG. 4.3. Pressure, temperature, and mass fraction distributions at 18.0. The top diagram represents

the pressure distribution in the inert medium.

maximum of the reaction rate. The nonreactive pressure diagram displays a series of
N-waves.

In Figs. 4.5 and 4.6 the pressure magnitude is much higher and therefore the
pressure is presented on a different scale. At time 40.1 (Fig. 4.5) the waves between
the reaction wave and the precursor are about to overtake the leading shock. The
reaction rate is steeper than before. At the front edge of the reaction zone the reaction
rate is still quite smooth. The main reaction wave merges with the precursor wave at

45. This leads to a dramatic steepening of the reaction. Simultaneously the wave
experiences a substantial acceleration. Finally, in Fig. 4.6 we display the wave pattern
of a full fledged detonation.

The simulation in this section was performed with the numerical resolution of 16
meshpoints per unit length.

4.2. High frequency resonant enhancement of initiation. In this brief section we
present results of simulations that support a mechanism of hot-spot formation that
was recently suggested by Majda and Rosales [26] and recently developed in [7]. It
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0 20,0 40.0 60.0 80.0 x
FG. 4.4. Pressure temperature, and mass fraction distributions at 30.1. The top diagram represents the

pressure distribution in the inert medium.

is shown in [26] and [7] that in the asymptotic limit of large activation energy, high
frequency perturbations of the mean flow interact, enter into resonances, and enhance
tremendously the initiation and formation of secondary hot spots. This mechanism
should be especially relevant in the zone between the precursor shock and the flame.
This zone, for real three-dimensional gases, is filled with high frequency acoustic noise.
There is strong theoretical evidence (see [7]) that the mechanism of resonant enhance-
ment should play an even more essential role for condense phase explosives. As is
well known such explosives are crudely modeled by 2, gas laws with large y.

For the simulations in this section we used a space-time scaling different from the
half-reaction scaling employed before. We normalize time by the homogeneous induc-
tion time with the corresponding change in the prefactor of the reaction rate:

w pZ exp (- E---) exp E+)/ y -1)qoE+.
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0 40 80 120 160 x
FIG. 4.5. Pressure, temperature, and mass fraction distributions at =40.1. Note the scale change in

pressure and temperature in comparison with Fig. 4.4.

Thus, in these time units the induction time of a homogenous medium tends to one
as E/ tends to infinity. For finite values of E/ the homogeneous induction time is
somewhat larger than one.

We model high frequency perturbations by the square wave function depicted in
Fig. 4.7. The scalings of the perturbation were suggested by [26]. We perturb the mean
field p po 1, p Po 1, u Uo 0, Z Zo 1. The perturbed initial data are con-
sidered of the form

(4.1) p=po+pob, p=po+Po4,, U=Uo-4,, Z=Zo.

Note that for the activation energies E+= 20, 50 used in our calculations below, these
perturbations are extremely small, but still large enough to start thermal runaway.
Without the wave interaction (say for a constant perturbation), this runaway takes
time of order unity.

We did numerical simulations on the spatial interval [0, 1/E/] with periodic
boundary conditions and with initial conditions (4.1). The numerical resolution for
these simulations was 400 meshpoints in the computational domain. We do not include
snapshots of the spatial distribution of space variables. It is sufficient to say that we
can indicate two phases of wave evolution:

(i) A period of chemical-acoustic wave interaction without any substantial change
in the magnitude of the state variables. It is natural to call this period an induction
period.
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FIG. 4.6. Pressure, temperature, and mass fraction distributions at 52.7.

2

FIG. 4.7. The high frequency square wave perturbation function.
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(ii) An explosive and very focused increase in magnitude that happens during
times oftwo to three orders ofmagnitude shorter than the induction time. The explosion
is characterized by the complete consumption of fuel in the focused interval where
the explosion takes place. Within a few instants after the explosion, the reactant is
entirely consumed everywhere.

We record the time until the explosion tex in Tables 1 and 2.
Tables 1 and 2 show the enhancement effect of the wave interaction: all the

explosion times are less than one. But for the case with y 3 more closely modeling
condense state explosives, this effect is much more dramatic: the explosion times are
almost two orders of magnitude less than one. This agrees with the predictions from [7].

TABLE
(3’ 1.4)

E 20 20 20 50 50 50
qo 5 20 5 20

tex 0.92 0.70 0.67 0.654 0.625 0.621

TABLE 2
(3,=3)

E 20 20 50 50
qo 20 20

rex 0.065 0.065 0.0275 0.0275

The results in Table 1 also demonstrate the tendency of explosion acceleration
with increase in the heat release qo. We believe that the same is true for y 3. Although
the relative importance of this effect for y 3 is so small that it will require much
more resolved calculations to verify it. Finally, in both cases the activation energy
increase leads to earlier explosion. This speedup is more pronounced for y 3. It
probably means that the large activation energy asymptotic limit is approached faster
for y 1.4 than for y 3.
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Abstract. The paper derives column relaxation schemes for calculating the ’p solution of an inconsistent
system of linear equations. The need for such methods arises when the system to be solved is large, sparse,
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1. Introduction. This paper presents efficient relaxation methods for solving the
least norm problem

(1.1) minimize F(x) IIAx- bll,

where A is a real mxn matrix, b=(bl," ",b,)r", and x=(xl," ",x,,)rl
denotes the vector of unknowns. The norm that defines our objective function is the
ep norm" Given a point y (Yl,""", Y,,)7- l, then

when 1 =< p <,
Ilylloo- max lYi[ when p .

It is assumed here that the linear system Ax b is inconsistent and that A is large,
sparse, and unstructured. In such a case we usually store the nonzero elements of A
either in a row after row order, or in a column after column order. The first mode is
called "row-storage," whereas the second mode is called "column-storage." Con-
sequently, it is convenient to solve the problem either by a "row-relaxation" method
or by a "column-relaxation" method. The basic iteration of a row-relaxation scheme
is composed of one sweep along the rows of A. Similarly, the basic iteration of a
column-relaxation scheme is composed of one sweep along the columns of A.

Row-relaxation methods have important applications in the field of image recon-
struction from projections. In this field, it is possible to avoid storing A; instead, the
nonzero entries of the ith row are generated from the experimental data each time
they are needed. Therefore, these methods are sometimes called "row-generation" or
"row-action" methods. The reader is referred to Censor [4] for an excellent survey of
row-relaxation methods and the special environment that characterizes their use. For
a detailed convergence analysis of these methods see, e.g., Bj/Srck and Elfving [2],
Elfving [11], or Dax [9].

The extension of row-relaxation methods to solve least norm problems with p 2
is studied elsewhere (see Dax [10]). This paper concentrates on column-relaxation
methods. The basic iteration of such a method is composed of n steps. At the jth step,
j 1, 2,-.., n, xj alone is changed in an attempt to reduce the objective function

* Received by the editors June 15, 1988; accepted for publication (in revised form) August 11, 1989.
f Hydrological Service, P.O. Box 6381, Jerusalem 91063, Israel.
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value, whereas all other variables are kept fixed. We will use xk’JE R to denote the
current estimate at the beginning of the jth step of the kth iteration, k 1, 2,. ., and

1.2) r’ Ax’ b

to denote the corresponding residual vector. The jth column of A is denoted by
whereas ej denotes the jth column of the n x n unit matrix. With this notation, x k’j+l

is obtained from xk’ by the rule

(1.3) X
k’j+l

X
k’j "4t- I k’Jej

where A k,j is computed by a "steplength" algorithm that is aimed at minimizing the
one-parameter function

(1.4) f(h) ]lA(x’ + ;e)-bll ", Ilhc + r’j p.

The details of the one-dimensional search are discussed in the next sections. Note that
A k. is not necessarily the exact minimizer off(A ). For p 2 the minimizer off(A lies
at the point

(1.5) err’cc
and setting

(1.6) A k,

coincides with the Gauss-Seidel relaxation method for solving the normal equations

(1.7) ATAx ATb.

Similarly, the choice

(1.8) Ak’J-- to,
where 0< to <2 is a preassigned relaxation parameter, yields the successive over-
relaxation (SOR) method for solving (1.7). Yet it is well known that a "tuned" SOR
scheme may converge much faster than the Gauss-Seidel scheme.

For 2 < p < o the analogue of (1.8) is

(1.9) A k,

f"(0)

which can be viewed as a special case of the nonlinear SOR method (see Ortega and
Rheinboldt 15]). If, however, the starting point lies far from a minimizer, the above
scheme is likely to diverge. A simple remedy that solves this difficulty is to shorten the
steplength until it satisfies

(1.10) f’(A k’) _--< 0

(see the next section).
The situation is more complicated when 1 < p < 2. In this case, the second deriva-

tives of F(x) are not defined at points where the residual vector Ax-b has zero
components. Hence, the basic steplength (1.9) must be modified whenever f"(0) is
undefined or too large. Of course, there are many possible ways to modify the line
search. However, since If"(A)l is not bounded, it is difficult to show that the resulting
sequence {xk’j} approaches a minimizer of F(x). For example, if h k’j is defined as the
exact minimizer of f(h), then the resulting method is sometimes called "the method
that changes one variable at a time." Yet it has been shown by Powell [16] that this
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method may fail to minimize a continuously differentiable function. The solution
proposed in this paper is to replace F(x) with a hyperbolic approximating function
(a HAP function) of the form

) lip

(1.11) H(x)= [(aTx-bi)2+e:] p/:z

i=1

where a f denotes the ith row of A and e is a small positive constant. The HAP function
(1.11) is a convex twice continuously differentiable function that satisfies

(1.12) IF(x) H(x)l-<- ml/Pe

for all xR (see 3). Hence there is no difficulty in applying the modified SOR
method to minimize H(x).

On the other hand, as e approaches zero, the problem of minimizing H(x) may
become ill-conditioned. Thus in practice, we usually start with a relatively large value
of e and gradually reduce it. Another related question, as yet unsolved, is whether a
minimizer of H(x) is in fact near to a minimizer of F(x). The idea of replacing a
nonsmooth objective function by a HAP function is borrowed from the field of
multifacility location problems (see Eyster, White, and Wierwille [12], or Francis and
White 14]).

If p 1 or p , the objective function (1.1) is a polyhedral convex function. In
this case, the one-parameter function that is minimized at the jth step is redefined as

(1.13) f(A) IIAc / r’ .
In other words, here f(A) is a convex piecewise linear function whose minimizer lies
at one of its "breakpoints." Furthermore, the sparseness of A implies that cj is likely
to have only a few nonzero elements. Hence the number of breakpoints is expected
to be small and a minimizer of f(A) is easily computed. This suggests that here A k..j

should be defined as a minimizer of f(A). The disadvantage of this approach is that
the sequence {x k’j} may converge to a nonoptimal point, and it is therefore necessary
to take some precaution against this possibility (see 4 and 5).

The reader who is familiar with minimization techniques of "small" problems
may consider the column relaxation method as a variation of the method that changes
one variable at a time. This latter method has a notorious reputation for being inefficient
and unreliable (see Fletcher 13, p. 15]). It is therefore tempting to dismiss the proposed
method on the same grounds. However, for large sparse problems, the situation is
quite different, and the method enjoys many advantages. The main advantage is that
the implementation of the method is rather simple. Let us take, for example, the case
2 < p <. Let N denote the subset of {1, 2,. ., m} that contains the indices of the
nonzero components of c, and let ai and/3i, i= 1,. ., m, denote the components of

c and r k’j, respectively. Then (1.4) can be rewritten in the form

(1.14) f(A)= E IA,+,I
iNj

while the basic steplength (1.9) satisfies

(1.15) hk’J-"--O)( E WiOl,ii)/[
iN

where

(1.16) w, =1 ,1
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Consequently, since the only components of the residual vector that must be updated
by the change in x are those whose indices belong to N, both the computational
effort per iteration and the storage requirements are small. Also, as with row-generation
methods, it is possible in certain applications to avoid storing A, and instead generate
anew the nonzero entries of c each time (see Examples 2 and 3 of 7).

Finally, we note that another way to overcome difficulties that arise when p < 2
is to replace (1.16) with

(1.17) W (max {I/3il, e})P-=
where e is a small positive constant. This idea is investigated in [10].

2. Column relaxation for 2<p<oo. In this case, f(A) is twice continuously
differentiable"

(2.1) f’(O) p E wiogii,
iNj

(2.2) f"(O) p(p 1) E Wi02
iNj

Consequently, -f’(O)/f"(O) is the steplength of Newton’s method for minimizing
f(A), whereas to is the steplength of the nonlinear SOR scheme. However, as this
scheme is based on a second-order Taylor expansion of a highly nonlinear function,
the nonlinear SOR method is likely to diverge whenever the starting point lies far from
a minimizer. To avoid this possibility, we introduce the following modification. Define
pe=(1/2)e, g=0, 1, 2,. ., and set A k’J to be the first number in the sequence
that satisfies

(2.3) f’(pe)<-O.

Of course, if N is empty, or f’(0)= 0, then A k.j is set to zero.
THEOREM 1. The above column relaxation method is well defined. The sequence

{F(xk’)} is monotone decreasing, limk_, IA k’ 0 forj 1,.’., n, and any cluster point
of the sequence {xk’}, if it exists, solves (1.1).

Proof The special structure of f(A) implies that it has a unique minimizer, say
3.*. Assume for simplicity that f’(0) <0. Then A*>0 and f’(A)-<0 for all 0=<A =<A*.
These properties ensure that the bisection process terminates in a finite number of
steps at a point that satisfies

(2.4) f(0) >f(A k’).
Hence the relation

(2.5) (F(xk’J)) p (f(xk,j+l)) p f(0) -f(A k.j)
indicates that the sequences {(F(xk’J)) p} and {F(xk’)} are monotone decreasing.
Therefore, since these sequences are bounded below by zero, the difference (2.5) tends
to zero as k increases. Also, f"(A) satisfies the inequalities

O<--T"(A)=P(P -1) E ce2i[Acei+[3il p-2
i Ni

<=p(p-1)a E IAce/+flilp-2
iNj

(2.6) <= p(p 1)au{.max [Aai +/3i1} P-
N

_-<p(p- 1)au 2 I+1
<--_ p(p 1)au(f(A))<P-2)/P
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where a =max{a/21i c N} and v denotes the number of nonzero elements in cj (i.e.,
v is the number of elements in N). Furthermore, since f(A) is monotone decreasing
in the interval [0, A*],

(2.7) 0 =<f"(X --<_ p(p 1)av(f(O)) p-z)/p.

Also, since (f(O)) /p cannot exceed F(x’), the constant

(2.8) y=p(p- 1)av(F(xl’l)) p-2

satisfies

(2.9) f"(h) =< y
for all 0-<_ h <_-h*. The last bound implies that the quadratic function

(2.10) b(a =f(O)+ af’(0) + (1/2) yA 2

satisfies

(2.11) f(X)--< b(A)

for all 0<_-a _-<a*. Let r/= -f’(O)/y denote the minimizer of b(A); then r/satisfies the
inequalities r/_-< A*, r/_-< , and r//2-<_ A ’J. (The last inequality is based on the assump-
tion that w->_ 1. If 0< w < 1, then y should be replaced by y/w.) Recall also that
A’ _-< A*. Hence the inequalities

imply

(2.13)

or

(2.14) (F(x’J)) p (F(x’J+’)) p -> ()(f’(0))2/y.

Consequently, If’(0)l tends to zero as k increases.
Our next task is to show that A kO tends to zero as k increases. Assume for simplicity

that N {1, 2,. , v} and let the vectors u (Ul,. , u)r and v (vl,. , v) r be
defined by the rules u wa and v /a. Then

(2.15) -urv/((p 1)[u[[,)
while the H61der inequality implies

(2.16) [1 [[v[[.
From this point, the proof continues by contradiction. Assume that there exists a
subsequence of {h ’} and a positive constant, say, 8 > 0, for which the inequality
6 < Ih ko[ holds. Defining

(2.17)

and

(2.18)

we then have that (2.16) implies

(2.19)

amin min {la/I Ii Nj}

jmax max {If,l N},

tto -1 Omin flmax
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and

2 2

(2.20)
f"(O)>-p(p 1) IilP-20min---Pmx20min

iENj

(ttO--10min) P--20:2min O Pmint P--2002--P"

That is, f"(0) exceeds a certain positive constant. Therefore, since f’(0) tends to zero,
also tends to zero, which contradicts the assumption that to. => A k,j > 3.
Now that we have proved that both f’(0) and A k’j tend to zero, the continuity of

the first derivatives of F(x) indicates that the gradient vector of F(x) vanishes at any
accumulation point of the sequence {x’J}. Recall also that F(x) is a convex twice-
continuously differentiable function. Therefore, any point at which the gradient vector
vanishes is a minimizer of F(x). l-1

COROLLARY. If F(x) is strictly convex (i.e., the columns ofA are linearly indepen-
dent), it has a unique minimizer and the sequence {xk’j} converges to this point.

3. Column relaxation for l<p<2. In this case, the objective function to be
minimized is the HAP function. The proof of (1.12) is based on the following
inequalities"

} 1/p

F(x) -< H(x) Y [(lafx-b,[ + e2)l/2]P
i=1

-< 2 Elax-b,l+e]
i=1

(3.1)

i=1 i=1

=F(x)+ml/pe

where the last inequality is the Minkowski inequality. It is also easy to verify that the
HAP function is convex, and strictly convex if and only if the columns of A are linearly
independent. The advantage of using H(x) instead of F(x) is that for fixed e > 0, H(x)
has continuous second derivatives that are uniformly bounded in R n. The extension
of the column relaxation method to minimize H(x) is straightforward. Here the one
parameter function f(A) is replaced by

(3.2) h(A) Y. [(a,A + fl,)2 + e2]P/
iENj

where N, ai, and fli are the same as before. Consequently,

(3.3)

and

(3.4)

h’(A)=p L ai(a,A +fl,)E(a,A + fli)2+ e]-2-p)/2

iNj

h"(A)=p y,(A)a2[(aiA + fl,)2+e2]--P/2
iNj

where

(3.5)

The Gauss-Seidel steplength is

(3.6)

3,,(A) 1-(2-p)(aiA + fl,)2/[(aA + fl,)z+ e2].

h’(0)
h"(0)’
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and h k,j is the first number in the sequence

(3.7) Pe (1/2)%o., = O, 1, 2,...

that satisfies

(3.8) h’(pe)<=O.

THEOREM 2. The above column relaxation method is well defined. The sequence
{H(xk’J)} is monotone decreasing, limk_ ]h k,j[ 0 forj 1,. , n, and any cluster point
ofthe sequence {xkd} is a minimizer ofH(x). Furthermore, if the columns ofA are linearly
independent, H(x) has a unique minimizer and the sequence {xkd} converges to this point.

The proof of these results is similar to that of Theorem 1. In fact, it is somewhat
simpler since the bounds

(3.9) p- 1_<- y(A)-_< 1

and

(3.10) 0 <- h"(h <-- pt,ae
p-

hold for all

4. Column relaxation for g least norm problems. In this case

(4.1) f(h
iN

and any minimizer of f(h) lies at one of the "breakpoints"

(4.2) hi ---, i N.o

Therefore we define

(4.3)

where

(4.4) f()te) min {f(h,) }.
(If the minimizer is not unique, we choose the smallest one.)

THZORZM 3. The sequence {x’J} that is generated by the above column relaxation
method always converges. However, it may converge to a nonoptimal point.

Proof Assume for simplicity that/V {1, 2, , ,} and , _-< ,2_-<. -< . Then

(4.5) if(h)= 2 ai sign
iNj

has a constant value at each of the open intervals (A, A+), i=0, 1,..., ,, where
Ao=- and A+I =. It therefore follows that if(A) can obtain a finite number of
values, regardless of the choice of fl, i N. Hence, there exists a positive constant,
say 6, such that f’(h) 0 implies [f’(h)[> 6. It is also possible to assume that 1 k’j > O.
In this case, f(h) is strictly decreasing in the interval [0, h k’j] and

(4.6) f’(A) =<-6

for any point A # , in this interval. The last inequality yields

(4.7) f(0) -f(h kd) __> 61
Hence the relations

(4.8) F(xkd) F(xd+’ =f(0) -f(X kd)
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and

q

(xk,J+1(4.9) F(xl’l)- F(xq+l’l) F(xkJ) F
k=lj=l

imply the convergence of the series

(4.10)
k= .j=

which means that {Xk’j} also converges.
The following example illustrates that the sequence {xk’J may stick at a nonoptimal

point: Consider the system 2x+2y =0 and x-y =0, whose unique solution is the
origin point. Yet the above algorithm is not able to move out of the point (-1, 1), or
any other point of the form (-(R), O) where O

A simple remedy that enables us to overcome the above difficulty is to minimize
the HAP function instead of F(x). Note that here

(4.11) H(x)= E [(afx-b,):Z+e:Z]
i=l

(4.12) h(A) E [(aA + fl,) + e2] ’/,
iN

(4.13) h’(A)= E a,(aA +/3,)/[(aA +/3,)2+e]/2,
iN

(4.14) h"(A) =e E a2i/[(aiA+fl,)2+e2]3/:z.
iN

The structure of h"(,) indicates that it is bounded above by (N a)/e. Also, by
repeating the arguments mentioned in the proof of Theorem 1, it is easy to show that
h"(A) is bounded from below by a certain multiple of H(x’), in the interval [0, A*].
Consequently, Theorem 2 remains true in this case. Of course, once a minimizer of
the HAP function is identified, it can be refined by the method of this section. However,
as Theorem 3 indicates, there is no guarantee that this will result in an e solution.

5. Column relaxation for o least norm problems. In this case

(5.1) f(h max Oi/ -- ji["
iN

Thus, as for p 1, it is a convex piecewise linear function whose minimizer lies at one
of its breakpoints. Hence, h ’ is defined to be a minimizer off(A). The search for the
minimizer starts by checking whether the origin itself is a minimizer. If not, we move
to the closest breakpoint that decreases f(h). If this point is not optimal, we move to
the next closest breakpoint that decreases f(h). In this way, the search proceeds from
one breakpoint to the next until a minimizer is found. The details of the method are
left to the reader. (A similar line-search algorithm is described in Bartels, Corm, and
Charalambous [1] in the context of dense e problems.)

THEOREM 4. The sequence {x k’j} that is generated by the above column relaxation
method always converges. However, it may converge to a nonoptimal point.

The proof of Theorem 4 is similar to that of Theorem3. Here inequality (4.6) is
replaced by

(5.2) [f’(h)l >- min
iNj
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which proves the first claim. The second claim is proved by considering the system
2x-y 2 and -x +2y 2, whose unique solution is x =y--2. In this example, the
algorithm is not able to move out of the origin point.

Here again there is a simple way to overcome the above difficulty. Let x(p) and
x() denote solutions of (1.1) when 1-<_ p < and p , respectively. Then it can be
shown that

(5.3) Ilmx<’)-bll,-
and

(5.4) lim IIAx<"-bll, IIAx<-blloo.
p-->

Moreover, if the columns of A are linearly independent, then

(5.5) lim x(p) x().
p-->

Thus, for large values of p, x(p is a good substitute for x( (see Cheney [5, p. 43]).
In practice, it is sufficient to estimate x(p) for a moderate value of p (e.g., p 10),
using the method of 2. Then, at the second stage, the resulting estimate can be refined
by the method of this section. However, as Theorem 4 indicates, there is no guarantee
that this will result in an { solution.

6. Further remarks. We will start with a few words on the choice of an initial
point. The column relaxation methods that are described in 2 and 3 are based on
a second-order Taylor expansion of the objective function. The relationship of these
methods to the SOR method indicates that near a minimizer the rate of convergence
is expected to be linear. On the other hand, far from a minimizer, the Taylor expansion
is of limited value and the methods are expected to show slow progress. An exception
to this rule occurs when p-2. In this case, the column relaxation iteration (1.8)
coincides with the SOR iteration for solving (1.7) and, consequently, has a linear rate
of convergence. Recall also that the basic properties of vector norms imply that x
is likely to provide a reasonable starting point. Therefore, if a better initial guess is
not available, it is recommended to start the minimization process with a few iterations
of the column relaxation method for solving the least squares problem

(6.1) minimize Ax b I[.
If the starting point x(’) is far from x(2), the SOR method may require many

iterations to reach X(2). (The same is true whenever Ilx( , >ll is much larger than []x(2)[[.)
Fortunately, there is a simple scaling process that enables us to overcome this deficiency.
The scaling operation takes place at the end of an SOR iteration. Let x denote the
current point and let r-Ax-b denote the corresponding residual vector. Then the
one-parameter function

(6.2) if(O) IIA(Ox)-bl[2
has a unique minimizer at the point

(6.3) ) (r+ b) ’b/(r+ b) r(r+ b).

Thus, changing x to Ox is likely’ to reduce the objective function value. Note that the
corresponding change in r is (19-1)(r+b).

As p increases, the nonlinearity of F(x) increases and the convergence of the
column relaxation method is expected to slow down. Hence if p is much larger than
two, it may be advantageous to approach the solution gradually. That is, the problem
(1.1) is solved a few times, each time with an increasing value of p, and the solution
of one problem serves as a starting point for the next problem.
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A similar remark applies to the HAP function. In using this function to solve
multifacility location problems, it has been observed that the larger the value of e the
faster the convergence. Consequently, it is recommended to start with a relatively large
value of e, and to reduce this value successively (see Eyster, White, and Wierwille
[12]). In our case, the initial value of e need not be larger than [[r[[1/m, whereas the
final value need not be smaller than [[r[[ /(lOOm), where r denotes the current residual
vector. Observe also that if p 1 and e is much smaller than [[r[[/m, then the initial
steplength of the line search can be much larger than necessary.

The theory of the nonlinear SOR method suggests that a well-tuned scheme should
run faster than the Gauss-Seidel scheme. However, in practice, the computation of an
optimal relaxation parameter is not an easy task, since neither the solution point nor
the corresponding second derivatives matrix are known in advance. (Recall also that
A is assumed to be a sparse, unstructured matrix.) Thus, in many problems, the only
practical way to improve the relaxation parameter to is by performing repeated runs
with various values of to. On the other hand, the relation between the column relaxation
method and the method that changes one variable at a time suggests another acceleration
technique. The experience that has been gained in solving small problems indicates
that lines that join successive iterants are likely to provide good descent directions
(see Fletcher, [13, p. 15]). Hence the basic algorithm can be modified by performing
an extra line search every few iterations. In this way, the iterations of the modified
algorithm are divided into "cycles," where each cycle is composed of a fixed number,
say c, of iterations. Let the n-vectors x() and x() denote the current solutions at the
beginning and the end of such a cycle. Then the starting point for the next cycle is
defined as x()+O(x()-x()), where estimates a minimizer of the one-parameter
function

(6.4) $(0)-- F(x(2) + (}(x(2) x(1))).
The usefulness of this technique in solving large minimization problems is illus-

trated by Dax in [7] and [8]. It is noted there that the modified algorithm can be
viewed as a truncated Newton method that uses a fixed number of SOR iterations to
solve the Newton equation. In our case, q(O) has the form

$(0) ]]A(x2) + 0(x2)-x)))-hi] p

(6.5) []Oa(x2)-xl))+ r2)]] p

where r) and r) denote the corresponding residual vectors. Hence the calculation of
19 needs no matrix-vector product. However, since the vector rZ)-r) may have many
nonzero components, this process requires special consideration.

There are many large scale gp problems in which the objective function is associated
with some grid or mesh in R, k 1, 2, or 3 (e.g., Examples 2 and 3 of 7). This
suggests the use of acceleration techniques that are based on a variable mesh size. One
such technique is the well-known multigrid method (e.g., Brandt [3]). A less sophisti-
cated technique is the Successive Mesh Refinement Method, in which we gradually
increase the size of the mesh, using the solution on one mesh as a starting point for
the next (finer) mesh. (The usefulness of this idea is illustrated by Dax [7], who used
it to accelerate the nonlinear Gauss-Seidel method.) It is also worthwhile to note that
the proposed methods are easily modified to allow simple bounds on the variables.
This can be done by following the ideas of Cryer [6].

The next section describes numerical experiments with the methods proposed in
the previous sections. However, as this is an initial work on relaxation methods for
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solving {p problems with p 2, these experiments were carried out without testing the
above ideas.

7. Numerical results. To illustrate the practical usefulness of the proposed
methods, we have designed two algorithms; one solves the tl least norm problem, and
the other solves the g least norm problem. The first algorithm is composed of three
stages. The first stage performs 10 iterations of the Gauss-Seidel method for solving
(6.1). The second stage performs 10 iterations of the column relaxation method for
minimizing the HAP function (4.11). The third stage performs 10 iterations of the
method described in the beginning of 4.

The second algorithm, which is designed to solve the t’ least norm problem, is
also composed of three stages. The first is the same as above. The second stage performs
10 iterations of the method described in 2, using p 10. The third stage performs 10
iterations of the method described in the beginning of 5.

Note that both algorithms are heuristic in the sense that the third stage may yield
a nonoptimal point. It was found sufficient to limit the number of iterations performed
at each stage to 10, since increasing the number of iterations did not result in a
substantial improvement in the final value of the objective function. Also, for the same
reason, there was no need to use a larger value for p. The initial value of e was IIr[I /m,
where r denotes the residual vector at the end of the first stage. The value of e was
halved every two iterations.

Both algorithms were programmed in FORTRAN, using single precision arith-
metic. The first two examples were run on a CDC CYBER 170-855 computer, whereas
the third example was run on an IBM personal computer.

The results of our experiments are given in Tables 1-6. The figures in these tables
provide the values of Ilax-blll, IIAx-bll=, IIAx-bllo, and Ilax-bll at the end of
each stage. (The starting point is referred to as Stage 0.) The type of the objective
function that is minimized at each stage appears under the heading "Type."

Example 1. Random test problems. In this example, m 2,000 and n 1,000. The
components of b are random numbers from the interval [-1, 1]. The locations and the
values of the nonzero elements of A are defined in the following way. As before, we
use a/r to denote the ith row of A, and/x to denote the number of nonzero elements
in ai, 1, , m. Then /i is a random number from the set { 1, 2, 3, 4, 5}. Similarly,
the locations of the nonzero elements of a are (distinct) random numbers from the
set {1, 2, , n}, whereas the values of these elements are random numbers from the
interval [-1,000, 1,000]. (All the random number generators are of uniform distribu-
tion.) The starting point is (1, 1,. ., 1) , which is a poor initial guess. Hence the
convergence of the Gauss-Seidel process was accelerated by applying the scaling (6.3).
The results are given in Tables 1-2.

Example 2. The calculation ofa linear spline. This example considers the following
data-fitting (or data-compressing) problem. Suppose that we have m data pairs
{(Pi, bi)}, i-- 1,’’., m, of real numbers and we assume they have been sorted so that

Pl =<P2 =<" --<P,. The data points {p} lie in a given interval [a, fl], whereas the data
observations {b} denote the corresponding values of a real function (e.g., a physical
phenomenon) at these points. It is desired to fit the data by a continuous function
s(p), whose representation reduces the storage needed to represent the data.

Probably the simplest way to achieve this task is to construct a continuous piecewise
linear function with given breakpoints

Let the vector of unknowns x (x, x, , x.) " denote the corresponding values
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TABLE
The gl solution of a random test problem.

Stage Type

0

2 HAP
3 g

1,571,667.79 44,792.14 4,271.666
642.24 18.07 1.296
562.17 20.97 2.288
558.88 20.23 2.293

TABLE 2
The solution of a random test problem.

Stage Type

0

2
3

1,571,667.79 44,792.14
642.24 18.07
816.12 20.40
977.89 24.50

1.576
1.310

4,271.666
1.296
1.008
0.898

TABLE 3
The g calculation of a line spline.

Stage Type

0

2 HAP
3 4

13,706.313 397.451 23.4639
9.181 0.316 0.0429
8.735 0.335 0.0518
8.718 0.337 0.0515

TABLE 4
The calculation of a line spline.

Stage Type

0

2 go
3

13,706.313 397.451
9.181 0.316
10.473 0.337
11.942 0.367

0.0453
0.0370

23.4639
0.0429
0.0298
0.0297

TABLE 5
The calculation of a spline surface.

Stage Type

0

2 HAP
3 gl

164.917 24.340 8.782
17.690 2.528 0.858
17.422 2.503 0.933
15.818 2.790 1.035

TABLE 6
The calculation of a spline surface.

Stage Type

0

2 go
3 g

164.917 24.340
17.690 2.528
22.636 2.819
23.570 2.903

0.874
0.692

8.782
0.858
0.594
0.589
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of s(p) at these points. Then for a given point p [c,/3], the value of s(p) is defined
by

s(p) (1 -(R))xj + Oxj+l

where j is an index such that rb_-<p_-< rb+ and (R) (p- rb)/(rb+- rb). It is possible
to obtain values {x} by solving a least norm problem

min Y [s(pi)-bi[ p.
i=1

In the current example m 2,000 and the data points are random numbers from
the interval [0,10]. The observation points are defined by the rule bi
exp (,-)sin (3pi). The data interval was evenly partitioned into 200 subintervals, so
that n 201, and rb (j 1)0.05, j 1, , n. The starting point is 0 (0, 0, , 0)T

Nn. The results are presented in Tables 3-4.
Example 3. Fitting a spline surface to scattered data. This example considers the

calculation of a two-dimensional line spline. Here, we are given rn triplets of data
(xi, Yi, zi), i= 1,..., m, where the datapoints, (xi, yi), are scattered arbitrarily inside
a rectangle, say R, in the (x, y) plane. The data observations, zi, denote the height of
an unknown "surface," say f(x, y), at the datapoints. The rectangle R is divided into
a rectangular mesh of points, and we wish to estimate the surface height at these points.
This problem arises in many applications. For example, there are algorithms for plotting
contour maps and three-dimensional "fishnet" surface maps that consist of two stages.
The first stage calculates the surface height on a rectangular mesh, whereas the second
stage draws the contours or the "fishnet."

Assume that R a, b] x c, d and let the intervals a, b] and c, d be partitioned
by the points

and

a r/ < r/2 <" < r/, b

C=O"i<cr2<" "<o"t=d,

respectively. Then the points (r/i, %) form a rectangular grid that partitions R into
(s-1) x (t-1) subrectangles. We will use Ri to denote the (i,j) subrectangle. That is,

Ri {(x, y)[ ri-< x -< r/+ and rj =< y -<_ o3+1}.
Iff(x, y) is evaluated by a two-dimensional line spline, say S(x, y), then the value

of S at a point (x, y)e R0 is given by the formula

S(X, y)= St..iv -1
I- Si+I,jV2 ’- Si,j+lV + Si+l,j+lV4

where Sj S(r/, rj) denotes the value of S(x, y) at the (i,j) gridpoint, and ve re(x, y),
g= 1, 2, 3, 4, denote the values of the corresponding "basis functions" at the point
(x, y). Defining

i )i(x) (X-- ,.)/(..+.-

4’ 6 x y rj / rj+ r
then

Vl (1- qbi)(1- bj),

V4 (1 i)lj
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(see any textbook on finite-element methods). The residual vector r= (rl,"" ", r,)T
whose norm we wish to minimize is defined by the relation

rk S(xk, y)- z, k 1,. ., m.

Therefore, since S(Xk, Yk) is a linear combination of the unknown values {Sij}, the
problem has the form (1.1) where A has m rows and n s. columns. The kth row of
A refers to the kth datapoint and contains only four nonzero elements, which are
essentially the corresponding coefficients re, 1, 2, 3, 4. In minimizing the objective
function as a function of Sij, it is necessary to know only the datapoints that lie in the
"neighboring" subrectangles. Hence, here it is advantageous to order the data such
that all the points that lie in the same subrectangle are grouped together, using a simple
key that enables us to find the location of these points.

In the current example rn 2,000, and the datapoints are randomly spaced in the
square region

R {(x, y) -5 _-< x -<_ 5, -5_-<y=<5}.
The surface height at the point (x, y) is

zk 10 sin (x) sin (y).

The region R was evenly spaced into 20 rows and 10 columns of subsquares. That is,

r/i -1 + (i- 1)0.5, i= 1,... ,21,

o) =-l+(j- 1)0.5, j 1,..., 21.

Consequently, the problem has 441 unknowns, Sij, which are the values of the spline
surface at the points (7, 5). The initial value of S is the average of all the data
values, z, such that (x, yk) lies in a "neighboring" subsquare. The results are given
in Tables 5-6.

8. Concluding remarks. The results of our experiments illustrate the ability of the
proposed methods to handle large 1 and problems. Starting from an arbitrary
point, the algorithm calculated a good estimate of the solution within a few iterations.
The new method is simple and robust, it requires a minimal amount of computer
storage, and the computational effort per iteration is small.
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QR FACTORIZATION OF A DENSE MATRIX ON A HYPERCUBE
MULTIPROCESSOR*

ELEANOR CHUt AND ALAN GEORGE$

Abstract. In this article a new algorithm for computing the QR factorization of a rectangular
matrix on a hypercube multiprocessor is described. The hypercube network is configured as a
two-dimensional subcube-grid in the proposed scheme. A global communication scheme that uses
redundant computation to maintain data proximity is employed, and the mapping strategy is such
that for a fixed number of processors the processor idle time is small and either constant or grows
linearly with the dimension of the matrix. A complexity analysis shows what the aspect ratio of the
configured grid should be in terms of the shape of the matrix and the relative speeds of communication
and computation. Numerical experiments performed on an Intel Hypercube multiprocessor support
the theoretical results.

Key words. QR factorization, parallel computation, hypercube multiprocessors

AMS(MOS) subject classifications. 65F05, 65F50, 68R10

1. Introduction. In this article we present an algorithm for reducing an m n
matrix to upper triangular form using orthogonal transformations on a hypercube
multiprocessor. The hypercube network is configured as a two-dimensional subcube-
grid in the proposed scheme. A subcube-grid is not a mesh-connected processor array.
Although a 1 2 subcube-grid has /1 processors in each column and 2 processors
in each row, the neighboring processors in the grid may or may not be physically
connected; instead, each row and each column of processors are required to form a
hypercube of smaller dimension, which is a subcube. The apparent difference between
the two is illustrated by an example in Fig. 1, where each processor is denoted by a
"o" and each physical communication channel is represented by a solid line between
two processors. The diagram on the left in Fig. 1 shows a 4 4 subcube-grid and
the diagram on the right shows a 4 4 mesh-connected processor array. More details
on the subcube-grid configuration and its advantage are presented after we introduce
the hypercube network in 2.

For easy exposition, we first describe a special case of the algorithm in order to
explain some basic strategies for data mapping and interprocessor communication on
the hypercube. We refer to the special case as Algorithm I, and the general algorithm
as Algorithm II. Finally we propose further enhancement to reduce both arithmetic
and communication costs of Algorithm II. This version of the algorithm will be referred
to as the enhanced Algorithm II.

Algorithms I and II are based on Givens rotations. The use of Givens transforma-
tions has been widely studied in the literature for parallel implementation on systolic
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FIG. 1. A 4 x 4 subcube-grid versus a 4 x 4 mesh-connected processor array.

arrays [1], [2], [11], [14], [18], SIMD computers [19], shared-memory multiprocessors
[5], [6], [8], [la], [15], and hypercube multiprocessors [3], [9], [16], [17]. When m >_ n,
the mathematical computation we consider is usually formulated as

0

where A is an re x n matrix with full column rank, Q is an m x re orthogonal matrix,
and R is an upper riangular matrix of order n. When m < n, we have

QA (R S)

where A is an m x n matrix with full row rank, Q is as defined above, R is an upper
triangular matrix of order m, and S is an m x (n- m) rectangular matrix. The
matrix Q is formed as the product of Givens rotations such that the elements of A
below the main diagonal are annihilated one at a time. Since there is much freedom
in the order of applying the Givens rotations, the elements of A can be eliminated by
many different orderings. The independent (or disjoint) rotations induced by a partic-
ular ordering can be computed simultaneously provided there are enough processors
available. While the number of independent rotations increases with the problem size
and changes during the factorization process, the number of processors on a parallel
computer is fixed. Therefore, the independent rotations must be statically or dynam-
ically allocated to the processors in some way. The choice of a different ordering and
the particular strategy of assigning independent rotations to processors give rise to
different parallel algorithms.

There are five parallel Givens algorithms proposed in [3], [9], [16], and [17] for
hypercube implementation. They are all based on "Givens sequences," which are
sequences of Givens rotations where zeros once created are preserved. The two new
parallel algorithms proposed in this paper can be viewed as different implementa-
tions of a particular Givens sequence on the hypercube. Both algorithms take full
advantage of the hypercube topology and require only nearest-neighbor communica-
tion. They differ from the algorithms in [3], [9], [16], and [17] in communication
schemes, data mapping schemes, arithmetic/communication complexities, and work
load distribution.

An outline of this paper is as follows. In 2, we introduce the communication
network and the subcube-grid configuration of a hypercube multiprocessor. In 3,
Algorithm I is described and examined in detail. Section 4 contains the performance
analysis of Algorithm I. Algorithm II and its performance analysis are presented
next in 5 and 6. In 7, we report extensive numerical experiments and further
enhancements to Algorithm II. Section 8 contains our concluding remarks.



992 ELEANOR CHU AND ALAN GEORGE

2. Hypercube multiprocessors. There are 2d identical node processors in
a hypercube multiprocessor of dimension d. Each processor is uniquely identified
by an integer in {0, 1,2,... ,2d 1}. If we represent each processor id in the set
{0, 1,2,..., 2d- 1} by a d-bit binary string, bd-lbd-2"" bo, then the hypercube net-
work is constructed by physically connecting each pair of processors whose id’s differ
in one single bit bi, 0 _< _< (d- 1). Figure 2 illustrates the binary hypercube
topologies of dimension d 1, 2, and 3.

lO ii ..711o Iii

i i
oo Ol ooo OOl

d=l d=2 d=3

FIG. 2. Binary hypercubes o] dimension 1, 2, and 3.

When the node processors on a local-memory multiprocessor cooperate with each
other to solve a problem, they need to communicate data or synchronization infor-
mation with each other by exchanging messages. Since the cost of communication
increases with the number of messages, the length of each message, and the length
of the path each message traverses, it is desirable to aim at reducing all of them in
devising parallel algorithms.

2.1. The subcube-grid configurations. Algorithm II makes use of a 1
"2 subcube-grid configuration to reduce both arithmetic and communication cost.
The objective of this configuration is to map the 2d processors of a hypercube to
a rectangular grid so that the processors in each column or each row of the grid
form a subcube. Algorithm I is the special case of Algorithm II when 1 24 and
"2 1, which is dealt with separately to help present the basic ideas more clearly.
We emphasize that the description, analysis, and implementation of Algorithm II are
general, and they apply to all possible choices of and 2 for the subcube-grid,
including the choice of Algorithm I.

If we let d dl + d2, ’1 241, and 2 2d then a ’1 x /2 subcube-grid may be
configured by requiring that the id’s of the processors in the same row differ in only
the rightmost d2 bits, and that the id’s of the processors in the same column differ
in only the leftmost d bits. This configuration corresponds to mapping processors to
the " "2 grid row by row or column by column following the natural order of their
processor id. Figure 3 displays a 4 4 subcube-grid consisting of 16 processors, and
Fig. 4 displays an 8 4 subcube-grid consisting of 32 processors.

2.2. The communication algorithm. The communication algorithm we shall
propose may be viewed as a variant of the subcube-doubling technique, which allows
each processor to exchange a (probably different) message with all of its d neighbors
after d communication steps. Using a hypercube of dimension d 3, we illustrate
in Fig. 5 the d communication steps in the basic subcube-doubling algorithm. To
accomplish the d exchanges, each processor pairs with another processor whose id
is different in bit b_, I d, d- 1,..., 1. For example, processor P0 accomplishes
the 3 exchanges by communicating with processors P4, P2, and P1 sequentially. The
processor id’s of the latter three processors are 100, 010, and 001, respectively. During
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0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

FIG. 3. The configuration of a 4 4 subcube-grid.

00000 00001 00010 00011 Po P1 P2 P3

00100 00101 00110 00111 P4 P5 P6 P7

01000 01001 01010 01011 P8 P9 P10 PI
01100 01101 01110 01111 P2 P3 P4 P15

10000 10001 10010 10011 PI6 PIT Ps P9

10100 10101 10110 10111 P20 P21 P22 P23

11000 11001 11010 11011 P24 P25 P26 P27

11100 11101 11110 11111 P2s P9 P30 P3

FIG. 4. The configuration of an 8 x 4 subcube-grid.

each communication step, the 2d-1 pairs of processors exchange data concurrently
using 2d-1 disjoint channels.

The basic subcube-doubling communication algorithm may be described for a
d-dimension hypercube as below.

d
while l > 0 do

send (my message) to processor with id different
from my id in bit b_l.

receive a message
update (my message) as instructed by each different algorithm
-1

Since each column and each row of processors in a 71 x 72 subcube-grid are
hypercubes of dimensions dl and d2, the communication scheme as described above
may be employed within each column and each row of processors if we initialize
’Y dl" and ’Y d2," respectively.

Different communication algorithms may also be built on top of the basic subcube-
doubling scheme by employing a variety of strategies in updating the message to be
forwarded to the next neighbor. For example, in some cases, "my message" may be
simply overwritten by the message received after each exchange; in other cases, "my
message" may be updated by the result of more sophisticated computation combining
itself with the data received.

In this article we show how redundant update performed by otherwise idle pro-
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FIG. 5. The d communication steps in the subcube-doubling algorithm (d 3).

cessors can maintain data proximity so that the same communication pattern may
be followed by all processors throughout the computation. (By redundant update
we mean that multiple processors perform the same computation on the same set of
data and produce redundant results.) This paradigm is used in both algorithms we
present in this paper. In addition, we show in the second algorithm how the aspect
ratio of the subcube-grid may be chosen to reduce the computational cost as well as
the communication cost of the parallel algorithm.

3. Algorithm I. The first algorithm we propose is based on the Givens sequence
illustrated in Fig 6 by a 16 8 matrix. That is, the nonzero elements below the main
diagonal of an m-by-n matrix are eliminated column by column in the order indicated
in Fig. 6, where the (i, k) entries to be zeroed in the kth elimination stage are labeled
by the integer k. In the parallel algorithm, the p processors cooperate to annihilate
the m- k nonzero elements in column k during the kth elimination stage. If a Givens
rotation is applied to the ith row and the jth row to annihilate the leading nonzero

aj,k in the jth row, then row is referred to as the "pivot row."
As usual with parallel algorithms, we would like to achieve a balanced distribution

of work load and a low volume of data movement and communication. A uniform work
load distribution and a low communication cost contribute directly to the speedup,
which is the ultimate goal of a concurrent algorithm.

3.1. Data mapping strategy. Since there is no globally shared memory in the
hypercube, the data must be distributed among the processing nodes in some way,
typically by rows if the computation is row oriented, or by columns if the computation
is column oriented. In either case, there is a decision to be made concerning the way
in which the rows or columns are mapped onto the processors. For example, given an
m-by-n matrix A and p processors Po, P1, P2, ", Pp-, block mapping may be used,
where the first m/p rows (or nip columns) are assigned to processor P0, the next
m/p rows (or nip columns) are assigned to processor P, and so on. Alternatively,
wrap mapping may be used, where consecutive rows (or columns) are assigned to
consecutive processors, with assignment "wrapping around" to processor P0 after a
row (or column) is assigned to processor Pp_.
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x x x x x x x x
1 x x x x x x x I,

1 2 x x x x x x
1 2 3 x x x x x
1 2 3 4 x x x x
1 2 3 4 5 x x x
1 2 3 4 5 6 x x
1 2 3 4 5 6 7 x
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
12345678]

FIG. 6. Column-by-column Givens sequence.

Discussion about various mapping strategies for matrix computations can be
found in [7], [10], and [12]. For our purpose, it suffices to observe that if block
mapping is used to assign rows or columns of A to the p processors, then processor
P0 will become idle when the first m/p rows or the first nip columns of A do not
need to be modified any more. The other p- 1 processors could become idle one after
another subsequently for the same reason. On the other hand, the rationale behind
the wrap mapping is to assign the data to the p processors in such a manner that
every processor will be doing approximately the same amount of computation and
communication throughout the entire process except for the last p steps. Although
the p processors will become idle one after another in the last p steps, the idle time
so incurred will not be significant if the work involved for each of these p steps is only
a tiny fraction of the total work.

For Algorithm I, we allocate the m rows to the p processors using a wrap mapping.
Although wrap mapping is not essential for the correctness of the algorithms we pro-
pose, it is important for efficiency because the latter depends very much on whether a
balanced work load distribution can be maintained throughout the computing process.
Figure 7 illustrates the wrap mapping of 16 rows to four processors.

3.2. The algorithm. For a given rn n matrix, Algorithm I has n stages, each
stage consisting of nine steps. The nine steps of the kth stage are devised to annihilate
the m- k nonzero elements in locations (k / 1, k), (k / 2, k), ..., and (m, k). Steps
1 9 of the kth stage of the algorithm can be divided into two distinct phases, namely
an Independent Annihilation Phase (IAP) and a Cooperative Merging Phase (CMP).
The IAP corresponds to Step 1, where each processor operates on its assigned data
without communicating with other processors in the network. The CMP corresponds
to Steps 2 9, where it is necessary for each processor to exchange data with its
d neighbors if a hypercube of dimension d is employed. To follow the step-by-step
description, it is helpful to explicitly relate Steps 2 9 to the underlining subcube-
doubling communication scheme as below.

/ d (Step 2)
while / > 0 do

send (my message) to processor with id different
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from my id in bit b-l. (Step 3)
receive a message (Step 3)
update (my message) as instructed. (Steps 4, 5)
l ,-- l- 1 (Step 6)

The complete algorithm includes Steps 8 and 9 because actions different from Steps
4 and 5 must be taken when / 1. Since Step 3 is identical for all n elimination
stages, the same communication pattern is maintained by all processors throughout
the computation. This is made possible by the new updating process described in
detail in Steps 4, 5, and 9.

From our description of Steps 2- 9 below, it will become apparent that in the
CMP of the kth stage, the data to be exchanged between each pair of processors always
consist of (n- k + 1) floating-point numbers. It also turns out that the amount of
computation performed by each processor after each exchange of data is the same.

We now describe the steps for the kth stage. An example is used along the way
to help explain each of the nine steps. After the details for the kth stage are given, we
shall use an example to demonstrate how the entire algorithm works and summarize
the features of the communication algorithm we propose.

Step 1 (IAP) Among all of the rows with row number _> k, each processor uses
the lowest numbered row as the pivot row to eliminate all of the off-diagonal
nonzero elements in the kth column of its remaining rows by Givens rotations.
Using the example in Fig. 7, the action of processor P0 in the first elimination
stage is illustrated in Fig. 8. The leading nonzeros in rows 5, 9, and 13 are
annihilated by applying Givens rotations sequentially to the three pairs of
rows, namely, {row 1, row 5}, {row 1, row 9}, and {row 1, row 13}.
Therefore, no communication is needed in the IAP. At the end of this step,
every processor has one row with a nonzero in the kth column. We shall refer
to this row as the "local pivot row." The (i, k) nonzero entries in these local
pivot rows (except for element (k,k)) are to be annihilated at Steps 2 9
in the CMP. Figure 9 displays the remaining nonzero elements at the end of
Step 1 for a 16 8 example when p 4 and k 1. The elements of each local
pivot row are marked by its assigned processor Pi, 0 _< _< 3. The entries
(2, 1), (3, 1), and (4, 1) are to be zeroed in the CMP.

Step 2 (CMP) - d, where d is the dimension of the hypercube.
Step 3 (CMP) Every processor sends its current local pivot row to the processor

whose id differs in bit b_l. It also receives a row from the other processor.
For the example in Fig. 9, when k 1, l d 2, rows 1 and 3 are thereby
made available to both P0 and P2, and rows 2 and 4 are thereby made available
to both P and P3 at the end of this step. We shall denote this pair of rows
as pl,. and p,., where p and/92 are their respective row numbers in the
matrix A, and p < p2.

Step 4 (CMP) Each processor computes a Givens rotation to eliminate the element
p2,k by executing the following algorithm.

if then

Sp,k - 1/1 + t
Cp2,k 8p,k X t

else
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cp, 1//1 + t2
8p2,k -- Cp2,k X t

If row p2 is originally assigned to this processor, then row pl, row P2, cp2,k,
and 8p2,k are saved so that row p2 can be updated in Step 9.
For the given example, when k 1 and l d 2, P2 saves row 1, row 3, c3,1
and s3,, and P3 saves row 2, row 4, c4, and s4,.

Step 5 (CMP) Each processor "updates" row p by executing the following algo-
rithm. The updated row Pl becomes the "current" local pivot row.

for j k,k + 1,...,n do
Pl,j --- CP,kSpl,j - 8P.,kSp,j

For the example in Fig. 9, when k 1 and 2, row 1 is modified to become
the current local pivot row in P0 and P2, whereas row 2 is modified to become
the current local pivot row in P1 and P3. Note that redundant computation
is performed.

Step 6 (CMP) l t- 1.
Step 7 (CMP) If > 1 then go to Step 3.
Step 8 (CMP) Each processor sends its current local pivot row to the processor

whose id differs in bit b0.
Step 9 (CMP) The processor that was originally assigned row k executes the algo-

rithms given in Step 4 and 5 to update row k. Each other processor modifies
the row originally assigned to it by executing the following algorithm. (Note
that this row is either the higher numbered row currently received or the one
saved at Step 4.)

for j k,k / 1,...,n do
5p2,j (-- Cp2,kpl,j 8p2,kSp2,j

For the given example, when k 1 and l 1, processors Po, P, P2, and P3
will modify, respectively, rows 1, 2, 3, and 4 simultaneously in this step.

3.3. An example. To demonstrate how Steps 2 9 in the CMP work in general,
we trace the pair of rows (pl, p2), which are the data each processor works with in
Steps 4, 5, and 9, for three elimination stages in Figs. 10-12, where a hypercube of
dimension 3 is employed. Recall that p and p2 refer to the respective row numbers
with p < p2. While the computation performed by Steps 4 and 5 updates only row
p regardless of its origin, the updating of row p2 will be delayed and performed only
by one processor in Step 9. It is important to note that the mapping between the
actual row numbers to (pl, p2) changes with each communication step. For example,
row 3 is referred to as row p in the first column of Fig. 10 when pairing with row 7;
and the updated row 3 is referred to as row p2 in the second column when pairing with
the updated row 1. Since row 3 was initially mapped to processor P2, the current row
1 and row 3 (both of them have already been updated once) must be saved by P2 so
that row 3 can be properly updated in Step 9. To identify the row and the processor
associated with the updating operation in Step 9, we have quoted the row number
3 in the (1,’3’) pair owned by P2 in the second column of Fig. 10. Note that each
processor has exactly one quoted row to be updated in Step 9 during each elimination
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FIG. 7. Wrap mapping o/16 rows to/our processors.

al,1

a5,1
ag,1

a13,1
a9,2 a9,8 0 9,2
a13,2 a13,8 0 13,2

1,8
5,8
9,8
138

FIG. 8. The action of Po in the first elimination stage.

0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 x x x x x x x

FIG. 9. The distribution of local pivot rows.
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stage.

l 3 2 1 Step 9
Processors (pl, p2) .(Pl, P2) (P, P2) p or P2

Po (1,5) (1,3) (’1’, 2 ’1’
P (2, 6 (2, 4 1 ,’2’) ’2’
P2 (3, 7) (1,’3’) 1,2 ’3’
P3 (4, 8 (2,’4’) (1 ,"2) i4’
P4 (1’,’5’) (i, 3)" (1 ;2 ’5’
P5 (2,’6’) (2, 4 1,2 ’6’
P6 (3,’7") (1, 3) ("1,2) "7’
P7 (4,’8’) (2, 4 1,2 ’8’

FIG. 10. The first elimination stage.

Processors (p, p)
(5,’9’)
(2,6)
(3,7)

(P,P2)
(3,5)
(2,4)
(3,5)

(2,3)
(’2’, 3
2 ,’3’)

Step 9
pl or p2

’9’

P3 (4, 8) (2,’4’) (2,3) ’4’
P4 (5, 9) (3,’5’) 2,3 ’5’
P5 (2,’6’) (2, 4 2,3 ’6’
P6 (3,’7") (3, 5) 2,3 ’7’
PT (4i’8") (2, 4 (2 i 3 ) ’8’

FIG. 11. The second elimination stage.

I 3 l 2 I 1 Step 9
Processors (P, P2) (P, P2) (P, P2) p or P2

Po (5, ’9’) (3, 5 3,4 ’9’
PI (6,’10’) (4, 6 (3,4) "10
P2 (3, 7 (3, 5 (’3’, 4 ’3’
P3 (4, 8 (4, 6 3 ,’4’) ’4’
P4 (5, 9 (3,’5’) 3 4) ’5’
P (6, 10 (4,’6’) 3,4 ’6’
P6 (3, ’7’) (3, 5 3,4 ’7’
P7 (4, ’8’) (4, 6 3,4 ’8’

FIG. 12. The third elimination stage.

3.4. A summary of important features. We summarize the features of the
proposed communication algorithm below. First, given a hypercube of dimension d,
each processor has d neighbors and the communication algorithm executed at each
elimination stage involves exactly d steps. At each of the d steps, each processor in
the hypercube exchanges a message of the same length with a neighboring processor.
Since the p/2 exchanges at each step involve p/2 distinct pairs of processors and use
p/2 separate communication channels, they can occur simultaneously.
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Second, each processor communicates with all of its d neighboring processors in
exactly the same order at every elimination stage. For example, in Figs. 10 12,
processor P0 always communicates with processors P4, then P2, and last P1.

Third, it is clear from our description of the algorithm and from Figs. 10 12
that some rows are redundantly updated by more than one processor concurrently.
For example, in Fig. 10 when 3, row 1 is redundantly updated by processor P4,
and when I 2, row 1 is redundantly updated by processors P2, Pa, and P6. The
redundant computation allows us to use the same communication algorithm for every
elimination stage regardless of whether that processor owns the lowest numbered row.
For example, in Fig. 11, among all the rows with row number _> 2, the second row
of A is the lowest numbered row that needs to be modified last and the most number
of times. Although the lowest numbered row is now located in processor P1 instead
of processor P0 as in the first elimination stage, the same communication algorithm
combined with the redundant computation makes sure that row 2 is properly updated,
as are the other rows. In addition, the data each processor needs are always located
in its neighboring processor in the hypercube.

Fourth, the algorithm has simple implementation. Note that when k > n-p-}- 1,
the processors will run out of rows one by one. Because the above algorithm requires
all processors to participate in maintaining data proximity in the remaining stages,
a uniform treatment of all cases can be achieved by simply assigning dummy data
to processors who would otherwise finish earlier. With this trick the algorithm we
described for the kth elimination stage can remain the same for 1 _< k _< n.

Finally, the proposed communication algorithm can be easily generalized for Al-
gorithm II, which we shall present in 5.

It is appropriate to point out that Algorithm I differs from the distributed Givens
algorithms proposed by Chamberlain and Powell [3] and Pothen et al. [16], [17] in the
communication algorithm we employ for merging the local pivot rows. According to
the timing results to be discussed in 7, our idea of using otherwise idle processors to
perform redundant computation appears to be effective in keeping the communication
algorithm simple, efficient, and versatile for use in a generalized version of Algorithm
I and other algorithms.

4. Performance analysis of Algorithm I. In this section we analyze the per-
formance of Algorithm I in factoring an m n matrix using a hypercube of dimension
d. Letting p denote the total number of processors, we have p 2d. For convenience
we assume that m and n are integral multiples of p. In our analysis we assume that
the time required for a multiplicative floating-point operation is T, and that the time
required to transmit floating-point numbers from one processor to a neighboring
processor is TA +/, where/ is the start-up time for sending a message and A is the
time needed to transmit a floating-point number across one link between adjacent
processors in the hypercube.

We shall compare the performance of Algorithm I with the sequential Givens
algorithm, for which the total arithmetic cost is given by

(1) Ts(m,n) 4TZ(m-k)(n-k/l)
k----1

2n2(3m n) 4
3

T + 2rant- 2n2T- -nT
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when m > n, and

m

(2) s(m, n) 4T -(m- k)(n- k -4- 1)
k--1

2m2(3n m) 4
3

T- 2rant + 2m2T- -mT,
when m < n.

Note that the wrap mapping of rows of the matrix to the p processors dictates
that the size of the largest submatrix in an individual processor is (m/p) (n- k + 1)
for the kth elimination stage when k 1,2,...,p, and (m/p-1) x (n-k-4- 1) when
k p / 1,p-4- 2,..., 2p, and so on. When m > n, the arithmetic cost of Algorithm I
is thus given by

k----1 j--1

+ + 1)
k-’l

2n2(3m-n) rt2 n2 (2mn--n2
3p

r+ d’- T+
\

T

+ O(np),

where d log2 p. For each of the n elimination stages, d "nearest-neighbor" exchanges
are required, involving in the kth stage a row of size (n- k + 1). The communication
cost is therefore given by

n

(4) TiC(n,p) 2d + A 2d(n k + l)
k--1 k--1

2nd + (n2 + n) d.
When m < n, we have

(5) lA(m, n,p)

and

iC(m, n, p)
m m

-2d+$2d(n-k+l)
k=l k=l

2md + (2mn- m2 + m) dA.



1002 ELEANOI:t CHU AND ALAN GEORGE

When m n, we can further simplify equations (3), (4), (5), and (6) as

(7)

and

4n3 n2

--T + ?2dT n2T + --T + O(np)
3p p

(s)
2nd + n2d, + nd,.

Comparing the parallel time (T/A + T/v) with the optimal time (T8/p) for the case

m _> n, and (A + /C) with the optimal time (8/p) for the case m _< n, we conclude
that Algorithm I is optimal in its leading term.

5. Algorithm II. Algorithm II configures the hypercube as a 1 ’2 subcube-
grid, where the aspect ratio will be chosen to optimize the performance. Such a
mapping allows us to apply the hypercube communication algorithm employed in
Algorithm I to each subset of processors that form either a row or a column in the
subcube-grid. From now on, we shall refer to the processor in the (i, j) position of the
grid by P(i,j) or by its id. We shall use P(i, ,) to denote the subcube consisting of
the processors assigned to the ith row of the grid, and P(,, j) to denote the subcube
consisting of the processors assigned to the jth column of the grid.

Algorithm II is based on the same Givens sequence employed in Algorithm I. In
Algorithm II, the data mapping strategy can be understood as wrapping the rows of
the m x n matrix around the 1 subcubes, namely, P(1, ,), P(2, ,), ..., and P(, ,).
Within each subcube P(i, ,), the elements of each allocated row are wrapped around
the /2 processors according to their column subscripts. Figure 13 illustrates this data
mapping strategy for a 16 16 matrix on the 4 4 subcube-grid given in Fig. 3.

8 9 elO Pll P8 P9 elO Pll 8 P9 Plo Pll P8 P9 PIO
P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14
PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3
P4 P5 P6 P7 P4 P5 P6 P7 P4 e5 P6 P7 P4 P5 P6 P7
P8 P9 PIO Pll P8 P9 PIO Pll P8 P9 PIO Pll P8 P9 PIO Pll
P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15
PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3 PO el P2 P3
P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6
P8 P9 PIO Pll P8 P9 PIO Pll P8 P9 PIO Pll P8 P9 PIO Pll
P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15
PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3
P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7
P8 P9 PIO Pll P8 P9 PIO Pll P8 P9 PIO Pll P8 P9 PIO Pll
P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15

FIG. 13. The wrap mapping of a 16 16 matrix to the 4 4 subcube-grid in Fig. 3.

Algorithm II has n stages, each consisting of two phases. In the Independent
Annihilation Phase (IAP) of the kth elimination stage, each subcube P(i, ,) indepen-
dently annihilates the nonzero elements below the main diagonal in the kth column
using its lowest numbered row as the local pivot row. The algorithm for the IAP
requires no communication between the processors in different subcubes P(i, ,) and
P(i2, *), where i i2, whereas the processors consisting of each subcube P(i, ,) need
to communicate among themselves during the IAP. For the example in this section we
employ the 4 4 subcube-grid given in Fig. 3. Figure 14 displays the data assigned
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to the subcube P(1, .), which is a submatrix consisting of rows 1, 5, 9, and 13 of a
16 16 matrix A. Within the subcube, the columns of the assigned submatrix are
wrapped around the 2 processors of P(1, .). Letting ai,j denote the (i,j) element
of matrix A, Figs. 15, 16, 17, and 18 display the data assigned to processors P(1, 1),
P(1, 2), P(1, 3), and P(1, 4), respectively.

PO P1 P2 P3 PO P1 P2 P3 PO PI P2 P3 PO P1 P2 P3
X
X

X

PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3 PO PI P2 P3
X
X

PO P1 P2 P3 PO PI P2 P3 PO P1 P2 P3 PO PI P2 P3

]

FIG. 14. The wrap mapping of the submatrix within subcube P(1, .).

al,1 al,5 al,9 al,13
a5,1 a5,5 a5,9 a5,13
a9,1 a9,5 a9,9 a9,13
a13,1 a13,5 a13,9 a13,13

FIG. 15. Data assigned to processor Po.

al,2 al,6 al,lO a1,14
a5,2 a5,6 a5,10 a5,14
a9,2 a9,6 a9,10 a9,14
a13,2 a13,6 a13,10 a13,14

FIG. 16. Data assigned to processor P1.

To eliminate the nonzeros a5,1, a9,1, and a13,1, processor P0 computes the multi-
plier pairs (%,1, sp,} for p 5, 9, 13 and updates the "local pivot element," a,, by
the following algorithm.

if la,.l _> la.l then
la.xl/lap.l

sp, +- 1/V/1 + t2

Cp,1 +- 8p,1 X t
a, +-la,lv/1 + t2

else

cp, +- 1/1 + t2

8p,1 +-- Cp,1

a, +--la,li + t2
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al,3 al,7 al,ll al,15
a5,3 a5,7 a5,11 a5,15
a9,3 a9,7 a9,11 a9,15
a13,3 a13,7 a13,11 a13,15

FIG. 17. Data assigned to processor P2.

al,4 al,8 al,12 al,16
a5,4 a5,8 a5,12 a5,16
a9,4 a9,8 a9,12 a9,16
a13,4 a13,8 a13,12 a13,16

FIG. 18. Data assigned to processor P3.

A message containing the "updated" a1,1 and all of the computed multiplier pairs
will then be made available to every processor in the subcube P(1, ,) using the follow-
ing recursive exchange algorithm. Recall that the id’s of processors in each subcube
P(i, ,) differ only in their rightmost d2 bits. To broadcast the multiplier pairs and the
local pivot element to all processors within each subcube P(i, ,), we modify the basic
subcube-doubling communication algorithm in the following manner. The processor
who has the pivot column will compose a message consisting of the computed multi-
pliers and the local pivot element, whereas the other processors will simply prepare a
dummy message. The modified algorithm works as follows.

+-- d2
while l > 0 do

send (my message) to processor with id different
from my id in bit bt_l.

receive a message
if (my message) is (dummy message)

(my message) - (received message)
tg-1

The subcubes P(1, ,), P(2, ,), P(3, ,), and P(4, ,) each perform essentially the same
IAP task with respect to their own data independently and simultaneously. The
communication channels employed by the four subcubes are displayed in Fig. 19.
Therefore, after d2 exchanges within each subcube, all processors will have the mul-
tipliers they need to update the remaining elements independently. The resulting
matrix has at most "1 rows with a nonzero in the kth column. For k 1, Fig. 20
illustrates the mapping of the y local pivot rows at the end of the IAP.

The remaining off-diagonal nonzero elements in the first column can now be elim-
inated by the /2 subcubes P(,, j), j 1, 2,..., ")’2, independently and simultaneously.
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Figure 21 displays the data to be affected in the subcube P(,, 1) {P0, P4, Ps, P12}.

FIG. 19. The communication channels employed by the subcubes during the IAP.

PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3
P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7
P8 P9 P10 Pll P8 P9 P10 Pll P8 P9 P10 Pll P8 P9 P10 Pll
P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15 P12 P13 P14 P15

FIG. 20. End o] the IAP during the first elimination stage.

i’P Po Po o x
P4 P4 P4 P4
P8 P8 P8 P8
P12 P12 P12 P12

FIG. 21. Data distribution in subcube P(,, 1).

Comparing Fig. 21 with Fig. 9, we clearly see that the task to be performed by
the subcube P(,, 1) is essentially Steps 2 9 of Algorithm I. Of course, the data now
refers to the submatrix in Fig. 22, and the subcube P(,, 1) is of dimension d/2, and
the id’s of the processors in this subcube differ only in their leftmost d/2 bits. It is
straightforward to modify Steps 2 9 of Algorithm I to reflect these differences. Recall
that during the IAP, each updated local pivot element was sent to all processors in the
respective subcube together with the multipliers. When k 1, {a1,1, a2,1, a3,1, a4,}
are thus available in subcube P(,, j) for all j. Figure 23 displays the data distribution
in the subcube P(,, 2). Note that each processor in the subcube P(,, 2) has one more
element in addition to the data originally assigned.

Comparing Fig. 23 with Fig. 9, it is clear that the task to be performed by the
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subcube P(,, 2) is again essentially the same as described in Steps 2 9 of Algorithm
I. The data now refers to the matrix in Fig. 24.

al,1 al,5 al,9 al,13
a2,1 a2,5 a2,9 a2,13
a3,1 a3,5 a3,9 a3,13
a4,1 a4,5 a4,9 a4,13

FIG. 22. Data to be processed by subcube P(,, 1).

P1 P1

P13

X PI X PI
x

P9 Pg
P13 P13

X
X

X

X
X

P1
P’5
P9
P13

x

FIG. 23. Data distribution in subcube P(.,2).

al,1 al,2 al,6 al,lO al,14
a2,1 a2,2 a2,6 a2,10 a2,14
a3,1 a3,2 a3,6 a3,10 a3,14
a4,1 a4,2 a4,6 a4,10 a4,14

FIG. 24. Data to be processed by subcube P(,,2).

The elements (a1,1, a2,1, a3,1, aa,z } are needed in Step 4 to compute the multipli-
ers. Therefore, the strategy of sending the "updated" local pivot elements together
with the multiplers in the IAP is the most economic way to make these elements avail-
able to the respective processors. Similar arguments apply to the subcubes P(,,3)
and P(,, 4). The communication channels employed by the four subcubes during the
CMP are displayed in Fig. 25.

Figure 26 displays the remaining elements of A after n- 2 elimination stages,
where p 16 and /2 4 in this example. Since (’z /’2 2i- 1) more processors will
become idle at the end of each of the last 72 elimination stages, where 0 _< _< (72-1),
the idle time is proportional to the amount of work each processor is assigned for one
stage. When m n and /z 72, each processor has exactly one element to be zeroed
or modified in the last /2 elimination stages. The idle time thus remains constant
regardless of the size. of the matrix. When m > n, ?z processors would become idle
after each of the last /2 elimination stages. Because the elements remaining in each
processor after n-’y2 stages is proportional to (m-n)//, the idle time grows linearly
with m for fixed " if (m-n) >> n. When m < n, because "2 processors would become
idle following each of the last g, stages, the idle time grows linearly with n for fixed "2 if
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P(,, i) P(,, 2) P(,, 3)P(,, 4)

FIG. 25. The communication channels employed by the subcubes during the CMP.
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(n-m) >> m. As we shall see in the next section, 0’, and 0’2 are to be chosen according
to the shape of the matrix so that the performance of Algorithm II is optimized. The
possibility of choosing 0’, and 0’2 in proportion to m and n implies that the linear
growth rate represents the worst case. Note that in the actual implementation of
Algorithm II, the communication algorithms in both IAP and CMP phases require
all processors to participate regardless of whether there is any computational work
remaining for a particular processor. The idle time we mentioned above refers to the
duration of time from the moment a processor has completely processed the assigned
data of matrix A to the moment the parallel program ends. Thus the time such a
processor spends working on dummy data is considered as idle time.

X

X

PO P1 P2 P3
P4 P5 P6 P7
P8 P9 Plo Pll
P12 P13 PI4 P15

FIG. 26. Data distribution for the last .four elimination stages.

6. Performance analysis of Algorithm II. In this section we analyze the
performance of Algorithm II in factoring an m x n matrix on a 0’, x 0’2 grid embedded
in a hypercube of dimension d, where d dl + d2, 0’1 24* and 0’2 2d2. Letting p
denote the total number of processors, we have p 0’,0’2 2d. As before, we assume
that m and n are integral multiples of p. The definitions for T, , and A are as given
in 4.

6.1. The case m _> n. When m >_ n, we first consider the case 0’, >_ 0’2. To
analyze the total arithmetic cost of Algorithm II, let us consider the kth elimination
stage. During the IAP phase, the 0’, subcubes P(1, ,), P(2, ,), ..., P(0’,, ,) are
performing essentially the same task on the 0’1 different submatrices independently and
simultaneously. Within each subcube P(i, ,) the submatrix is further divided among
the 0’2 processors consisting of the subcube. Letting (0’1/0’2) a, the wrap mapping
of rows and columns of the matrix to the processor grid dictates that the size of the
largest submatrix in an individual processor is (m/0",) x (n/0’2) for k 1, 2,..., 0’2,

(m/0",) x (n/0"2 1) for k 0’2 + 1, 0’2 + 2,..., 20’2,..., and (m/0", 1) x (n/0"2 -a)
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for k ’1 + 1, ’1 + 2,..., "1 + 2, and so on. The total arithmetic cost for the IAP
is thus

(9) TIAAp (m, n, ")’l, ’2) 4T y (11--k) (@2-a(k-1)-j+ 1)
k:l /:1 i:1

2n2(3m-n)3p r+T--2mn.),l 2 (’)’1 "’2)p T

+ o(,)

Recall that the multiplier pairs together with the updated local pivot element must
be made available to the ’2 processors within each subcube P(i, .) using the recursive
exchange algorithm. The total communication cost for the IAP is thus given by

n n/’l "1

 10) T.AP (m,n,7,7) 2d + I 2d k + l
k=l k=l j=l

In he Cooperative Merging Phase (CMP) following he IAP, the 7 processors
in each subcube P(., j), 1 j , perform essentially Steps 2 9 of Algorithm I.
When k 1, every processor applies a Givens rotation d times to a row of sie at
mos (n/7 + 1), and exchanges a row of the same sie with a neighboring processor
d imes. Note tha the longest row in an individual processor is (n/7 + 1) for
k 1, 2,..., 7, and (n/) for k 7 + 1, 7 + 2,..., 27, and so on. We thus have

( )(11) TMp (, 1, 2) 2T dl k + 2
k:l j:l

--+an

and

(12) TMP (T, "1, 2

The total arithmetic and communication costs for Algorithm II are thus given by

(13) T/A/(m, , ’)’1, ’)’2)
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and

(14) T (m, n, 0’i, 0’2) TcAp (m, n, 0"1, 0"2) + TCCMP (n, 0"i, 0’2)
2mn n2 n2

2nd-t- d2A + --dA + O(nd).
2

Since 2 p, the parallel time of Algorithm II can be expressed as a function
of m, n, 0’1, and p as follows:

(15) Tii (m, n, 0"l,p) TiAi (m, n, 0"l, 0"2) / TiOi (m, n, 0"l, 0"2)
2n(3m n) 2mu n2 u2

v + d2 + --dl (v + )3p 0’i 0’2
2mn

-t- T T / O(nd)
0"1 P

2n2(3m n) 2mn n2

r-t- (d-dl)
3p

+ --0’ldl(r -{- ) d- r- 7"
P 0’1 \1

+
C AIf 0’i _< 0’2, TIAP, TCMP, and TMP remain the same as given by (10) (12),

whereas TIAAp i8 now computed by (16), where we use & to denote 0’2/0’i"

(16) TIAAp (m, n, 0’1,0’2)

Comparing (16) with (9), we see that they differ only in one of the low-order
terms. Therefore, for m _> n, we shall use (15) to compute Txi(m, n, 0’1,p) for all
values of 0’1. Note that our analysis of the communication cost, as summarized by
(14), indicates that the total number of messages exchanged between each pair of
processors is independent of the choice of 0’1. Accordingly, the contribution of start-
up time to the communication cost of Algorithm II remains the same for all values of
0’1.

One objective of our analysis is to find the value of 0’1 that minimizes the cost of
the parallel algorithm. To find 0’1, we set

cOTii(m, n, 0"1, P)
=0,

where TIi(m,n,0"l,p) is defined by (15). By noting that d log2p,
dl log2 0’1, and Odl/00"l (ln0’l)/(ln2), we obtain the following result by setting
OTsslO’n 0:

(17) f ,0’1, n’ a +1 (In 0’1q-1)0’12 0’1
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+ ap (2 mm 1) ln9’ln

(r )(---1)-P +lg2p+a 2mn
O

where a 1/ (ln 2).
Therefore, for fixed p, m/n, and T/A, the value of 9’1 that minimizes Tii(m, n, 9’1, P)

can be obtained by finding the solution to f (p, 9"1, m/n, T/A) O, which is a non-
linear equation in the variable 9’1. Since 9’1 must be an integral power of 2, we
choose 9’1 2k for 0 _< k _< log2p with 2k as close as possible to the solution of
f (p, 9"1, m/n, T/A) 0. Although the "optimal" 9’1 chosen in this manner does not
necessarily minimize Tii(m, n, 9"1, p), the numerical experiments to be presented in

7 indicate that for each test problem, the execution time of Algorithm II using the
chosen 9’1 either achieves or is very close to the actual minimum over all possible
values of 9’1.

In order to see how the optimal 9’1 varies with the ratio T/A, in Table 1 we list the
numerical solution to f (p, 9"1, m/n, T/A) 0 for different values of T/A when p and
m/n remain fixed. The optimal 9’1’s chosen based on these numerical solutions are
displayed in Table 2. From Tables 1 and 2 we observe that the optimal dl log2 9’1,
which is the optimal dimension of the subcube formed by each column of the grid,
appears to be very insensitive to the ratio T/A.

TABLE 1
Numerical solution to f (p, /1, m/n, -/A) 0.

m _> n ]1 Different values of T/A
p lm/n ]1 lOOO 10[ a] 1 o.] o.1] o.0

16 1.0 2.86 3.06 3.20 3.62 3.89 3.94 4.0
16 1.5 3.71 3.95 4.11 4.63 4.97 5.03 5.11
16 19.8 12.33 12.58 12.76 13.35 13.76 13.83 13.92
64 1.0 4.86 5.42 5.80 6.95 7.70 7.84 8.0
64 1.5 6.41 7.11 7.58 9.04 10.01 10.19 10.39
64 19.8 22.41 23.79 24.78 27.96 30.13 30.54 31.00
128 1.0 6.42 7.30 7.89 9.68 10.85 11.06 11.30
128 1.5 8.53 9.64 10.38 12.67 14.19 14.47 14.79
128 19.8 30.38 32.87 34.62 40.24 44.08 44.81 45.63
256 1.0 8.53 9.89 10.78 13.50 15.29 15.62 18.54
256 1.5 11.41 13.13 14.27 17.78 20.11 20.55 21.04
256 19.8 41.30 45.52 48.44 57.77 64.16 65.37 66.74
1024 1.0 15.34 18.41 20.40 26.41 30.40 31.15 32.00
1024 1.5 20.69 24.64 27.23 35.10 40.35 41.35 42.47
1024 19.8 76.92 87.78 95.15 118.41 134.34 137.39 140.82

6.2. The case m _< n. Similarly, when m _< n, we have the cases 9’1 9’2 and
9’1 _< 9’2. Although our derivation below is for the case 9’1 _< 9’2, AP is different
only in one of the low-order terms when 9’1 _> 9"2 and CAp MP, and gMP remain
unchanged. We shall therefore use the following formula for all values of 9’1. Letting
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TABLE 2
Predicted optimal "11 when m > n.

>- Ii Different values of
P II II 000]10I 1 1] 0.2 0.,1 0

16 1.0 2 4 4 4 4 4 4
16 1.5 4 4 4 4 4 4 4
16 i9.8 16 16 16 16 16 16 16
64 1.0 4 4 4 8 S 8 8
64 1.5 8 8 8 8 8 8 8
64 19.8 16 16 32 32 32 32 32
128 i.0 8 8 8 8 8 8 8
128 1.5 8 8 8 16 16 16 16
128 19.8 32 32 32 32 32 32 32
256 Io0 8 8 8 16 16 16 16
256 1.5 8 16 16 16 16 16 16
256 19.8 32 32 64 64 64 64 64
1024 io0 16 16 16 32 32 32 32
1024 1o5 16 16 32 32 32 32 32
1024 19.8 64 64 64 128 128 128 128

(3’2/3’1) &, we have

(18) IAAp m n, 3"1, 3"2

m/’),2 (

47"y (m_._.- &(k-i)-j)(-k+ 1)
k:l j:l i:i

2m2(3n m) m2 m2 2mnr+--r+ r
3p 2

+o(),

(19) /p (?’, , 3’1,3’2

(20) cAMp (m, , 3’1,3’2)

and

(21) MP (m, n, 3’1,3’2)

k=l j=l

+am dr,
3’2
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The total parallel arithmetic cost and communication cost are thus given by

(22) 7/_A/(m, n, 1, ’2) IAAp (m, n, 1, ")’2) + MP (m, , 1, 2)
(-) (m- ) m

T + dT + --T
3p 2

(m2-2mn)+ T + 0 (md)

and

(ea) "ici m n, 7 /2) ~cT;Ap (m, n, /, 2) + CcMp (m, n, "),, 2)

2nd+ d +d
2

+ O(d).
When m n, the parallel time of Algorithm II can again be expressed as a

function of m, n, , and p given as follows:

(24) I (m,n,,p) (m, n,’, 72) + /c/(m,n,,72)
2m2(3n-m) (2mn-m2)3p

T + d (T + )
2

m2 (m2--2mn)+ --(v + d2A) + T + O (m log2 p)
1 2

ap r + a(r + a)
P

m2 (m2-2mn)+ --( + (d- d))+
p

+ O(d).
The value of that minimizes TII (m,n, ,p) in (24) can now be found by

setting

OT(m, n,,p)
O

By noting that d log2p d log2 , and Od/OT (ln)/a, where a ln2, we
obtain

)()] ,,, +1 - (n+)

( ) )- 2-1 +ap(ln)-p +log2p+a

0.

Similarly, for fixed p, n/m, and r/A, the value of1 that minimizes Tii(m, n,,p)
can be obtained by finding the solution to ] (p, , n/m, v/A) O. As before, must
be an integral power of 2, and we choose it as close to the solution of (25) as possible.

In order to see how the optimal varies with the relative s2eeds of computation
and communication, in Table 3 we list the numerical solution to f (p,, n/m, T/A) 0
for different values of T/A when p and n/m remain fixed. The optimal ’s chosen
based on these numerical solutions are displayed in Table 4. Again note that the
optimal d log2 is quite insensitive to the ratios of T to A.
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TABLE 3
Numerical solution to ] (p, "/1, n/m, /)) O.

m <_ n 11 Different values of T/A
1/ !1 0001 01 1 1 0.:1 0.] 0

16 1.0 2.86
16 1.5 2.24
16 19.8 0.98
64 1.0 4.86
64 1:5 3.7i
64 19.8 1.37
128 1.0 6.42
128 1.5 4.86
128 19.8 1.68
26 1:0 8.53
256 1.5 6.42
256 19.8 2.10
1024 1.0 15.34
1024 1.5 11’42
1024 i9.8 3.46

3.06 3.20 3.62 3.89 3.94 4.0
2.40 2.51 2.84 3.05 3.09 3.13
1.02 1.04 1.10 1.14 1.14 1.15
5.42 5.80 6.95 7.70 7.84 8.0
4.16 4.46 5.35 5.93 6.04 6.16
1.51 1.59 1.85 2.01 2.03 2.06
7.30 7.89 9.68 10.85 11.07 11.31
5.56 6.02 7.40 8.30 8.47 8.65
1.90 2,04 2.46 2:71 2.75 2.81
9.89 10.78 13150 15,29 15.62 16.0
7.48 8.18 10.26 11.63 11.88 12.17
2.45 2.67 3.30 3.69 3.76 3.84

18.41 20.40 26.41 30.40 31.15 32’.0
13.79 15.32 19.90 22.91 23.47 24.11
4.23 4.70 6.07 6.93 7.09 7.27

TABLE 4
Predicted optimal / when m <_ n.

m <_ n I1 Different values of T/A
p, 1,./,.,,,[1 .lOOO o a[ 1 0.210.1 0,
16 1.0
16 1.5
16 19.8
64 1.0
64 i.5
64
128
128
128
256
256
256
1024
1024
1024

19.8
1.0
1.5

19.8
1.0
1.5

19.8
1.0
1.5

19.8

2
2
1
4
4
1
8
8
2
8
8
2

16
8
4

4 4 4
2 2 2
1 1 1
4 4 8
4 4 4
2 2 2
8 8 8
8 8 8
2 2 2
8 8 16
8 8 8
2 2 4
16 16 32
16 16 16
4 4 8

4 4 4
4 4 4
1 1 1
8 8 8
4 8 8
2 2 2
8 8 8
8 8 8
2 2 2

i6 16 16
8 8 16
4 4 4

32 32 32
16 16 32
8 8 8
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Comparing the leading term of Tix(m, n, 71, P) with the leading term of Ts(m, n)/p
for the case m _> n, and from comparing the leading term of Tii(m, n, /1,P) with the
leading term of Ts(m, n)/p for the case m g n, it can be concluded that Algorithm II
is optimal in its leading term.

6.3. Analysis of storage requirements. According to our data mapping strat-
egy for Algorithm II, the rows and columns of a given matrix are wrap mapped to
"1 and /2 processors, respectively. Therefore, the processors will run out of rows
and/or columns one by one in the last 1 or "2 elimination stages. As explained
earlier, our communication algorithm requires all processors to participate in main-
taining data proximity in every stage. We thus adopted the strategy of assigning one
more row of all zeros and one more column of all zeros to each processor. The largest
submatrix assigned to a processor is therefore (m/’)’l)+ 1 by (n/’2) + 1. In addi-
tion to storing the submatrix, each processor also needs buffer space for sending and
receiving the multipliers (in the IAP) and sending, receiving, and saving the pivot
row (in the CMP). There is also integer overhead incurred by choosing particular
data structures that facilitate a clean implementation. Such overhead amounts to
(2m//1 + n/2 + O(p)) more integers in our implementation. In the analysis below
we consider the total storage requirement on a single processor as the sum of the
primary storage for data and the overhead storage for buffers, the extra zero row and
column, and the integer overhead. The low-order terms that neither vary with m nor
vary with n are ignored. The total storage is thus a function of m, n, /1, and /2.
Since 2 P/’)/1, for a given m n matrix it is desirable to find the value of 1 that
minimizes the total storage. We assume that the space for storing an integer is the
same as the space for storing a floating-point number in the following analysis.

LEMMA 6.1. For any given m, n, and p "/1 /2, the total storage requirement
of Algorithm II on each node processor is given by

o )--+ +4--+7 if 2 +1 __>--+1,
P "1 ")’2 "/2

and

--+3--+6--+5 if 2 + 1 <__ --+ 1.
P ")’1 ")’2

Proof. As noted earlier, each processor is assigned a submatrix of size (m//1 / 1)
(n/’2 / 1). The buffer space for sending and receiving the multipliers is twice the size
of the largest set of multipliers, i.e., 2 2 (mill1 / 1). Similarly, the buffer space for
sending and receiving the pivot row is twice the row length of each submatrix, i.e.,
2 (n/’2 / 1). Since the buffer space for multipliers can be reused for sending and
receiving pivot rows, it is sufficient to have enough storage for the larger one of these
two buffers. In addition to the buffer space for sending and receiving the pivot row, in
the CMP we need extra buffer space of 2 (n//2 + 1) floating-point numbers to save
the pair of rows in case the updating is delayed. Summing up the data storage, buffer
storage, and the integer overhead given above we obtain the results in the lemma.

THEOREM 6.2. For any given m, n and p, the storage requirement of Algorithm
II is minimized by /1 2k, where k E [0, log2p is chosen so that "1 is as close as
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Proof. Assuming that the buffer space for the multipliers and the pivot row cannot
be overlapped, we seek 71 to minimize

mn m _n
S(m, n, 71, 72) =+7--+6-- +7.

P 7 72

Substituting 72 p/71, and setting

OS(m,n, 7,72)
07

we obtain

=0,

Recall that the data of the coefficient matrix only require storage for mn/p
floating-point numbers per processor. Thus it is necessary to address the question
of whether the overhead storage is a significant fraction of the primary storage for
the chosen 7. In Corollary 6.3, we give the formula for computing the ratio of the
overhead storage to the primary storage mn/p when "h v/7mp/(Cn)

COROLLARY 6.3. When 7 v/7mp/(Cn), the ratio of the overhead storage to
the primary storage is given by

)mn --+1 >_--+1,7.
and

and

-9. --+5-- if 2 /1
mn 72

Proof. Substituting 7 in Lemma 6.1 by v/7mp/(Cn) and 72 by P/’h, we obtain

S(m,n,7,p)
mn n=--+10.8 --+7,
P

(m,n,71,P) mn
=--+9.3 +5.

P
The results in the corollary are obtained by computing

S(-, ,,) (,/)
mn/p

and

p)
mn/p

Since 7 is unlikely to be exactly equal to v/Tmp/(6n) in practice, we computed
the actual overhead storage and compared with the results obtained from the formula
given by Corollary 6.3. Letting 7 denote the "h chosen by Theorem 6.2, in Table 5
we list the values of v/7mp/(Cn), 7 and the predicted and actual ratio of overhead
storage to primary storage for a set of matrices. The two ratios given as the predicted
percentages are obtained by substituting 7 v/7mp/(Cn) in each of the two formulas
given in Corollary 6.3. The actual percentage given in the last column is computed
by substituting the chosen 7 into the appropriate formula in Lemma 6.1.
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P
16
16
16
64
64
64
64
64

m
5OO
600
400
1000
1200
8OO
1980
100

50O
400
600
1000
8OO
1200
100

1980

TABLE 5
Predicted and actual overhead storage.

v/7mp/(6n) Predicted percentage
4.32 7.5%-8.7%
5.29 7.6%-8.9%
3.53 7.6%-8.9%
8.64 7.5%-8.7%
10.57 7.6%-8.9%
7.05 7.6%-8.9%
38.44 16.9%-19.6%
1.93 16.9%-19.6%

" Actual percentage
4 8.8%
4 9.7%
4 8.7%
8 8.8%
8 9.7%
8 8.7%

32 20.7%’
2 19.5%

TABLE 6
Predicted / and predicted optimal

Different values of T/A
1 1 1 Io.1 o
I I I’n 1 ,)/1 "),1

16 500 500 4 2 4 4 4 4 4 4
16 600 400 4 4 4 4 4 4 4 4
16 400 600 4 2 2 2 2 4 4 4
64 1000 1000 8 4 4 4 8 8 8 8
64 1200 800 8 8 8 8 8 8 8 8
64 800 1200 8 4 4 4 4 4 8 8
64 1980 100 32 16 16 32 32 32 32 32
64 100 1980 2 1 2 2 2 2 2 2

For easy comparison, in Table 6 we give the value of , as well as the predicted
optimal /1 for the set of matrices listed in Table 5.

Corollary 6.3 implies that the overhead storage will be insignificant if m, n are
large and p << min{m, n}.

7. Numerical experiments. Our experiments were performed on a 64-proces-
sor Intel iPSC Hypercube, and Algorithm II was implemented in FORTRAN. Note
that Algorithm I is a special case of Algorithm II when the subcube-grid has dimension
p by 1. The programs were compiled using the Ryan-McFarland FORTRAN compiler.
We provide timing results for single-precision and double-precision implementations.
The maximum run time over all the node processors is reported as the parallel exe-
cution time for each test problem. Note that the factorization time reported does not
include the time for initialization and data generation.

The execution times (in seconds) of the serial and parallel algorithms are denoted
by T8 and T, respectively, and as in previous sections, m and n denote the number of
rows and columns of each test matrix and 3’1 and ")’2 denote the number of processors
along each dimension of the two-dimensional grid embedded in the hypercube.

Our experiments were designed to measure speedup, and demonstrate how the
aspect ratio of the subcube-grid affects the performance of Algorithm II. We show
that when the predicted optimal aspect ratios are used, the execution time and the
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storage requirement either coincide with or are very close to the actual minimum as
the theory developed in previous sections predicts.

7.1. The measurement of serial time. Table 7 reports the serial time T8
for each randomly generated test matrix. Note that when 1 2 1, the two-
dimensional processor grid degenerates to a single processor, and Algorithm II involves
only the Independent Annihilation Phase (IAP) on a single processor. Since inter-
processor communication is not needed during the IAP, the code for the IAP running
on one node indeed implements the sequential Givens algorithm. We thus measure

T8 by the execution time of the parallel code running on a 1 1 grid.

TABLE 7
Execution times o.f the sequential Givens algorithm.

Single precision Double precision
m

100
125
150
175
200
90
120
135
160
240
60
80
90
120
160

n (sec)
100 67.500
125 130.465
150 223.890
175 353.760
200 526.095
60 26.830
80 62.010
90 87.550
120 174.600
160 477.510
90 25.300
120 59.300
135 84.200
160 170.600
240 467.000

m n Ts (sec)
5O 5O 10.800
75 75 35.400
100 100 82.600
125 125 160.000
150 150 274.800
60 a0 10.100
90 60 32.640
120 80 75.700
135 90 107.020
160 120 213.905
40 60 9.360
60 90 30.995
80 120 72.800
90 135 103.310
120 160 209.510

Due to the limited memory of 512 kbytes on a single node, the largest matrix we
could factor using one processor was about 200 x 200 in single precision or 150 x 150
in double precision. In order to measure the speedup and efficiency of the parallel
algorithm, we need to estimate the serial factorization time of much larger matrices.
For any square matrix of dimension n, we approximate the factorization time using
the formulae

(26) Ts(n) cln
3 + c2n

2 A- c3n -4- c4,

where cl, c2, c3, and ca are obtained in the following manner. First note that by
equating Ts(n) to the known execution times for n 100, 125,150,175, and 200 (for
single-precision implementation) or n 50, 75,100,125, and 150 (for double-precision
implementation), we obtain five equations and four unknowns. By finding the least-
squares solution to the overdetermined system of equations we obtain the coefficients
{c,c2, c3, ca}. The estimated Ts(n) are compared with the actual execution times
in Table 8. Since the node processors on the hypercube do not support multipro-
gramming, the execution times measured on a node are consistent and reproducible.
This feature allows us to obtain accurate estimates based on a relatively small set of
samples.
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TABLE 8
Measured and estimated times of the sequential Givens algorithm.

Single precision
m n

100 100 67.500
125 125 130.465
150 150 223.890
175 175 353.760
200 200 526.095

Ts (sec) Estimated Ts
67.500 sec

130.467 sec
223.887 sec
353.762 sec
526.095 sec

Double precision
m n
50 50 10.800
75 75 35.400

100 100 82.600
125 125 160.000
150 150 274.800

Ts (sec) Estimated Ts
10.806 sec
35.377 sec
82.634 sec
159.977 sec
274.806 sec

7.2. The effect of the aspect ratio of the subcube-grid. In this section
we present numerical experiments to demonstrate the effect on the execution time of
Algorithm II induced by varying the aspect ratio of the processor grid. Table 9 gives
the timing results obtained from the single-precision implementation of Algorithm II.
Table 10 gives the double-precision timing results. The minimum execution time for
each test matrix is marked by an asterisk (*).

Recall that for given m, n, and p, the predicted optimal "1 varies for different
values of T/A. In Table 2 and Table 4 we computed the predicted values of the optimal
-1 for the ratios of T/ ranging from 0 (T << ,) to 1000 (T >> ,). For easy comparison
with the actual optimal execution time T*, we let - denote the smallest predicted
optimal - and - denote the largest predicted optimal -, and label the execution
time corresponding to / or - as T or Tu, respectively, for each test matrix in
Tables 9 and 10.

Some timilg results are missing in the tables. In some cases, we did not obtain
the execution time because of storage limitation. In particular, the maximum number
of bytes that may be sent in a single message on the hypercube is 16K bytes (4000
single-precision or 2000 double-precision floating-point numbers) and this limit was
exceeded for some choices of- and "2. In other cases, for the very large test problems
whose factorization is very expensive, we only provide the timing result for the optimal
choice of " /2 because the effect of the shape of the grid on speedup and efficiency
has been well demonstrated on smaller problems.

Since it may be equally important to minimize the storage requirement on each
node processor, it is desirable that - in Theorem 6.2 coincides with the choice of-1,
which minimizes the execution time. In order to see how Algorithm II performs in
this aspect, we label the execution time corresponding to " as T for each test matrix
in Tables 9 and 10.

It is interesting to see that Tt, T, or Tu either coincide with or are very close
to the actual optimal T* for all test matrices in Tables 9 and 10. It is also worth
noting that by embedding an appropriate processor grid we not only minimize the
storage usage and communication/computation cost of the parallel algorithm, but
also help balance the work load and reduce processor idle time. The 1980 100
and 100 x 1980 matrices are examples to demonstrate how a proper choice of- can
reduce the processor idle time. Clearly the choice of a 1 x 64 grid for the 1980 100
matrix is equivalent to wrapping the 100 columns around the 64 processors where each
processor is assigned one column or two columns. In contrast, the choice of a 64 1
grid for the same matrix will assign 30 or 31 rows to each processor. In the former
case, because only 36 processors are assigned two columns, starting from the 37th
elimination stage, the 64 processors will become idle one by one after each following
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elimination stage. In the latter case, since only one row from the 30 rows or two rows
from the 31 rows could be the pivot rows, each processor has 29 to 31 rows of data to
process at each of the 100 elimination stages. The reduction of idle time is thus quite
significant while using a 64 1 grid for this example. A similar argument applies to
the 100 1980 example.

TABLE 9
Single-precision execution times of Algorithm II.

Single-precision execution times (sec), "1 /2 64
m n 64xl 32x2 16x4 8x8

1000 1000 1493 1250 1155 1146,u
1700 1700 5258,u
1200 800 1224 1075 1021" 1041t,u,t
800 1200 1493 1178 1051 1007,u
1980 100 43.8* 44.8t,u 48.7t 60.3
100 1980 196.9 102.4 62.7 46.7
*The minimum execution time.

4x16 2x32
1185t 1304

164
1579

1103 1264 1628
1028t 1096 1270
85.4 138.9 251.6

4*41 39. l,u 40.1t

Execution time when employing the smallest predicted optimal 9’1.

uExecution time when employing the largest predicted optimal 9’1.
Execution time when employing ? to minimize storage.

TABLE 10
Double-precision execution times of Algorithm II.

m n
500 500
6OO 4OO
400 600

Double-precision execution times (sec), /1 2 16
161 82 44 28
729 680 676.5*,u 702
631 605* 615,u, 656
686 617 599,u 610

Double-precision execution times (sec), / ’2 64
322 164 88
1549 1423 1402,

2357,u
1326 1256" 1270t,u,

1302 12381,
52.67,u 57.6 71.0
129.8 78.4 57.9

m n 64 1
1000 1000 1858
12001200
12b0 800 1517
800 1200 1861
1980 100 52.1.
100 1980 249.6
*The minimum execution time.

lx16
779
757
657

416
1448t

1259
101.5
49.9

2x32 ix64
1586 1918

164.4

47.0,u 48.1

tExecution time when employing the smallest predicted optimal

uExecution time when employing the largest predicted optimal 1.
Execution time when employing " to minimize storage.
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TABLE 11
Estimated speedup and efficiency of Algorithm II.

Single precision

1 X 9’2 64 X 1
T (see) 1493
speedup 43.1
efficiency 67%

p 64, m n 1000
T8 64,377 sec 17 hr 52 min 57 sec

32x2 16x4 8x8 4x16 2x32 lx64
1250 1155 1146" 1185 1304 1579
51.5 55.7 56.2* 54.3 49.4 40.8
81% 87% 88%* 85% 77% 64%

p 64, m n 1700
Ts 315,578 sec 3 days 15 hr 39 min 38 sec

9’1x9’2 64xl 322 16x4 88 4x16 2x32 lx64
T (sec) 5258*
speedup 60.0*
efficiency 94%*
*The minimum execution time.

Tables 11 and 12 report the estimated speedup and efficiency for a set of test
matrices. The speedup and efficiency are each computed using

Estimated T,
speedup

T

and

speedup
efficiency

where p is the total number of processors employed, and p 9’1 x 9’2.

7.3. Further enhancement. In [16] Pothen and Raghavan proposed a hybrid
algorithm for performing orthogonal decomposition of a rectangular matrix on local-
memory multiprocessors. The hybrid algorithm proposed in [16] can be viewed as a
variant of Algorithm I. The difference lies in the following two aspects. In the IAP the
hybrid scheme uses Householder transformations instead of Givens rotations to reduce
the arithmetic cost. In the CMP the hybrid scheme used a different communication
scheme in merging the local pivot rows. Since Algorithm I is a special case of Algo-
rithm II when a p-by-1 grid is embedded in the hypercube, the strategy of applying
Householder transformations in the IAP can be used to reduce the arithmetic cost of
Algorithm II regardless of the choice of 9’1. Furthermore, when 9’2 > 1, the use of
Householder transformations during the IAP can also reduce the communication cost
of Algorithm II because there are only half as many multipliers to be communicated
within each subcube. In terms of message length, each message to be sent and re-
ceived during the IAP is reduced by a factor of 2 when Householder transformations
are used.

As far as our implementation of Algorithm II is concerned, the code for the
IAP involves one single subroutine implementing Givens rotations. Therefore, an
enhanced version of Algorithm II is immediately obtained by recoding this subroutine
using Householder transformations. Note that our communication algorithms and
the entire CMP of Algorithm II remain unchanged. In this section we report timing
results of the enhanced Algorithm II and compare its performance with other schemes.



QR FACTORIZATION ON A MULTIPROCESSOR 1021

TABLE 12
Estimated speedup and efficiency of Algorithm II.

Double precision

T (sec)
speedup
efficiency

’T1 x ")’2

T (sec)
speedup
efficiency

’T1 X ’2
T (sec)
speedup
efficiency

hr 1 min 58 sec
88 416
1402" 1448

42.7 51.2 55.7 56.6* 54.8
67% 80% 87% 89%* 86%

p 64, m n 1200
T8 136,953 sec 1 day 14 hr 2
641 322 164 88

2357*
58.1"
91%*

p= 16, m- n 500
T8 9,962 sec 2 hr 46 min 2 sec
161 82 44 28
729 680 676.5* 702
13.7 14.7 14.7" 14.2
86% 92% 92%* 89%

p 64, m n 1000
Te .. 79,318 see 22

64x1 32x2 16x4
1858 1519 1423

*The minimum execution time.

2x32
1586
50.0
78%

lx16
779
12.8
80%

min 33 sec
4x16 2x32

1x64
1918
41.3
65%

1x64

TABLE 13
Execution times of the sequential Householder algorithm.

Single precision Double precision
m n Ts (sec) m n

100 100 60.1 50 50
125 125 115.3 75 75
150 150 196.9 100 100
175 175 310.1 125 125
200 200 460.0 150 150
90 60 23.9 60 40
120 80 54.7 90 60
135 90 77.0 120 80
160 120 153,0 135 90
240 160 415.6 160 120
60 90 23.2 40 60
80 120 53.5 60 90
90 135 75.5 80 120
120 160 151.3 90 135
160 240 411.0 120 160

T (se)
9.2

29.3
67.5

129.6
221.4

8.5
26.8
61.4
86.5

172.0
8.1

26.1
60.1
84.8

170.1

When "1 ")’2 1, the enhanced Algorithm II involves only the IAP phase on
one node and thus implements the sequential Householder algorithm. The serial time
T based on the Householder algorithm is therefore measured by the execution time
of the parallel code running on a 1 1 grid.



1022 ELEANOR CHU AND ALAN GEORGE

Table 13 reports the execution times T8 of the sequential Householder algorithm
for some randomly generated test matrices. We again estimated the serial factorization
time T8 for large n-by-n matrices by choosing the coefficients for a cubic polynomial
Ts(n) as explained earlier in this section. We compare the estimated T(n) with the
actual execution times in Table 14.

In Tables 15 and 16 we show that the aspect ratio of the processor grid has a,

similar effect on the enhanced Algorithm II. An analysis similar to the one in 6 can
be done in order to obtain reliable estimates for the best "1 to use in conjunction
with the enhanced version of Algorithm II. Tables 17 and 18 report the "estimated"
speedup and efficiency for a set of test matrices.

Next we compare the performance of Algorithm II and the enhanced Algorithm
II in Tables 19 and 20. Note that Algorithm I is the special case of Algorithm II when
the processor grid is chosen to be p 1. Therefore, the enhanced version of Algorithm
I is a FORTRAN implementation (with a different communication scheme) of the
hybrid algorithm proposed in [16]. In [16] Pothen and Raghavan implemented the
hybrid algorithm in the C language and compared its performance with four other
schemes including one based on the greedy Givens sequence. The latter can be viewed
as a variant of Algorithm I with a different communication scheme.

TABLE 14
Measured and estimated times of the sequential Householder algorithm.

Single precision

100 100 60.1
125 125 115.3
150 150 196.9
175 175 310.1
200 200 460.0

T (see) Estimated T
Double precision

m n
60.1 sec 50 50 9.2

115.3 sec 75 75 29.3
196.9 sec 100 100 67.5
310.1 sec 125 125 129.6
460.0 sec 150 150 221.4

T8 (sec) Estimated Ts
9.2 sec

29.3 sec
67.5 sec

129.6 sec
221.4 sec

The timing results listed in Table 19 indicate that the enhanced Algorithm II
coupled with the optimal choice of /1 has the fastest execution time. The possible
improvement in execution time by the hybrid scheme over Algorithm I can be seen
by comparing the data in column 1 with the data in column 2. Note that when
m/p << n (e.g., p 64, and m n 800 x 1200 or m n 100 1980), the
hybrid scheme could become less efficient. The factor contributing to the longer
execution time of the hybrid scheme is that in this case each submatrix to be reduced
by Householder transformations has dimension (m/p) n and when (m/p) << n,
the saving by Householder transformations is relatively small and is less than the
different overhead caused by employing Householder transformations instead of Givens
rotations. This is not likely to happen when 1 /2 is chosen according to the shape of
the matrix as demonstrated by the results for the enhanced Algorithm II shown in the
same table. The possible improvement by the enhanced Algorithm II over Algorithm
II can be seen by comparing the data in column 3 with the data in column 4. As
noted earlier, when 2 1, the hybrid scheme has lower arithmetic cost but the same
communication cost compared to Algorithm I; when "2 > 1, the enhanced Algorithm
II not only has lower arithmetic cost but also has lower communication cost compared
to Algorithm II. This observation is supported by the timing results in Table 19.

In Table 20 we list the storage requirement for each of the four schemes. The
storage requirement of the enhanced Algorithm II is either the minimum or different
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TABLE 15
Single-precision execution times of the enhanced Algorithm II,

The enhanced Algorithm II
Single-precision execution times (sec), "Y1 x "Y2 64

m n 64xl 32x2 16x4 8x8 4xi6
i000 1000 1557 1215 1060 1011" 1017
1700 1700 4580*
1200 800 1231 1012 922 905* 930
800 1200 1618 1183 986 907 891"
i980 100 41’7 39.8* 42.0 48.5 64.4
100 1980 221.5 125.1 75.7 50.8 41.0

*The minimum execution time.

2 x 32 1 x 64
1084 1257

1030 1265
924 1030
99.6 175.0
36.6 36.1"

TABLE 16
Double-precision execution times of the enhanced Algorithm II.

The enhanced Algorithm II
Double-precision execution times (sec),-Y1 -Y2 16

m n 161 82 4x4 28 lx16
500 500 653 572 542, 551 596
600 400 549 500 488, 509 571
’400 600 639 534 488 485, 508

Double-precision execution times (sec), 1 2 64
m n 641 322 164 88 416 232 lx64

1000 1000 1424
1200 1200
i200 800
800 1200
1980 100
100 1980

1819 1399 1214 1138" 1148
1905"

1429 1049 1021" 1051
1915 1031 1006"
46.9 43.7* 45.7 54.5 72.0
274.5 152.8 89.3 60.6 45.8

1224

1043
113.4
40.8

*The minimum execution time.

TABLE 17
Estimated speedup and ejficiency of the enhanced Algorithm II,

The enhanced Algorithm II
Single precision

T (sec)
speedup
efficiency

YI x /2
T (sec)
speedup
efficiency

p 64, m n 1000
Ts 55,464 sec 15 hr 24 min 24 sec

64xl 32x2 16x4 8x8 4x16 2x32
1557 1215 1060 1011" 1017 1084
35.6 45.7 52.3 54.9* 54.5 51.2
56% 71% 82% 86%* 85% 80%

p 64, m n 1700
Ts 271,428 sec 3 days 3 hr 23 min 48 sec
641 322 164 88 416 232

4580*
59.3*
93%*

*The minimum execution time.

lx64
1257
44.1
69%

1x64
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TABLE 18
Estimated speedup and e]ficiency of the enhanced Algorithm II.

The enhanced Algorithm II
Double precision

p- 16, m n 500
T8 7, 873 sec 2 hr 11 min 13 sec

q x’2 16xl
T (sec)
speedup
efficiency

653
12.1
76%

p-_
T8 62,426

64xl 32x2
1819 1399
34.3 44.6
54% 70%

p-

T (sec)
speedup
efficiency

8x2 4x4 28
572 542* 551
13.8 14.5" 14.3
86% 91%* 89%

64, m n 1000
sec 17 hr 20 min 26 sec
16 x 4 8 8 4 x 16
1214 1138" 1148
51.4 54.9* 54.4
80% 86%* 85%

64, m n 1200
Ts 107, 711 sec 1 day 5 hr 55

/1 /2 641 322 164 88
T (sec) 1905"
speedup 56.5*
efficiency 88%*
*The minimum execution time.

116
596
13.2
83%

232 164
1224 1424
51.0 43.8
80% 67%

min 11 sec
4’16 232 164

from the minimum for less than 0.1 percent.
Finally, in view of the improvement in execution time and storage requirement

by employing Householder transformations in the Independent Annihilation Phase of
Algorithm II, the saving by reducing the length of each message in the IAP by a
factor of 2 appears to be quite significant. Thus, instead of employing Householder
transformations in the IAP, we might reduce the execution time and storage require-
ment of Algorithm II by simply storing the multiplier pair corresponding to each
Givens rotation as a single real number using the economical storage technique pro-
posed by Stewart in [21]. At the cost of compressing and retrieving the rotations, the
parallel algorithm employing Givens rotations would have the same communication
cost and storage requirement as the one employing Householder transformations in
the IAP phase, and their performances would be comparable.

8.1. A summary. In this paper we considered the problem of factoring a dense
rectangular matrix on a hypercube multiprocessor. The hypercube network is con-
figured as a two-dimensional subcube-grid in the proposed algorithm. Our analysis
of the algorithm determines how the aspect ratio of the subcube-grid should be cho-
sen in order to minimize the execution time or storage usage. The algorithm was
implemented in FORTRAN and tested on an Intel iPSC hypercube with 64 proces-
sors. Our numerical experiments demonstrate the effect of the aspect ratio on the
performance of the parallel algorithm and show that the execution time or storage
requirement using the predicted aspect ratio is very close to the actual minimum for
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TABLE 19
Comparing the enhanced Algorithm II with other schemes.

p m

64 1000 1000
64 1700 1700
64 1200 800
64 1980 100
64 800 1200
64 100 1980

p m n

16 500 500
64 1000 1000
64 1200 1200
16 600 400
64 1200 800
64 1980 100
16 400 600
64 800 1200
64 100 1980

Single-precision execution times (sec)
71 x 7),2 p x 1 9’1 x 72 optimal choice

Algorithm I Hybrid Algorithm II Enhanced II
1493 1557 1146 1011"

5258 4580*
1224 1231 1021 905*
43.8 41.7 43.8 3918"
1493 1618 ’1007 89’i*
196.9 221.5 39.4 36:1

Double-precision execution times (sec)
71 x 72 P x 1 71 x 72 optimal choice

Algorithm I Hybrid Algorithm II Enhanced iI
729 653 676.5 ’542’
1858 1819 1402 i13’8

2357 1905’
631 549 605 488*
1517 1256 1021"
52.1
686
1861

1429
46.9 52.1
639 599
1915 1238 1006"

43.7*
485*

249.6 274.5 47.0 40.4*
*The minimum execution time.

the test matrices.
Another feature of the algorithm proposed in this article is that redundant com-

putations are incorporated in a communication scheme that takes full advantage of
the hypercube topology. With the proposed communication scheme the data are al-
ways exchanged between neighboring processors. Furthermore, because the exchanges
at each step involve distinct pairs of processors and employ separate communication
channels, they can occur simultaneously. The latter feature is important in reducing
traffic congestion in the network. It is expected that in future generations of hy-
percubes special hardware support may achieve a situation where sending a message
to a processor several hops away may not take significantly longer than sending the
message to a neighbor. However, the problem of traffic congestion will still exist. The
communication scheme we proposed in this paper provides a solution to this problem.

The extensive experimental results presented in 7 also show that the proposed
algorithm can be efficiently implemented and various enhancements can be easily
incorporated to further reduce the execution time and storage requirement.

8.2. Further work. Recall that when we applied Algorithm II to a dense square
matrix, substantial saving in execution time and storage usage were obtained by
employing the hypercube as a subcube-grid with dimensions 71 being as close to
72 as possible. A natural question to ask is whether Algorithm II can be adapted
to parallelize other numerical algorithms efficiently. In this section we give such an
example by applying the ideas of Algorithm II to parallelize Gaussian elimination
with pairwise pivoting on a hypercube multiprocessor. We briefly review the pairwise
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pivoting scheme and sketch how to adapt Algorithm II for this task.

TABLE 20
Comparing the enhanced Algorithm II with other schemes.

Storage requirement (in 4-byte words)

p m n

64 1000 1000
64 1700 1700
64 1200 800
64 1980 100
64 800 1200
64 100 1980

p m n

16 500 500
64 1000 1000
64 1200 1200
16 600 400
64 1200 800
64 1980 100
16 400 600
64 800 1200
64 100 1980

Single-precision implementation

1 2 P x 1 1 x 72 optimal choice
Algorithm I Hybrid Algorithm II Enhanced II

22606 22606 17808 17546*
56750 56750 48258 47822*
20618 20618 17246 16946*
4366 4366 4366 4212"
23394 23394 17108* 17121
16390 16390 4313 4296*

Double-precision implementation

1 x 2 P x 1 i X 2 optimal choice
Algorithm I Hybrid Algorithm II Enhanced II

38508 38508 34784 34260*
45212 45212 35616 35092*
61236 61236 50016 49392*
35756 35756 33660 33060*
41236 41236 34492 33892*
8732 8732 8732 8424*
38860 38860 33384* 33410
46788 46788 34216* 34242
32780 32780 8626 8592*

*The minimum execution time.

The method of Gaussian elimination using triangularization by elementary stabi-
lized matrices constructed by pairwise pivoting is analyzed by Sorensen in [20]. It is
shown that a variant of this scheme that is suitable for implementation on a parallel
computer is numerically stable although the error bound is larger than the one for
the standard partial pivoting algorithm. The serial algorithm and its analysis are
given in detail in [20]. For our purpose, it is sufficient to note that the variant we
are considering can be understood as applying a 2 2 elementary matrix to each pair
of rows in a fashion similar to applying Givens rotations. Recall that in the Givens
scheme, we apply the rotation of the following form to a pair of rows to annihilate a
leading nonzero element from one of the rows:

For Gaussian elimination with pairwise pivoting, this elementary 2 2 matrix will be
of the following form:
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where P is a 2 x 2 permutation. Therefore, to annihilate one element, only one row of
data is modified. The serial arithmetic cost is therefore one-half of the Givens scheme.
If the work load is evenly distributed among the multiple processors, then the parallel
arithmetic cost is also one-half of the parallel Givens scheme. We can further improve
the numerical stability without any cost by performing partial pivoting whenever
parallelism can be maintained.

Following our description of Algorithm II in 5, we shall have each processor per-
form Gaussian elimination with "partial pivoting" in the IAP phase at each reduction
step. After that all of the processors can cooperate to perform Gaussian elimination
with "pairwise pivoting" in the CMP phase to eliminate the leading nonzeros in the
local pivot rows. Note that with the wrap mapping a balanced work load distribution
can be maintained throughout the entire elimination process as long as the kth row
of A is reduced to the kth row of the upper triangular factor [4]. Therefore, explicit
permutations during the CAP at the kth reduction step are needed only when the
pair of rows involves row k and row k is not chosen as the pivot row. Whenever
this happens, our communication scheme ensures that both rows are present in the
two processors involved. The explicit permutation can thus be done at no extra cost
by carefully delaying the actual modification until the very last step. Another point
worthy of noting is that there is no redundant computation involved simply because
the row to be further exchanged is not modified. The analysis of the parallel scheme
would be similar to the performance analysis of Algorithm II.
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DOMAIN DECOMPOSITION METHODS FOR SYSTEMS OF
CONSERVATION LAWS: SPECTRAL COLLOCATION APPROXIMATIONS*

ALFIO QUARTERONIt

Abstract. Hyperbolic systems of conservation laws that are discretized in space by spectral collocation
methods and advanced in time by finite difference schemes are considered. At any time-level a domain
decomposition method is introduced that is based on an iteration-by-subdomain procedure yielding at each
step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously.

The method is set for a general nonlinear problem in several space variables. The convergence analysis,
however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form
of the error-reduction factor at each iteration is derived.

Although the method is applied here to the case of spectral collocation approximation only, the idea
is fairly general and can be used in a different context as well. For instance, its application to space
discretization by finite differences is straightforward.

Key words, hyperbolic systems, domain decomposition, spectral collocation, convergence analysis
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Introduction. In this paper we propose an effective domain decomposition method
for the numerical solution of quasi-linear hyperbolic systems of conservation laws.

Although our emphasis is on spatial discretization by spectral collocation schemes,
the domain decomposition approach we advocate here can be adopted for finite
difference discretizations as well. At every time-level the method applies after the initial
value problem has been advanced by either an implicit or an explicit timestepping.

The spatial computational domain is subdivided into several adjoining, noninter-
secting subdomains; within each of them we look for a polynomial solution of degree
N with respect to each component. If F denotes the interface between two of such
subdomains, say fli and fli+l, at each gridpoint on Fi we enforce the conditions of
continuity of the physical variables. Furthermore, we require the fulfillment of the
so-called compatibility equations, i.e., of those characteristic combinations of the
original equations that express wave propagation across Fi from i toward fli+l and
vice versa.

The main reason for using the multidomain spectral method rather than the
standard single-domain spectral approach stems from its capability of covering prob-
lems in complex geometry. Moreover, the spectral multidomain approach allows local
refinement to resolve internal layers (or even discontinuities) maintaining however the
spectral accuracy enjoyed by the classical spectral collocation method (e.g., [4, Chap.
12]).

We also propose here a new iteration-by-subdomain algorithm that allows the
decoupling of the subproblems arising from the multidomain approach making it
possible to solve at each iteration as many independent subproblems as the number
of subdomains. This algorithm requires that on F the values of the characteristic
variables impinging li equate those outgoing from fi+ at the previous iteration, and
vice versa.

For the case of linear hyperbolic systems we prove that the above iteration-by-
subdomain method is convergent. Furthermore, we find a close expression of the
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reduction faction per iteration and show that it is independent of the number of
gridpoints inside each subdomain. Furthermore, an algebraic interpretation of our
iteration-by-subdomain algorithm is derived in terms of the Schur complement (or
capacitance) matrix.

Finally, we show how the method proposed here can be adapted to the case in
which an internal interface is a discontinuity surface (actually, a "k-shock" in the
sense of Lax [10]). This typically occurs if a shock fitting approach is adopted [4,

8.6]. In such a case, the compatibility equations together with the Rankine-Hugoniot
conditions allow us to compute first the flow field within the upstream subdomain then
the one in the downstream subdomain.

When a shock capturing strategy is pursued, domain decomposition makes it
possible to use numerical viscosity only within the (thin) subdomain embodying the
shock front. In this case, the subdomain interfaces are dealt with as continuity lines
(or surfaces).

Examples of domain decomposition methods of similar type have been proposed
in the latest years. We recall for instance [9] and the references given in Chapter 13
of [4]. We also refer to 11 and 12] for applications of spectral multidomain techniques
to reacting flow whose shape and motion are generated at each time-level. In the frame
of finite differences we refer to the earlier paper [3] where the issue of the compatibility
equations at subdomain interfaces was addressed. More recent applications of finite
difference multidomain methods for compressible flow simulations can be found in [2].

The present one is, to the author’s knowledge, the first paper in which the matching
and compatibility conditions at subdomain interfaces are properly used and fully
justified on a theoretical ground. An outline of this paper is reported below. In 1 we
introduce the initial boundary value problem and the compatibility equations, and in
2 we state the domain decomposition formulation of the Chebyshev collocation

approximation to the problem. In 3 we present an iterationoby-subdomain algorithm
for an effective solution of the domain decomposition problem. Thereafter we confine
ourselves to the case of one-dimensional hyperbolic systems.

The interest of illustrating our method on one-dimensional problems is twofold.
First, the simple structure of the problem allows a better understanding of our iteration-
by-subdomain method, whose presentation within the general framework of previous
sections might appear fairly involved. Second, the one-dimensional case is the only
one in which we c.an carry out a sound convergence analysis. Indeed, for one-
dimensional wave equations we are able to find the close form ofthe spectral collocation
solution.

In 4 we write the domain decomposition problem as well as the iteration-by-
subdomain algorithms. In 5 we carry out the convergence analysis for the iterative
algorithm, and in 6 we derive the relationship with the Schur complement matrix
associated to the interface unknowns. Finally, in 7, we report some numerical results
for a one-dimensional model problem.

1. The hyperbolic system and the compatibility equations. We consider the following
differential system:

(1.1)
au a__u
ct )’, A(u) ox f in 1"] x (0, T)

where m- 1, 2, or 3, is an open bounded domain of Rm; u, and f are two vector
functions u,f: (0, T) -> RP, with p _-> 1; and Aj(u) are p p matrices possibly depend-
ing on u.
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The system (1.1) is supplemented by initial conditions of the form

(1.2) u(x, O) q(x) Vx

and by suitable boundary conditions at (0, T)x 011 that will be specified later.
For any : " such that Isc[ (Yj=I :)1/2 1, let us define the characteristic matrix

for the ( direction as follows:

(1.3) A(:) := L Aj(u).
j=l

The system (1.1) is assumed to be hyperbolic in time: this means that for any such
A() has p real eigenvalues and moreover it is diagonalizable.

Let us denote by {h k, k= 1,... ,p} the eigenvalues of A(sC), and by {v k, k=
1, , p} the set of the corresponding left eigenvectors, so that

(1.4) vkA()=Akvk, k=l," ",p.

We assume that A k > 0 for k 1, , q and A k < 0 for k q + 1, , p for some
0-< q-< p (obviously, q depends on the particular direction that we are considering).
Let us take the inner product of v k with (1.1); for each k we obtain the scalar equation

+ , A;(u) v.f, k= 1,...,p.
j=l

Now denote by (rl," ", z,_l) the system of Cartesian coordinates of the hyperplane
orthogonal to the direction sc. Then for each h 1, , m 1, "rh (’rh,, ", "rh,n)
"rh" := 0 and [Zhl 1. Owing to the identity

0U 0U m__-I 0U
1.6)

Ox O
+ ’h

Th
j l m

from (1.5) and (1.4) it follows that

(1.7) +hk =vk" f-- E Aj(u) Zh k=l,’’’,p.
j=l h=l

Following a terminology proposed in [3], we will refer to (1.7) as the compatibility
equations for the problem (1.1).

Remark 1.1. Let F denote a (m- 1)-dimensional manifold of N, and denote by
v the unit normal direction to F. Taking v, equations (1.7) restricted to F become

(1.8) v Ou Ou+ =v f-EA(u) % =l,...,p.

The right-hand side of (1.8) depends on the tangential derivatives of u on F, whereas
the left-hand side yields a combination (through the components of the eigenvector
v) of transport equations along a direction that is normal to F.

Assume F is the boundary of 11 and v is oriented outward f (see Fig. 1.1(a));
then for k 1, , q, (1.8) yield q transport equations according to which information
are propagated from the inside to the outside of 11. For such a reason, equations (1.8)
for k 1,. ., q will be called the compatibility equations for the domain 11.

If we now assume that 111 and 1)2 are two adjoining subdomains of , and F is
their common boundary, taking as v the normal direction to F, oriented from 111 to
112 (see Fig. 1.1(b)), then the first q equations of (1.8) are the compatibility equations
for 111 (they entail propagation of information from 111 to f). Obviously, for k
q + 1, , p, (1.8) provides the compatibility equations for 112. Such a distinction will
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F F
(a) FG. 1.1 (b)

be crucial in the definition of the multidomain method we will propose in the
forthcoming sections. [3

2. Spectral collocation approximation to the system (1.1): A domain decomposition
approach. In this section we assume that fl is an m-dimensional hypercube. Let 1
and f2 be two open subregions so that 12 fl U 122, "1 ["] "2--I", ’1 ["] -2 where
F is orthogonal to one Cartesian direction. We assume here that the solution of (1.1)
is continuous across F. The case of solutions that are discontinuous across F is faced
in 2.1.

Let N be a given positive integer; we denote by

(2.1) Z:= Xk=COS--,k=(kl,"’,km),O<=ki<-N,i=l,’",m

the set of Chebyshev-Lobatto points of the reference hypercube [-1, 1] m. Furthermore,
we denote by E and E2 the corresponding set of points in 111 and 122, respectively.
Note that a point of E (respectively, E2) lies on the boundary of l-ll (respectively, f2)
if at least one of its subindices kj is either zero or N. Since we are using the same
number of points in 111 and 112, the points of E f’IF and those of E2fqF are exactly
the same. We will denote by Er this common set of interface points. Furthermore, for
each k- 1, 2, we denote by Eo the points of Ek that are internal to fk, i.e., which do
not lie on OlIk.

A (continuous in time) spectral domain decomposition method for problem (1.1)
is defined as follows. At each time t>0 we look for uN(t)(PN(12i)) p that satisfies
the following set of equations.

(a) At each point of E

(2.2) Ou" -t- Y’. Aj(u)=f;
Ot j=l OXj

(b) At each point of E
ouOu---z -t- A u2 I(2.3)

Ot =1 Ox



DOMAIN DECOMPOSITION FOR HYPERBOLIC SYSTEMS 1033

(c) At each point of Er
(2.4) u= u2.
Moreover, we require that

(2.5) vk oul k OU k+ =v f-Ea(u) % =,...,q.
Ot Ou ff j=l h=l

is the outward unit normal direction to 1 on F (see Fig. 1.1(b)), A k and k are the
eigenvalues and the (left) eigenvectors ofthe matrix A(v) (with A k 0 for k 1, , q),
and is the tangential direction on F.

Fuhermore, we satisfy

(2.6) v Ou Ou
k= q + p.

0U j=l h=l OTh

Following the definitions given in Remark 1.1, (2.5) are the q compatibility equations
for on F, while (by viue of (2.4)), (2.6) are the p-q ones for .

(d) At each point of Z belonging to a "face" of0 (excluding the interface
F) we set

(.7) v. u ou
v. f E a(u) % k= l, q

where is now the outward normal direction to on , z is the tangential direction
on , while h

g
and vk are the eigenvalues and the (left) eigenvectors of the matrix

A() (note that here q is not necessarily the same of (2.5)).
The remaining p-q equations that we need at each collocation point of must

be provided by the physical boundary conditions that supplement (1.1) and (1.2).
(e) At each point of E2 belonging to a "face" of 02 (excluding the interface

F) we enforce

(2.8) vg’(Ou%- hgOu]=vg .(f_ A(u%)Ou--zh;), k=l
k Ot

+
Ou ] = =

where u is the outward normal direction to 2 on , z the tangential direction on F,
h , and v are the eigenvalues and the (left) eigenvectors of the matrix A(p). (Again,
h> 0 for k 1,. ., q, where q here is not necessarily the same as before.)

The remaining p-q equations are prescribed as boundary conditions.
Remark 2.1. The use of the compatibility equations (2.5)-(2.8) requires the knowl-

edge of eigenvalues and left eigenvectors of A(u). If the matrices A; are not constant,
by elementary symbolic calculation on the p x p matrix A(u), eigenvalues as well as
eigenvectors can be generally expressed in close form in terms of the components of
the physical variable and of u. Their values at each iteration and at any point of F can
therefore be obtained by saturating the dependency on specific available values of the
solution.

Remark 2.2. In the frame of classical single-domain spectral collocation methods
for hyperbolic systems, the use of compatibility equations for collocation boundary
points was first advocated in [8] and [5]. For the same method, a stability and
convergence analysis were developed in [6] and [7] for the case of dissipative boundary
conditions. No convergence analysis (with respect to N) is available so far for spectral
multidomain approximations of hyperbolic systems.
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Remark 2.3 (fully discrete approximation). A fully discrete approximation to the
initial value problem (1.1), (1.2) can be obtained using a time marching scheme in
(2.2)-(2.8). Whatever scheme (either implicit or explicit) we adopt to advance from a
known time level k to a new one k/l, the matching interface condition (2.4), as well
as the prescribed boundary conditions should be enforced at the new time level.

If an explicit timestepping is used, at the time level k/l the unknown vectors
{IllN(xjl), xjl E} and {u2N(xj),xj22 E}, can be computed using solely the internal
equations (2.2) and (2.3), respectively. Once these internal values are available, the
interface equations (2.4)-(2.6), together with the boundary equations (2.7), (2.8), and
the prescribed boundary conditions can be solved to provide the remaining values of
the unknowns. Actually, we note that the presence of derivatives in space among
boundary and interface equations relates boundary and interface values to each other.
We also emphasize that the differential equations (2.5)-(2.8) should be advanced by
the same explicit timestepping that was used for the equations at the internal points.

When an implicit timestepping is used, the internal unknowns are no longer
decoupled from the remaining ones. We will see an example in the next section.

2.1. The case of discontinuous solutions across the subdomain interface. We now
consider the case where F is no longer an arbitrary surface, but rather the front of a
shock propagating throughout the computational domain 1. This case typically occurs
when a shock fitting technique is adopted with the purpose of determining the shape
and the motion law of the shock front at each time level (see, e.g., [4, 8.6]). We still
denote by 121 and 12 the adjoining subdomains separated by F, by u the outward
normal vector to gll on F and with w the speed with which F propagates in the
direction u.

We will assume that there exists a vector function F :l) (0, T)-EP such that
Aj(u) =OF(u)/Ou so that (1.1) can be written in conservation form as follows:

(2.9)
Ou
--+ , aF(u)
at j=l axj

=f inl-lx(0, T).

The weak solutions to (2.9) (e.g., [10]) are allowed to be discontinuous across the
interface F, but should satisfy the following jump conditions (Rankine-Hugoniot
conditions):

(2.10) w[uJ- E u[F(u)]=0.
j=l

Here [. denotes the difference between values in the brackets on the two sides of F.
In the context of the above spectral Chebyshev approximation, the above equations
read as follows:

(2.11) w(u- u)- E ,;{F(u)- F(uk,))-- 0.
j=l

At each collocation point Er on F, (2.11) yields p equations for the 2p + 1 unknowns:
u l, u and w. We need therefore p + 1 further independent conditions that will be
provided by the compatibility equations, which, in the current situations, can be
determined as follows. Let us define the characteristic matrix for 121 at the point P F"

(2.12) A(pl) Z pjAj(ulN)
j=l
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and denote by AI) and vl) the eigenvalues and left eigenvectors, respectively, of A(v).
Similarly, let us denote by A2) and v2), respectively, the eigenvalues and left
eigenvectors of the matrix

(2.13) A(u2) E (-v;)A;(u2u)
j=l

(note that this time AI #-A2) and v) V2 in general, since U N and u% are no
longer coincident on F). Assume that the (real) eigenvalues are ordered as follows"

j+l i+1All) < A(1) A(2) < A(2), i,j 1, , p- 1.

We assume that F is the surface of propagation of a k-shock, so that the following
entropy conditions are verified (e.g., [13, p. 261]). There exists an integer k {1, , p}
such that

k+l(2.14) 1 W 1), 2) W (2)

Figure 2.1 illustrates an example of a k-shock for a one-dimensional problem. For a
fixed time we have drawn in bold the straight line with slope w (the speed of the
shock front). On its left (respectively, right) we have labeled with j the straight line
whose slope is equal to the characteristic speed A) (respectively, A )), forj 1, , p.

The compatibility equations for1 will therefore be given by the p k + 1 equations

(2.15) v,)
X Ot

+ A’)] v’) f- Z A(u) r= k, p,
j=l h= Oh

whereas those for 2 are given by the k equations

(2 16) v(2" +h(2)] v() f- Aj(u%) ’ Ou
;=1 h=l Oz Zh

s=p-k+l," ",p.

As usual, {Zh} is the set of vectors tangential to F at the point P under consideration.
Note that (2.14) can be rewritten in the form (see [10, p. 25])

k+l(2.17) < < < < hfl ,
which shows that there exists only one index k such that the shock speed w is
intermediate to the characteristic speeds h k on both sides of the shock.

FIG. 2.1. A k-shock with p 3 and k 1.
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In the case of a flow regime supersonic in 1)1 (upstream subdomain) and subsonic
in 12 (downstream subdomain) (see, e.g., Fig. 2.1) the flow field within 1 is uninfluen-
ced by that within 1)2, and therefore should be computed first.

Remark 2.4 (discontinuity due to unsmooth initial data). For linear hyperbolic
systems (Aj independent of u in (1.1)) with discontinuous initial data, there is propaga-
tion of discontinuity across fronts whose position and motion can be a priori determined

(k.) (k) (k) for allin terms of the data. In these cases, w is given and h) -h(2, ,( v(2)
k-1,...,p, so that the p resulting compatibility equations together with the p
Rankine-Hugoniot conditions (2.11) allow the calculation of the 2p unknowns U N,

u at each collocation point on the discontinuity fronts. [3

3. An iteration-by-subdomain algorithm for the solution of the domain decomposition
problem. Let us return to the case of solutions that are continuous across the subdomain
interface F. The description of the domain decomposition method given in the previous
section shows that the spectral collocation problems in and 12 are coupled
throughout the continuity conditions (2.4) at the interface F. To remove this coupling
we propose the following iterative method. Assume the solution is available at the nth
step. Let u, -, h k, and v k be defined as at the point (c) of 2 for each collocation point
of Er (clearly, h k and v k depend on the value of the solution at the points of F).

Let ^(u) and T(u) denote, respectively, the matrix of the eigenvalues of A(u)
and that of the corresponding (left) eigenvectors, so that

(3.1) T( u)A( u) ^ (u) T(u).
Then define at the point under consideration

(3.2) X’= (uv)lT, X2= (u%)(.
Finally, we denote by Tq(v) the q x p matrix given by the first q rows of T(v), whereas
Tp_q(V) will denote the (p-q)x q matrix given by the remaining p-q rows of T(v).
The solutions at the new step, say (uv)"+ in 1 and (UN)"+ in 2, can be obtained
by solving two independent problems in l) and in f2, respectively.

Precisely, (uv)"+ satisfies the interior equations (2.2), the interface equations
(2.5) together with

(3.3) Tp_q(p)(UlN) n+l Tp_q(p)X2 on F

and, finally, the boundary equations given at the point (d) of 2.
Similarly, (u)+ satisfies the interior equations (2.3), the interface equations

(2.6) together with

(3.4) Tq(l")(U2N) n+l-- Tq(p)X on F

and, finally, the boundary equations prescribed at the point (e) of 2. Note that the
limit solutions uv lim, (u) u lim,_ (u) satisfy the conditions

Tq( v)u Tq( V)U N onF,

Tv_q(P)UN T_q(,)UN on F,

which in turn ensure the fulfillment of the continuity requirement (2.4).
Remark 3.1. The extension of the above method to decompositions with several

subdomains is straightforward. At each step, we are left to solve as many independent
subproblems as the number of subdomains. All these subproblems can be solved
simultaneously within a parallel computer environment. [3
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4. A particular case: One-dimensional problems. We consider the special case in
which 12 is the one-dimensional interval (-1, 1), and 121 (-1, c), 122 (c, 1) for some

1 < c < 1. In this case F {c }.
The differential system reads as follows:

(4.1)
Ou Ou--+ A(u) =f in 12 (0, T).

Denoting with {A , k 1,. , p} and {v, k 1,. , p} the eigenvalues and the left
eigenvectors of A(u), respectively, the compatibility equations (1.7) in the current case
become

+ =v . k=l,...,p.

Setting diag {I ,..., I P} and denoting by T the matrix whose kth row contains
v, we can write (4.2) as follows:

(4.3) r Ou r Ou
+A =r

Obviously, T and A depend on u i so does A.
Assume that at the interface point x a the first q eigenvalues oF A are positive.

(O course, A, A, T and q depend on the time level t.) Let us denote by A and T
the q xp matrices obtained suppressing the last p-q rows o A and T, respectively.
Then the ollowing q equations

Ou TOU(4.4) Tq+ A T atx=

provide the q compatibility equations or . Similarly, denoting with A_ and T_
the lower pa o the matrix A and T, respectively, the equations

Ou TOU T_/ atx=(4.) T_U+
_
=

provide the p-q compatibility equations For 2. The compatibility equations or 2
at the right-hand boundary point x 1 are obtained in a similar way, and take the
orm (4.4), whereas at the left-hand boundary x =-1 the compatibility equations or
take the orm (4.5).

The hyperbolic system (4.1) needs to be completed by the initial condition

(4.6) ,(x, 0) (x), xfl

and by a set o boundary conditions (q equations at the point x =-1, and p-q at the
point x 1) that we assume have the orm

Bu g atx=-l,

B2 g2 at x 1

where B is a q xp matrix, B2 is a (p-q)xp matrix, and g and g2 are two given
vector unctions.

Remark 4.1. Since A T TA rom (3.1), instead o (4.3), we can write

(4.3)’ T[Ou+A
Ou

ot
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This is exactly the form that was used in [5] to derive the numerical boundary conditions
at the physical boundary of the domain.

We also note that if A is a constant matrix, then setting z Tu (characteristic
variables), from (4.3) we obtain the following characteristic form of the compatibility
equations:

Oz Oz
(4.3)" --+ ^--= Tf R

Ot Ox

We will now apply the multidomain spectral collocation method described in 2
to the one-dimensional problem (4.1). Let us define

a+l 2 1-a 7rj
xj=-l+(tj+l), xj=a+(b +1), j=0,... N where b cos --.

2 2 N

The points t are the Chebyshev-Lobatto nodes in the reference interval [-1, 1 ], whereas
and 2x xj are their images within the subdomains ’1 and ’2, respectively (note that

2-l<x<a<xj<l for 1-<j_-<N-1).
At each time t>0 we look for u(t)(N(I)I)) p, uZN(t)(V(II2)) p satisfying

the following:
(a) Internal equations

(4.8) Ou-- + a(ul) OulN
j=

Ot Ox
f atxj, 1 <N-l,

(4.9) Ou - a(u) Ou2
<-j0---- --x =f atx, 1 <-N-l;

(b) Interface equations

(4.10) Tq-+ ^qT
Ox

Tqf atx=a,

+ r(4.11) Tp_q
Ot

^P--q
OX

Tp_qf at x= a,

(4.12) u=uv atx=a;

(c) Boundary equations
2Ou T OUN= Tqf atx=l(4.13) To --’+ ^q

OX

+ T Tp_qf at x 1(4.14) Tp_q Ot Ap_q
OX

(4.15) Bu g at x 1,

(4.16) Bu=g at x =-1.

Note that (4.10) and (4.14) are the compatibility equations for ) at the points x a

and x -1, respectively, whereas (4.11) and (4.13) are those of f2 at the points x a

and x 1, respectively. Finally, (4.15) and (4.16) are the boundary conditions (see (4.7)).
We now write the iteration-by-subdomain method described in 3 for the solution

to the problem (4.8)-(4.16). Assume (u) (u N) are available at the nth step and define

(4.17) X=(uv)", g2=(u2N)" atx=a.
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Then in 1)1 we look for (ul)"+(t) (Prq(l))) p such that

0 (u)n+l+A
0

__<j(4.18)
Ot Ox

(lgxr)n+l =f at xj, 1 < N- 1

0
T(4.19) Tq-- (uq) n+l - A q ON

(u4)n+l= Tqf at x a,

(4.20) Tp_o (u v)"+1 Tp_qX at x

0 0
X. (t/)

n+l-- Tp_qf at x -1,(4.21) Tp_q- (uv)"+a + ^p_qT
0

(4.22) Bl(uv),+l= gl at x -1

where the matrices A, ^, and T depend on (uv)"+.
In 12 we solve for (u)"+(t)e (p(a)) satisfying

0 (u),+, + A --0 2 _<j(4.23) 05 Ox
(u)"+ =f atxj, 1 <N-1

0
T N)n+ Tp_qf at x a,(4.24) Tp_q- (u)"++ ^p_q
Ox

(u

(4.25) Tq(uZu)"+= TqX at x a,

0
),+l T___

0
(4.26) Tq--(u + ^ (u)"+= Tqf atx= 1q

OX

(4.27) B2(u)n+l= g2 at x 1.

In (4.23)-(4.26) the matrices A, ^, and T now depend on (u)"+1.
Note that the problem in is independent of that in
The extension of the above iteration-by-subdomain method to the case of a

subdivision by M subdomains (M > 2) is straightforward. At each iteration we obtain
M independent subproblems that can be solved simultaneously.

Here above, the iteration-by-subdomain method has been applied to the semidis-
crete (continuous in time) problem (4.8)-(4.16). To be effective, the iteration method
should be applied at each timestep after which a time marching scheme has been used
to get a full space-time discretization of the problem (see the previous remark). In this
way, at the new time level k+l, we can apply the iterative method until we achieve
convergence to the spectral multidomain solutions u(tk+l), U2s(tk+l).

5. Convergence analysis for the iteration-by-subtlomain methotl. In this section we
will prove that the iteration-by-subdomain method introduced so far is convergent.
Our analysis is confined to one-dimensional hyperbolic systems with constant matrix.
The initial boundary value problem under investigation takes the form (4.1), (4.6),
(4.7) where A is a 2 x 2 matrix that is not restrictive to assume the following form:

(5.1) A=( al al) with.a.<l.

The eigenvalues of A, say A and -/x, have opposite sign, as A a + 1 > 0 and -/x
a- 1 < 0. We note that in this case

(5.2) A=T^T, where ^ diag {A, -/x} and T= 22( 11 -11)"
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Among the various sets of boundary conditions that render this problem well posed,
we consider the following:

(5.3) u,(-1, t)=0, Ul(1, t)--0 Vt (0, T).

We will require the initial value 0(x) (see (1.2)) to be a continuous vector function,
with a first component vanishing at x =-1 and x 1. Under this assumption, initial
and boundary conditions are compatible, hence the solution to our problem is con-
tinuous for all time. We assume that the spectral multidomain problem (4.8)-(4.16) is
advanced in time by an implicit method. For the sake of simplicity, let us consider the
backward Euler method (no essential modification occurs if considering a different
implicit method). When we advance from k to k+l, at the new level k+l the new
functions u:=(ul)(tk+l) and u2:=(uZ)(tk+) satisfy the following multidomain
problem:

(5.4) [3u + au <=j= N 1=fprev at 1 <Xj,

(5.5) u2+ Au2 2=fprev at 1 <Xj, =j< N-1

(5.6) Tqul + ATou= r.f.r  atx=

2 2(5.7) Tp_ou2- zTp_oUx Tp_ofprev at x a,

(5.8) Tqu2 Tou at x a,

(5.9) Tp_ou= Tp_oU2 at x c,

(5.10) TqBu+ A Tou Tqfprev at x 1,

(5.11) Tp_qlg txTp_qU= Tp-qfprev at x 1,

(5.12) ul 0 at x -1,
2(5.13) u=0 atx=l.

In the equations above/3 is the inverse of the timestep, =f + flu whereprev /’/prev
denotes the value of u at the former level k, and is defined similarly. Note thatfp2re
in the current case To and Tp_q reduce to the first and second row of the matrix T,
respectively. The two equations (5.8) and (5.9) correspond exactly to the continuity
condition (4.12).

Let us now apply to the problem (5.4)-(5.13) the iteration-by-subdomain method
described in the previous section. At the (n + 1)th step, the solutions (ul) "+1 and (u2)
satisfy (5.4)-(5.7) and (5.10)-(5.13); in accordance with (4.20) and (4.25) the matching
interface conditions (5.8) and (5.9) are dealt with as follows:

(5.14) Tq(u2)n+l= Tq(ul) at x a,

(5.15) Tp_q(Ul)+1= Tp_q(U2) at x=

The main result we will prove in this section is that the above iterative procedure
converges, i.e., (ul)" u and (u2)" -> u2 as n oo. Furthermore, the convergence rate
is independent of the polynomial degree N.

The proof is rather involved; it is convenient to carry it out using the characteristic
form of the equations. For that, let us define the error functions (in characteristic form)
at the (n + 1)th iteration as follows:

(5.16) (e’) "+1 := T[(tti)n+l- u i] for i= 1, 2.
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By comparing (5.4)-(5.13) with the equations satisfied by the iterates (ui) n+l, i= 1, 2,
it is readily seen that the following set of error equations hold:

Within fl (as usual, subindex denotes component):

fl(el)n+lq A(el)+l-0 atx)., I<-j<=N-1,

(ell)’+1+(e)’+1=O at x =-1,

(e)’+l-lx(e)’+=O atx=-I
n+l ln+l/3(el) +h(e,x =0 atx=c,

(e)’+l=(e2)" at x a.

(5.17.1)

(5.17.2)

(5.17.3)

(5.17.4)

(5.17.5)

Within f:
(.18.1)

(5.18.2)

(5.8.3)

(5.18.4)

(5.8.5)

2fl (e2) n+l _[_ ]k (e2) xn+l 0 at xj 1 <j <= N 1,

(e)"+1 + (e)"+1 0 at x 1,

/3(e)"+1 + A(e21)"+l0x atx= 1,

/3 (e)"+l- tz (e)"+l 0 at x c,

(e)
We start proving two important lemmas.
LEMMA 5.1. Let rl > 0 and e be two given real numbers, and consider the following

"backward" collocation problem in the reference interval [-1, 1 ]. Find u Pu such that

(5.19.1) u-rlu=O attj, j=I,...,N,

(5.19.2) u=e at to= l

where, as usual, t cos 7r/ N, j O, , Nare the Chebyshev-Lobatto points in [- 1, 1 ].
There exists a constant ru(q whose absolute value is strictly less than one such that

(5.20) u(-1) o-u(/)e.

Proof Let T(x) denote the Chebyshev polynomial of degree k. (We recall that
T(x) cos kO, where 0 arcos x.) Since forj 1, , N- 1, t are the roots of T’(x),
from (5.19.1) we deduce the following identity:

(5.21) u-nu=(qu-,+chu) Vx[-1, 1]

where 4u-l(x) T’u(x), ckN(x)- xT’(x), and r is a constant that can be determined
using the inflow boundary condition (5.19.2). Following [1] we can state that

(5.22) degree (4,) n, parity of 4, =parity of n, (,)k =>0

for n N- 1, N and k =0, , n. Here (4,)k are the Chebyshev coefficients of 4,, i.e.,

()n)k 2 fl 1
(5.23)

d
ch, (x) T(x) dx with Co 2 and c 1 if k ->_ 1.

"ITCk

Owing to (5.21), we can set

(5.24) u ’(q, + q%)
where q, and q, are the unique solutions of the following ordinary differential
equations"

(5.25)

(5.26)
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If p is any polynomial of ffs we recall that (e.g., [4, Chap. 2])
N N-1

(5.27) p(x)-, kTk(X), px(x)= OklTk(X) with /kl ____2 m/,
k=O k=O Ck m>=k+l

where the symbol mz,k means that Ira-k is odd. Taking into account (5.27), from
(5.25) and (5.26), we obtain the following recurrence relations for the Chebyshev
coefficients of q and

2
(5.28) (qn),-=(bN-1)m+7-- E k(n)k, m=N,N-1,...,O,

Cm k>--m+l
kg<

:2
(5.29) (ff),, =(6N)-+r/-- E k(d/)k, m N, N-l,’’ ",0.

Cm k>=m+l

Owing to (5.22), we conclude that

(5.30) (q3n),,>-0 (,),>-0 form=0,...,N forall

moreover, noting that T(1)-- 1 for all k, from (5.24) we obtain

(5.31) " e
/ ,-o ((q3n),,, + (n),) whence sign " sign e.

It follows that the solution to the collocation problem (5.19) has the following
Chebyshev coefficients"

and therefore

(5.33) sign/m constant sign e, m 0, , N.

t,, (_ 1) ",Noting that U(--1)--m=O as Tin(-1)=(-1) we deduce (5.20) from (5.32)
by setting

E(5.34) O’N(r/) := ,,=OE (--1)"((q3n)m +(n),,)/ k=O

Finally, the property

(5.35) crN "rl < 1 V "rl > 0

follows from (5.30). lq

LEMMA 5.2. Let q > 0 and e be two given real numbers, and consider the following
"forward" collocation problem in the reference interval [-1, 1]: Find v PN such that

(5.36.1) v+r/vx=0 atb, j=0,...,N-1,

(5.36.2) v e at ts -1

where the points tj are defined as in Lemma 5.1. Then

(5.37) v(1) trs(r/)e
where trN is the same as in (5.34).

Proof. First we note that

e + r/v(-1)
(5.38) v+rlVx =p(cku-,-u) Vxe [-1, 1], p 2(_l)U_,N.
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The constant p has been determined by the boundary condition (5.36.2), noting that
T,(1) k2 and T,(-1)= (--1)k/lk2. Consider now the following "backward" problem
associated with (5.36). Look for wN subject to

w-qw=O att, j=I,...,N,

w=e at to=l.
We want to show that

(5.39) v(-x) w(x)

As a matter of fact, w verifies

Vx [-1, 1].

(5.40) w- r/wx p*(thN-1 + thrv) Vx 6 [-1, 1], p*
2N2

Writing (5.40) at the point -x, we obtain

w(-x)--rlw(-x)=p*(1-x)T’N(-X) Vx6[-1, 1]

whence, in view of (5.39),

(5.41) v(x) + rlv(x) [(-1)U-lp*](1 x) T’u(x).

We have used the property that T’k(--X)=(--1)k+IT’k(X), for all x[-1, 1] and the
obvious relation: w,(-x)=-v(x). Since (-1)S-p*=p and (1--x)T’N(X)=
ths-1 4S, we conclude from (5.41) that v satisfies (5.38), whence v is the only solution
of (5.36).

We can now apply the previous lemma to get w(-1) trN(r/)e and therefore (5.37)
follows due to (5.39).

Furthermore, since the Chebyshev coefficients of w are given by (5.32), again
using (5.39) we deduce that the Chebyshev coefficients of v are

E(5.42) ,3,, 1)"[(q3,),, +(q,)r,]e/ k=0

In view of (5.20) and (5.37), the factor defined in (5.34) will be called the outflow/inflow
ratio. [3

We are now in the position to state the following result.
THEOREM 5.1. If we define

(5.43) A’= 2A/fl(1 + a), /.,’= 2/2//3(1 + c)

the solution to the problem (5.17) satisfies
(5.44) (e )"+1(a -rN(A ’)tru (/x’)(e)" (c).

Proof Let t(x) 2(x + 1)/(c + 1)- be the affine transformation from fl
[-1, a] to the reference interval [-1, 1]. Let us define

(5.45) ulP" u(t(x))=(e)"+l(x) Vx6fi.
It is readily seen from (5.17.1), (5.17.3), and (5.17.5) that u is the solution to a backward
collocation problem such as (5.19), provided we set r/=/x’ and e (e2)"(a). By (5.20)
we therefore deduce

(5.46) (el)"+l(- 1) u(-1) trN (/X’)(eZ)"(ce ).

Let us now define"

(5.47) vu" v(t(x))=(e)"+(x) /x(.
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Owing to (5.17.1), (5.17.4), and (5.17.2), it follows that v is the solution in [-1, 1] of
n+lthe forward problem (5.36), provided we set r/=A and =-(e) (-1). We can

therefore apply the result (5.37), and owing to (5.47) and (5.46) we obtain

1)n+l(e, (a)= V(1)=rN(A’)s =--CrN(h’)crN(l’)(e) ().

The following result is the counterpart of Theorem 5.1 for the subdomain
THEOREM .2. Let us set

(5.48) A"=2A//3(1-a) and /"=2///3(1-a).

The solution to the problem .18) satisfies
(5.49) (e2)"+’ (O) --O’N(, ")O’N (")(ell)" (o).

Proof Let t(x)=2(x-a)/(1-)-I be the affine mapping from t)= [c, 1] into
[-1, 1], and define

(5.50) vu" v(t(x))=(e2)"+’(x)
Owing to (5.18.1), (5.18.3), and (5.18.5) we deduce that in [-1, 1] v satisfies a problem
such as (5.36) with 7 replaced by X" and e by (e)"(a). In view of (5.37) we therefore
have

(5.51) (e)"+l(1) crN(A")( "el)(c).

On the other hand, from (5.18.1), (5.18.2), and (5.18.4) it follows that the function

(5.52) U GN" U(t(X))--(e)n+I(x)
satisfies on [-1, 1] a problem such as (5.19) provided 7 is replaced by/x" and e by
-(e2)"+(1). Thus from (5.20) we obtain

e2)"+l (re) -O’N (/Z")( e)"+ 1 ).

Now (5.49) follows from (5.51).
Let us define the following sequence of interface errors"

c) +[(eZ)"(a) +[(e2) (a)]2 for n-> 1.(5.53) E =[(e,)(ce)]2W[(e)n( ]2 ]2
From the previous theorems we deduce the following convergence result.

THEOREM 5.3. The interface error defined by (5.53) reduces at each interaction
according to the law

(5.54) E "+’-< O’*N(A,/z; re)E", n > 2

where the reduction factor is defined as follows"
(5.55) o-*(,,/x; a) := max {(r(,V)r%(/x’), o’(,V’) r%(t")} < 1.

Proof Owing to (5.17.5), (5.18.5) and to the Theorems 5.3 and 5.4, we obtain that
the interface errors propagate according to the following relation"

E "+’ {[(e)" 2 + [( e2)" ]2}or%(A ’) o’% (/z’) +{[(ell)" 2 + [( e)" ]}cr(,")r%(/x")

(5.56) for n_-->2.

The inequality (5.54) follows easily. Note that O*N(A,/x;a) < 1 for all positive , and
/x as a consequence of (5.35).

Remark 5.1 (behaviour of the error reduction factor). The behaviour of
cr*u(,, tz; a) (and, by consequence, that of the interface error sequence (5.53)) is driven
by the behaviour of the outflow/inflow ratio defined in (5.34).
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From Tables 5.1 and 5.2 we see that for all values of N and r/, o’rv(r/) > 0. Moreover,
for any fixed value of r/, rN(r/) is uniformly bounded from above by a constant strictly
less than one as N increases (even better, the value of o-v(r/) is substantially indepen-
dent of N). This property is very important as it ensures that the error reduction factor
does not approach one as N tends to infinity, therefore yielding a convergence rate
for our iterative procedure that is (practically) independent of N. In Table 5.2 we
report the limit of O’N(9) as N-, for several values of r/. It is apparent that

(5.57) lim O’N() e-2/" Vr/> 0.
N

Thus, the limit is precisely the outflow/inflow ratio of the differential case, i.e., the value
v(-1)/v(1), where v is the exact solution to the ordinary differential equation
v-qvx =0.

On the other hand, for fixed N, try(r/) behaves like a monotonically increasing
function of r/ (if N and/or 7 are not too small). In the current application, r/ takes
the values of A’, A", /z’, and /x", which are all proportional to the timestep At
(see (5.43) and (5.48)). Therefore, for large N we have approximately

(5.58) O-*N(A,;a)--exp-2a*(A+/z)//z c*=min(l+a,l-a).

We recall that A and - are the eigenvalues of the transport matrix A (see (5.1)),
while x a is the abscissa of the interface between the two subdomains fl and f2.
Note that a* is the minimum measure of the subdomains.

TABLE 5.1
The value of the outflow/inflow ratio ty1(rl) for several values of and N.

0.01
0.05
0.1
0.5

5
10

100

0.10195409
7.6327433E -2
5.8272078E-2
2.8037383E-2
0.13687601
0.67032260
0.81873085
0.98019867

4.5329018E-2
1.8829854E-2
6.0076584E-3
1.8321630E-2
0.13533534
0.67032005
0.81873075
0.98019867

16

2.5022730E-4
1.9753051E-4
1.7829169E-6
1.8315638E-2
0.13533528
0.67032005
0.81873075
0.98019867

TABLE 5.2
The value ofro(r/) := lirn O’N(?)

for several values of 7.

0.01
0.05
0.1
0.5

5
10

100

0
4.24835425E-18
2.0611536E-9
1.8315638E-2
0.13533528
0.67032005
0.81873075
0.98019867

32

9.4749803E -11
1.8740999E-11
2.0611536E-9
1.8315638E-2
0.13533528
0.67032005
0.81873075
0.98019867
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From the previous theorem we have that

(5.59) lim E" 0.

To conclude that our iteration-by-subdomain procedure converges it is enough to prove
that the error functions (ei)"(x), 1, 2, defined in (5.16) attain their maximum values
at the interface point x a. This is stated by the following theorem.

THEOREM 5.4. With the notation (5.16) and (5.23), we have

(5.60)

(5.61)
(e)"(a) N

n+(e) 1(x) 2 mT,.(t(x))= u 2 [(q3.),. +(.),.]T,.(t(x))
:o 2:o (’) + (.’) --o

N

(el)n+l(x) Z mTm(t(x))
(5.62) (e22).(a)

N 2 [(q,’)m +(ta’)m]Tm(t(x)).
E:o [(q3,) + (,)] :0

Owing to (5.30) and the fact that IT,()[_-< 1, for all [-1, 1], we deduce from the
previous equalities and from (5.17.5) that for all x [-1, a]

n+l t) n+l(5.63) I(e)"+’(x)l<-_l(e)"+’(o)l, I(el) (x)[-<l,( ]l(e) (a)l.
In a similar way, using Theorem 5.2 we prove that for all x c, 1

(5.64) I(e)"+l(x)l<-_l(e2)"+’(a)l, I(e)"+l(x)l<-loN(h")ll(e2)"+(o)].
Inequality (5.60) follows easily from (5.61)-(5.64).

We can now state our final convergence result.
COROLLARY 5.1. The iteration-by-subdomain procedure applied to the multidomain

Chebyshev collocation problem (5.4)-(5.13) converges as n -->

Proof The result follows from (5.60) and (5.59). Actually, since T is nonsingular,
the convergence of the sequence (e)" implies that of (u)" u owing to (5.16).

Remark 5.2. The same kind of result holds if the spectral Legendre collocation
method is used instead of the Chebyshev.

Remark 5.3 (convergence for decomposition with several subdomains). For a
decomposition of [-1, 1] using more than two subdomains we can essentially carry
out the same type of convergence proof. Putting aside the technical difficulties, it is
not hard to see that in this case the error reduction factor at each interface behaves
as does (5.58), where now a* is the measure of the smallest subdomain of the
decomposition.

If, for instance, the computational domain [-1, 1] is partitioned into M sub-
domains of equal length, the error reduction factor behaves as does

(5.65) exp
At M - J’

hence the convergence rate slows down as far as M increases.

max {[(e])"(x)]Z+[(e)"(x)]2}
--lNxNa

+ max {[(e)"(x)]Z+[(e)"(x)]Z} <- E" Vn>_-l.

Proof From the proof of Theorem 5.1 we easily deduce that for all x [-1, a]

and
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Such a behaviour is somehow physiological for the method at hand. As a matter
of fact, breaking the computational domain in M pieces and iterating on the subdomains
yields that the time for the wave propagation throughout the whole domain is finite.

A remedy can be the use of a multiple scale of subdomain partitions, starting with
a coarse subdivision in two subdomains and going progressively up to the desired
finest partition in M subdomains, then back to two subdomains and so forth. At any
level, the same polynomial degree N should be used within each subdomain. The
strategy here described can be cast in a precise mathematical framework. Actually, it
is precisely readable as a multigrid method for the capacitance matrix that we are
going to introduce in next section. Since the capacitance matrix affects the interface
unknowns only, reducing the number of subdomains amounts to reducing the number
of interfaces, and, by consequence, the size of the capacitance matrix. A precise
mathematical investigation on this multilevel method is in progress. [3

Remark 5.4 (computational complexity of multidomain versus single-domain
approximations). Implicit finite differences for advancing in time the multidomain
spatial discretization yield at each step a block linear system. Each block can be
expressed in terms of the Chebyshev pseudospectral differentiation matrix D, whose
multiplication by a vector n of gridvalues at the Chebyshev points produces the
gridvalues at the same points of the polynomial of degree N interpolating u. The
condition number of the system grows quadratically in terms of N (e.g., [4, 4.2]).
Unfortunately, the lack of effective preconditioners for the matrix D makes the use
of direct methods mandatory for the solution of our system. Since the domain decompo-
sition approach yields a sequence of systems of reduced size, its computational
complexity is lower than that of the single domain approach. For instance in one
dimension using polynomials of degree N within each subdomain would give an
order of M2N3/3 operations (assuming a number of iterations proportional to M, as
predicted), versus an order of N3M3/3 operations using single domain approach with
the same number N. M of gridpoints. The gap becomes larger in higher space
dimensions, and a similar conclusion holds, of course, for the memory requirement.
Last but not least, domain decomposition can be mandatory to face computational
domains that are not amenable to a Cartesian geometry by a simple mapping. [3

6. Capacitance matrix interpretation. We now construct the capacitance (or Schur
complement) matrix associated with the multidomain problem (5.4)-(5.13). First, we
rewrite the problem in terms of the characteristic variables

(6.1) z-- Tt/1 Z2-- Tu2.

If we define h

(6.2.1)

(6.2.2)

(6.2.3)

Tfre and h2= Tfp2rev, from (5.4)-(5.13) we obtain

_.hZ1-JI-t’ZI,x atxj, j=0,..., N-l,

zgl_ Z2,x=h atx, j=I,...,N,

zl+z2 =0 at x=-l,

(6.2.4) z:z2 at x a,

(6.2.5) 2
Z Z at x a,

(6.2.6) 2
Xo2= 1,g -]- g 0 at

(6.2.7)

(6.2.8)

jZ2 2nt-Agl,x-- h
txZ2,x h

atx}, j=0,...,N-1,

atx}, j=I,...,N.
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Note that (6.2.4) and (6.2.5) are equivalent to (5.9) and (5.8), respectively. The
capacitance (or Schur complement) system is the one that allows the determination
of the values of the two characteristic variables z] and z2 (and henceforth, those of z
and z2 owing to the continuity relations (6.2.4) and (6.2.5)) at the interface x a.

Consider the polynomial solutions to the two following multidomain collocation
problems:

(6.3)

flU]+AU,x=O atx), j=0,’’’,N-1,

/3U-/U2, 0 at X j 1,’’’, N,

U]+U=0 atx=-l,

U= I atx=a,

2flU+AU12.,=0 atxj, j=0,...,N-1,
2

(6.4)
UZz-lxuZ,x=O atxj, j=I,...,N,

U+U=0 atx=l,

U=I atx=a.

Furthermore, let us consider the two polynomial solutions to the multidomain colloca-
tion problems:

vl, + Vl,x h atxj, j=0,...,N-1,

(6.5)
flV-/.V.=h atx, j=I,...,N,

V+VI=0 atXn=--l,

V2=0 at x a,

/3V2 + A V,x=h atxj, j=0,...,N-1,
2

(6.6)
fl y2-/y’=h22 atxj, j=I,...,N,

V+V=0 atxo=l,

Y=0 at x= a.

Let us denote by sc the (unknown) value of z (= z) at x a, and by /the (unknown)
value of z (=z2) at x a. The following relationships hold between the solution to
the problem (6.2) and those of the auxiliary problems (6.3)-(6.6):

(6.7) z= V -- TU in 1,

(6.8) z2= V2+:U in..

The values of : and 7 are therefore determined by the following two equations that
arise from (6.2.4) and (6.2.5):

(6.9) Vll(t)- nUll(a)= V21(a)-at-

(6.10) V(a)+ fluid(a)= V2(a)+ U2(a).
Using the last equations of (6.3)-(6.6) we obtain the 2 2 system:

(6.11) -U(a) 1 7 V2(a)
The matrix in (6.11) is the capacitance matrix (it is also called influence or Schur
complement matrix): hereafter it will be denoted by S.
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To give a precise form to its entries, we note that by comparison of (5.17) with
(6.3) U and (el) n+l satisfy the same set of equations in fl. The only difference regards
the value attained at x a by the second component of the solution (precisely,
ul(a) 1 and (el)n+l(a) (e2)(a)). Owing to (5.44), we can therefore conclude that

(6.12) -U(a) rN(A’)rN(’

with A’ and/x’ given in (5.43).
Exploiting a similar analogy between U and the solution of problem (5.18) we

easily obtain from (5.49) that

(6.13) U(a rN(A")CrN (/X")

where ," and/x" are defined in (5.48). Then

(6.14) S
,,) ,,)crN(A tr, (/x 1

THEOREM 6.1. The capacitance matrix is positive definite. Moreover, if a =0 (i.e.,
l) and 122 have the same measure), then S is symmetric and its eigenvalues are

(6.15) Al,e 1 +/- trN(A’)trS(/X’).

Proof. S is positive definite since ItrN(r/)l < 1 for any positive r/. The eigenvalues
of S are

(6.16) A,e 1 +V/O’N(A’)O’N(’)O’N(}k")O’N(t.I,").
If meas fl =meas le (in our example, this means that cr =0), we have A’= A"(=2A//3)
and/x’ =/x"( 2/x //3 ), whence

,(;t’) (;"), ,(’) (").

Thus S is symmetric, and its eigenvalues are given by (6.15) owing to (6.16).
We conclude this section by establishing an important relationship between the

matrix S and the iteration-by-subdomain method we described in the previous section.
Let us consider the spectral multidomain problem (5.4)-(5.13), and denote by.. (:, r/) the unknown vector of the characteristic solution at the interface point

x a, i.e.,

(6.17) s= z(a)= z(a), rl z(a)= z(a).
By a straightforward calculation it is not hard to see that one step of our iteration-by-
subdomain procedure amounts to applying one step of the Richardson iterative method
to the capacitance system (6.11). Precisely, going from the step n to the step n + 1
produces a change on the interface variables that is ruled by the following
relationship"

(6.18) .."+’ .." + (R S").

Here we have denoted by R the right-hand side of (6.11).
Using in (6.18) an acceleration parameter to a priori different than one, i.e.,

considering the following sequence

(6.19) ..n+’ " + w(R S.."), to > O,

amounts to replacing the interface matching conditions (5.14)-(5.15) by the new ones:

(6.20) Tq(ue)"+l=wTq(ul)"+(1-w)Tq(ue) atx=a,

(6.21) rp_q(U’)"+l=wrp_q(uZ)"+(1-w)rp_q(ul) at x a.
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The other statements of the iterative algorithm hold unchanged. In (6.20)-(6.21) to

plays the role of a relaxation factor. In view of (6.19), it is well known that whenever
S is symmetric and positive definite, the best choice of to is (see [15])

(-/)opt 2/(min+/max)

where /min and /max are the minimum and maximum eigenvalues of S. Thus if
meas (fll)= meas (f2), in view of Theorem 5.5 we conclude that toopt 1.

7. Numerical results. We show the potential capability of our domain decomposi-
tion method to yield effective solutions of hyperbolic systems by presenting some
numerical results for the simple problem considered in 5. However, we allow the
nonhomogeneous boundary values in (5.3).

The time discretization method considered is the second-order Crank-Nicolson
scheme. We considered the case of two different sets of initial and boundary data, so
that the corresponding exact solutions are

First test function: ul(x, t) e cos ax, u2(x, t) e sin ax,

Second test function: ul(x, t) e’ arctg fl(x +0.5), U2(X, t) e’ arctg fl(x-0.5)

where a and/3 are some given parameters.
In all cases, we display the results obtained at the time 1 for several values of

the timestep At, the polynomial degree N used inside each subdomain, and the number
M of subdomains. In Tables 7.1 and 7.2 we report the maximum norm of the relative
error between the approximate and exact solutions at the time 1 using At =0.01.
The tables refer to the first and second test functions, respectively, for single domain
approximations and for approximations with two subdomains of equal length.

As we can see the better accuracy we obtain using two subdomains, rather than
simply one, is more relevant if the expected solutions exhibits important oscillations
(and/or variations) within the computational domain. Furthermore, since the matrices
associated with the spectral collocation method are full, the use of several subdomains,

4
8

20

1.361E -4
1.472E- 7
1.472E 7

TABLE 7.1
First test function, one and two subdomain approximations.

One domain a Two subdomains

4 10 NX 4

2.429E 2 0.184 4 1.599E 5 1.059E 2
8.134E- 3 3.741E- 8 1.436E- 7 1.311E-5
1.546E-7 3.718E-4 12 1.363E-7 1.548E-7

10

0.747
7.266E 2
1.552E-3

4
8

20

4.767E 4
1.094E 4
2.572E-7

TABLE 7.2
Second test function, one and two subdomain approximations.

One domain fl Two subdomains

4 10 N 4

1.288E-2 2.812E-2 4 1.937E-4 6.119E-3
5.079E 3 2.345E 2 8 7.377E 7 1.024E 3
2.860E-4 1.005E-2 12 2.577E- 7 1.943E -4

10

3.668E-2
1.893E-2
9.231E 3
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TABLE 7.3
Number of iterations for the second test function when /3 10 and

At =0.1 (within the brackets are the values for the case At 0.01).

4 2(2)
12 2(2)
20 2(2)

5(4)
4(4)
4(4)

8(5)
8(5)
8(4)

12

12(5)
12(5)
12(4)

TABLE 7.4
Number of iterations for the first test function where a and

N=16.

At 2 4 8 12 16

0.1 2 4 8 12 16
0.02 2 4 4 4 5
0.01 2 4 4 4 4

accompanied with a sound tuning of the polynominal degree within each subdomain,
allows the reduction of the overall complexity of the numerical problem.

We now report the results obtained by the iterative procedure presented in 3 for
the resolution of the multidomain problem.

In Tables 7.3 and 7.4 we report the number of iterations that are needed to damp
the initial error by a factor of 10-5. As usual M denotes the number of subdomains
and N the polynomial degree of the discrete solution inside each subdomain.

Table 7.3 refers to the second test function when/3 10: it shows that the number
of iterations is independent of N, while it grows at most linearly with M when At is
"large." According to the convergence theory of 5, the rate of convergence improves
as the timestep At decreases. Finally, in the Table 7.4 we present the results for the
first test function when a 1, obtained for N 16 and several values of M and At.

Acknowledgments. I thank M. Salas, C. L. Streett, and T. A. Zang for many valuable
discussions concerning this research.
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MONTE CARLO SIMULATION OF LINEAR TWO-PHASE FLOW IN
HETEROGENEOUS MEDIA*

F. MA’ AND M. S. WEI:I:

Abstract. In this paper an algorithmic formulation is given for the synthesis of linear two-phase systems
with inherent variability. It is assumed that uncertainties in the flow system arise due to the heterogeneities
of the porous medium. Methods of stochastic mechanics are adopted to offer a novel approach, whereby
the absolute permeability is taken as a spatial stochastic process with a log-normal distribution at each point
of the flow domain. A correlation structure is built into the model so as to achieve a realistic representation.
In addition, a constraint on the invariance of the harmonic means of the random permeabilities is attained
by way of topological scaling. A computer-synthesized waterflooding experiment is conducted to explore
the effect of heterogeneity on output variables such as the oil pressure head and cumulative recovery. It is
observed that output uncertainties can become significant even when the heterogeneities are small. By
employing a least-squares procedure, the sensitivity of relative permeabilities to induced stochastic variations
is also qualitatively investigated.

Key words. Monte Carlo simulation, linear two-phase flow, random processes, statistical correlation

AMS(MOS) subject classifications. 65C05, 65U05

1. Introduction. It has long been recognized that the innate variability of a geophy-
sical system is a complex phenomenological process that can only be described
statistically. The existence of spatial randomness in various structural parameters of
geologic formations has been admitted (Muskat (1949) and Anderson (1979)), but the
extent and significance of such uncertainty are always in dispute. As a result, this
awareness has tended to urge overdesign and conservatism in estimates of system
performance rather than an organized study of the random effects. That, coincidentally,
is also a reflection of the lack of a general formulation for the construction of stochastic
mathematical models with inherent colored random variations. The heavy machinery
of It6 calculus and the diffusional approach of Kolmogorov are both developed for
white noise (Caughey (1971) and Ludwig (1975)), which often serves as the background
excitation of many electronic and mechanical systems. The study of stochastic systems
with colored, or nonwhite, parameters is far less extensive. Analytical techniques for
colored noise are both scant and restrictive, and are usually applicable to models with
either small input uncertainties or unbounded extent (Willems (1975) and Contreras
(1980)). These limitations render most analytical methods inappropriate for the analysis
of real-life systems. Simulation is the common procedure to be employed on colored
stochastic systems.

Monte Carlo techniques can be easily applied to systems with large input uncer-
tainties or defined over bounded domains. These techniques involve the repetitive
evaluations of various system properties, and as such there is always the question of
computational feasibility. The advent of modern computers, however, has now made
the brute-force computational study of many stochastic problems acceptable. In fact,
the design and survivability analysis of many important military and civilian systems

Received by the editors December 21, 1988; accepted for publication August 28, 1989. This material
is based in part upon work supported by National Science Foundation grant MSM-8657619. The government
has certain rights in this material. Any opinions, findings, and conclusions or recommendations expressed
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Foundation. This research has also been supported by the Standard Oil Company.

t Department of Mechanical Engineering, University of California, Berkeley, California 94720.
$ Center for Naval Analyses, 4401 Ford Avenue, Alexandria, Virginia 22302.
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are currently performed by Monte Carlo methods (Collins and Hudson (1981) and
Rowan et al. (1974)). Coupled with the effective utilization of parallel processing,
Monte Carlo analysis of stochastic problems will become increasingly attractive in the
next decade as computing costs decrease. At the present time, one important trend of
research in stochastic systems is the design of realistic models that are easily amenable
to computational procedures.

This paper sets out to explore the synthesis of linear transient two-phase systems
with inherent variability. Linear two-phase flow means the one-dimensional flow of
two phases. It is assumed that uncertainties in the flow system arise due to the
heterogeneities of the porous solid. The statistical variations within the finite flow field
are represented by a spatial stochastic process. This leads to a stochastic differential
equation, and subsequently a stochastic finite-difference scheme, for the flow. An
algorithm is constructed to effectively capture the spatial correlation structure of the
flow field. Monte Carlo techniques are employed for the evaluation of various system
parameters, and one basic objective is to determine the effect of input uncertainty on
the output. Monte Carlo simulation, as used in the title, refers to the solution of the
stochastic differential equation by repetitive solution of deterministic realizations of
this equation. It is decided that emphasis should be placed on algorithmic and
conceptual developments. For this reason, only one-dimensional simulations will be
pursued. As is usual, this paper builds upon several earlier studies (Warren and Price
(1961), Smith and Freeze (1979), Smith and Brown (1982), and Ma and Wei (1985)).
However, it is believed that the methodology reported herein has not previously been
employed in earlier work. The organization of the paper is as follows. In 2, the
equations governing linear two-phase flow are examined. The equations are then recast
in alternative forms for the purpose of numerical solution. The need for a stochastic
model is addressed in 3. The construction of the random flow field is expounded in

4 and 5. Important observations on linear flow in random fields are highlighted in
6 and 7. A summary of findings is given in 8. Techniques expounded in this paper

may be readily modified and applied to other areas of science and engineering. The
reliability-based design of two-phase systems and other practical applications of the
results will appear elsewhere.

2. Problem formulation. The equations governing transient multiphase flow
through porous media are well known (Bear (1972) and Greenkorn (1983)). In the
particular case of linear waterflooding in a horizontal direction, the evolution of the
two-phase system composed of water and oil is described by the following analytical
formulation. The conservation of mass for immiscible and incompressible phases can
be expressed by the continuity equations

(1) 4)
OSw Oqw

Ot Ox

(2) c OS_o+Oq___o= O,
Ot Ox

where Sw and So are water and oil saturations, qw and qo are water and oil flow rates
per unit cross-sectional area of the core, 4 is the porosity of the core, and x and are
dimensional space and time variables, respectively. When Darcy’s law is applied to
each phase to express the conservation of momentum, two additional equations arise

kkw OPw(3) qw
tXw Ox
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(4) qo
kkro OPo
tZo OX

In the above, k refers to the absolute permeability of the core, and IXw, Pw, krw,
IXo, Po, kro are the viscosity, pressure, and relative permeability of the respective phase.
It is assumed that krw, ko are functions of their saturations. However, by definition,

(5) Sw+So=l,

so that we need only select one saturation, say Sw, to be the sole variable on which
kw, ko depend. Assuming throughout that water is the wetting phase, the pressures
Pw, Po in the two phases are related to each other through the capillary pressure Pc
in such a way that

(6) Pc=Po-Pw.
The capillary pressure Pc is also a function of Sw. Let Swi and Sor denote, respectively,
the irreducible water saturation and residual oil saturation, both being constants of
the system. Define the normalized water saturation S by

Sw(x, t)- Sw,
(7) S(x,t)=

l_Swi_So

and assume the familiar parameterizations (Wyllie (1962) and Bear (1972))

(8) kro P3( 1 S)p, + P4( 1 S)p2,

(9) krw p7Sps + p8Sp6,

(10) Pc -P9 In (S).

The arbitrary constants p, 1-< <-9, are positive and satisfy the requirements that

(11) pa+P4=k*o,

(12) P7 +P8 kr*w,
where k*o and k*w are given values corresponding to the endpoints of the relative
permeability curves, which can be measured in the laboratory. Due to constraints (11)
and (12), it is clear that there are only seven free parameters involved in the parameteriz-
ations.

The set of four coupled partial differential equations (1)-(4), presented above,
provides a fairly sophisticated analytical description of linear two-phase flow with
capillarity. A subsequent task, then, is to attempt to solve this system of partial
differential equations. However, it has been demonstrated, by a series of Lie-Backlund
transformations, that the system of equations is not exactly solvable unless the capillary
pressure assumes a specific functional form, or is zero (Douglas, Blair, and Wagner
(1958), Fokas and Yortsos (1982), and Yortsos and Fokas (1983)). With the capillary
pressure Pc given by (10), it becomes necessary to turn to numerical techniques for
solution. To this end, assume that the water injection rate per unit cross-sectional area
is constant and is equal to Q. Although no material simplification of the problem is
ettected by using a constant rate, it is convenient to do so, and throughout the remainder
of the discussion this will be assumed. It is obvious that

(13) qw+qo=Q.

The fractional flow of water, defined by

(14) fw q___w
Q’
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can be expressed as a composite function of Sw through the parameterizations (8)-(10)
in the following way. When (3) is added to (4), and simplified, we obtain

Further manipulations on (3) yield

krw
tZw 1 +--(16) f krw kro Ql dSw -x /

in which fw is expressed as a composite function of Sw(x, t). To obtain a differential
equation for the fractional flow fw, (1) is divided throughout by Q to give

(17) ck OS___w= _Q ofw
Ot Ox

which can be regarded as a nonlinear partial differential equation in Sw(x, t). By now,
what has taken place is clear: the system of partial differential equations (1)-(4) has
been recast into the system (16)-(17) for the purpose of simulation. Henceforth, we
shall concentrate on the numerical solution of system (16)-(17).

To complete the specification of the problem, initial and boundary conditions
must be given. Without loss of generality, it is assumed that the space coordinates
have been rescaled so that the flow domain is always of unit length. Furthermore,
water is injected into the finite flow field at the end x 0, and ejection of fluids takes
place at the end x 1. Initially, the flow medium is assumed to be oil-filled, so that
the water content is at its minimum allowable value

(18) Sw(x, O)-- &i 0_-<x_-<l,

where Swi is the irreducible water saturation. Since water is injected at x =0, the
fractional flow of water there must be one. Therefore, the inlet boundary condition is

(19) fw(O,t)=l, t--O.

As water is uniformly injected into the flow field at x- 0, only oil is initially produced
at the boundary x 1. After a while, water begins to accumulate at the out-flow
boundary, and it is being held back by the capillary pressure (Leverett (1941)). As
time progresses, the water content at x 1 increases until the capillary pressure there
vanishes, and from that point onwards both water and oil can be ejected simultaneously
at x 1. Therefore, the outlet boundary conditions are

(20) fw(1, t)=O, O=<t<t*,

(21) Sw(1, t)=S*w, tt*,

where t* is the time at which water breakthrough takes place, and S*w is the value of
water saturation at which the capillary pressure vanishes; that is,

(22) P(S*w) =0.

The description of the initial and boundary conditions is now complete.
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An implicit block-centered finite-difference scheme with a uniform spatial grid is
constructed to solve system (16), (17) numerically. If the number of spatial blocks in
the computational algorithm is n, then the length of each block is

1

Let Sw(i, j) be the water saturation at the center of the ith block at jth time step, and
let fw(i-1/2,j) be the fractional water flow at the interface from the (i- 1)th block to
the ith block, and at the jth time step. Then the discretized equation of flow at the ith
interior block is given by

(23) Sw(i,j+ l)-Sw(i,j)= fw i--,j+ l -fw i+-,j+ l

where 1 -< < n and At is the time separation between the jth and (j + 1)th steps. Note
that fw (i +-, j + 1) fw ([ (i + 1) 1/2], j + 1), and thus it denotes the water flow at the
interface from the ith block to the (i + 1)th block. The derivation of the finite-difference
equations for the boundary blocks are straightforward and will not be dwelt upon. In
essence, Sw(i,j) can be obtained for all and j, and from which other quantities of
interest, such as the oil pressure head Po(X, t) and oil recovery, may be evaluated.
Thus, we have now devised a numerical procedure for the simulation of one-
dimensional two-phase flow for any given porosity and absolute permeability k. In
the next section, we shall address the issue of the preparation of the porosity and
permeability inputs.

3. Heterogeneity and stochasticity. In the traditional, or deterministic, approach
to simulation, the porosity and absolute permeability k are regarded as constants,
the values of which are measured by experimentation. For instance, suppose the flow
field is a horizontal core. Then the absolute permeability across the core sample,
measured in the laboratory, is employed to represent the permeability at each point
of the flow domain. Due to heterogeneities or the innate variability of geologic
formations, the porosity and absolute permeability k are not, in general, constant
over a given flow field. They should realistically be regarded as spatial stochastic
processes (x) and k(x) over the flow domain (Freeze (1975), Smith and Brown
(1982), and Ma and Wei (1985)).

There is now a large body of data indicating that at each point of a flow field,
permeability has a log-normal distribution and that porosity has a normal distribution
(Law (1944) and Freeze (1975)). If permeability is reposed in centimeter-squared, it
generally lies in the range from 10 -16 to 10-3, a range covering 13 orders of magnitude
(Freeze and Cherry (1979)). In contrast, values of porosity of a specified medium
usually varies over a range that is not more than 0.2. Over a sho distance, permeability
can differ by more than an order of magnitude, whereas for all practical purposes the
relative variability of porosity is insignificantly small. Therefore, on a scale in which
the variations in permeability are impoant, peurbations in porosity may be neglected.
Hencefoh, absolute permeability is taken as a spatial stochastic process with log-
normal distribution at each point of the flow domain, and porosity is considered
constant. An excellent discussion of the issue of scale in stochastic modeling is given
by Vanmarcke (1983), Haldorsen and Lake (1984), and Haldorsen (1985).

A discrete representation of the absolute permeability k(x) as a spatial stochastic
process may be obtained in an intuitive manner. Let ke be the absolute permeability
across the flow field in which the displacement process takes place, and let r be the
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estimated standard deviation in permeability. Both ke and r can be measured in the
laboratory if the flow fields are core samples. Assume that there are n blocks in the
uniform spatial partition ofthe numerical scheme, and denote the absolute permeability
of the entire ith block by ki. The values of the random variable ki can be generated
by the log-normal generator LN (k r), with mean ke and standard deviation r, for
1 -_< _-< n. In symbols,

(24) k - LN (ke, r), 1 -<_ <_- n.

Each n-vector (kl, k2,’", kn) thus obtained would adequately serve as a discrete
realization of k(x) over the flow domain, provided that the following two constraints
are satisfied.

First, there should be internal correlation between the block permeabilities ki.
That means there should be a tendency for a high permeability value to be neighbored
by relatively high values, and a low permeability value to be surrounded by relatively
low values. Since the block permeabilities k are generated by the computer, they are
for all practical purposes uncorrelated (Knuth (1969) and Rubenstein (1981)), and a
special procedure, to be explained in the next section, is needed to induce statistical
correlation. If correlation is ignored, the uncertainty in outputs would change as the
number of spatial blocks increases. As a concrete example, take oil pressure head as
the output. Suppose the standard deviation s(x) of the oil pressure head is computed
at each point of the flow domain. It is found that s(x) varies with n, the number of
blocks composing the partition. In general, s(x) diminishes as n increases, or as the
partition gets finer (Bouton and Ma (1988)). This anomaly has also been observed in
the related studies by Warren and Price (1961) and Freeze (1975). Output uncertainty
should only depend on the physical problem and the input uncertainty; it should not
be a property of numerical discretization. If spatial correlation is introduced into the
random flow field generated by k(x), it is observed that s(x) no longer depends on n
provided, of course, that the discretization is fine enough to capture all the significant
features of the continuous system. A discussion of this topic is given by Ma, Wei, and
Mills (1987).

The second constraint concerns fitting the theoretical model to laboratory data.
With the block permeabilities ki generated by expression (24), the flow domain may
be considered as a layered medium. The equivalent permeability of a layered medium
is equal to the harmonic mean of the block permeabilities (Greenkorn (1983)). Thus
the equivalent permeability across the discretized flow field is the harmonic mean of
k, 1 _-< -< n. This harmonic mean must agree with the permeability value ke measured
across the flow field, and therefore

1 1 1
(25)

n i=1 ki ke
Even though the k are sampled by the generator (24) with mean ke, condition (25) is
not automatically satisfied. In 5, a scaling method is developed to keep the harmonic
mean of the random block permeabilities k invariant so that requirement (25) is
satisfied. This development is indeed important. Given a specified correlation structure
on ki, the variations of the block permeabilities must be such that their harmonic mean
is always equal to the overall permeability ke measured across the field.

4. Correlation structuring. In mathematical terms, the problem of correlation
structuring amounts to devising a mapping f:Rn->R such that for every discrete
realization (k, k2, k) R" of the permeability, the image f(kl, k2, , k,) R"
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possesses a prescribed internal correlation among the elements. For many decades,
electrical and control engineers have been tackling the problem of prediction and
filtering, and they have devised sophisticated methods for correlating events in time.
Information on past events is being drawn upon to predict the present. There is a
definite sense of direction in those temporal events: uncertainty always propagates
forward into the future. In random field problems there is no such day and night
distinction on direction (Whittle (1963)), and there are boundary conditions at both
ends. For this reason, techniques such as time series would have only limited success
in our current problem (Ma and Wei (1985)). A global procedure that does not rely
on any directional properties is needed to correlate the random block permeabilities
(Ma, Wei, and Mills (1987)).

Since the permeabilities ki are log-normally distributed, the variates In ki follow
a normal distribution. A complete set of exact relationships between the moments of
ki and those of In k is available (Vanmarcke (1983) and Ma, Wei, and Mills (1987)),
and, as an example,

(26) E(k’) exp (mE(ln k)+1/2m2 Var (ln k)),

where E(o) is the expectation operator and Var (o) the variance operator. For this
reason, it is permissible to use {ki} or {ln k} interchangeably. Hence, we shall construct
a specific correlation structure on {ln ki} instead. This amounts to devising a map-
ping g:R"-R" such that for every (ln kl, ln k2,...,lnk,)R", the image
g(ln kl, In k2,""", In k,) [" possesses a specified correlation structure. The relation-
ship between the mappings f and g, as illustrated in Fig. 1, is

(27) f exp g ln,

where is the composition of mappings. In other words, f(. )=exp (g(ln (.))). The
above expression demonstrates, for one more time, the duality of correlation structuring
on {k} and {ln k}. Let us proceed to discuss how values of the random vector
g(ln kl, In k2,’’ ", In k,) can be generated.

As explained in (24), the variates k are log-normally distributed with mean ke
and standard deviation r. Therefore, the variates In k have a normal distribution with
mean/ for which

(28) /x=ln (r2+k2e)l/2

(In kl, In kn) g(In kl, In kn)

INC’) ,xp (-)

(k1, kn) (kl, kn)
FIG. 1. Commutative diagram for mappings f and g.
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Suppose G is a given positive semidefinite matrix and it is specified that {In ki} should
have G as the covariance matrix. Then samples of the random vector
g(ln kl, In k2,’’ ", In k,), denoted by (xl, x2,’’ ", x,), can be generated directly by
multivariate statistical techniques. First choose normal random values zi with zero
mean and unit variance from the standard normal generator N(0, 1). In symbols,

(29) z, N(0, 1), 1 <- <- n.

Then the values of x are given by

(30) X + IOZj, 1 <= <-- n,
j=l

where the o are the components ofthe lower triangular matrix L defined by the equation

(31) G=LLT.
The process of computing the l is simply the process of forming the Cholesky
factorization of G, which is straightforward if G is positive definite (Martin, Peters,
and Wilkinson (1965)). In the unusual ease that the semidefinite matrix (7 is not
positive definite, then some of the eigenvalues of G would vanish, and the problem
may be reduced to one of lower dimensions (Ma, Wei, and Mills (1987)). Hence, it is
assumed that expression (30) can always be employed to produce components x of
n-vectors with mean/z and specified covariance matrix (7.

To demonstrate the effect ofthe correlation filter (30), random vectors of dimension
50 are selected by the standard normal generator. Each vector is then laid on the unit
interval by representing its elements as vertical coordinates of 50 equidistant points
on the interval. Two such random vectors are plotted in Fig. 2, where the lack of

DISTRNCE

FIG. 2. The uncorrelated sample elements of random 50-vectors.
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internal correlations of the components manifests itself as erratic fluctuations. Suppose
the elements ofthe 50-vectors are to be homogeneously correlated so that the correlation
function p (x) is

(32) p(x) exp --Ixl
where x denotes the separation between the elements and I is a specified parameter.
The corresponding covariance matrix G is of order 50 whose (i,j)th element g0 is
given by

(33) gij exp 5---
for 1 =< i, j _-< 50. This positive definite matrix can then be decomposed in the form (31).
Since

(34) , p(x) dx,

the parameter I may be thought of as the average correlation length. Set , 0.1. The
effect of passing the two sample vectors of Fig. 2 through the filter (30) is shown in
Fig. 3. For the two filtered sample vectors of Fig. 3, there is a tendency for large
elements to be surrounded by relatively large elements, and abrupt fluctuations have
been greatly smoothed down, even though the correlation length is only 0.1. Transform-
ing the two samples of Fig. 2 by a stronger filter, with I 0.5, results in more highly
structured output sample vectors, as shown in Fig. 4. Similar experiments with covari-
ance matrices ofother forms lead to the identical observation that correlation structuring
plays a significant role in stochastic simulation.

-2.

0
-I

0. 0.1 0.2 0.3 0.4 .5 0,6 0.7 0.8 0.9

DTSTRNCE

SAMPL

FIG. 3. The internally correlated sample elements offiltered random vectors, with correlation length of 0.1.
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Fit3. 4. The internally correlated sample elements offiltered random vectors, with correlation length of 0.5.

It has been pointed out in the last section that correlation structuring stabilizes
the outputs of stochastic simulation. Suppose the correlation structure to be built into
the block permeabilities is given by (32), and suppose the number of blocks n in the
uniform partition is already large enough to ensure the usual numerical convergence.
To capture the significant features of correlation, it is also required that the block size
be smaller than the correlation length A. Although a theory on this topic does not exist,
the numerical experiments conducted by Bouton and Ma (1988) in a different problem
indicate that the largest block size should not generally exceed A/2, so that standard
deviations of outputs would not change as the number of blocks n is increased.
Assuming that the flow domain has been rescaled to have unit length, then

1 A

for stochastic numerical stability. Of course, n should already be large enough to
ensure the deterministic numerical convergence.

5. Invariance of harmonic mean. In earlier sections, a procedure has been given
to construct permeability n-vectors such that the elements have a log-normal distribu-
tion with mean ke and standard deviation r and a prescribed internal correlation
relationship. As explained in expression (25), a device is needed to ensure that the
harmonic mean of the block permeabilities is equal to ke. When this is accomplished,
our stochastic model would agree, in all input data, with those measured by
experimentation.

Let (kl, k=,..., k,) be a permeability n-vector such that ki is LN (k, r) for each
i, and the permeabilities ki satisfy a prescribed internal correlation. A topological
scaling h’0’->R" is a mapping on the permeability n-vector such that the image
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h(kl, k2,’", kn) satisfies constraint (25). To find one possible h, let us adopt the
straightforward construction

(35) h kl k2 ", kn (ski, sk2 ", sk,,

where s is a random variable for which

1 1 1
(36)

n i=1 ski ke
The above transformation will distort the correlation relationship that has been built
into the block permeabilities ki. To investigate the effect of this distortion, we proceed
in the following way. Without the scaling factor s, the block permeabilities satisfy

1 1 1
(37)

n i=1 ki kH
where kH is a random variable. Define

(38) v2=In 1 +

It is claimed that s converges to the deterministic constant exp (v), as n increases
without bound. To see this, ki is LN (ke, r) implies that In k is N(/x, v), where/x and
v are defined by (28) and (38), respectively. This, in turn, implies that -(In ki)
In (1/k) is N(-/x, v), and therefore 1! k follows a log-normal distribution with mean
exp (-/x +1/2v2), in agreement with (26). Now the right-hand side of expression (37)
consists ofthe sum of n weakly correlated random variables, none ofwhich is dominant,
and each has the same mean and variance. By the generalized Central Limit Theorem,
this sum tends, as n increases, to a normal random variable with mean exp (-/z +1/2v2)
and with variance decreasing in the order 1 ! n. Therefore, 1/kH tends to the deterministic
constant exp (-/x--1/2V2), as n-. From (36), however,

(39) -1 1 1 1
F/ i=1 ski SkH ke

In other words,

ke(40) s
kH

Thus, as n c, s tends to ke exp (-/x +1/2v). But from (28) and (38)

ke exp -x -I- v ke exp v

(41)
1+ exp v

exp (v2).
Therefore

(42) s exp (v) as n o.

For very slight heterogeneities, the standard deviation r of the block permeabilities
would be very small, and so would v, by virtue of expression (38). In this case, the
asymptotic value ofthe scaling factor s is practically one. Several computer experiments



1064 F. MA AND M. S. WEI

are conducted to study the convergence of expression (42). It has been found, using
stratified sampling techniques, that the initial convergence is generally rapid. For weak
heterogeneities and for correlation lengths of about 10 percent, s can be very close to
its limiting value when n >_-20.

It is now clear that the mapping (35) scales any covariance structure of the block
permeabilities by an asymptotic factor of exp (202). This distortion can be easily
accounted for by specifying an initial covariance relationship which is exp (-2t2) times
the desired values. Hence, the invariance of the harmonic mean of the block perme-
abilities can be maintained while preserving a specified correlation structure.

6. Simulations of transient flow. The results of a computer-synthesized experiment
on waterflooding in a horizontal one-dimensional medium will be reported in this
section, principally to study the effect of stochastic perturbations of permeability on
oil pressure and recovery. The construction of the Monte Carlo algorithm has been
based on the theory expounded in previous sections. Two minor additions not explained
earlier are now brought up. First, to fully accommodate the heterogeneous variations
of the absolute permeability, the J-function (Leverett (1941) and Amyx and Bass, Jr.
(1962)) is employed to impart to the capillary pressure spatial variability. The capillary
pressure Pci at the ith block is computed by

Pc,

where k is the absolute permeability of the ith block, and Pc is given by expression
(10). The second addition is the incorporation of variance reduction methods. Since
the Monte Carlo method involves the repetitive evaluations of system parameters,
special techniques may be applied to streamline the computations. To economize on
both core memory and computing time, the methods of antithetic variates and inter-
mediate control variates (Hammersley and Morton (1956), Ang and Tang (1984), and
Bratley, Fox, and Schrage (1983)) are employed. However, the application of these
variance reduction techniques merely improves upon the efficiency of the numerical
algorithm, and they do not constitute an essential component to the algorithm.

The input data for the synthetic experiment are as follows. The flow domain
consists of a cylindrical core of length L 30.16 cm, cross-sectional area A 11.40 cm,
and porosity 4 26.4 percent. Since one-dimensional flow is studied, the geometry of
the cross section of the core is not needed for calculation. The injection rate Q
4.08 ft/day, the viscosity of oil xo 0.975 cp, and viscosity of water x 0.33 cp. The
absolute permeability measured across the core ke 82 mD, with estimated standard
deviation r 26.6 mD. From our earlier discussion ofthe range ofvariability of absolute
permeability, this value of r represents truly moderate input uncertainty. For the given
core material, the irreducible water saturation S 0.488 and the residual oil saturation
So 0.281. The constants p involved in the parameterizations (8)-(10) arep P3 P5
p7--0; P2-- 1.58; p4= 0.774; p6- 0.793; p8=0.0817; and p9=0.662. These values of p
are expert guesses supplied by engineers who have worked fairly extensively with cores
extracted from the same formation.

As mentioned earlier, the flow domain is always rescaled to have unit length, and
injection of water always takes place at x- 0. A uniform partition of n 21 blocks is
used, and an exponential correlation (32) with length A 0.1 is induced upon the block
permeabilities. A total of M 300 Monte Carlo passes is employed for this study. Both
the values of M and n have been varied slightly, and it is found that the output data
do not change appreciably. That means the choices of M-300 and n 21 would
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probably be sufficient to capture all the essential characteristics of the heterogeneities.
It is not easy, however, to analytically investigate the stochastic stability and conver-
gence of the outputs (Bendat and Piersol (1971) and Ma, Wong, and Caughey (1983)).
In interpreting the output data, only the means and standard deviations are highlighted.
And, when temporal variations of the results are presented, the time variable is always
expressed in terms of pore volume injected. The complete numerical experiment
consumes about 70min in CPU time on a CYBER 205 computer. We have been
informed that if we were to vectorize our codes, the CPU time could be reduced by
up to an order of magnitude.

At the beginning of the synthetic experiment the core is assumed to be oil-filled.
As water is progressively injected into the core at x 0, oil is ejected at x 1. The
variation of the mean oil pressure head is shown in Fig. 5, where the time is expressed
in terms of pore volume injected. At any fixed point along the core, the peak value of
the average Po (x, t) occurs at the time of water breakthrough. On the other hand, the
average Po(x, t) decreases almost linearly over the flow domain at any time after
breakthrough, as is expected. The space-time distribution of the 125th realization of
the pressure head Po(x, t) is shown in Fig. 6, which gives a snapshot of the effect of
heterogeneity on pressure. In Fig. 7, the variation of the standard deviation of Po(x, t)
is exhibited, from the side near x 1, while Fig. 8 displays the same distribution from
the side near x =0. At early times the maximum uncertainties in Po(x, t) occur near
the boundaries where large instantaneous drops in pressure head have taken place,
while at later times they shift to the central portions of the flow field, consistent with
steady-state results (Ma, Wei, and Mills (1987)). The uncertainties in Po(x, t) vanish
along the boundary x 1, because the pressure is held constant there. In general, it is
not uncommon for the standard deviation of oil pressure head to exceed 50 percent
of the corresponding mean values, a degree of variability substantially larger than what
engineers used to assume on oil pressure.

FIG. 5. Variation of the mean oil pressure head in space and time.
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FIG. 6. Variation of the 125th realization of oil pressure head.

(3 0.

c 0.4

FIG. 7. Variation of the standard deviation of oil pressure, from the side of ejection.
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FIG. 8. Variation of the standard deviation of oil pressure, from the side of injection.

1.0

FIG. 9. Variation of the mean water saturation.
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To further visualize the evolution of the waterflooding experiment, the variation
of the average water saturation is shown in Fig. 9, where the drop in saturation near
x= 1 is due to capillary end effects (Leverett (1941)). The pressure drops across the
core have been measured in the laboratory and are shown in Fig. 10. All data points
recorded in the laboratory are indicated by star markers. For the purpose of comparison,
the computed mean pressure drops and the corresponding standard deviation is also
displayed in Fig. 10. In Fig. 11, the computed mean oil recovery is compared to
laboratory data. Also shown is the standard deviation of the oil recovery, which is
rather small. In general, the agreement between simulation outputs and experimental
data is fairly close.

Finally, a deterministic run has been made with ke as the constant permeability
input. The oil pressure head obtained from this deterministic run is compared with
the mean oil pressure head of Fig. 5, and the differences are less than 6 percent
everywhere. This shows that we have not gone too far afield in our theoretical
development. Several other computer-synthesized waterflooding experiments have been
conducted (Ma and Wei (1985)), and it is found that the results presented in this
section are indeed representative.

7. Sensitivity of relative lermeabilities. In the last section, it has been observed
that oil pressure head Po(X, t) can exhibit variability substantially larger than what
engineers used to assume. Naturally, we would like to know the cause. Since the
parameterizations (8) and (9) for kro and krw are empirical in nature, it is suspected
that these parameterizations might be overly sensitive to heterogeneous variations. To

MEAN

TIME

FIG. 10. Theoretical pressure head as compared to experimental data points.
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FIG. 11. Theoretical recovery as compared to experimental data points.

look into this question, we have adopted least-squares regression analysis to solve the
inverse problem of how kro and krw are perturbed by the heterogeneities ki. Given the
inputs k,.o and k,.w, a total of M 300 output realizations has been generated in the
previous section. Among these outputs are the oil pressure drops across the flow field
and the oil recovery. If heterogeneous variations of the absolute permeability were
absent, so that ki ke for all i, then it would require 300 sets of possibly different
inputs of kro and krw to deterministically generate those 300 sets of pressure drops and
oil recovery data. The least-squares estimator is the device that we can use to compute
the 300 sets of fictitious k,.o and krw inputs (Lasdon et al. (1978)). However, an enormous
amount of CPU time is needed for the least-squares calculation, and it becomes
impermissible to pass all 300 stochastic outputs through the least-squares estimator.
To compromise, 50 samples are randomly selected from the 300 sets of oil pressure
and recovery data, and passed into the least-squares estimator. The largest and the
smallest kro and k,.w from the least-squares estimator, as well as the original kro and
krw that have been used to generate the 300 sets of oil pressure and recovery, are all
shown in Fig. 12. With 50 samples, the differences between the largest and smallest
kro and k,.w are fairly small, indicating that the parameterizations (8) and (9) for relative
permeabilities are rather insensitive to heterogeneities.

8. Conclusions. In this paper an algorithmic formulation has been given for the
modeling of heterogeneities in linear two-phase flow. A stochastic approach has been
adopted, whereby the absolute permeability is taken as a spatial stochastic process
with a log-normal distribution at each point of the flow domain. A correlation structure
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FIG. 12. Sensitivity of relative permeabilities.

has been built into the set of stochastic variables so as to achieve a realistic representa-
tion. In addition, a constraint on the invariance of harmonic mean has been attained
by way of topological scaling. A computer-synthesized waterflooding experiment has
been conducted to explore the effect of heterogeneity on oil pressure head and recovery.
Limited comparison with laboratory data has also been made. By employing a least-
squares estimator, the sensitivity of the empirical parameterizations of relative
permeabilities has also been qualitatively investigated.

Three statements are in line. First, it has been observed that output uncertainties
can become significant, even when the heterogeneities are moderate. It appears reason-
able, therefore, to suggest that deterministic or averaged models for linear two-phase
flow would not be adequate for the purpose of reliability-based designs. Second, it
has been seen, by working with only a small number of samples, that parameterizations
of relative permeabilities are not highly sensitive to heterogeneities. If the large output
uncertainties are caused by oversensitivity of some system parameters, the relative
permeabilities are probably not among them. Third, the Monte Carlo scheme devised
in this paper may be used in higher dimensions.

The above three statements have been based upon observations made with one-
dimensional simulations. These observations are only as credible as the assumptions
underlying the model. In higher dimensions, two-phase flow is much more complex.
There is the possibility of channeling past low-permeability elements in two-
dimensional flow. This localization of the effect of low-permeability elements would
moderate the influence of heterogeneity on the flow. Fingering instability can arise in
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two-dimensional flow, and this would cause large decrease in production. Also, as
explained by Whittle (1963), it is not clear how elementary correlation functions can
be specified in two dimensions. While we believe that observations made in this
investigation are both important and inspiring, it must be emphasized that these
observations are only as reliable as the assumptions underlying the one-dimensional
model. Finally, algorithmic techniques expounded herein may be readily modified and
applied to other areas of science and engineering.

Appendix.

NOMENCLATURE

Sw water saturation
So oil saturation
A--cross-sectional area of core
L-- length of core
Q total flow rate per unit area

4 porosity
/Zw water viscosity
/Zo oil viscosity
Pw water pressure
Po oil pressure
Swi irreducible water saturation
Sor residual oil saturation
S normalized water saturation

S*w value of Sw for which Pc 0

krw relative permeability of water

kro relative permeability of oil
A fractional correlation length
ke absolute permeability measured across flow field

ki absolute permeability of ith block
M number of Monte Carlo passes
n number of space blocks in numerical algorithm
Pc capillary pressure
Pc capillary pressure at ith block

r standard deviation of absolute permeability
s--standard deviation of oil pressure head
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Abstract. The error and timing of solvers consisting of both analog and digital circuitry for sparse linear
systems of equations are proposed and analyzed. High speed but low precision is obtained from the analog
circuits. This is combined with low speed but high precision from the digital circuits. The hybrid circuit
should be faster than digital circuits alone. As a preconditioner to standard iterative solution methods, the
hybrid circuit makes the cost of the preconditioning step negligible. The hybrid circuit is also applied to a
standard multilevel algorithm.
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1. Introduction. We study a fast equation solver consisting of both analog and
digital circuitry. We expect this hybrid combination to give better results than digital
techniques alone. The basic idea is to use an analog solver as a preconditioner for a
digital iterative process. For a related study, see [6]. Thus, we can obtain both high
speed from a fast exchange of information in analog circuitry and high precision from
digital circuitry. Eventually, both types of circuits should be integrated onto a single
chip.

In 2, we define an analog defect correction algorithm and discuss the sources
of error. We also provide an error analysis. In 3, we define a basic model for a simple
analog solver. We analyze its response speed and its precision. A general example is
examined in detail. In 4, we define and motivate a two-stage analog solver. As in

3, we analyze it and examine an example. Finally, in 5, we define and analyze a
multilevel solver. We use the term multilevel in the abstract multigrid solution of partial
differential equation sense.

The applicability of the method is essentially limited by the condition eK << 1,
where e is the relative precision of the analog circuitry and K is the condition number
of the linear system. For the multilevel solver, the condition number involved is the
one for the linear system on the coarsest level. The time required for the analog part
of the method also depends on the condition number. We conclude that this time is
negligible in comparison to that for the digital part of the method when e << 1.

Due to e being technology dependent, the limit of this theory is currently =< 1,024.
A sequel to this paper [10] considers preconditionings and modifications to the
analog-digital algorithm in 2 to apply this theory to problems where > 1,024.

We expect the principal benefits of the proposed method to manifest themselves
with advances in technology: analog circuitry has the potential to avoid the information
exchange bottleneck of massively parallel digital computation. Essentially, we are
trading (recoverable) precision for fast dissemination of information between the
processors.

We expect that these techniques will be advantageous for large but moderately
conditioned positive definite problems with well-defined sparsity structures. Systems
arising by either finite-element or finite-difference discretizations of partial differential
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equation problems are one possible application. For a general, nonsparse system, the
number of connections required is prohibitive.

The technique used in the analysis is classical and can be found in any electrical
engineering textbook. We believe the defect correction approach to the hybrid method
is new and offers as yet unexplored possibilities in massive parallel computation. For
related studies, see [1], [3], and [8].

The precision of current analog circuity is up to 10 bits [12] using capacitors as
basic circuit components. Optical processors have the same or lower precision [11].
A purely optical analog method for solving linear systems is presented in [5]. See [7]
for a survey of basic concepts of optical computing.

2. Analog defect correction: Error analysis. Consider a system of linear equations
in matrix notation:

Ax* f
where A is an n x n nonsingular matrix and x* is the exact solution. We will sometimes
require the hypothesis that A is symmetric, positive definite. In the following algorithm,
we use a standard residual correction technique to solve the system, except that part
of the computation is performed digitally and part is performed with an analog solver.

THE HYBRID ALGORrrHM (Iterative).
Step 1. For given Xl, computer r =f- Axl, digitally.
Step 2. Convert r to n parallel analog signals, and using an analog solver, solve

the equation

Ay=r.

Convert y (in parallel) to digital output.
Step 3. Compute x2 xl + y, digitally.
Step 4. Set xl x2 and go to Step 1.

We can analyze the error reduction per step using techniques found in [13].
Assume that the precision of digital computation is very high relative to the analog
computation. The quality of the analog computation is described by the following
backward characterization:

(1) y=(A-E)-lr+e,

where E is a perturbation matrix and e a perturbation vector such that

(2) Ilell--< ell(A- E)-’ rll
and

(3) E -< a II.
Here, [[. is a suitable norm (the loo norm will be appropriate here) and e is the relative
precision of analog circuitry.

Let el x- x* and e: x:-x*. Then from the Hybrid algorithm,
(4)

so by (1),

Hence

(5)

r-- -Ael,

y=-(A-E)-lAel+e.

e=e-(A-E)-lAe+e.
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(6) III- (A- E)-’AII-<1 B/K

where K is the condition number of A in the I1" norm,

Furthermore,

1
II(A-E)-IAII

1-eK

Combining this with (4) in (2), we get

E
e -<- elll.1 E/(

Using this estimate in (5), we obtain from (6) that

K+I
(7) e2 --< el

1 --//

This estimate furnishes a good error bound if

(8) e << 1.

Then we can expect each cycle of the algorithm to reduce the error by at least e
(approximately).

From (7) we see that the effect of e on the error propagation is small compared
to the effect of E. Then in (5) we formally drop e, viewing its effect to be absorbed
into E. We shall see that the error matrix E is of the form

E =E--II
for a simple analog model. Here E is the error in analog representation of the entries
of the matrix A and /xI models the effect of finite amplification in the circuitry.
Incorporating these observations into (5) gives

e Mel,

where

(9) M= I-[txII + A- E]-IA.
Remark on sources oferror. Analog computation will have three principal sources

of error:
1) Digital-analog and analog-digital conversion of input and output (contained

in (2)).
2) Digital-analog conversion error in representation of the matrix A (contained

in (3)).
3) Effects of finite amplification and finite time (contributing to both (2) and (3)).

The third source of error will be analyzed in the next section.
In the following section we show that the time spent on the analog part of the

computation is negligible in comparison to the digital part (if eK << 1). When A is
symmetric, positive definite, the overrelaxed Jacobi method,

uu-w(Au-f),
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has a convergence factor of

K--1

(when the optimal to is used). When the hybrid and Jacobi methods are fully parallel-
ized, the cost of one iteration of either method is approximately equal. The interesting
cases in practice for the hybrid method are when both eK << 1 and K >> 1, so that the
hybrid method is much faster than Jacobi.

Tables 1 and 2 contain the contraction factors (the error reduction per iteration
factors) for the hybrid and Jacobi methods, respectively, for some sample values of e

and . The ratio of logarithms of contraction factors, log (e)/log (( 1)/( + 1)),
equals the ratio of the number of iterations required to attain a specified precision.
Table 3 contains the ratios when the hybrid method converges, i.e., when e < 1. The
numbers represent speedup factors of the hybrid method over a comparable fully
parallel (digital) simple iterative method, since an iteration of each method requires
the same time. As the table demonstrates, the hybrid method can be more than a factor
of 100 faster than optimally overrelaxed Jacobi. More sophisticated digital methods
(e.g., conjugate gradients) are faster than Jacobi, but are not usually fully parallelizable.

A great deal of research in the past twenty years has been devoted to developing
useful preconditioners for (digital) iterative methods (see 14]). Generally, an approxi-
mation to A is constructed which is close to A (in some sense), but much easier to
factor. The corresponding preconditioned iterative method converges faster than the

TABLE
Contraction factors for the hybrid method.

e \ 50 100 200 400

/ 50 1.0000 2.0000 4.0000 8.0000
/ 100 0.5000 1.0000 2.0000 4.0000
1/200 0.2500 0.5000 1.0000 2.0000
1/400 0.1250 0.2500 0.5000 1.0000
1/800 0.0625 0.1250 0.2500 0.50000

TABLE 2
Contraction factors for optimally overrelaxed Jacobi.

\ K 50 100 200 400

0.9608 0.9802 0.9900 0.9950

TABLE 3
Ratio of logarithms of contraction factors.

e \ K 50 100 200 400

1/50
1/100 17
1/200 35 35
1/400 52 69 69
1/800 69 104 139 139
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original method, but costs more per iteration. These preconditioners typically reduce
the error by considerably less than a digit per iteration. The analog solve step can be
thought of as a preconditioning step, where the preconditioner is the original matrix
A rounded off to nearly three digits. We can do this because we can prove that the
analog step takes almost no time (in comparison to the digital steps). Table 1 demon-
strates when we can expect to reduce the error by at least one digit per iteration.

3. A simple analog solver.
3.1. Basic model. The basic component of an analog circuit is an amplifier"

/)in /j, /)out

In the simplest approximation, the signals Vin and rout satisfy the differential equation

(10) c-+ 1 /)out --/-L0/)in, -> to,

where to is the steady-state gain, c is the time constant of the amplifier, and to is the
starting time. (Solid state amplifiers with c < 10-7 S and/Xo> 104 are currently available.)

Remark. In more general models, the differential operator c(d/dt)+ 1 in (10) is
replaced by a polynomial in d/dt or, more generally, by an analytic function of d dt,
i.e., a pseudoditterential operator.

The transmission function t of the amplifier is defined as

jtZ ]Z (to)
/)out riot

/)in e
/)in

where to is the angular frequency and j is the imaginary unit. For (10),

--/0

l + cjoo

the so-called one-pole transmission function. (This relates our approach to conventional
engineering terminology.)

Consider the network in Fig. 1. Here, the amplifier part consists of n identical
amplifiers acting on n signals in parallel. Each amplifier is assumed to have the same
transmission function/x =/x (to) corresponding to a linear differential operator M:

.tO ejt
I(to)

M ejt

The output x of the amplifiers is processed by a passive network implementing
multiplication by A, and then the residual Ax-f is fed back to the input. In fact, this
residual determination will be merged with the amplifiers into one circuit; Fig. 1
presents just a convenient equivalent model.

Remark. Note that the magnitude of the elements of A is limited since A cannot
contain any amplification.

The state variable x satisfies the system of ordinary differential equations

Mx Io(Ax f).

In particular, for the one pole model (10), we have

(11) C
dt

1 x=-o(Ax-f).
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FIG. 1. One component in .a one-pole network.

Now it is obvious that for f= 0 and Ax(to)= AX(to) 0, we have

Mx -/XoAX, _-> to.

Let A be an eigenvalue of A. We can thus reduce stability considerations to stability
of the circuits of the form

For the one-pole model, we get the equation for the state variables

ct + v -/ZoA v,

where A is an eigenvalue of A. Thus the one-pole model will be stable for all o> 0
if and only if all real parts of the eigenvalues of A are positive.

3.2. Response speed and precision. Here we consider the one-pole model only. The
state variable x satisfies the first-order system (11). To estimate the response, suppose
that f is constant and that x(0)= 0. Then (11) has the solution

x(t)=-exp[--cl(l+lzoa)t] ’
where is the steady state,

( = + f.

Now assume that A is symmetric, positive definite and let I1oll be the l norm. Then
for the transient part of x, we have

exp (I + l.toA)t g <= e-1/c(l+lXAmin)tllg[[.

The response time t for relative precision e is given by

1
(1 +/ZoArain) t In e,

or

cln(1/e)

Since c is the time constant of the fast analog circuitry, meaningfully fast response is
assured by the requirement /0/min >> 1.
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Example. Consider the typical values Amin--- 10-3, e 10-4,/z 105, and c 10-7 S.

Then

10-7. 9
t105"10-3s=9"10-9s.

If Ilall IIA-111- 10 in the t’ norm, then we get from (8) that the error reduction per
iteration will be bounded approximately by

eKlO-1.

Conclusion. The total time required per iteration will be the sum of time for
residual computation, digital-analog conversion time, a multiple of the time t, analog-
digital conversion time, and the time for addition. Because the time required for a
digital operation can be assumed to be approximately c, the time constant of an analog
circuit, we see that the time required for the analog solution itself is insignificant under
the assumption that

(13) 0Amin >> 1.

However, we expect the contraction factor limitation (8), viz

(14) et<< 1,

to be critical, because the attainable precision e analog circuits is limited. The latter
basically imposes a lower bound on min" assuming that

/ /"max//min

and

we can write (14) as E/hmin<< 1, or

(15) e<</min

Note that we further need III/oll (cf. (12) and (3)). This condition is satisfied for
typical parameters of contemporary devices. Thus, we require that

(16) /Xoe 1.

Note that (15) and (16) implies (13). Thus the time t will never be significant when
our estimates for the hybrid method are applicable.

3.3. Sample embodiment. We now consider a specific idealized circuit schema
which embodies the analog part of the hybrid algorithm. We make use of classical
devices" programmable resistors and operational amplifiers. The analog computational
network will consist of n identical nodes as in Fig. 2. The resistors should be capable
of attaining the values 0 and . Each node has n + 1 inputs xl, , Xn (the components
of x) and f (one component off). The output is xi. It is connected to all inputs xi of
all nodes. In a practical implementation, most of the connections and most of the
resistors will be missing. A fixed sparsity structure of A will be assumed. Such a sparsity
structure may correspond to the discretization of a problem on a two-dimensional or
three-dimensional mesh, or it might be a band structure.

The output x is given by the transmission function of the operational amplifier

Xi lUb (1)+ l)_
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gl

v+

Ro

V

Roi

xi

FIG. 2. One-pole sample embodiment. All quantities x, , xn, v+, v_, f/are voltages.

Assuming zero output impedance and infinite input impedance of the operational
amplifiers, the current balance at the inputs of the operational amplifier is

Then

fi I)+ Xj 1)+ I)+

Roi + E Rji Ro"

1 1 1

Ro "f Rji Roi

analog

analog communication
to nei_ghbors

aij only

underflow/overflow
detection (2 bits)

digital

conversion / /re!ory:xi, fi, aij///

//" digital communication
to neighbors

digital
external

addressing
access
network

FIG. 3. Sample hybrid circuit for two-dimensional mesh geometry. This is part of a repeating chip pattern.
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and similarly for v_. We can thus implement the transmission function of the node

/i =-/( aoxj-f).
By expressing aij in terms of Ri and Ro, and noting that resistances are nonnegative,
we can show that

For a practical realization, a network using capacitors instead of resistors might be
required. (Capacitors of high precision are easy to construct using the MOS 1C
technique.)

An entire hybrid circuit using two-dimensional mesh geometry could look similar
to the one in Fig. 3. An overflow/underflow detection two-line bus must be added to
adjust the scaling of the residual fed into the analog solver. If the size of the analog
output is too large, then the node which detects the overflow condition,

]xil > Vmax,

will send a signal on bus line 1. Similarly, if a node detects the condition

xil >/)min, /)min < /)max/a, a > 1,

then it sends a signal on bus line 0. These bus lines are sensed by all conversion
interface units. If bus line 1 is on, then all units decrease the analog right-hand side
by the factor 1/a, a > 1. If bus line 0 is off, then all units increase it by the factor a.
This will guarantee that no Ixil is larger than Vmax and at least one is larger than Vmin,

thus making full use of available precision. The scaling factor is then used in the output
analog/digital conversion and stored for the next iteration as a good initial guess.

This scaling can be easily implemented by a voltage multiplier/attenuator at the
output of the conversion unit. An analog bus, using continuous adjustments of the
scale, could also be considered.

4. A two-stage analog circuit.
4.1. Motivation. In the one-stage circuit, the scale of the output x and of the input

f is, in general, different. Since x A-lf, x will be much larger than f This can be a
source of errors. Therefore, we consider an implementation of the product Ax using
another amplifier. The right-hand side f is then easily combined with the output using
a differential amplifier. The scaling of A also can be used to increase the speed of the
circuit if necessary.

4.2. Basic model. Consider the network consisting of two amplifier arrays, feed-
back array a, and a passive network for Ax:

Assuming that all amplifiers have the same one pole transmission function

1 + cjw’
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the constitutive equations of the network are

(17)
c)+ y=-Ia,o(Ax + ay),

c + x -bro(y +f).

Here, x, y, and f consist of n parallel analog signals on separate lines. The feedback
factor a is assumed to be the same for all components.

4.3. Analysis. Equations (17) have the steady-state solution (for constant f) given
by

37 -/o(a: + a)7), : -/-o(.9 +f).

The first equation gives y =-o/(1 +/oa). Then

(18) = I+ f1 +
Thus lim,o=aA-lf The transient part of the solution is a solution of the
homogeneous system

(19)
cf -(1 + txoa)y- txoax,

c: =/zoy x,

with the initial condition being the error at 0. Introducing the matrices

G= ( aI AO) H= l[I+/zoG
_jr

we can write (19) as

If A is an eigenvalue of A, then G has two corresponding eigenvalues q obtained as
the eigenvalues of the matrix (-1 ). In particular,

a
q =+ -A.

Thus the spectrum of H is

r(H)={-l[l+/z(+/--A)];Ar(A)}"c

Suppose that A is symmetric and positive definite, and let min denote its least
eigenvalue. Then the element X of (H) with the largest real pa (thus determining
the response time) is equal to

X 1 +0 min

The choice a 2Amin gives the transient response (assuming Am, 1) for the slowest
component

eReX C-1/e(l+oAmin)t.

This is the same as for the one-stage circuit. However, by (18) the scaling of is now

aa-f=2Amina-f
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Thus we can expect Ilxll 2llf[[. The response speed and precision analysis of 3.2
holds for this case The speed and precision are identical

To speed up the transient response, we Could use a larger feedback factor a. The
choice

(20) a X/2Ami

gives

1
l+/xo l+/xo-Re X= c c

Using the technique from 3.2

clne

JO//min/2

Meaningfully fast response is assured by the requirement /Z0X/Amin/2 >> 1.
Example. With the choice a x/2,min and considering the typical values /,min--

10-3, e 10-4, 105, and c 10-Ts once again, we have

10-7. 9
s4. 10-11S.t 105 22.4

However, for a 2Amin, we obtain t 9. 10-9S. Thus choosing the feedback factor a
according to (20) yields a significant speedup.

Remark. For the one-pole model of the amplifiers, the circuit is stable; however,
compensation of the amplifiers so that they are well approximated by the one-pole
model may be more critical here, because of both much stronger feedback and the
presence of two amplifiers in the feedback loop.

4.4. Sample embodiment. An analog node will have inputs Xl,"’,x,, f, and
output xi. In classical devices, such nodes were implemented using programmable
resistors and two operational amplifiers (as in Fig. 4). Assuming infinite input and

Xl

R’2i

v+

Yi +

FIG. 4. Two-stage sample embodiment. All quantities xl, , x,, v+, v_, f are voltages. All resistors are

programmable and can assume the values 0 and c.
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zero output impedances, Kirchhoff’s laws yield

and

Xk

Ro
1

Rki

Xk

k Rki
I.)/

1

k Rki
For the amplifiers, we have

yi g v+ v_), xi i (Yi f ).
Thus

Then, setting

we have

Yi 1 1
+Ri Rki EJ

a

1

Ro
1 1’

Rki Ro

with

l+a/

1 1

aik
R ki Rki

1 1 1

We see then that the hybrid realization here is similar to the one-stage solver.

5. A two-level algorithm. A more powerful version of the residual correction
technique is the multilevel variant (see [2], [9]). In this section we consider the two-
level version of the latter (see [4]), and we show how to apply the hybrid, analog/digital
methods to it.

The two level method for solving the system Ax =f is described as follows:

Step 1. Repeat p times: x - x- G(Ax- b)
Step 2. x x- pB-1R(Ax b).

Here the first step consists of p smoothing iterations using a scaled iterative procedure
G (e.g., Jacobi, symmetric Gauss-Seidel, or conjugate gradients). The matrix R inter-
polates from the solution space onto a coarser space and P interpolates from the coarse
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space into the solution space. Typically, R is a linear interpolation method and P is
R T. A customary choice for B is B RAP, with the dimension of B being considerably
less than that of A.

Rewrite Step 2 as

r--R(Ax-b),

y= B-lr,
x<--x--By.

Our hybrid approach produces an analog solution 37 of By =r, where

(21) 37= (B- E)-lr, IIEII
Note the error e in (1) is incorporated into E here, and E will vary from step to step.
We assume that

(22) [1(I- PB-’RA)(I- GA) II-- a
a condition which the original two level method requires for convergence.

Now we study the effect of the limited precision (as characterized by ) of the
analog implementation of (21) which replaces y by

Let e be the error before step 1, e the error after step 1, and e the error after
Step 2 in the two level method. Then

e2 (1 GA)p
el,

and

e (I-- pB-1RA)e2.

The corresponding error 3 with the analog process invoked is

p3=(I-P(B-E)-IRA)e2.

Assume that z Pz for all z and

(23) II(I-GAYlI<-C
(in most cases, C 1). The following theorem quantifies the degree of degradation of
the estimate (22) in the hybrid version.

THEOREM 1. If (22) and (23) are satisfied, then

I1(I- P(B E)-’RA)(I- GA)’II <- a + (C+a)K(B)e
1- K(B)e

(B)e
IlY-yll -< Ilyll,

1-(B)e

Then (cf. (6)),

or, equivalently,

I]p.3ll < [a + (C + a)(B)e] ]]el]].
1-(B)e

Proof First consider )7-y. We have

.- y [(B E)-’ B-1]r
=[(B-E)-IB-I]y.
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Now

Hence

Noting that

we get

[ly Py ea e (c + a)ll e

(C + a)tc(B)e
IIY-ylI--< I[elll.

1-u(B)e

3 e3- P()7-y),

3 e3 + IlY- y [ a + (C + a)(B)eJ1-(B)e

6. Conclusions. We have analyzed a hybrid digital/analog algorithm and shown
that it reduces the error per iteration by a considerable amount. In fact, most precondi-
tioned iterative methods reduce the error by a fraction of this amount, moreover at a
greater cost. The cost of the analog step has been shown to be negligible in comparison
to that of the digital step. Furthermore, the cost of one iteration of the hybrid method
is comparable to that of one iteration of a fully parallelized (digital) optimally over-
relaxed Jacobi method. However, the hybrid method can be over 100 times faster than
the corresponding Jacobi method for a fixed accuracy requirement. The technology
exists now to build such a hybrid machine, either as a standalone computer or as a
coprocessor board for a workstation.
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Abstract. The relative merits of two iterative procedures for solving the mildly nonlinear equations
arising from an implicit discretization of a three-dimensional Stefan problem were investigated. The two

procedures are a selective successive overrelaxation (SOR) and a preconditioned conjugate gradient (PCG)
method adapted specifically for use on this problem. (The SOR method for which numerical trials were run
was actually Gauss-Seidel since, although the overrelaxation parameter was an input parameter, the value
supplied was invariably one.) The algorithms were implemented in FORTRAN on an IBM 3090-200 S/VF
and on a Cray X-MP48. Vectorization was a major consideration. Although our variant PCG method
converged in fewer iterations, the SOR iterations were shorter (in lines of code) and faster (in execution
time). Thus, SOR required less time on both the IBM and Cray machines. Finally, SOR was found to be
more robust than PCG.

Key words, iterative method, moving boundary, phase change, preconditioned conjugate gradient, Stefan
problem, Gauss-Seidel
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1. Introduction. The problem considered is a three-dimensional Stefan problem.
This is a parabolic partial differential equation, with appropriate initial and boundary
conditions, posed in a region that evolves with time. It represents a mathematical
idealization of a phase-change process such as ice freezing. We consider a weak
formulation called the "enthalpy" formulation in which a potentially troublesome
internal boundary condition has been absorbed into the statement of the problem. The
solution is a pair of functions { T, e}, where T and e denote temperature and enthalpy
distributions, respectively. The location of the internal boundary between the two

phases can be determined from these quantities.
The enthalpy formulation for phase-change problems and its implementation in

numerical schemes has a long history. Enthalpy corresponds to internal energy content
at constant pressure. The equations of the enthalpy formulation express conservation
of energy, pet- div q 0 (where p is the density, e is the enthalpy, and q is the energy
flux), movement of energy according to Fourier’s law, q=-k(T)grad T, and an

equation of state relating energy and temperature. The first two of these are combined
into equation (2.1) below, and the energy temperature relation is given in equations
(2.2) and (2.3). Elliott and Ockendon [4] give a broad survey of moving boundary
problems and practical methods, employing enthalpy formulations and their variants,
for solving them.

Rose [8] defined an early explicit numerical enthalpy scheme in which the con-
tinuous temperature and the discontinuous enthalpy were both updated from timestep
to timestep. Solomon [9] gave a modification of Rose’s scheme in which the enthalpy
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was taken as the primary variable. (What he solved was et (k(e)ex)x, where k(e) is
an adjusted thermal conductivity that has the correct value in the solid and liquid
phases and that is small when the enthalpy is between zero and the latent heat of the
phase transition. Although this scheme is difficult to justify from a physical point of
view, it is exceptionally good numerically both in economy and in accuracy.) Athey
[1] extended Rose’s method, again updating both temperature and enthalpy at each
timestep with an explicit difference scheme, to problems with internal heat sources.
Implicit schemes for phase-change problems have evolved over several years. Meyer
[6] presented and analyzed a finite-difference scheme, implicit in time, with a smoothed
enthalpy. Jerome [5] analyzed another scheme using a backward Euler discretization
in time without smoothing the enthalpy, and Elliott [2] presented yet another implicit
scheme using finite elements. More recently, Elliott [3] has published an L2 error
bound, O(h 1/2), for this scheme.

In previous work we have used only explicit methods in the numerical solution
of multidimensional moving boundary problems. For such schemes, the computations
required at each time level are simple and can be performed quickly. However, stability
considerations severely restrict the timestep size. More recently, we have adapted
Elliott’s ideas to finite-difference approximations for an enthalpy based model and
implemented them in computer simultations of three-dimensional problems in Car-
tesian and cylindrical polar coordinates. The basic idea of the implicit scheme is that
the enthalpy/temperature relation and the discrete approximation to the partial
differential equation are solved simultaneously at the advanced timestep. Implicit
methods are not subject to the stability restriction of the explicit scheme, and thus the
number of time levels required to simulate a given problem may be reduced.

Implicit discretization of the governing equations leads to a mildly nonlinear
system at each time level. Thus, while implicit methods require fewer time levels than
explicit methods, the amount of computation per level is increased. We were pleasantly
surprised to find that the implicit methods required less total computation time than
the explicit method for a given simulation. Thus, for this problem, we have determined
that the trade-off between larger timesteps at the expense of complicated computations
and smaller timesteps with simpler computations favors the former. We have investi-
gated iterative techniques for solving the nonlinear system, which may be written as
a linear system in which the coefficient matrix depends on the solution vector. We
have adapted the preconditioned conjugate gradient method for solving this specific
nonlinear system, and our experience was that using this more sophisticated scheme
for solving the nonlinear system was not worth the effort. We suspect that this is the
case in general, but we have not investigated other such schemes.

In 2 we state the multidimensional Stefan problem and give the numerical
formulation. In 3 we discuss a selective successive overrelaxation (SOR) algorithm
suggested by Elliott [2], [4] for solving the resulting nonlinear system. In 4 we describe
a new adaptation of the preconditioned conjugate gradient (PCG) algorithm especially
suited for phase-change problems. In 5 we present results of numerical experiments
with the SOR algorithm and the adapted PCG algorithm. In 6 we summarize results
and state our conclusions.

2. Problem formulation. The problem we consider is as follows. Determine a
temperature distribution T(x, t) and an enthalpy distribution e(x, t) satisfying

(2.1) pe,=div(k(T) gradT) for0<x<lx, 0<y<ly, O<z<lz, andt>0,
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and

(2.2)
Csol( T- Tcr),

e [0, H],
CLiq( T- Tcr -- H, T Tcr

T-- Tcr,
T> Tcr,

with appropriate initial and boundary conditions. Here e and T denote the enthalpy
and temperature, respectively. Tcr and H denote the critical temperature and latent
heat of the phase change, respectively, k(T) denotes the thermal conductivity (which
is different in solid and liquid phases and which could also be temperature-dependent,
although we did not include this variation). Csol and CLiq denote the constant specific
heats of the solid and liquid, respectively./9 denotes the constant density of the phase
change material, x and denote a position vector and time, respectively, and et denotes
the partial derivative of enthalpy with respect to time. Note that because of the
discontinuities involved, the partial derivatives of the temperature must be interpreted
in a weak sense, and also that enthalpy is multivalued when T Tcr. Relation (2.2)
can also be expressed as

(2.3) T=

Tcr -I- --, e--<0,
CSol

Tcr 0<e<H,
e-H

Tcr-+-, e>-H,
CLiq

where temperature is a single-valued function of enthalpy.
A mathematically equivalent formulation results if the Kirchoff transformation

u(T) 7- k(’) dr is applied. This transformation absorbs the material thermal conduc-Tcr
tivity into the definition of the temperature and thus avoids the troublesome problem
of determining an equivalent thermal conductivity between cells of different materials.
We present it here and discuss it briefly because Elliott’s convergence proof for his
SOR algorithm is for its application to this transformed problem, and also because its
use simplifies somewhat the presentation of the PCG algorithm. For convenience we
define/3 (u) by

U
+pH for u > 0,
’)/Liq

(2.4) /3(u) [0, pHI for u =0,
u

for u < 0,
’)/sol

where ’)/Liq kLiq/flCLiq, and YSol ksol/pcsol. The transformed problem may be
expressed as follows. Determine a "Kirchoff temperature" distribution u(x, t) and a
corresponding enthalpy distribution E(x, t) satisfying

E,=Vu for0<X</x, O<y<ly, 0<z</z, andt>0,

and

E(u),

with appropriate initial and boundary conditions.
For the discrete problem, we partition the domain [0,/x]x[O,/y]X[O, lz] into

uniform, three-dimensional cells with nodes located at the centers of the cells. We do
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not require that the cells have the same dimensions in each direction, but each cell is
identical to every other cell. Boundary nodes are located Ax/2, Ay/2, or Az/2 away
from any physical boundary. There are no nodes on the physical boundaries.

Let nx, ny, and nz represent the numbers of cells (and hence nodes) in each of
the x, y, and z directions, respectively. The dimensions of the cells are Ax- lx/n,
Ay ly/ny, and Az lz/nz. (To make the computations with red/black ordering of the
nodes convenient, we required nx and ny to be odd.) The node with subscripts ijk is
an interior node if 1 < < n and 1 j ny and 1 k nz, otherwise it is a boundary
node.

We discretize the partial differential equation (2.1) by replacing the time derivative
by a standard forward difference quotient and spatial derivatives by central-like
difference quotients. The spatial derivative terms are evaluated at time n + 0 where
0[0, 1] denotes the degree of implicitness of the scheme. By definition, F"/ is

1 O)F" / OF"/ 1. Substituting these difference quotients in (2. i and rearranging terms
gives the following discrete version at interior nodes:

Tn+l n+l Tn+l Tn+l ],+1_ OAt v,+l (--i+!,jk-- Tijk. v-+l (’ijk ----i-l,jkJ
eijk pAX .i+l/2,jk AX rvi-1/2"jk AX

Tn+l n+l Tn+l Tn+lOAt v.+l (--i,j+l,k-- Tijk k.+l (--iTk --iO-l,k)(2.6) + i,+ I/2,k ,+/2,kpay Ay Ay

OAt L.n/ ij,k/l- --ijk 1,n/l (’ijk "ij,k-1) +
pAz ij,k/l/2 AZ /j,k- 1/2 AZ

where

pax ki+l/2’jk Ax ki-1/2"jk AX

pA-- ki’j+l/2’k Ay ki’j-1/2"k Ay

+ (1O)At (T,k+l + Tk)_ ko,k_l/pAz kij’k+l/2 AZ AZ

The bracketed expressions in (2.6) and (2.7) may be interpreted as differences
between heat fluxes into and out of the cell with subscripts ijk in the coordinate
directions. At boundary cells where Neumann boundary conditions are given, the
appropriate flux term is replaced by the specified boundary flux. At boundary cells
where Dirichlet boundary conditions are given, the appropriate flux term is replaced
by an equivalent flux calculated using the boundary temperature. See [11] and [12]
for a more complete description of our treatment of boundary conditions.

The thermal conductivity between a node and one of its neighbors was taken to
be the average ofthe thermal conductivities ofthe two corresponding cells. For example,
ki+l/2,jk is defined by ki+/-l/2,jk--(k(Tqk)/ k(Ti+/-l,jk))/2. If the contents of the cell with
subscripts ijk and all its nearest neighbors are the same phase, then all thermal
conductivities in (2.6) are equal and the spatial difference quotients reduce to standard
central difference quotients.

With any ordering of the nodes, the difference equations may be written as

(2.8) e"+l/ A( T"+’) T"+’= b".

Here A(T"+1) is an N x N element coefficient matrix and e"+1 and b" are N element
vectors where N is the total number of nodes (N nnynz).
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The transformed problem (2.5) may be discretized similarly. The matrix equation

(2.9) E n+l + Cu"+ f".

Here E nl E fl(tl hI) for 1, , N, C is a constant, symmetric, positive-definite, N N
matrix, and f" is an N-vector. The matrix C is the negative of the finite-difference
approximation to the Laplacian on the grid. The computational grid depends only on
the spatial domain and is the same for both formulations of the problem.

When performing calculations, we assumed a red/black ordering of the nodes. In
the red/black ordering, alternate nodes in the three-dimensional grid are identified as
"red" and "black" as on a three-dimensional checkerboard. Thus all the neighbors of
a given node of one color are of the opposite color. In the calculation, quantities
associated with red and black nodes were updated alternately. Requiring the number
ofnodes in the x and y directions to be odd simplified the indexing and the vectorization
of the loops implementing the calculation with red/black ordering. This is a coding
detail that we need not discuss.

3. Elliott’s selective SOR algorithm for phase-change problems. In this section, we
describe an SOR algorithm to solve (2.8) for Tn+ and en+l simultaneously. Row of
the matrix equation (2.8) may be rewritten as

n+lT+l n+l(3.1) e+1 + an z

where zn+ll is the sum of terms from time level n and terms of the form aoT+1 for j I.
Let z’ and r/’ denote the pth approximations to T’+ and e’+1, respectively. Then

the iterative form of (3.1) that we consider is

p*Starting with an initial approximation to Tl /1, ., the quantity Z is computed using
Tn+lthe most recently calculated approximations to --neighbor at neighboring nodes, i.e.,

P is used. The next Gauss-Seidelp/l is used if it is available, otherwise q’neighbor’/’neighbor
iterate ’+ is computed for successive p’s from

(3.3) p+l

p*
CSol Tcr -- z P*if z c’ Tcr< 0,

cf + Cso
p*Tcr if0<z -cTcr<H,

p*
CLiq Tcr -- z H

Cf "- eLiq
P*if H < z cf Tcr.

This assignment results from solving the update equation (3.1) and a discrete version
of the enthalpy temperature relation (2.3) for T"/ and e"/a simultaneously. It is
explained in detail in both [10] and [13].

An updated Gauss-Seidel iterate for e n+l is available when 7,+1 is computed. But,
because the enthalpy values at the advanced timestep do not enter the right-hand side
of the difference equations, it is not necessary to evaluate or record these successive
approximations to e "+1. The assignment of e "+1 can be deferred until the iteration
for T+ has converged. Then the updated enthalpy is computed from the updated
temperature using the discrete version of the partial differential equation. This ensures
that the updated enthalpies and temperatures are self-consistent.
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Equation (3.3) clearly shows the nonlinearity of the computation of the Gauss-
Seidel iterates. In physical terms this nonlinearity results from (1) the enthalpy tem-
perature relation being piecewise linear with different slopes in the solid and liquid
phases, (2) the thermal conductivities between nodes (that enter the coefficients of the
difference equations) being different in the solid and liquid phases, and (3) the location
of the solid-liquid interface progressing through the domain of the problem. The
appropriate mathematical statement is that the nonlinear update equations, consisting
of the difference equations and the discrete enthalpy temperature relation, can be
written (in a straightforward natural way) as a linear system in which both the elements
of the coefficient matrix and the right-hand side depend on the solution vector.

A successive overrelaxation iterate is a linear combination of the previous iterate
and the Gauss-Seidel iterate. The SOR iterate , is defined by
(3.4) ,f+l 7"f + (.O(’f+l 7f),
where o e (0, 2) is the relaxation parameter. In Elliott’s selective SOR algorithm [2],
[4] the Gauss-Seidel iterates are evaluated according to (3.3) and are used near the
phase front, and the SOR iterates are used away from the phase front. More specifically,

P+ is selected if ,f+l andfor each iteration and at each node the SOR temperature zt
z’ lie on the same side of Tr, and the Gauss-Seidel temperature 7’/ is selected
otherwise. Elliott recommended the tactic of using Gauss-Seidel near the phase front
and SOR away from it to accelerate convergence away from the phase front and to
avoid oscillations about the solid-liquid transition temperature near it. A convergence
proof for this algorithm, applied to the transformed problem with the Kirchoff tem-
perature, appears in [2]. Information on vectorized FORTRAN implementations, in
Cartesian and cylindrical polar coordinates, for the Cray X-MP appears in [13].

In 7.4 of [7], Ortega and Rheinboldt discuss generalized linear iterative tech-
niques for multidimensional nonlinear problems. The basic idea is that an iterative
method for solving a linear system, such as SOR, is combined with a one-dimensional
iterative scheme for solving a nonlinear problem. By one-dimensional it is meant that
there is only one unknown. As an example consider the one-dimensional Newton’s
method for finding a zero of one function of a single real variable f(x)=0 by the
iteration x,,/=x,-f(x,,)/f’(x,,). The extension to multiple dimensions is x/=
x + A, where now x and A are N element vectors, f is a vector-valued function of a
vector variable, and A is the solution of the linear system Jf(x,,)A=-f(x,,), where
Jf(x,) is the N x N element Jacobian off evaluated at the previous iterate. The solution
of this linear system could be obtained by an iterative scheme, so that the computation
of the vector x would be done as a combination of inner and outer iterations.
Alternatively, the computation of the solution vector could be done, as in Elliott’s
scheme, by the direct application of the principle of the iterative scheme for the linear
system in the nonlinear setting. Ortega and Rheinboldt [7] say that a general characteris-
tic of such methods is that, except under special circumstances, they exhibit only a
linear rate of convergence. They give several references, dating back to 1963, on the
use and analysis of schemes employing SOR as the iterative method for solving the
linear system.

4. A PCG algorithm adapted for phase-change problems. In this section we describe
a preconditioned conjugate gradient algorithm (PCGA) adapted for solving the non-
linear system (2.9). It can be shown (see 10]) that the solution of this system minimizes
the nondifferentiable convex functional given by

1
wTf

N

(4.1) J(w) =- wT"Cw + Z 6(w2),
j=l
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where b(. is a piecewise quadratic function defined by

1 s2
(4.2) b(s)

yy + pHs for s > 0,

1 s2 for s=<0.

Observe that 04(u), the subgradient of b, is just/3(u), (2.4). (If is ditterentiable at
u, then 0(u) is the derivative of @ at u. If is not ditterentiable at u, then 0@(u) is
an upper bound on difference quotients from the left and a lower bound on difference
quotients from the right.) The minimum of a differentiable convex functional occurs
at a point where its gradient is zero. The minimum of a nondifferentiable convex
functional occurs at a point where zero is an element of its subgradient.

In both the solid region and the liquid region, E (.) is linear in u. The nonlinearity
at u 0 is due solely to the change in enthalpy associated with the latent heat. We
rewrite the vector E "+ as D( u "+1) u "+ _. L(u "+ ), where D(u"+1) (du) is an N N
diagonal matrix and L(u "+1) (ll) is an N element vector. D and L are defined as
follows"

(4.3)

’YSol,

dlt(Un+l)=lO,
I,l= E/

koH,
n+lIn physical terms, D(u"+1) ti

U’+1 < 0,
n+l

til 0,

U+I> 0,
and

U+1 < 0,
n+l

tl 0,

U+I > O.

represents sensible heat and L(u n+l) represents latent
heat. Using this notation, the nonlinear system (2.9) can be rewritten as

(4.4) C + D(u"+l))u "+1 f" L(u"+l).

The jump discontinuity at u=0 is absorbed in the definition of L(un+l). Defining
A(u"+l) =- C + D(u "+1) and b(u"+l)=-f"-L(u"+l), the system (4.4) can be written as
a(un+l)u"+’=b(u"+’).

Writing the system in this way suggests a nested iteration. The outer iteration is
on A(u "+1) and b(u"+), and the inner iteration is on u"+ and E "+a. Let/x" and r/p
denote the pth iterative approximations to u "+1 and E "+’, respectively. Then, given
initial approximations/x and r/, successive iterates are calculated as follows.

for p =0, 1,2,...
construct A(tzp) and b(/zP);
if IIb()-A()ll _-< e, then stop;
else
compute/xp+I by applying one step of an iterative

method to A(tzP)x-- b(tzP).
compute r/p+I using r/p+I f, Cxp/I.

Clearly, for each/xp the matrix A(/xp) is symmetric and positive definite. Thus,
a PCG algorithm can be used in the inner iteration. We think of the nested iteration
procedure with a PCG algorithm in the inner iteration as a variant preconditioned
conjugate gradient algorithm adapted for use on our system of mildly nonlinear
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equations. We present the PCGA algorithm here deferring momentarily a discussion
of the preconditioning.

Given/x and r/,
For p =0, 1, 2,...

rP b(P) A(P)tP;
if rp --<
then set u"+l =/xP,

set E "+1= r/p, and stop;
else

if p=O,
then s r"
else

solve MPzp rp,
sp rA ix

P zpp --(sP)TA(txP)sp,
sp+ zp -JI- pSp

p+,_

(sP+I) TA(txP)Sp+’’
/./p+l [dl,

p -Ji- oI.P+ sp+ I,
TlP+ fn cI.tP+ I"

Mp is a preconditioning matrix. The superscript indicates that M may change between
iterations to reflect changes in A(txP). Choices of preconditioner are discussed in the
next section.

In the PCG algorithm for linear systems, the search directions are A-orthogonal.
Choosing/3p according to the PCGA algorithm guarantees that the search directions
are "A-orthogonal" with the latest "A." More precisely, after p iterations of the PCGA
algorithm, (si)TA([.I,i)s i+l --0 for =0, 1,. , p- 1.

Because we felt it would be more physically realistic, we used the discrete version
of the original formulation (2.1) with distinct thermal conductivities, instead of the
discrete version of the transformed problem (2.5) with the thermal conductivities
absorbed into the Kirchoff temperature. In the discrete version of the original formula-
tion, the coefficient matrix cannot be represented as the sum of a constant matrix and
a diagonal matrix. However, the discussion remains valid, if in equation (4.4) (and in
the algorithm definitions that follow it) the constant coefficient matrix C is replaced
by C(u). Thus, in the experiments we did, the PCGA algorithm was applied as stated
with minor changes in the computation of r/p+I to take into account the different
thermal conductivities in the different phases (as explained in the second paragraph
after (2.7)).

5. Results of numerical experiments. In this section, we compare the performance
of the PCGA algorithm with that of the SOR algorithm discussed in 3. We have
investigated the PCGA algorithm with diagonal preconditioning and with one-step
symmetric successive overrelaxation (SSOR) preconditioning. SSOR preconditioning
was more effective for the class of problems we considered. The SSOR preconditioning
step consists of a forward and backward, that is, a red-black-red, sweep of Elliott’s
SOR algorithm. The forward and backward sweeps of the SSOR are necessary to
maintain symmetry of the preconditioner matrix. Since the SSOR preconditioner was
more effective than a diagonal preconditioner, we present only the results of numerical
experiments with the PCGA algorithm with one-step SSOR preconditioning. We have
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used these methods on numerous test problems with various initial and boundary
conditions. The data presented here are representative results.

We considered a one-phase Stefan problem with the following initial and boundary
data:

Box dimensions: 1.2 m x 1.0 m x 0.8 m.
Initial conditions: T(x, y, z, 0)- 0C, e(x, y, z, 0) 15.0 kJ/kg.
Boundary conditions: q(x, y, z, t)= O T/On(x, y, z, t)- 0 kJ/m on the sides, x 0,

lx and y--0, ly and top, z- lz; T(x, y)--10-3x-4y2 on
the bottom, z--0.

We assumed the following thermal and physical properties:
Physical constants" Critical temperature" Tcr 0C.

Thermal conductivity
of solid: ksol 1.0 x 10-3 kJ/m-s-C
of liquid: kLiq 1.0 X 10-2 kJ/m-s-C

Specific heat: Cso CLiq-- 1.0 kJ/kg-C
Density: p 1.0 kg/m
Latent heat: H- 15.0 kJ/kg.

It must be conceded that these thermophysical property values do not correspond to
any real material. They were chosen to create a representative process that would
progress rapidly, make the computations interesting, and reduce the cost of the
numerical experiments.

The Stefan number St is defined by St Csol( Trep- Tcr)/H. Here Trep is a representa-
tive temperature in the problem. The Stefan number associated with the thermal
properties listed above is about 1.0. When the Stefan number is small (=<0.1), there
are analytic techniques that accurately approximate the solution. When the Stefan
number is large (>=10), the problem resembles that of heat transfer without change of
phase. We have successfully simulated phase-change problems with Stefan numbers
of different orders of magnitude. However, we present results for only the most
interesting case, St 1.

The basic parameters for the numerical methods are the number of nodes in each
direction, nx, ny, and nz, the timestep size At, the degree of implicitness 0, and the
tolerance e, which defines the stopping criterion for the inner iterations. We compare
the performance of the PCGA and SOR algorithms as a function of each of the last
three parameters. Unless otherwise stated, the parameters have the following values:
nx 21, ny 15, nz =45, At 10x maximum stable explicit timestep size, 0 =1/2, and
e 10-4. The maximum stable explicit timestep size is easily computed as a function
of the thermophysical parameters and the cell dimensions. It is the minimum over all
possible combinations of heat capacities and thermal conductivities of the Courant
numbers

ksol Liq + kSol Liq +pCsI Liq AX2 Ay2 Az: ]
The relaxation parameter o) was taken to be 1.0 in both the SOR algorithm and

the SSOR preconditioner (thus reducing SOR to Gauss-Seidel). Other choices of w
probably would accelerate the convergence of the SOR algorithm. Other choices of w
might also accelerate the convergence of the PCGA algorithm with SSOR precondition-
ing, although we are less optimistic about this. However, since the coefficient matrix
is recomputed at each iteration of the PCGA and is changing dynamically throughout
each SOR iteration, the determination of an appropriate (not to mention "optimal")
value of w for either algorithm is a task that we have not attempted. (Elliott and
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Ockendon [4] suggested computing a value of to at each node at each timestep as a
weighted average of the optimal values of to for the two linear heat transfer problems
involving only the single liquid and solid phases where the weights correspond to the
relative amounts of solid and liquid present at the most recent time. But taking to equal
to 1.0 seemed good enough for our purpose.)

Qualitatively, the SOR algorithm appears to be more robust than PCGA. The
latter has failed to converge for timesteps larger than 40 times the maximum stable
explicit timestep size. For these cases, SOR required a large number of iterations but
did finally converge. We also did a few numerical experiments with the algorithms on
two-phase Stefan problems (for which the initial temperature is not the critical tem-
perature). For these problems, the PCGA algorithm sometimes suffered from oscilla-
tions about Tcr, while Elliott’s selective SOR scheme did not.

Quantitative comparisons of the algorithms are based on computation time and
number of iterations required for convergence. Both algorithms were implemented in
FORTRAN on an IBM 3090 and also on a Cray X-MP. Except for the form of the
compiler directives, and the specification of double precision for the IBM version
(which resulted in the same precision as the Cray version), the code was exactly the
same for both machines. It was not our purpose to compare performance of the
machines, but rather that of the algorithms. The processing times were, of course,
different on the two machines, but the relative performance of the algorithms on each
was comparable. (One machine is somewhat faster than the other, but the slower
machine has more memory available and can thus accommodate larger problems.
Because we used a cell-centered finite-volume discretization, a refinement of a three-
dimensional problem results in an increase in the number of cells by a factor of 27,
and powers of 27 grow rapidly.) Computation times given are the actual CPU times,
in seconds, for one processor of a dedicated IBM 3090-200 S/VF.

5.1. Performance as a function of timestep size. The advantage of implicit methods
(with 0-> 1/2) over explicit methods is that the timestep size is not restricted by stability
considerations. However, since implicit methods require solving a nonlinear system at
each time level, they require more computation time per timestep than explicit methods.
If the cost of solving the nonlinear system can be offset by taking large timesteps, then
implicit methods can be effective. If not, then explicit methods may be more effective.
Thus the performance of the nonlinear system solver as a function of timestep size is
important.

Figure 1 shows the average number of iterations required for convergence for
various timestep sizes for the SOR and PCGA algorithms. Timestep sizes are shown
as multiples of the maximum stable timestep for the explicit discretization. The
maximum stable explicit timestep size for the problem described above is At 3.5 10-3.
Each run simulated 1.5 seconds of the phase-change process. (By this time the box
was about 13 percent solidified.) The PCGA algorithm always required fewer iterations
for convergence.

For both methods, the initial approximation was taken to be the result of an
explicit update with the maximum stable explicit timestep size instead ofthe distribution
from the previous timestep. The motivation for this was that the computation was
nearly flee, since the terms corresponding to an explicit update were required anyway,
and the result of an explicit update was felt to be a step in the right direction of the
implicit update with a larger timestep size. We would expect that as the ratio of the
implicit timestep size to the maximum stable explicit timestep size increased, the
average number of iterations required for convergence would increase. Figure 1 shows
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FIG. 1. Average number of iterations versus timestep size.

that this effect is more pronounced for SOR than for PCGA. (Since the implicit and
explicit difference equations are not the same, more than one iteration is required even
when the implicit and explicit timestep sizes are equal.)

A PCGA iteration is more time consuming than an SOR iteration. Thus, even
though PCGA required fewer iterations for convergence, Fig. 2 shows that SOR required
less execution time. For both algorithms, the total computation time decreases sharply
as the timestep size increases since fewer steps are needed to reach the final time.
Simulating 1.5 seconds of the phase-change process using an explicit method required
29.3 seconds of IBM 3090 S/VF execution time. For timesteps equal to 10, 15, and 20
times the maximum stable explicit timestep size, the implicit method with the SOR
solver required less execution time than the explicit method. For time steps equal to
15 and 20 times the maximum stable explicit timestep size, the implicit method with
the PCGA solver required less execution time than the explicit method. Thus, implicit
methods can be cost effective for such problems.

200

150

50

PCGA

5 10 15
n FOR WHICH TIMESTEP SIZE IS n x EXPLICIT

FIG. 2. CPU time versus timestep size.

2O
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5.2. Performance as a function of degree of implicitness. As discussed in 3, the
degree of implicitness may vary between zero and one. When 0 0, the method is fully
explicit. When 0 =1/2, the method is a Crank-Nicolson discretization. When 0 1, the
method is fully implicit. Choosing 0 1/2 gives a higher order truncation error in regions
away from the phase front. We would expect the number of iterations required for
convergence to increase as 0 increases. In Table 1 we present performance results for
three representative values of 0. For stability reasons, we considered only values of
0 >-1/2. As expected, the average number of iterations increased as 0 increased. The
variation is nearly linear for both methods, with the slope of the PCGA line slightly
greater than the slope of the SOR line. Again, the PCGA algorithm required fewer
iterations but more total CPU time than the SOR algorithm.

5.3. Performance as a function of tolerance. Figure 3 shows how the average
number of iterations varies with the tolerance, e. Both the SOR curve and the PCGA
curve are almost linear. The slope of the SOR line is about 1.0, corresponding to a
linear rate of convergence. The slope of the PCGA line is about 0.8, corresponding to
a superlinear rate of convergence. However, for reasonable values of the convergence
tolerance, SOR required less total execution time than PCGA. (For values of e < 10-1,
PCGA required less execution time than SOR.)

5.4. Performance as a function of problem size. An operational method of verifying
the convergence of a discrete solution to a partial differential equation is to generate

TABLE
Performance (on an IBM 3090-200S/VF) as a function of O.

SOR PCGA

Average number Average number
0 of iterations CPU Time (sec) of iterations CPU Time (sec)

0.5 6.9 93.8 4.5 115.8
0.75 8.0 106.8 5.2 132.6
1.0 9.1 120.9 6.0 149.2

09 20
Z
O

< 15

O10
SOR

0
4 6 8 10

n FOR WHICH TOLERANCE IS 10n

FIG. 3. Average number of iterations versus tolerance.
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output on several refinements of the mesh and compare results. Good agreement
inspires confidence. Thus larger and larger versions of a problem may be run suc-
cessively. It is important to know if the superior performance of the SOR algorithm is
degraded as larger and larger problems are considered. Figure 4 shows a comparison
of the performance of the SOR and PCGA algorithms on a sequence of problems
obtained by simulated refinements of a basic mesh.

1000

800

600

400

200
PCGA

3 9 27
NUMBER OF NODES (x 14,175)

FIG. 4. CPU time versus problem size.

As stated earlier, we use a cell-centered finite-volume discretization. Thus to retain
the same nodes in a refined mesh the number of nodes must grow either by factors of
three or by factors that contain three. To generate the data shown in Fig. 4, we
considered a base problem with 14,175 nodes (21 1545). Our purpose was to
compare algorithms instead of to verify results. In addition, we wanted to keep the
timestep size constant (at 10 times the maximum stable explicit timestep size). Therefore,
we simulated successive refinements by considering larger problems with the same
meshsizes in each direction, but with more nodes. In the second problem, the number
of cells in the x direction was increased by a factor of three, resulting in 42,525 nodes
(63 15 x 45). In the third and fourth problems, the number of cells in each of the y
and z directions was also increased by a factor ofthree, resulting in 127,575 (63 x 45 x 45)
and 382,725 (63 x 45 135) nodes, respectively. (One repetition of this pseudorefine-
ment would have resulted in a problem with more than ten million nodes.)

Figure 4 shows that the SOR algorithm required less computing time than the
PCGA algorithm for each ofthese problems, and furthermore the disparity is increasing
in favor of the SOR algorithm as the problem size increases. We have tried both
algorithms on larger and smaller problems, including successive three-dimensional
refinements of somewhat smaller problems. The results presented are representative.

6. Summary and conclusion. There are many questions associated with the use of
PCG for solving a nonlinear system. It was not our goal to investigate these questions,
but to determine if implicit methods could be cost effective for multidimensional
moving boundary problems and to identify a good technique for solving the resulting
mildly nonlinear equations. Based on the results presented here, we conclude that
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implicit methods can be used effectively for modeling phase-change problems.
However, we are pessimistic about the usefulness of techniques more sophisticated
than SOR for solving the nonlinear equations.

The appeal of the preconditioned conjugate gradient algorithm for solving linear
systems is that it converges in far fewer iterations than other iterative methods. When
SOR or Jacobi’s method requires many iterations for convergence, PCG requires less
total computing time. This frequently occurs when a good initial approximation for
the solution is not available. In the norm used to test for convergence, the PCG method
is not monotonically convergent and thus there is no guarantee that one step of the
iteration will improve an initial approximation to the solution. Therefore, it is remark-
able that the nonlinear, one-step, PCGA algorithm defined in 4 converges. One could
argue that several inner iterations should be taken until the norm of the residual has
been reduced to a specified level. But this tactic results in spending iterations computing
a more accurate approximation to the solution of the wrong problem.

The PCGA algorithm we have developed is effective for solving the nonlinear
system generated by an implicit discretization of a one-phase Stefan problem. It
converges in fewer iterations than Elliott’s SOR algorithm described in 3 and it
exhibits a superlinear rate of convergence. However, an SOR iteration requires less
computation than a PCGA iteration. If SOR required a large number of iterations to
converge, PCGA might be computationally more efficient. But, because good initial
approximations are readily available, we observed that SOR rarely required more than
15-20 iterations to converge. Thus, SOR required less execution time, on both the IBM
and Cray machines, for the problems we considered and we expect this to be the
general case.

Phase-change problems involve moving discontinuities in the coefficients, one of
the solution functions and the gradient of the other, and this causes the coefficient
matrix to change frequently. In Elliott’s selective SOR algorithm, a matrix element is
computed when it is needed. The computations involve the most recently computed
values and the coefficient matrix is continually changing during each iteration. In the
PCGA algorithm, matrix elements are updated in an outer iteration and they remain
fixed during the inner iteration. Thus it seems that the SOR algorithm can deal with
the discontinuities more efficiently.

Acknowledgments. The paper has benefited from a critical reading by Charles
Romine and John Drake of the Mathematical Sciences Section. Most of their numerous
suggestions for improvement have been incorporated into the paper, as have several
others from two kindly anonymous referees.

REFERENCES

D. R. ATHEY, Afinite difference schemefor melting problems, J. Inst. Math. Appl., 13 (1974), pp. 353-366.
[2] C. M. ELLIOTT, On the finite element approximation of an elliptic variational inequality arising from an

implicit time discretization of the Stefan problem, IMA J. Numer. Anal., (1981), pp. 115-125.
[3] , Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7 (1987),

pp. 61-71.
[4] C. M. ELLIOTT AND J. R. OCKENDON, Weak and Variational Methodsfor Moving Boundary Problems,

Pitman, London, 1982.
[5] J. W. JEROME, Nonlinear equations of evolution and a generalized Stefan problem, J. Differential

Equations, 26 (1977), pp. 240-2261.
[6] G. H. MEYER, Multidimensional Stefan problems, SIAM J. Numer. Anal., 10 (1973), pp. 522-538.
[7] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution ofNonlinear Equations in Several Variables,

Academic Press, New York, 1970.
[8] M. E. ROSE, A methodfor calculating solutions ofparabolic equations with afree boundary, Math. Comp.,

14 (1960), pp. 249-256.



ITERATIVE SOLUTION OF A NONLINEAR SYSTEM 1101

[9] A. SOLOMON, Some remarks on the Stefan problem, Math. Comp., 20 (1966), pp. 347-360.
[10] M. A. WILLIAMS, Iterative solution ofa nonlinear system arising in phase change problems, Ph.D. thesis,

Lehigh University, Bethlehem, PA, 1987; Report ORNL-6398, Oak Ridge National Laboratory,
Oak Ridge, TN, 1987.

[11] M. A. WILLIAMS AND D. G. WILSON, Vectorized difference schemes for a three dimensional enthalpy
formulation for phase change problems, Report ORNL/TM-10034, Oak Ridge National Laboratory,
Oak Ridge, TN, 1986.

12] IMPSOR, a fully vectorized FORTRAN code for three dimensional moving boundary problems
with Dirichlet or Neumann boundary conditions, Report ORNL-6393, Oak Ridge National Labora-
tory, Oak Ridge, TN, 1987.

[13] D. G. WILSON AND R. E. FLANER, Modeling cyclic melting and refreezing in a hollow metal canister,
Report ORNL-6497, Oak Ridge National Laboratory, Oak Ridge, TN, 1988.



SIAM J. ScI. STAT. COMPUT.
Vol. 11, No. 6, pp. 1102-1115, November 1990

1990 Society for Industrial and Applied Mathematics
005

ALGORITHMS FOR THE POLAR DECOMPOSITION*
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Abstract. For the polar decomposition of a square nonsingular matrix, Higham [SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 1160-1174] has given a reliable quadratically convergent algorithm that is based on
Newton’s iteration. Motivated by Halley’s iteration, the author constructs a new family of methods that
contains both methods (Higham’s and Halley’s) as special cases. These methods generalize to rectangular
matrices and some of them are also useful in computing the polar decomposition of rank deficient matrices.
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1. Introduction. The polar decomposition of an m x n matrix A can be defined
(and computed) using the singular value decomposition (SVD) [7]. Let A UE VT be
the SVD (with U and V orthogonal and E diagonal). If rn _-> n, then the decomposition
exists with the m x n matrix U and the n x n matrices E and V. Inserting VTV In
before E, we obtain the polar factors Q and M

(1.1) A UVTVE VT QM
where Q UVT is an orthogonal rn x n matrix and M VE VT is n x n symmetric
and positive (semi-) definite. If rn < n the SVD of A is obtained by transposing the
SVD of At. The dimension of the matrices are then m x rn for U, rn x rn for E, and
n x m for V. Again, we insert VTV I, before E and obtain (1.1). Here the rn x n
matrix Q UVT has orthogonal rows" QQT= Im and the n x n matrix M VE VT=
QM has at least n-m zero eigenvalues. If A is rank deficient the decomposition is
not unique [5].

The polar decomposition is being used in new algorithms, which are designed for
new computer architectures. Some of these algorithms characterized as rich in matrix-
vector multiplication 1 are given in [9] to compute block reflectors, generalizations of
Householder transformations.

In [4] Higham proposes an iterative algorithm to compute the orthogonal polar
factor of a nonsingular n x n matrix A. This algorithm is based on the well-known
Newton-iteration to compute the square root of a number. Starting with Xo A, in
Higham’s algorithm the sequence Xk is computed by the iteration

(1.2) X+,= ykXk+-- X-T

where y is an acceleration parameter. The present paper was motivated by using
Halley’s iteration [6] to compute the square root. The equivalent iteration

(1.3) Xk+l Xk(XXk + 3I)(3XXk + i)-1
is more general than (1.2), since it also works for rectangular matrices!

Earlier Bj/Srck and Bowie [2] showed that the iteration starting with Ao A,

Ak+I=Ak I+Tk+T,+...+(-1 T
P /
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and Tk I--AAk converges to Q with order p + 1. Again this algorithm works for
rectangular matrices; however, the sequence converges only if III- ArAII < Cp for some
constants cp (see [2]).

A simple change in Higham’s algorithm, factoring Xk out of the bracket, gives

1 ( 1 )(1.4) Xk+l --- Xk "ykI +-- (XXk)-1

Y

an algorithm that works again also for rectangular matrices. In this paper we propose
a new family of iteration methods that contains Higham’s, Halley’s, and Bj6rck and
Bowie’s algorithm (for p--1) as a special case. These methods converge globally. It
is well known that by forming ArA numerically one can lose information in A. Since
all the new methods (also Bj6rck and Bowie’s algorithm) use the product XXk, they
should be used only for rectangular or singular matrices, where Higham’s method fails.

In [5] an algorithm to compute the polar decomposition of an arbitrary matrix is
proposed. The idea is to use Higham’s method for square matrices and to apply it to
the triangular matrix obtainedfrom a complete orthogonal decomposition of the original
matrix. For this decomposition one has to take a rank decision and use classical
numerical software. The algorithms proposed here need no rank decision and no initial
transformation. They use, like Higham’s method for square matrices, only matrix
operations that vectorize and parallelize well.

All the computations were done using MATLAB [8] on a SUN workstation. The
machine precision is e 2.2204e- 16.

2. Analysis of the iteration. We consider the following iteration:

Xk/l Xkh(XXk)= h(XkX)Xk,
where the function h is to be specified. Let A be a m x n matrix with m >_-n and let
A U(oo) VT be its singular value decomposition.

LEMMA 2.1. The iteration (2.5) is equivalent to

(2.6)

and

k+l Eh(G)= h(Y-,)Gk

The proof of this lemma by induction is straightforward and omitted.
We wish to choose h so that Ek--> I as fast as possible. Then

lim Xk UVr= Q.
k

Note that (2.6) represents n uncoupled scalar iterations"

(2.7) Xk/l Xkh(Xk) where Xo o-i, i- 1,. ., n.

It is well known that the iteration

(2.8) Xk+l F(Xk)= Xkh(Xk)
converges with order p to the fixed point s if and only if s F(s) and

(2.9) F’(s)=F"(s) F(P-1)(S)--O, F(P)(s)O.
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In our case the fixed point we wish to reach is s- 1. This implies that h(1)- 1. Note,
however, that if h(1)- 1 then also s--0 and s--1 are fixed points of the iteration
(2.8). This means that for cri- 0 because of (2.7), the iteration (2.5) will not converge
to the desired limit. Methods of the type (2.5) are therefore theoretically restricted to
matrices A with full rank. However, as we will see in the sequel, the rounding errors
usually make these methods work also for rank deficient matrices.

Equations (2.9) lead to the following conditions for h"

F xh (x2),
F’ =h(xa)+2xh’(x2),

(2.10) F" 6xh’(x2) + 4x3h"(x2),
F’" 6h’(x2) + 24x2h"(x2) + 8x4h’"(x2),
F(4) 60xh"(x2) + 80xah’"(x) + 16xSh(4)(x2).

For the fixed point s 1 we obtain

F(1) =l==>h(1) =1,

F’(1) =0:=h’(1) =-,

(2.11) F"(1) =0h"(1) =,
F’"(1) =0h’"(1) =-,
F(4)(1) 0=:>h(4)(1) i.

The function h therefore approximates a function w whose Taylor series is

1 3 15 105
w(1 + t) 1 + 2 -k- t4:t=.

2 4.2! 8.3! 16.4!

and we recognize that it is

(2.12) w(l+t)-
1 1 3t2 5 t3 35 t4-1- t+ + q:....
+ 16 128

THEORE 1. The iteration (2.5) is of order p+ 1 if and only if the function h
approximates w(x)= 1/,f- such that

h((1) =w((1) fori=O, 1,...,p.

Examples.
(1) Algorithms of Bj6rck and Bowie. Here h is a polynomial, the partial sum of

the expansion (2.12) including the term v. Therefore the method is of order p+ 1.
Especially for p 1 we have the second order method

1h(x) l -- (x2-1).

(2) Higham’s (nonaccelerated) algorithm. Here we have

1 T)=I(2.13) Xk/I=-(Xk+X- -Xk(I+(XXk)-’)
1

(2.14) =- (I + (XkX)-I)Xk.
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Therefore h(x2) --1/2(1 + 1/x2) and, putting X2= 1 + t, we get the expansion

h(l+t)= 1+ =l-t+- q:...
2

which shows that the method has the order 2.
(3) Halley’s iteration. Here h(x2)--(x2+3)/(3xZ+ 1). Putting X2-- 1 +t and com-

paring the expansion

4+ 1 3 t2 9 t3+...h(1 + t)- 3t+- 1- t+ 3-
with (2.12) we see that this method is of order 3.

3. Higham’s generalized algorithm for rectangular matrices. The speed of conver-
gence of the nonaccelerated version of Higham’s algorithm (2.13) may be initially very
slow, since the error is reduced only roughly by a factor of 2. In [4] an acceleration
factor y(k) therefore is introduced:

1 ,)/(k)Xk "1- x_T

Higham computes an optimal value for y(k) minimizing an error bound:

1
(3.15) "YPt v/O-l Xk O-n Xk

Let (rl, , % be the singular values and t := or1/or. the condition number of Xk.
Using the optimal value (3.15), the matrix Xk is scaled with the geometric mean

3’ 1/x/O’lCr,. The scaled matrix l!x/trtr, Xk has its singular values (rl distributed
equally on both sides of 1 (x/ r =>...-> tr’, 1/x/--), which is the best one can do
for the next iteration step.

Now let A be rn x n with full rank. We consider the iteration Xo A and

+r-
(3.16)

_! (x x2 -i-2 X,

where one has to use the first or the second form according to whether rn >= n (X2X
is n x n nonsingular) or rn < n (then XX2 is rn x m nonsingular).

An estimation for (3.15) can be obtained from the matrix B XXk, respectively,
B XX[. Using

(3.17) () ./lln-’ll,
IIBII,

it is not difficult to see that (k)/ 8. <_ (k)<X/" .(k)
")topt/Nt It ")tes )topt.

Example. For A rand (20, 10) a matrix with random elements and (A)= 15.5,
we computed the polar decomposition of A and A. The results were obtained in seven
iterations and are given in Table 1.

TABLE

UH- AII2/IIAII2 2.6838e- 16 uTU- III2 2.3015e- 16
IIUH-AT]I2/IIAr]]2= 1.7818e- 16 ]]UUW-II]2 1.2199e- 16
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4. A family of iteration methods. Higham’s generalized algorithm works well and
reliably if the matrix A is not too ill-conditioned. The aim of this section is to obtain
an algorithm that also works well when A is rank deficient without having to determine
in advance the numerical rank.

To show important ideas, we consider as an example the gallery(5) matrix from
MATLAB [8]. This matrix is (5 x 5) and has rank 4. Using Halley’s iteration, we obtain
the decomposition A= UH with UrU IIl= 5.1932e- 16 and UH-AII/IIAII=
6.2770e- 8 in 14 iterations. The results are not quite satisfactory. The reason is that
rounding errors perturb the iterates because the matrices Ck I + 3XXk, especially
the first one, are ill-conditioned (K(Co)= 3.0634e + 10). The condition of the following
matrices Ck improves more and more since the singular values of Xk converge to 1.

We can improve the condition of Ck by simply scaling the matrix A. Using
the above algorithm with Xo:=A/IIAII2 yields the decomposition A= UH with

IIuu-Ill2=3.6O2Oe 16 and IIUH-AI]/IIAlI=5.2335e-16 in 39 iterations. Now
K(Co) 4 and the results are as accurate as one can wish. However, the computational
effort with so many iterations is too large. However, it is important to note that the
number of iterations does not depend on the size of the matrix, since all the singular
values are increased simultaneously!

The matrix considered in this example has one zero singular value. Theoretically
this is a fixed point of Halley’s iteration. Since this fixed point is not attractive and
since, due to rounding errors, the singular value does not remain exactly zero during
the iterations, it converges in finite arithmetic to 1, to the desired limit.

Though Halley’s iteration converges cubically, global convergence is poor. It is
not difficult to see that the global error is roughly reduced by a factor of 3, which can
be too slow for practical purposes.

Let A QM be an m n matrix and h a real rational function with

(4.18) h(t)>0 for t>0.

Then

B Ah(ATA) h(AAT)A
(4.19)

QMh(M2) Qh(M2)M.
Let M VDVT with D =diag {Ai}Ai ->_ 0 be the eigenvalues of M. Then because of (4.18)

Mh(M2) VDVTVh(D2) VT

VDh(D2) VT pos. (semi-) def.

and therefore (4.19) is the polar decomposition of B with Ms Mh(M2) h(M2)M.
We now consider iteration functions F with the rational function

We want to determine the two parameters c and d such that we have quadratic
convergence, i.e., from the equations h(1) 1 and h’(1) -1/2. A short calculation yields
the condition d -f, i.e., f 1 and d =f-2 and c 2f-3. For every value of the
parameter f with f 1, the iteration function

(4.20) F(x) xh(x2) x 2f 3 + x2

f 2 +fx2

leads to a quadratically convergent iteration method.
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THEOREM 2. Let A be an m x n matrix with full rank and polar decomposition
A QM. With suitably chosen scaling parameter a, the iteration Xo aA

Xk+l Xk((2f--3)I + XXk)((f-2)I +fXXk)-1, m >- n
(4.21)

((2f-3)1 + XkX)((f--2)1 +fXkX)-IXk, m <-- n

converges quadratically to Q for every f 1.
Note the following special cases of iteration (4.21): for f=0 we obtain Bj6rck

and Bowie’s algorithm (for p=l). f=2 yields Higham’s and f=3 yields Halley’s
iteration.

Proofi By construction of (4.20) local quadratic convergence is assured. We have
to show that for every value off the iteration also converges globally. We discuss the
iteration function (4.20) for positive x and various values offi Let o-1 => tr2 >-. -> or, > 0
be the singular values of Xk and similarly let o-I be the singular values of Xk/l.

(1) f> 3 (see Fig. 1, e.g., for f= 100): Large singular values tri >> 1 are reduced
by about the factor f per iteration while small tri < 1 increase but stay smaller than
one. F has a minimum at

2)(2f- 3)
(4.22) Xe

f
and

Therefore we have the following bounds for the new o- corresponding to o-i > 1"

O<F(xe)<"<F(h),= i--

which is approximately

’12 ,<_2 O’i__7
We have in this case global convergence for any a > 0.

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12

FIG. 1. f= 100.

2O
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(2) f= 3 Halley’s iteration (see Fig. 2). F(x) is monotonically increasing. Large
ri > 1 are decreased roughly by a factor of 3 and small o-i < 1 are increased roughly
by the same factor. Also here for any a > 0 we have global convergence.

(3) 2<f<3 (see Fig. 3, e.g., for f= 2.1). Here we have 0<Xe< 1 andxe is a local
maximum. For values of f close to 2, say f 2 + e, we have

(4.23) F xe ee l 2 + e - -eand

2
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FIG. 2. f 3.
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FIG. 3. f= 2.1.
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With this class of iteration functions we get for the small tr corresponding to ri < 1
the bounds:

’<F(xe)F(r.) < r,

or approximately

crn ,<1 1
Ft(O)o-n,-.,--<=o-i

e 2x/-

Again here for any a > 0 we have global convergence.

(4) f= 2 (see Fig. 4). Higham’s nonaccelerated iteration. Large values o’i > 1 are
decreased by a factor 2. Small o-i < 1 are heavily amplified:

1
’i

2tyi

so that after the first iteration all the singular values are greater than 1 and in the
following iteration they are decreased slowly by a factor of 2. For any a > 0 we have
global convergence.

(5) 1 <f<2 (see Fig. 5, e.g., for f= 1.4). F has a pole at

Xp--"
f

and 0 < xv < 1. The iteration converges for Xp < try. For starting values O" > 1 the iteration
converges monotonically and slowly to the desired limit. Therefore by scaling with
a 1/o-n we have global convergence. For 1 <f< 5- the fixed-point zero is attractive,
i.e., values 0-<_ ri < xv converge to 0. This could be used in special applications where
the matrix A does not have full rank and where one would like the zero singular values
to remain zero and not converge to 1.

2

1.8
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1.2

0.8

0.6

0.4

0.2

0
0 0.5 1.5 2 2.5 3

FIG. 4. f 2.
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FG. 5. f= 1.4.

(6) 0-<f<l (see Fig. 6, e.g., for f=0.8). Those methods converge only for
0=< 0.i-<x, /3-2f. Therefore one has to scale with a </3-2f/0.1 to get global
convergence. The pole is at Xp > 1. For f= 0 we receive BjSrck and Bowie’s iteration
(for p 1), and F is a polynomial of degree 3 in this case.

(7) f<0 (see Fig. 7, e.g., for f=-2). The situation is quite similar to the last
case. The only difference is that no pole exists anymore. We have convergence for
0 -< 0.i _<- x /3 2f and global convergence by scaling with a < /3 2f/o’1.

5. An algorithm for general rank defective matrices. By choosing an iteration
method (4.21) it is important that the condition numbers of the matrices Ck
(f- 2)! +fX’Xk be as small as possible. If 0", and 0"1 denote the smallest, respectively,

2.5

1.5

0.5

-0.5

FIG. 6. f 0.8.
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FG. 7. f=--2.

the largest singular value of Xk, then Ck has the condition number

(5.24) K(Ck) f 2 +fo
f-2 +fcr2.

Let us assume that we have scaled the matrix Xo A/IIAII so that o" 1 and er. 0
(rank defective). The condition of Co is then

(5.25) K(Co)

In this case Co gets ill-conditioned if f-- 2 + e is close to 2. However, in order to make
the tiny singular values grow fast, one would like to use such values for f!

Let e denote the machine precision. Solving the linear system in the first iteration
will introduce errors proportional to (Co)x e. If we want the result accurate to the
convergence tolerance > e, then we have to choose

and we have to perform about

f=2+e/a,

steps log e )/log (-)
iteration steps to increase the smallest singular values approximately equal to e to the
size of 1. We do not allow e!6 to be smaller than 10-5, so that the singular values
cannot exceed 111.8 by (4.23). A reducing step withf= F(xe) is then followed by some
final steps with Halley’s cubically convergent method. This strategy is used in the
algorithm pd listed in the appendix.

6. Examples. e denotes the machine precision (e 2.2204e- 16).
(1) Random 20 x 10 matrix with rank 2. The nonzero singular values were rl

7.3883, tr2= 1.1665. The call [U, H]=pd(A, 3, 0) gave the results of Table 2"
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TABLE 2

10e 100e 1,000e 10,000e

f (#it) 2.1 (17) 2.01 (9) 2.001 (6) 2.0001 (5)
total #it 20 13 11 10

IIUH-AII=/IIAll2 3.4811e-15 2.9104e- 14 2.9616e- 13 2.4567e- 12

IIuu-III2 4.7161e- 16 4.5502e- 16 4.7110e- 16 4.4369e- 16

In all cases two eigenvalues of the computed H were equal to the two singular values
of A and the others were on rounding error level IA (A)I <2.3e-15.

(2) A gallery(5) MATLAB [8]. This matrix has rank 4 and the singular values:
1.0104e+05, 1.6795, 1.4628, 1.0802, 0. In the following table we display the singular
values of Xk for the call pd(A, 100 e, 0). The first nine steps are executed withf 2.01.
Then one step is done with f= 3.535 and in the last three steps f= 3. Table 3 shows
how the smallest singular value grows with a factor of about 100 per step.

TABLE 3

1 2 if3 4 5

1.1449 2.8959e -03 2.5224e -03 1.8625e -03 6.4920e 15
1.0090 2.9488e -01 2.5695e -01 1.8985e -01 6.6246e 13
2.4318 1.9554 1.7665 1.0000 6.7574e 11
1.4173 1.2308 1.1643 1.0000 6.8925e -09
1.0606 1.0213 1.0114 1.0000 7.0304e -07
1.0017 1.0002 1.0001 1.0000 7.1710e -05
1.0000 1.0000 1.0000 1.0000 7.3144e -03
1.0000 1.0000 1.0000 1.0000 7.3817e -01
1.0452 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 9.9981e -01
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000

The accuracy is given as predicted by the choice offby UH-AII/IIAII-- 1.4291e- 14
and uu-III- 3.3514e-16. The smallest eigenvalue of H was 6.0596e-13.

(3) A=columns 1" 20 of the 50x50 Hilbert matrix. (See Table 4.) The singular
values, computed by MATLAB, are o-1 1.9774, o’20 6.4300e- 18.

TABLE 4

it IIUH-AII2/IIAII2 Iluu-III2

pd(A, 100 * e, 0) 13 3.6110e- 14 4.5965e- 16
generalized Higham 10 1.3529e -05 1.6241e 16

pd used f 2.01 for the first nine steps. The computed H had two negative eigenvalues
on rounding error level (-7.3301e-18 and -1.4956e-17). For generalized Higham
the error warning "matrix singular" occurred twice due to poor condition of the matrix;
therefore the results are inaccurate.

(4) A Hilbert (5 5). Since A is symmetric and positive definite, we should have
U I and H A. The results are given in Table 5.
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TABLE 5

it IIH-AII= IIU-III=

Higham 8 7.8163e- 17 2.9403e 15
generalized Higham 8 1.3569e 11 9.5408e -09
pd(A, e, rcond(a)) 11 8.8959e- 16 1.6620e- 14

The loss of accuracy with generalized Higham is again due to squaring the condition
number by this method, rcond is LINPACK estimate of the reciprocal condition
number.

(5) A Hilbert (30 30). (See Table 6.) The iteration accuracy was 3 10e in all
cases.

TABLE 6

it IIH-AII= IIU-ZlI IIuTu-III=
Higham 10 9.8234e- 13 1.9994 6.4666e- 16
generalized Higham 10 8.1918e 04 1.9893 2.2865e 16
pd(A, 3, rcond(a)) 21 3.6630e- 15 2 7.0639e- 16

Due to the numerical singularity of the matrix we get one warning from MATLAB for
Higham’s and two warnings for the generalized Higham’s method. Though U # I the
results of pd are good: U is orthogonal to machine precision, and A equals H as well
as one can expect (eight eigenvalues of H were negative, however, in modulus smaller
than 5.9e- 17). Numerically this matrix behaves as if it were rank defective. Therefore
U is not unique [5] and can be different from L

(6) We have tested pd successfully for various matrices. We could find the
following example where it failed. Let G gallery(5) MATLAB [8]. We construct the
matrix A as

A=
G

By calling pd(A, 10, e, 0) we observe that in 20 iterations only five singular values
grow to 1, the other five remain on the rounding error level. It seems that for this
special case the rounding errors are too correlated. If we form UUr we get

Appendix. Listing of the program pd.
function [U, H] pd(A, delta, rcon)
% pd
%
%
%
%
%
%
%
%
%
%
[m, n] size(A);

Iterative computation of the polar
decomposition of an arbitrary matrix

Input arguments:
A m-by-n matrix
delta convergence tolerance, < 1
rcon estimate for the inverse condition

number: sigma_n/sigma_l (zero
for rank deficient matrices)

[U, HI pd(A, delta, rcon)

% Size of the matrix A
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k--0; % Counter for iteration
% Data adjustment for delta
if delta eps, delta- eps; end,
if delta> 0.01, delta- 0.01; end,
e max([rcon,eps])
if delta 10 eps,

f- 2.1, ma 3,
steps round(log(e)/log(0.1)) + 1,

elseif delta > 100000 eps,
f- 2.00001, ma 100,
steps round(log(e)/log(0.00001)) + 1,

else f= 2 + eps/delta, ma 1/sqrt(8 ,eps/delta),
steps round(log(e)/log(eps/delta)) + 1,

end

if m> --n
X_k 0;
X_kl A/norm(A,inf) sqrt(n);
while norm(X_kl X_k,1) > delta norm(X_kl,1)

X_k X_kl; k k+ 1;
AA X_k’ X_k;
X_kl --X_k ((2 f-3) * eye(n) /AA)..

/((f-2) eye(n) + f, AA);
if k steps,

f= ma,
elseif k > steps,

f=3,
end,

end
else % m<n

X_k 0;
X_kl A/norm(A,inf) sqrt(n);
while norm(X_kl X_k,1) > delta norm(X_kl,1)

X_k =X_kl; k-k+ 1;
AA X_k X_k’;
X_kl ((2 f- 3) * eye(m) + AA)..

/((f- 2) eye(m) + f, AA) X_k;
if k steps,

f= ma,
elseif k > steps,

f=3,
end,

end
end
U X_kl;
H- (U’, A+ A’, U)/2;
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SOLVING SYSTEMS OF NONLINEAR EQUATIONS ON
A MESSAGE-PASSING MULTIPROCESSOR*

THOMAS F. COLEMAN AND GUANGYE LI:

Abstract. Parallel algorithms for the solution of dense systems of nonlinear equations on a message-
passing multiprocessor computer are developed. Specifically, a distributed finite-difference Newton method,
a multiple secant method, and a rank-1 secant method are proposed. Experimental results, obtained on an
Intel hypercube, indicate that these methods exhibit good parallelism.

Key words, systems ofnonlinear equations, hypercube computer, message-passing multiprocessor, secant

method, finite-difference Newton method, parallel algorithms
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1. Introduction. In this paper we investigate parallel algorithms, tailored to the
hypercube multiprocessor context, for the solution of systems of nonlinear equations

(1) solve F(x) 0

where F:R R. Component of F is denoted by f. We assume that F is differenti-
able; let J(x) denote the Jacobian matrix evaluated at point x.

Our implementations are specific to a hypercube multiprocessor; however, the
algorithmic ideas are applicable more generally. In particular, the parallel algorithms
presented here can be tailored to any multiprocessor computer provided that the
communication topology allows for efficient "fan-in" and "fan-out" operations and
the processors themselves have significant local memory. Furthermore, some of our
proposed algorithms--multisecant update, triangular solve--are most meaningful when
a "ring" communication pattern is used; hence, the topology of the multiprocessor
should allow for a ring embedding. Finally, we remark that we always assume that
the dimension of the problem n is greater than the number of processors p; indeed,
the algorithms uniformly become more efficient as nip increases.

Our ultimate interest is in large sparse problems; however, in this paper we restrict
our attention to the case in which the Jacobian matrix is assumed to be dense.

In a nutshell, this paper represents our attempt to parallelize the popular globalized
Newton-like approaches to (1), such as secant and finite-difference Newton methods
with a dogleg step or linesearch procedure. Consequently, the algorithms under con-
sideration actually solve the structured minimization problem

(2) minimize {f(x)" f(x) 1/2F(x) 7F(x)}.

Obviously a solution to (1) is also a solution to (2); unfortunately, the converse is not
always true. Nevertheless, such algorithms often are used successfully to obtain
solutions to (1).
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We divide the world into two classes of functions: functions F that are most
conveniently evaluated as a single entity (i.e., a single subroutine evaluates the entire
vector function F, sequentially), and functions F that can be evaluated in a distributed,
parallel fashion. In this paper, to be concrete, we restrict the latter category to functions
that conveniently separate into component sequential subroutines for each f, l:n.
We call such functions row-separable.

If F is to be evaluated as a single entity, then our approach is to distribute copies
of the F-evaluation subroutine to all the processors. We then assume that any node
(processor) can evaluate F(x), given x, with no other communication necessary. Note
that the usual (rank-l) secant method cannot be parallelized in any obvious way since
the evaluation of F(x) is not distributed. If the evaluation of F is cheap relative to
the other computations (e.g., matrix updating, triangular solves,...) then this poses
no problem--let one node evaluate F while the others remain idle; however, if F is
relatively expensive, then it is not clear how to effectively parallelize the rank-1 secant
method. For this reason we have developed the multisecant method in which each
processor evaluates F at a different point (or perhaps several different points). The
result is a rank-q update, where q is a multiple of the number of processors available.
This approach is discussed in 5. In the extreme case, when each node is evaluating
F at many different points, the multiple secant method resembles a parallel finite-
difference Newton method. The latter approach is explored in 4.

When F is row-separable the evaluation of F(x) can be done in parallel. This
allows for an efficient parallel version of the (globalized) rank-1 secant method. The
crucial problem here is the design of the effective parallel QR-updating scheme. We
discuss this in 3.

Next we briefly describe the salient features of a hypercube computer. See Wiley
[15], for example, for more information.

A message-passing multiprocessor consists of several independent processors
connected by communication links. Each processor has significant local memory. (For
example, the Intel iPSC with extra memory boards has approximately four megabytes
of available memory, per node.) There is also a host computer, connected to one or
several of the nodes (processors), whose purpose is to load programs and data onto
the nodes of the cube, as well as collect the answer; we take the view that the host
does not participate in intermediate computations.

Each processor supports two message-passing primitives: send and receive. When
a node sends an array, it is transported through a sequence ofnodes and communication
linksmthe sequence is usually determined by the operating system--until the target
node is reached. Upon executing a receive, a node checks to see if a new message is
in its buffer. If so, the message is read and execution continues; if not, execution is
suspended (on the receiving node only) until a message arrives.

A hypercube computer is a particular kind of message-passing multiprocessor.
Specifically, the name refers to the topology defined by the communication links.
A zero-dimensional hypercube, or 0-cube, is a single processor. To construct a 1-cube
(i.e., 2 nodes), join two 0-cubes with a single communication link. In general, construct
an m-cube (i.e., 2 nodes) from two m-1 cubes: find a one-to-one correspondence
between the nodes in each cube and add a communication link between each pair.

We restrict our attention to row-separable functions to provide specific explicit algorithms, and for
purposes of implementation and experimentation. However, the ideas and algorithms developed for row-
separable functions are easily adapted to the general situation: i.e., functions that can be evaluated in a
distributed, parallel manner.
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The hypercube topology allows for a number of interesting properties (e.g., [14]).
A particularly important one, for our purposes, is that a spanning tree of depth rn can
be embedded in an m-cube, rooted at any node. This allows for the efficient implementa-
tion of a number of global operations. For example, a node can send information to
every other node in rn "timesteps." This is usually called a broadcast or fan-out
operation. Alternatively, a vector distributed over the cube can be collected onto any
single node (the target node) in rn "timesteps" using a spanning tree rooted at the
target node. This is often called a fan-in operation.

Each node has a unique name myid, which is a number in the range [0, p-1]
where p is the number of processors; each node is aware of its own name. We use two
labelings, or assignment of node names. The first is the natural ordering, which is an
assignment of integers in [0, p-1] such that each neighbor of node (a neighbor of
node is a node connected to by a single communication link) differs by a single bit
in its binary representation of its name. For example, the neighbors of node 5, in a
4-cube, are nodes 4, 7, 1, and 13. A ring ordering is also used. In this case node is
connected by single communication links to node (i 1) mod p and node (i + 1) mod p.
An m-cube always allows for an embedding of a ring on 2 nodes.

Experimental results reported in this paper were obtained using the Cornell Theory
Center 16-node Intel iPSC hypercube under Xenix 286 release 3.4 of the host operating
system and iPSC release 3.0 of the node operating system. The nodes were equipped
with extra memory boards yielding approximately four megabytes of available memory
per node. All our programs were written in Fortran.

2. The sequential secant algorithm. We begin by summarizing a simplified version
of the Minpack 11] sequential secant algorithm. This algorithm, in turn, is based on
the work of Powell [12].

Suppose xc is the current approximation to a solution of (2) and define Fc %f F(xc).
Let Bc be the current Jacobian approximation and let Bc QcRc be the QR-factorization
of Be. Assume Bc to be nonsingular.

A trial step sc is computed by approximately solving the trust region problem

(3) minimize {11 Fc + Bcs I1" s [12 <= Ac}

where Ac is the current radius of the trust region. The approximate solution sc is
obtained by further restricting (3)" specifically, sc solves the problem

(4) minimize {11 I1 " s I1= <- Pc}

where Pc is a piecewise linear path defined as follows" First, connect xc to the Cauchy
Cauchypoint, xc + S where

(5) sCauchyaor IlnF[l nFc-IIBcBFcll
Cauchy Newtonand then connect Xc + S to the Newton point, Xc + S where

(6) scNewton de._f n-lFc.
The computation determining the trial step sc boils down to the algorithm in Fig.

1. (Note. newx is a logical input parameter. If newx =false then all quantities in step
1 have not changed since the previous call; otherwise, newx true and all quantities
have changed values.)

The possible correction Sc determined by algorithm Dogleg is accepted (i.e.,
x+ -Xc+ Sc) only if [[F(xc+ Sc)llz < [[f(xc)ll=. If Sc is not accepted then Ac is reduced
and step 2 of algorithm Dogleg is repeated.
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{1" Compute Cauchy and Newton Steps}
If {newx} then

{Compute sc-Cauchy (given Qc, R)}
/,/.. QTcF;
g-RT;
w QRg;

Ilwll
g;

{Compute s-NewtnJ
NewtonSolve s u;

Endif

{2: Solve (4)}
If {ll -Newtn _Newton

’c I1 -< Ac} then s - S

Elseif {ll _Caucny ( Ac=> Ac} then sc <-
[isCaucnyll

_Cauchy

Cauchy_Cauchy q.. O (scNewton ScElse Sc ’c
where a is the positive root of the quadratic equation
_Cauchy (scNewton Cauchy- + -s )II=A

Endif

FIG. 1. Algorithm Dogleg.

There must also be a mechanism for increasing Ac so that progress is not impeded
by unnecessarily small steps. This is accomplished by comparing the predicted reduction
to the actual reduction. If this ratio, ratio, is sufficiently large then Ac is increased.

Besides updating x and A, it is necessary to evaluate F(x + s) and update the
QR-factorization of B to reflect the rank-1 secant update (due to Broyden [2]). We
will not go into the QR-updating details here; however, orthogonal rotations can be
used to stably perform this update using a total of 26n2 floating point operations (e.g.,
[5]). The algorithm in Fig. 2 is a formalization of the ideas expressed above.

The algorithm described in Fig. 2 represents a simplified version of the Minpack
implementation. For example, Minpack will refresh B by finite-differences when it
appears that convergence is not proceeding rapidly enough. In addition, Minpack will
modify R if singularity is detected. Furthermore, the Minpack "ratio test" and sub-
sequent adjustment of A is somewhat more complicated. We will not spell out these
details in this description since they do not bear significantly on questions of paralleli-
zation. Subscript "c" denotes current" e.g., x refers to the current point. Subscript
"+" denotes the updated (new) quantity: e.g., x+ is the new value of x, x+ x + so.

3. Parallel secant method for row-separable functions.
3.1. The algorithm. As mentioned in 1, a row-separable function F is defined

to be one in which it is convenient to have available a separate subroutine to evaluate
each f(x), i-l:n. Assuming row-separability (see footnote 1), we now develop a
parallel Secant secant method for (1) based on the sequential secant method
described in 2.

Our general approach is to distribute data and functions around the cube so that
the work in the computationally intensive steps in algorithm Secant/Dogleg is well
distributed; we are averse to redistributing information if it can be avoided. We make
no attempt to parallelize steps that involve relatively insignificant computational work.
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{0: Initialize}
Choose Xc, evaluate F(xc), determine B(x) by finite differences;
Compute B(xc) QcR
newx - true;

{1: Attempt to find a zero of F(x)}
Repeat

Determine Sc by Algorithm Dogleg(newx);
Evaluate F(xc + s);

{Compute ratio}

actred <--
F(xc + Sc)]].

prered <- 1-

actred
ratio-"

prered

{Update x}
If {ratio =<.0001} then x+ -Xc
Else x+ - Xc + sc Endif

{Update A}
If {ratio--<_ 1/4} then Ac -1/2A
Elseif ratio-< 1/4} then A+ -A
Else A/ - 2Ac Endif

{Update B, newx}
If {x+ # Xc} then

newx - true;
Update QR--> Q+R+ to reflect the rankol change:

([F+- Fc]- Bcs) sTcB+ <- Bc +
s Sc

Else newx -false
Endif

Until {convergence}

FIG. 2. Algorithm Secant.

From our perspective the significant steps in algorithm Dogleg are the matrix-vector
multiplies and the upper triangular solve in Step 1; Step 2 is relatively insignificant
and can be performed on a single node. Beyond the call to Dogleg, the significant
steps in algorithm Hybrid are: the initial finite-difference approximation B, the initial
QR-factorization, the evaluation of F(x + so), matrix-vector multiplies in the computa-
tion of prered, and the update of the QR-factorization.

We distribute F as follows: For 0: p-1, node is assigned component sub-
routine f for each j + l(mod p), 1 _-<j_-< n. Therefore, to evaluate F(y) each node
must just evaluate its resident component functions: the simple node program is
illustrated in Fig. 3.
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k - myid + 1;
While k =< n do

Evaluate fk (y
kk+p

Endo

FIG. 3. Algorithm F-evaluate (node program).

The initial finite-difference determination of B can be accomplished in parallel
using algorithm F-Evaluate as a subroutine. However, it turns out to be convenient to
have the initial B distributed by columns; therefore, given our distribution of F, some
communication is required within the parallel finite-difference method. The basic idea
is to use algorithm F-Evaluate to parallelize the usual column-oriented finite-difference
scheme. This is based, in turn, on the approximation to the jth column of the Jacobian
matrix,

F(x+’ej)-F(x)
(7) J(x)e

where e is the jth column of the identity matrix and r is an appropriate positive scalar.
The node program for the parallel finite-difference approximation is given in Fig. 4.
It is assumed that every node has a copy of x, the current point, and r, the differencing
scalar.

Note that each node determines some ofthe components of columnj; the "Fan-in"
step collects column j onto node (j-1)mod p where it is stored.

The initial QR-factorization of B can be accomplished by a parallel column-
oriented algorithm based on orthogonal Householder transformations. Moler [9] has
described the framework for such an algorithm in which the column-distributed matrix
B is overwritten with R and the Householder vectors that define Q. However, our
rank-1 updates require an explicit representation of Q; therefore, we have modified
Moler’s Algorithm to produce a row-distributed Q-matrix, while overwriting B with
the column-distributed matrix R. This modification is rather straightforward and we
will not describe it here; however, in Table 1 of 3.2 we do provide results of numerical
experiments designed to measure parallel efficiency.

There are numerous matrix-vector multiplies in algorithm Secant/Dogleg involving
matrices 0, R, O r, and RT" we have built our (straightforward) routines based on the
communication utility routines provided by Intel [10]. Design of an efficient parallel
triangular solver turns out to be a difficult problem. Nevertheless, there has been
significant recent progress (e.g., [6]-[8], 13]); we use the algorithm of Li and Coleman
[8] in our implementation.

It remains to consider the QR-updating step. Indeed, our decision to crossthread
Q and R--i.e., distribute Q by rows and R by columns--was arrived at with this step
in mind. Hence we assume that if j-1 mod p, 1 _-<j-< n, then node houses row j

For j--l:n do
{Estimate column j}
y - x + -e
F-Evaluate (y w;
Participate in Fan-in of w-* node (j- 1)mod p;

Endo

FIG. 4. Algorithm J-evaluate (node program).
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of Q and column j of R. Let

(8) B+= QR + rsT= Q(R + ys T)

where = QTr. Assume that is stored on a single node, node 0, say; let s T be
distributed, by column, to conform to the distribution of R.

Recall that the usual sequential algorithm [4] introduces zeros in by applying
orthogonal rotations to its rows, from bottom to top. Each rotation is applied, in turn,
to the two corresponding rows of R and columns of Q. But the distribution we have
chosen for Q and R is ideal for parallelization: each node contains a segment of the
rows of R (and columns of Q) being rotated. Hence, the work involved in the rotation
is well distributed.

Upon comption of the step described above we have B+= (/ where ( is
orthogonal and R is upper-Hessenberg. Next we must reduce / to upper triangular
form. This is done using orthogonal rotations applied from top to bottom. Rotation
Gi is applied to rows i, i+ 1 of R as well as columns i, i+ 1 of Q (for i= 1: n-1).
Rotation Gi involves computations that can be done concurrently because each node
has a segment of rows (columns) i, i+ 1 of/(0).

Figure 5 provides the detailed algorithm. For each node k, let

(9) I(k) ={1<_- i<_- n: i-1= k modp}.

Remark. As we have demonstrated, the parallelization of the Secant
Algorithm is fairly straightforward under a row-separability assumption. The two most

{Reduce to Upper Hessenberg form}
For i= n-l: 1(-1) do

If myid 0} then
Determine Gi; {Givens rotation defined by i/, }
Apply G to ;
Broadcast G;

Endif

For each k I myid do
Rotate elements in rows i, i+ of column k of R, using G;
Rotate elements in columns i, i+ of row k of Q, using Gi;

Endo
Endo
If myid 0} then broadcast a %f Endif

Add a x s to first row of R;

{Reduce R back to upper triangular form}
For i=l:n-1 do

If myid (i 1) mod p} then
Determine Gi, based on Ri/., R,; {Givens rotation}
Broadcast G

Endif

For each k I myid do
Rotate elements in rows i, + of column k of R, using G
Rotate elements in columns i, + of row k of Q, using G

Endo
Endo

FIG. 5. Algorithm QR-update (node program).
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challenging steps are the triangular solve and QR-update. Indeed, it is possible to
avoid these two steps altogether if we recur B-1 instead of B. This is quite possible
(e.g., [3]) though from a numerical point of view it is probably preferable to update
B. There are two major reasons we do not pursue this possibility here. First, one of
our goals is to determine if the Minpack Algorithm, which includes updating QR-
factors, can be efficiently parallelized. Second, we maintain an eye toward the sparse
case in this development: in general, j-1 is dense when J is sparse and therefore
recurring an approximation to J-1 is unreasonable in the large sparse situation.

3.2. Numerical experiments. In Table 1 we present timing results reflecting the
performance of the QR-updating Algorithm described in Fig. 5, and, for comparison,
the QR-factorization routine (which we have not described in detail here) and the
triangular solve. Note that even though both the QR-update and the triangular solve
are O(n2) operations, the efficiency of the rank-1 update is much better than the
triangular solve efficiency. This is due to the constant factors involved: i.e., the
QR-update requires 26n2 arithmetic operations, whereas the triangular solve involves
I n2 arithmetic operations. Moreover, the efficiency of the update is not dramatically
worse than for the full factorization that, in turn, exhibits close to optimal megaflop
rate. The near-maximum efficiency of the QR-factorization is due to the intensive
computational work required (recall that the orthogonal matrix Q is being explicitly
formed).

In Table 2 we present the running times for our parallel implementation of the
secant algorithm described in 2. Our stopping criterion was [[FII =< 10-8; the "update
A" step was modified to conform with the Minpack code. Problem 15 is the well-known
extended Rosenbrock function; the other problems were chosen from the Minpack
collection of nonlinear equation problems.

To provide a measure of speedup, in Table 3 we have divided the numbers in
Table 2 by the sequential running times of a modified Minpack code running on a

TABLE
Timing results for the parallel secant update, p 16.

QR QR Update Update Solve Solve
time mflps time mflps time mflps

100 7.2 .458 .995 .261 .70 .028
200 51.3 .52 2.6 .39 1.3 .06
300 166.0 .54 5.6 .46 2.2 .08

TABLE 2
Running times for the parallel secant algorithm.

Problem p n 50 n 100 n 300

9 20.5 128.27 2494.7
9 16 5.54 15.6 162.0
10 60.14 418.6 10264.3
10 16 9.4 36.7 643.9
14 92.6 397.0 5210.3
14 16 40.19 89.2 468.7
15 193.14 945.1 13121.2
15 16 85.7 227.9 1445.5
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TABLE 3
Speedup for the parallel secant method, p-- 16.

Problem n 50 n 100 n 300

9 3.8 8.2 15.4
10 6.4 11.4 15.9
14 2.3 4.5 11.1
15 2.25 4.1 9.1

single processor. The Minpack code was modified to force secant updates (after the
initial finite-difference Jacobian estimation). Moreover, the Minpack stopping criteria
were replaced by the rule mentioned above. Hence the two codes produce exactly the
same sequence of x-iterates (we verified that this claim held on the four test problems
in question).

Remarks. (1) Obviously speedups improve as n increases. This is due to the
increase in distributed work to be performed.

(2) Problems 9 and 10 require only unit steps each iteration; on the other hand,
problems 14 and 15 require many nonunit steps--many trial steps are rejected. It is
this fact, in combination with the fact that function evaluations are extremely cheap
that accounts for the relatively poor parallel efficiency demonstrated on problems 14
and 15.

To support this claim numerically, we have artificially increased the expense of
each function evaluation in problem 14 by a factor of 100. The cost of a function
evaluation is then about the same order ofmagnitude as the cost of a function evaluation
in problem 10. For p 16 and n 100 the running time is 177.4 compared to 1562.3
when p 1; the resultant speedup is 8.9, which compares favorably to the speedups
obtained on problems 9 and 10.

The purpose of Table 4 is to provide some indication of how the computing time
is distributed amongst the various tasks. The table entries represent the normalized
time to do each task--for each row, each task time is divided by the time required by
the most expensive task. Column "Int. J/QR" represents the time to do the initial
estimation of J by finite-differences plus the time required to do the initial QR-
factorization. The "F-evaluation" column represents the total time spent on evaluations
of F excluding the initial estimation of J. The column labeled "Other" reflects the
time spent on all remaining tasks. This includes several parallel matrix multiplies (used
in the determination of Cauchy and Newton steps) as well as some sequential work
(such as the adjustment of A).

Problem 14+ is the Minpack problem 14 with the cost of a function evaluation
increased by a factor of 100.

TABLE 4
Secant Algorithm breakdown for p 16, n 100.

Problem Init. J/QR QR-update F-evaluation Tri. solve Other

9 1.0 .26 .07 .22 .18
10 1.0 .14 .06 .10 .10
14+ 1.0 .28 .42 .28 .06
15 .10 1.0 .27 .56 .40
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It is now easy to see why problem 15 experiences relatively poor speedup: too
little (relative) time is spent on the highly parallel tasks such as the initialization step
and "F-evaluation." Instead, the QR-update and the triangular solve tasks consume
the most time: unfortunately, neither task is as parallel-efficient as the QR-factorization
or the distributed evaluation of F.

Our numerical experiments indicate to us that the proposed parallel secant method
is acceptably efficient (for both cheap and expensive functions) except when F is
cheap and many iterations are required. Note that many iterations may be required
due to a poor Jacobian approximation; a hybrid routine such as the Minpack Algorithm
would tend to refresh the approximation (e.g., by finite differences) under such
circumstances and this, in turn, would tend to decrease the number of iterations. In
particular, we note that the parallel finite-difference method actually outperforms the
parallel secant method on problems 14 and 15: this is due to many fewer iterations
and (ridiculously) cheap function evaluations.

4. Parallel finite-difference Newton method.
4.1. The algorithm. In the remainder of this paper we assume that the evaluation

of F(x) is not a distributed computation; every node has a copy of the F-evaluation
subroutine. In addition, we discontinue the use of the subscript c; e.g., x and s refer
to vectors Xc and sc, respectively. The finite-difference approximation of the Jacobian
matrix can obviously be done in parallel, given F(x), with each node computing its
resident columns independently. Communication between nodes is not required. Since
efficient parallel routines for the LU and QR factorizations exist, and since the triangular
solve problem has been extensively researched, with acceptable results, the only
remaining difficulty is the evaluation of F(x+s) when determining if x+s is an
acceptable point. If F is relatively expensive to compute, then it is not reasonable to
designate one distinguished node to evaluate F(x + s) while the others idle.

Our solution breaks into two parts. First, if in the course of a run previous
experience suggests that the initial trial step s is likely to be accepted, then we take a
chance and overlap the computation of F(x + s) with the estimation of J(x + s). This
is at some risk because s might be determined to be unacceptable--due to the value
of IIF(x + s)ll--and then any work expended on the computation of J(xc + s) has been
wasted. But, as indicated in Fig. 6, each node will waste at most one evaluation of F
before the suitability of s is determined.

Assign the task of evaluating F(x + s) to node n mod p (think of F as column
n + 1 of the Jacobian): n + 1 e I(n mod p). Figure 6 describes the algorithm.

If {myid n mod p} then {i.e., if am the node that evaluates F(x + s)}
Evaluate F(x + s);
Broadcast F(x + s);

Else
Choose j I(myid);
Evaluate F(x + s + -e);

Endif

If x + s is not acceptable then exit
Else

Evaluate the remainder of the Jacobian columns by finite differences;
Endif

FIG. 6. Algorithm J-and-F-evaluation (node program).
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On the other hand, if previous experience suggests that there is a good chance
that the initial step s will not be adequate, then our strategy is quite different.
Specifically, each step of the parallel linesearch procedure involves p function evalu-
ations, F(wp_l),. ", F(wo), done in parallel, where wp_l," , Wo are points along the
dogleg step Pe (see 2). If the first step is unsuccessful, then a second parallel search
is performed along a smaller segment of Pc. This process is repeated until a suitable
point is found. The linesearch procedure is judged successful if the following "alpha
condition" is satisfied for some w. {wp_l,’", Wo):

(10) f(w,) <-- f(x) + aVf(x)r[w,- x],

where 0<a <1/2, and f(x)de----f1/211F(x)ll. See Dennis and Schnabel [3] for a discussion
of the "alpha condition."

The procedure can be considered a parallel generalized bisection algorithm or
perhaps a generalized Armijo rule [1]. In each step we begin with a stepsize bound
of A. Specifically, in the first step

(11) A - min {[[ sNewtnl[, BOUND x XNORM}

where XNORM %f max {[[x[[, TYPX} and TYPX is a positive user-supplied constant
representing the norm of a "typical" x-iterate; BOUND is a positive user-supplied
constant.

In subsequent steps (if needed) A is defined by the (unsuccessful) evaluation point
nearest to x (used in the previous step).

In each step the evaluation points are defined as follows:

(12) wi cc P, wi x i--O’p-1

where 2’ is a positive number strictly greater than unity. The choice of 2’ is guided by
the following two concerns.

First, 2’ should be chosen so that the point nearest to x, Wp_l, is not too close to
x" i.e., we require

(13)
A

.>
p--1 X XNORM

y.

where /x is small positive number (usually unit roundoff). We assume BOUND >>/x.
Obviously expression (13) yields the upper bound on y,

( a )/(P-I)(14) y-<
p XORM

Second, it is usually advantageous to spread the evaluation points so that at least
one point (i.e., Wp-1) is on the Cauchy segment (x, X-"sCauchy]. This leads to the
condition, if [[sCauchyll < A, we require

(15) ,p_, [[SCauYl[.

However, this condition may lead to a y so large that a very large segment of
sNewtn--SCauchy is devoid of function evaluations. Hence we compromise (15) and
require only

(16) y _--> min IIsCauchYl[
2
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Note that if we assume that

(17) Ilsfauchyll > x XNORM,

then (14) and (16) are consistent and y > 1. If condition (17) does not hold, then it is
reasonable to stop, claiming optimality.

Figure 7 exhibits the algorithm. The "Decrease A" step is implemented as follows.
Let p+=p+ 1; determine 3,+> 1 satisfying (14) and (16), replacing p with p+. Finally,
assign

(18) ]/+](p+-l)"
The "Fan-in" step determines w* W=(Wp_l,’", Wo} such that IIw*-xll is

maximum and w* satisfies (10). If no such point exists we define w*= x. Determining
if (10) is satisfied at point wi is a simple computation. Specifically, we can write

(19) w,-x= /CsCauchy+-//NsNewtn.

But, fTSNewtn IIF(x)l[ def__
to
N and fTsCauchy------llJTFll dof= to c. (The constant/3

is computed when Pc is determined.) Therefore,

(20) vfT[toi_X] __,/cto C +,/Nto N,
which is a trivial expression to compute on a single node.

The overall procedure is sketched in Fig. 8. Note that we have provided a high-level
global view, as opposed to a node program. The parallelization of each computationally
significant step has been discussed above.

4.2. Numerical results. We performed computational experiments using problems
9, 10, 14, and 15 referred to previously. The standard starting point (Factor= 1) was
used in all cases. The stopping criterion was ]]FI] <_-10-8.

Problem 10 is distinguished from the others: F is relatively expensive to compute.
In this sense problem 10 probably represents a more realistic test function. However,
problems 14 and 15 are useful for testing because nonunit steplengths are required,
whereas Newton iterations converge quickly, with unit steps, for problems 9 and 10.

In Table 5 we have recorded the iteration counts and running times obtained for
the finite-difference Newton method described above (e.g., y/z indicates y iterations
taking a total of z seconds); in Table 6 we divide the p 1 running times by the p- 4
and p 16 times to obtain a measure of speedup. In this case we do not compare our
algorithm to a finite-difference version of the Minpack code because we feel such a

Choose A as in 11
Repeat

If myid--0} then
Determine y> satisfying (14) and (16);
Broadcast y;

Endif- myid;
Determine wi Pc wi xl] A/y;
Evaluate z %f F(wi);
Participate in fan-in: z z*, w w* on node 0;
Decrease A;

Until f(w,) <=f(x) + aVf(x)T[W, X]

FIG. 7. Algorithm Dogleg-Linesearch (node program).
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Guess an initial x;
Evaluate F(x), J(x);
Assign prey-step - "not-Newton";
Repeat

Factor J LU;
Determine Pc:

Compute sCauchy; {see Fig. 1}
Compute sgeg; {see Fig. 1}
Determine A; {use (11)}

If {prey-step "Newton"} then
Try algorithm J-and-F;
If {J-and-F is unsuccessful} then

prey-step - "not-Newton"
Endif

Endif
If {prey-step "not-Newton"} then

Perform Dogleg-Linesearch
Evaluate J(x+);

Endif
Until {convergence}

FIG. 8. Algorithm Newton with Dogleg-Linesearch.

TABLE 5
Results for the Newton Algorithm with Dogleg-Linesearch.

Problem p n 50 n 100 n 300

9 3/7.6 3/43.5 3/911.0
9 4 3/3.3 3/13.6 3/240.1
9 16 3/3.0 3/7.9 3/79.8
10 4/107.9 4/826.8 4/21701.4
10 4 4/30.4 4/220.0 4/5528.2
10 16 4/13.1 4/69.2 4/1447.4
14 9/41.1 9/218.2 9/4050.2
14 4 9/15.5 9/65.7 9/1062.6
14 16 9/12.3 9/33.4 9/344.0
15 22/65.0 27/496.3 31/12871.,5
15 4 22/30.1 27/158.2 31/3398.8
15 16 11/13.7 12/40.6 14/496.1

comparison would be unfair. Specifically, the Minpack code is QR-based and ours is
LU-based: such a comparison would give meaningless advantage to our method.

Our implementation struggles with problem 15 for small p (relative to its perform-
ance with p 16). This is because our linesearch parameter y was chosen with a
moderately large p in mind. In particular, in a first iteration ofthe Linesearch Algorithm,
we choose y so that condition (16) is an equality. If a second iteration of the linesearch
is needed, then y is chosen to satisfy condition (14) exactly. This strategy appears to
work quite well for p 16 but can lead to small steps if p is small.

In Table 6 we have normalized the execution times reported in Table 5: for each
problem divide the execution times in the subcolumn by the p 1 execution time.
Hence the entries in Table 6 reflect the speedup factor over the running time on a
single node.
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TABLE 6
Speedups for the Newton Algorithm with Dogleg-Linesearch.

Problem p n 50 n 100 n 300

9 4 2.3 3.2 3.8
9 16 2.5 5.5 11.4
10 4 3.5 3.8 3.9
10 16 8.2 11.9 15.0
14 4 2.7 3.3 3.8
14 16 2.5 5.5 11.4
15 4 2.2 3.1 3.8
15 16 4.7 12.2 25.9

Remarks on Table 6. (1) For fixed p > 1, the speedup improves as n increases.
The primary reason for this is that as n increases the parallel factorization becomes
increasingly efficient (e.g., [9]).

As Table 7 indicates, the factorization accounts for a significant percentage of the
total computational expense in the test problems.

(2) In general, the 4-processor speeds are closer to optimality (optimal speedup
4) than the 16-processor speedups (optimal speedup= 16). Again, the primary factor
here is the increased efficiency of the parallel LU-factorization as n/p increases. There
are two exceptions to this trend in Table 6.

First, a nearly optimal speedup is obtained on problem 10, n--300. Table 7
explains this" the Jacobian estimation time dominates the factorization time--parallel
finite-difference is a highly parallel task.

The other exception occurs on problem 15, n 300: a speedup of 25.9 is attained
(considerably better than the "optimal" speedup of 16!). This is possible because the
sequence of points generated is a function of the number of processors used (due to
the linesearch). This dependence contrasts with the Parallel Secant Algorithm described
in the previous section.

In Table 7 we break the total execution time down into the times required by the
different substeps. Each row of Table 7 is normalized so that the maximum entry in
each row is unity.

Except for problem 10, the factorization represents the dominant cost. We believe
this is an anomaly: in practice function evaluations are often quite expensive. However,
in either case, the linesearch and triangular solve times are relatively insignificant.

We are satisfied with the performance of this parallel finite-difference algorithm
that combines a dogleg step with a generalized bisection algorithm. Our experience
on our test collection indicates that the required number of iterations is almost always
fewer than for a dogleg/trust region strategy (i.e., no linesearch). However, we admit
that from an aesthetic point of view the linesearch procedure is unattractive: moreover,

TABLE 7
The Newton Algorithm breakdown for p 16, n 300.

Problem Jac. est. Factor Linesearch Tri. solve

9 .08 1.0 .01 .08
10 1.0 .11 .02 .01
14 .17 1.0 .00 .08
15 .04 1.0 .01 .08
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it is somewhat heuristic in nature and is unrelated to the quadratic model philosophy.
Considering these remarks, it might be preferable, overall, to stick with the usual
dogleg/trust-region philosophy and always employ the algorithm in Fig. 6 to obtain
parallelism. Our experiments indicate this would be slightly less efficient.

5. Parallel multiple secant method.
5.1. The algorithm. The obvious disadvantage to the finite-difference Newton

method discussed in 4 is that the estimation of the Jacobian matrix can be extremely
time-consuming. This is less true in the parallel context since finite-differencing is a
highly parallel task; nevertheless, it is often unnecessary to obtain such accuracy. The
success of the sequential rank-1 secant method attests to this claim.

Section 3 presented a parallel secant method under the row-separability assump-
tion; however, if F is to be treated as a single entity we do not know how to implement
an efficient rank-1 secant method (when the evaluation of F is expensive). But, it is
possible to fill the gap between rank-1 and rank-n (i.e., finite-difference approximation)
with an efficient parallel rank-q secant method where q is a multiple of p, the number
of nodes.

To introduce the multisecant method let us consider the case when q- p. For the
moment we also assume that our algorithm is purely local: a unit step x+ x + s is
always taken (we consider the general situation later).

Assume that the function value F(x) is known to every node. The first step is to
re-label the nodes so that a ring is induced (i.e., node is a neighbor of both node
(i+ 1)mod p and node (i-1)mod p, for i-0: p-1). A gray code mapping can be
used for this purpose (e.g., [10]). Assume that Bc is distributed in the usual fashion,
using this labeling. Hence, node j is assigned column k provided k- 1 =j mod p. Let
s be the correction to x: i.e., x+ -x + s. (We assume for the moment that s will be
accepted.)

The next step is key. Each node evaluates F at a different point. Node 0 evaluates
F(x + s), where so= s; node j, 1-<j-< p- 1, evaluates F(x + sj) where s is a sparse
projection of s. That is, component of s will be either si or zero. In particular,

(21) if{i- 1 =j mod p} or {s/ 0, 0_-< k <j} then s=0,
(22) otherwise s, si.

(23)

(24)

()

(26)

For example, if p =q 4, n 8,

SO-- (S1, $2, $3, $4, $5, $6, $7, $8),

S (Sl, 0, S3, S4, $5,0, S7, S8)

S2-- (Sl, 0, 0, S4, S5, 0, 0, $8)

s3= (s, 0, 0, 0, s, 0, 0, 0).

After evaluation, each node sends a copy of its newly computed function value
to its higher numbered neighbor on the ring. Hence, after this shift, node j will have
the vectors F(x), F(x + s), and F(x + s-1) moop). Therefore, if p q 4 then in
addition to F(x), each node has the pair of function values listed below:

(27) node 0: F(x / s), F(x / s3),
(28) node 1: F(x + sl), F(x + s),

(29) node 2: F(x + s2), F(x / sl),
(30) node 3: F(x + s3), F(x /

We now demand that each node satisfy its own local secant equation.
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Notation. For a matrix M let MI(j) denote the matrix of the same dimensions
that matches M in columns I(j) and whose other columns are zero columns. For
j 1" p- 1 the secant equation for node j is

(31) + j--1B()[(x+s )-(x+s)]=y
where y a=f F(x+ s-)-F(x+ sJ). Equation (31) is reasonable because (s--sJ)
O I(j) and

(32) J,(j)([x+sJ]+z[sJ-’-s]) dr (s-’-sJ)=y.
On node 0 we demand satisfaction of the secant equation

(33) B(o[SP-]=y
where yO a F(x + s p-) F(x).

This requirement is also reasonable because sf- 0i e I(0), and

(34) Jf(o(x + s-) d s p-1

Of course reasonableness" does not establish that the method possesses desirable
local convergence propeies. We will consider this theoretical question elsewhere 16].

An impoant propey of this parallel multisecant update is that there is very little
communication required" each node sends (receives) exactly one vector to (from) an
adjacent node. Moreover, beyond satisfying p local secant equations, the updated
matrix B+ also satisfies the global secant equation

where y a2 F(x + s)-F(x). To see this note that
+ -2 p-1(36) + - + (s sl)+ ...+B(_(sB(o)S + Br(1 s B+s

and

(37) yO +... +yp- F(x + s) F(x) y.

Figure 9 summarizes the node program representing the algorithm sketched above.

j - myid;
Evaluate F(x + s);
Send a copy of the vector F(x + s) to node (j + 1)mod p;
Receive a copy of the vector F(x+ S(j-1)mdp) from node (j- 1) mod p;

If myid 0} then
yO F(x + s p-I) F(x);
dO<_. s p-1

Else
y2 F(x + s-) F(x + s);
dJ.-sJ-l-sJ

Endif

{Update resident columns}
If {d 0} then

(y-Bd)d+B () - B1() + dd
Endif

FIG. 9. Multiple secant update (node program).
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Note that the product Bd can be computed entirely locally on node j: the vector d
has nonzero components only in locations corresponding to columns residing on node
j (i.e., the nonzero columns in BI).

Two subtopics remain to be discussed: the generalization ofthe multisecant method
to the case where q is a multiple of p, and the globalization strategy.

The generalization of the multisecant method to the case where q is a multiple
of p is quite straightforward. Divide the columns on each node into q/p groups
(typically with as many equal-sized groups as possible). Each group accounts for one
evaluation of F; a local secant equation is defined with respect to each group. Otherwise,
the method is the same as the p =q case except now the ring is viewed as having q
conceptual nodes. Note that the number of transferred messages between physical
nodes remains at p (neighbor-to-neighbor, each message of size n).

Globalization can be achieved in a manner similar to the parallel finite-difference
algorithm. Indeed, the only change is to replace the finite-difference Jacobian calcula-
tion with the local secant update. With this exception, the algorithm described in Fig.
8 can be used unaltered.2 We note that ifp q and Newton steps are being successfully
used, then each node is involved in exactly one F-evaluation per iteration (in each
Newton iteration there are p F-evaluations). However, when the secant update follows
a linesearch there is a slight redundancy. Specifically, after the linesearch procedure
is completed the value F(x/) is known. But the local secant update requires only p- 1
additional F-evaluations beyond F(x/). Therefore, under these circumstances either
one node remains idle during the parallel evaluation of F for the multiple secant
update, or F(x/) is computed twice.

5.2. Numerical results. Experimentally we compared the multisecant method to
the parallel finite-difference procedure discussed in 4 using problems 9, 10, and 14
of the Minpack collection and the extended Rosenbrock function (problem 15). Table
8 provides the results. (Table entryyz indicates y iterations taking a total of z seconds.)

TABLE 8
The multisecant method versus the finite-difference Newton method, p 16.

Problem Method n 50 n 100 n 300

9 MS 3/4.6 3/12.3 3/140.9
9 FD 3/3.0 3/7.9 3/79.8
10 MS 4/12.4 4/46.6 4/733.6
10 FD 4/13.1 4/69.2 4/1447.4
14 MS 20/32.4 23/99.3 23/1175.8
14 FD 9/12.3 9/33.4 9/344.0
15 MS 21/35.2 25/101.9 41/1912.6
15 FD 11/13.7 12/40.6 14/496.1

In general, the secant method requires more iterations. Therefore, when the
factorization is the dominant costmas it is in problems 9, 14, and 15--then the parallel
finite-difference Newton method is faster. However, when F is expensivemas it is in
problem 10--the multisecant method is probably preferable. Indeed, we have tried

The remarks concerning linesearch versus trust region, made at the end of the previous section, are

applicable to the globalized multisecant method as well.
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problem 14+ (i.e., increase the expense of a function evaluation in problem 14 by a
factor of 100) with n 100: the multisecant then requires 405.5 seconds compared to
551.1 required by the parallel finite-difference method.

To determine where the algorithm spends most of its time, on this test collection,
Table 9 provides a breakdown of the total execution time.

Table 9 is fairly similar to Table 7; however, the factorization cost for problem
10 is relatively more expensive (.38 versus .11). This is because the dominant costm
Jacobian estimationmhas decreased considerably. In a similar vein, the relative
Jacobian costs have almost become insignificant in problems 9, 10, and 15.

As mentioned above, the multisecant method can allow for the independent
estimation of several groups per node (as opposed to just one group per node). In
Table 10 we provide results indicating the effect of varying the number of groups, q,
per node.

The results are as expected. For problem 10 the computational expense increases
as q increases. This is because of the expensive nature of F (and the number of
iterations stays constant). Problem 15 exhibits exactly the opposite behavior: as q
increases the execution time decreases. The reason for this is that the number of
iterations decreases as q increases: this is reasonable since the Jacobian approximations
become increasingly accurate as q increases. In general then, the optimal q will depend
on the particular problem: the relative costs of evaluating F, factoring the matrix, and
the convergence dependence on q, play a role.

6. Conclusions. We have proposed parallel algorithms for the solution of systems
of nonlinear equations F(x)=0. The algorithms are applicable on local-memory
multiprocessors (such as a hypercube computer) provided that each processor has
significant memory and computational power and the problem dimension is greater
than the number of processors.

TABLE 9
The Multisecant Algorithm breakdown for p 16, n 300.

Problem Jac. est. Factor Linesearch Tri. solve

9 .04 1.0 .00 .07
10 1.0 .38 .04 .02
14 .05 1.0 .00 .06
15 .02 1.0 .01 .07

TABLE 10
Multisecant: Vary groups-per-node, p 16, n =300.

Problem 4 groups-per-node 4 iterations Total time

10 4 733.6
10 2 4 804.7
10 4 4 932.4
10 8 4 1087.2
15 41 1912.6
15 2 40 1679.8
15 4 29 1003.6
15 8 21 853.6
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When F is efficiently computable in a distributed parallel manner, the globalized
rank-1 secant method can be efficiently parallelized. Specifically, it is possible to
parallelize the Minpack implementation, updating the QR factorization of an approxi-
mate Jacobian matrix every step. On balance we are satisfied with the parallel perform-
ance of our global parallel secant implementation. However, it should be noted that
we have efficiently distributed and parallelized the F-subroutines in our experiments.
In general such a task falls to the user and speedup will be strongly affected by the
user’s success in this task. Note that distributing F by rows, even if feasible, does not
always lead to the most efficient distribution of work since it does not exploit the
presence of common expensive subexpressions.

Since it is not always possible to efficiently parallelize the computation of F, we
have developed parallel finite-difference and multisecant methods. In general it is
difficult to achieve good speedup, relative to the sequential rank-1 secant method, for
this class of functions; however, the finite-difference algorithm is efficiently parallelized
and the multisecant method will generally improve on this (especially for large n/p).
It is perhaps possible to further improve on the efficiency of the multisecant method
by incorporating parallel multirank updates to the current distributed QR factorization.
We have not yet investigated this possibility.

Finally, we note that sparse systems are partially separable (i.e., each component
function depends only on a few variables); therefore, in theory, it is usually possible
to effectively evaluate F(x) in a distributed parallel manner. Hence, it may be possible
to efficiently solve large sparse systems of nonlinear equations using a parallel sparse
secant method.
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A NEW MODIFIED CHOLESKY FACTORIZATION*

ROBERT B. SCHNABELt AND ELIZABETH ESKOW"

Abstract. The modified Cholesky factorization of Gill and Murray plays an important role in optimiz-
ation algorithms. Given a symmetric but not necessarily positive-definite matrix A, it computes a Cholesky
factorization of A+ E, where E 0 if A is safely positive-definite, and E is a diagonal matrix chosen to
make A + E positive-definite otherwise. The factorization costs only a small multiple of n operations more
than the standard Cholesky factorization. A new algorithm that has these same properties, but for which
the theoretical bound on lie I1 is substantially smaller, is presented. It is based upon two new techniques,
the use of Gerschgorin bounds in selecting the elements of E, and a new way of monitoring positive
definiteness. In extensive computational tests on indefinite matrices, the new factorization virtually always
produces smaller values of E I1 than the existing method, without impairing the conditioning of A + E. In
some cases the improvements are substantial. The new factorization has already been useful in optimization
algorithms.

Key words. Cholesky factorization, optimization, nonpositive definite, Gerschgorin bounds
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1. Introduction. The modified Cholesky factorization was introduced by Gill and
Murray [2], and subsequently refined by Gill, Murray, and Wright I-3] (hereafter
referred to as GMW81). Given a symmetric, not necessarily positive-definite matrix
A Rnn, it calculates a Cholesky (i.e., LL, or equivalently LDLT) factorization of
A + E, where E is zero if A is safely positive-definite, and E is a nonnegative diagonal
matrix for which A+ E is positive-definite otherwise. When A is not positive-definite,
there is an a priori error bound on how large E can be as a function of A; the practical
intent is that E not be much larger than is necessary to make A + E positive-definite.
The factorization uses only about n2/2 more operations than the normal Cholesky
factorization, which costs approximately n3/6 each multiplications and additions.

The modified Cholesky factorization has become very important in optimization
algorithms. Its primary use is in line search methods for unconstrained optimization,
where it is used to generate a descent search direction when the Hessian matrix is not
positive-definite (see, e.g., GMW81). It is also used in line search methods for con-
strained optimization problems (GMW81), and in some trust region methods [1].

This paper presents a new modified Cholesky factorization algorithm that is
intended for the same purposes as the current method. The new algorithm still costs
only a small multiple of n 2 operations more than the standard Cholesky factorization.
It possesses a much smaller a priori bound on the size of the diagonal matrix E, and
in extensive computational tests, [[EI[ almost never is larger, and in many cases is
considerably smaller, than that generated by the algorithm of GMWS1. In fact, when
A is not positive-definite, 11E I1 is usually close enough to the negative of the smallest
eigenvalue of A that the new algorithm may be a useful, inexpensive way to estimate
this eigenvalue.

The remainder of this paper is organized as follows. Section 2 contains a brief
summary of the motivation and uses for the modified Cholesky factorization in
optimization algorithms. Section 3 summarizes the goals of this factorization and the
basic challenges that it presents, and 4 briefly describes the GMWS1 algorithm.
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In 5 we present the new algorithm. It contains two main novel features, the use
of Gerschgorin bounds in determining both the pivot sequence and the elements of
E, and a new two-phase strategy for determining when a matrix is not positive-definite
and needs to be perturbed. In 6 we present the results of an extensive computational
comparison of the behavior of the new and old factorizations on indefinite test matrices
of dimensions 25 to 75. Section 7 contains some brief conclusions.

Throughout the paper we consider the Cholesky factorization, i.e., the factorization
into LLT, where L is lower triangular, as opposed to the LDL7 factorization, where
L is unit lower triangular (ones on the diagonal) and D is a positive-diagonal matrix.
The conclusions of the paper are true for either factorization. We use the Cholesky
factorization because we believe it makes the exposition simpler. We use the version
of the Cholesky factorization that makes a rank-one change to the remaining submatrix
at each iteration (analogous to Gaussian elimination), rather than the version that
delays the changes to any element until it is in the pivot column (analogous to Crout
reduction). The use of the first version will be seen in 5 to be important to our
algorithm.

2. The use of the modified Cholesky factorization in optimization algorithms. The
modified Cholesky factorization was introduced by Gill and Murray [2] in the context
of a line search method for solving the unconstrained optimization problem

minimizef R" - R.
xR

Unconstrained optimization methods generally base each iteration upon the quadratic
model off(x) around the current iterate xc

(2.1) m(xc + d) f(x) + Vf(Xc) 7d +1/2d THud,

where H is the Hessian matrix V2f(x) or a symmetric approximation to it. If Hc is
positive-definite, then the step dc =-H-/Vf(xc) is the minimizer of (2.1) and also a
descent direction for f(x), so that a satisfactory next iterate x/ always can be found
by choosing x/ x + Ad for some A > 0. If Hc has one or more negative eigenvalues,
however, then the model (2.1) is unbounded below, and Hc may be singular or the
direction dc =-H-Vf(xc) may or may not be a descent direction for f(x). In this
case, Gill and Murray [2] suggested calculating d =-(H + E)-Vf(x) as the search
direction, where hc + E is positive-definite, and again choosing x/ x + Acd for some
Ac > 0 by a line search procedure. By standard convergence results, if Hc is uniformly
bounded above, [[E[I is bounded above as a function of [IHc[[, and the condition
number ofH + Ec is uniformly bounded above, then the sequence of iterates generated
by a standard line search method that uses such search directions will be globally
convergent in the sense that the limit of the sequence of gradients converges to zero.
If E 0 when Hc is positive-definite, and H V2f(Xc), then the method will also be
quadratically convergent in the neighborhood of a strong local minimizer. (See Dennis
and Schnabel [1] for a summary of these results.)

The algorithm of Gill and Murray [2] for choosing E satisfies all the aforemen-
tioned conditions on Ec. It also is very efficient in that it calculates either the Cholesky
factorization of H if it is positive-definite, or the Cholesky factorization of H +E
otherwise, at barely a higher total cost than a standard Cholesky factorization, without
knowing a priori whether H is positive-definite or not. For these reasons, it has become
a standard technique in line search methods for unconstrained optimization problems.
A refined version of the algorithm that has performed very well is given in GMW81.
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The modified Cholesky factorization is also used in some line search methods for
solving constrained optimization problems (see GMW81) and in some trust region
methods for optimization (see Dennis and Schnabel [1]). Schultz, Schnabel, and Byrd
[4] show how to construct efficient and globally convergent trust region methods if a
satisfactory lower bound on the most negative eigenvalue h of Hc is available. The
methods described in this paper produce bounds that are satisfactory in this sense.
We briefly discuss another possible use of our modified Cholesky factorization in trust
region methods in 7.

3. Goals and challenges of the modified Cholesky factorization. Given a matrix
A R"" that is symmetric but not necessarily positive definite, the objective of the
modified Cholesky factorization is to construct a Cholesky (LL7") factorization of a
positive-definite matrix A+E, where E is a nonnegative diagonal matrix. More
specifically, the factorization has the following four goals: (1) If A is safely positive-
definite, E should equal zero; (2) If A is indefinite, ]]EII should not be much greater
than -AI(A), where AI(A) is the most negative eigenvalue of A; (3) A + E should be
a reasonably well conditioned matrix; and (4) The cost of the factorization should
only be a small multiple of n2 operations more than the cost of the normal Cholesky
algorithm.

One obvious wayto select E would be to find AI(A), and, if AI(A) < 0, let E equal
[-AI(A)+ eli, for some small positive e. This would satisfy the first three goals, but
the expense of finding the eigenvalues of a matrix exceeds the cost requirements
specified in our final goal by at least an order of magnitude. Thus the major challenge
in developing a modified Cholesky factorization is to satisfy the first three goals while
not increasing the cost by more than O(n2). Among other things, this implies that a
one-pass algorithm is essential.

There is a basic trade-off in deciding upon the size of each of the diagonal elements
of the matrix E, as we now explain. Let the n + 1-j n + 1-j principal submatrix
remaining to be factored at the jth iteration, consisting of the current elements in rows
and columns j through n, be denoted

where a c R is the current jth diagonal element, fls Rn-S is the current vector of
elements in column j below the diagonal, and As Rn-s)n-s). (We will use the
conventions that the subscripts of the elements in the vector a are =j + 1 through n,
so that (as)i Ao, i=j+ 1,..., n, and that A1 A.) Then at the jth iteration, the
normal Cholesky factorization algorithm computes Lss=x/-a], Lo=(a)/Lss, i=

j+ 1,..., n, and (assuming the changes to the remaining elements are not deferred)

Aj+ tj asaf

In the modified Cholesky factorization, the computations are instead Ljj
Lo=(as)/Lss i=j+ l, n, and

asafAj+ Aj

where 6 is greater than or equal to zero and is the jth diagonal element of the matrix
E. The tradeoff between making 6 large or small leads to the following dilemma. If
a is negative and 6 is chosen so small that a + 6 is barely greater than zero, then
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ajaf/(aj + 6) will be large, and Aj+ will have large negative eigenvalues, implying
that the elements of E in some remaining iterations will need to be large. On the other
hand, if 6 is large, then we have already added a large amount to the diagonal. The
challenge lies in adding the appropriate amount to the diagonal of A at the appropriate
time in the algorithm. This requires that the algorithm consider more information than
just the value of % in choosing 6j. It will be seen in 4 and 5 that considering the
values of a as well as a is sufficient to produce effective modified Cholesky factorization
algorithms in both theory and practice.

4. The modified Cholesky factorization of Gill, Murray, and Wright. GMW81 give
a modified Cholesky factorization algorithm that is designed to satisfy the four goals
stated at the start of 3. Given a symmetric but not necessarily positive-definite matrix
A Rnn, it computes an LDLr factorization of a matrix A + E, where E is a nonnega-
tive diagonal matrix. In this section, we briefly review their method. To be consistent
with the remainder of the paper, we restate their algorithm in terms of the Cholesky
(LLr) decomposition. This does not change any of the important properties of the
algorithm that we discuss.

At each iteration, the algorithm of GMWS1 first selects the maximum (in absolute
value) diagonal element in the remaining principal submatrix A, and pivots it to the
top left position by interchanging its row and column with the pivot (jth) row and
column, respectively. Then, if Aj is now the permuted principal submatrix, with

(4.1) Aj
ai Ai -]

where a is the diagonal element in the pivot column and a is the remainder of the
pivot column, the elements of the next principal submatrix A+ are computed by

The value of 6 at each iteration is chosen to be the smallest nonnegative number such
that

where/3 > 0 is an a priori bound selected to minimize a worst-case bound on lie I1.
If % < 0 and this value of 6 is less than -2%, then 6 =-2% instead.

What remains to be described is the choice of /3. Let =the maximum
magnitude of the off-diagonal elements of the original matrix A, and y the maximum
magnitude of the diagonal elements of A. Gill and Murray [2] produce an error bound
on lie I1 as a function of/3 for their algorithm, and show that it is minimized when
/3 2= /n-5--]. For that choice of/3,

(4.3) IIE I1 -_< 2(x/n- 1 + (n 1))sc + 2%
or roughly

(4.4)

for moderate to large n. However this choice of/3 may cause positive-definite matrices
A to be perturbed, so the selection of/3 is adjusted in order to avoid this. Gill and
Murray [2] also show that the choice/3 >_-v guarantees that E 0 for positive-definite
A. Thus their algorithm assigns/32 to be the maximum value of y, /4n2- 1, or machine
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epsilon. If y> /x/n2- 1, the usual case, then the error bound for this adjusted /3
becomes

(4.5) lIE Iloo -< (n+ 1)3,’+ 2(n 1)+ 2/T

which is larger than (4.3).
The modified Cholesky factorization algorithm of GMW81 has proven to be an

effective factorization in the context of optimization algorithms, and as will be seen
in 6, does quite a good job of fulfilling the four goals stated at the beginning of 3.
(The cost of the algorithm is approximately n 2 comparisons, and O(n) arithmetic
operations, more than the standard Cholesky factorization.) It should be noted that
while the diagonal pivoting employed by the algorithm of GMW81 does not affect the
analysis described above, it is very important to its good practical performance. In
particular, on the test problems in 6, we found that ]1E ]] for the GMW81 algorithm
was often several orders of magnitude smaller with pivoting than without it.

There appear to us to be two important ways in which the algorithm of GMWS1
might still be improved. First, the bounds (4.3) and particularly (4.5), which are attained
by the algorithm for particular matrices A, are far from optimal, as will be discussed
in 5. Second, the results of 6 show that in practice, the value of lIE IIo produced
by the algorithm is sometimes many times larger than necessary. The new method
described in 5 primarily attempts to improve upon the algorithm of GMW81 in these
two regards.

5. The new modified Cholesky factorization. Our modified Cholesky factorization
algorithm incorporates two new main techniques. The first involves using Gerschgorin
circle theorem bounds to determine the elements in the nonnegative diagonal matrix
E that is added to an indefinite matrix A in order to make it positive-definite. The
second is a new technique for assuring that we do not perturb an already positive-definite
matrix, i.e., that E 0 if A is positive-definite. In 5.1 we describe the new technique
that uses Gerschgorin bounds to decide how much to add to the diagonal, and show
that it leads to an improved upper bound on IIEII. In 5.2 we describe the new
technique for assuring that a positive-definite matrix is not perturbed, and show that
unlike the strategy of GMW81, it can be incorporated into a modified Cholesky
decomposition algorithm without causing the bound on lie I1 to grow significantly.
In. 5.3 we describe our full new algorithm, which integrates these two techniques,
discuss its theoretical properties, and give a simple example comparing it to the method
of GMW81.

5.1. Using Gerschgorin circle theorem bounds to determine the amounts to add to
the diagonal. In this section, we introduce our basic strategy for choosing a nonnegative
diagonal matrix E such that A + E is positive semidefinite. (The exposition and theory
are cleaner if we allow for the possibility that A + E is positive semidefinite; the changes
to assure that it is strictly positive-definite are small in practice and theory, and are
described in 5.3.) The strategy described in this section may result in E having some
positive elements even if A is positive-definite; the modifications we make to avoid
this are described in 5.2.

The Gerschgorin circle theorem (GCT) states that if A R is a symmetric
matrix with eigenvalues A1--<’’"- An, then each /i {G1 G2 I.]... Gn}, where

(5.1.1) Gi A,- IA/I,A. IA,/I A[Glow,Gupi], i=l,’",n.
j=l
j#i j#i
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Thus, since A-All is positive semidefinite, an upper bound on the amount that must
be added to the diagonal of A to make A+ E positive semidefinite is

(5.1.2) MaxaddGcT- max {0, max {-G lOW/}}.

An objective of the new modified Cholesky factorization is to find E for which A + E
is positive semidefinite and for which we can guarantee

(5.1.3) E [[ --< MaxaddGcv,

at least in the case when we are not concerned about perturbing a positive-definite
matrix. This bound is easily achieved as indicated by the following lemma and theorem.
Note that since, using the notation of 4,

(5.1.4) MaxaddGcT _--< y + n )sc,
(5.1.3) is guaranteed to be stronger than (4.3).

LEMMA 5.1.1. Let A R have the Gerschgorin circle theorem bounds Gi,
1, nfliven in (5.1.1). Denote A [2 A ], where
Let A A- aar(a + 6) have Gerschgorin circle theorem bounds , 2, , n, where

Oi ii- [ijl, ii IAijl & low,, up,J, 2, , n.

ji

Then if
(5.1.5) 6 -> max {0, Ila Ill- c},

Gi
__

Gi, 2, n.

Proof Note that (5.1.5) guarantees a + _-> 0, with equality possible only if a 0.
If a 0, we may assume that we set A A so that the lemma is trivially true. For the
remainder of the proof, we assume a + 6 > 0.

Let us again use the convention that the subscripts of the vector a are 2 through
n, so that ai =A, i=2,..., n. Then we have

rowiof=rowiofA-ara i=2,.., n.
a+6’

Thus

(5.16)

Also,

=2 =2
ji ji

(5.1.7) Au Aii

Combining (5.1.6) and (5.1.7), recalling that the term Ai ai is present in Gi but not
in Gi, and using 6>_-Ilall-a =-Glows, we get

G lowi- G lowi -> [ai[-

[ai[
(5.1.8)

(6+ G low1) =>0,
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n. Similar calculations show that

(t + G low + 2lail) 0.

Thus Gi
___

Gi.
Lemma 5.1.1 shows that the choice (5.1.5) causes the Gerschgorin intervals to

contract. Thus it is almost immediate that if we make this choice with equality at each
iteration of the modified Cholesky factorization, we will satisfy (5.1.3).

THEOREM 5.1.2. Let A R have the Gerschgorin circle theorem bounds (5.1.1),
and let MaxaddGcT be defined by (5.1.2). Suppose that at each iteration of the modified
Cholesky factorization, the remaining principal submatrix A R(n+l-)(n+l-) is given
by (4.1), (A1--A),

(5.1.9) 6j max {0, ajll,- j},

and Aj+I R("-j)("-j) is calculated by (4.2). Let E =diag {61," ", 6n}. Then A+ E is

positive semidefinite and (5.1.3) is true. Furthermore, if any diagonal pivoting strategy
is used at each iteration (i.e., rows and columns and j are swapped for some i> j),
(5.1.3) remains true.

Proof The proof is almost immediate from Lemma 5.1.1. Let (GJ)i, i--j,..., n
denote the Gerschgorin interval obtained from row of Aj, and let (G low)/denote
the lower bound of (GJ)i. From Lemma 5.1.1, the choice (5.1.9) assures that

(5.1.1 O) Gj+ lOW)/ G low)i, 1 =<j -< -< n.

From (5.1.9), (5.1.10), and (5.1.2),

8 =< -(G low)j =< -G lowj =< MaxaddGcT.

This completes the proof of the first part of the theorem. Since diagonal pivoting of
a symmetric matrix only permutes its Gerschgorin intervals but does not alter them,
and since Lemma 5.1.1 and the above part of this proof make no use of the ordering
of the Gerschgorin intervals, the theorem is unaffected by any diagonal pivoting
strategy.

Our algorithm makes one further modification to the strategy (5.1.9) for selecting

6. It is that we require the amount that is added to the diagonal at iteration j to be
at least as great as the greatest amount that has been added to the diagonal at any
previous iteration. That is,

(5.1.11) 6j max {0, Ilall,-,

It is straightforward that Theorem 5.1.2 remains true with (5.1.11) in place of (5.1.9),
because by induction this choice still satisfies (5.1.3), and trivially it still satisfies (5.1.5).

The rationale for this modification is as follows. At any iteration, suppose 6j given
by (5.1.11)is larger than that given by (5.1.9), i.e., max {0, Ilajlll-j} < j-,. Then the
new choice (5.1.11) does not change the value of IIEII at this point in the algorithm,
because j 8j_. It may cause subsequent values of 8 to be smaller, however, because
it results in a larger aj + 8j and hence a smaller multiple of aja[ is subtracted from
which means that Aj/I has larger or identical eigenvalues than it would have using
(5.1.9). This reasoning does not imply that the final value of IIEI] will be smaller
using (5.1.11) than using (5.1.9), but it makes this seem likely, and in practice the
modification appears to be helpful in some cases and virtually never harmful.
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The total additional work required by the modifications to the Cholesky factoriz-
ation described so far in this section is approximately n2/2 additions, for the computa-
tion of Ilaj[ll at each iteration. In comparison, the additional work for the algorithm
of GMW81 is approximately n2/2 comparisons, because it computes Ilajll.

Finally, as noted in 4, it is important in practice to use a diagonal pivoting
strategy, even though it does not affect the theoretical results given above. We could
simply pivot based on the maximum diagonal element, as is done by GMW81. However,
recall that the amount we add to the diagonal at iteration j will be at least the negative
of the lower Gerschgorin bound of the pivot row for that iteration. This suggests that
we instead select as pivot row (and column) the row (and column) for which the lower
limit of the Gerschgorin interval is largest. If this Gerschgorin bound is positive, then
we will not increase E I1 at this iteration, and the Gerschgorin intervals will contract.

This pivoting strategy assumes that the Gerschgorin bounds for each remaining
row are available at each iteration. This would require a total of approximately n3/2
additional additions, which is too high. An alternative is to pivot based on the estimates
of the Gerschgorin bounds that result from the proof of Lemma 5.1.1. If we let (gJ)i
denote the estimate of the lower bound of the Gerschgorin interval of row of A,
then from (5.1.8),

(g+l)i=(g)+l(aj)[ 1
a+6

i=j+l,...,n.

For the entire algorithm, this requires approximately n/2 each additional multiplica-
tions and additions. To begin this process, the Gerschgorin bounds of the original
matrix A must be calculated, which costs an additional n 2 additions. Thus the total
costs of the modifications to the Cholesky factorization discussed in the section are
2n additions and n/2 multiplications. The approximate Gerschgorin bounds calcu-
lated by this strategy may be quite inexact, but they are only used to determine pivot
selection, and as we will see in 6, substituting them for the exact Gerschgorin bounds
does not significantly affect the performance of the algorithm.

We should mention that the strategy for preserving positive definiteness that we
discuss in 5.2 will often cause the additional costs given in this section to be reduced
considerably.

5.2. The strategy for not perturbing positive-definite matrices. In this section we
introduce our strategy for assuring that our modified Cholesky decomposition does
not perturb an already positive-definite matrix, while still guaranteeing that if the
matrix is not positive-definite, then the amount that is added to the diagonal is not
too large. The strategy is quite simple. We divide our decomposition algorithm into
two phases. In the first phase, we apply the standard Cholesky decomposition (the
version described in 3 where we make a rank-one modification to the remaining
submatrix at each iteration) for k >_-0 iterations, stopping at the first occasion that the
next, (k+ 1)st iteration would cause any diagonal element in the next remaining
submatrix Ak+2 to become nonpositive. At this point we know that the current submatrix
Ak+l, as well as the original matrix A, is not positive-definite. We then switch to the
second phase, where we apply the modified Cholesky decomposition algorithm
described in 5.1 for the remaining n- k iterations of the decomposition.

If the original matrix A is numerically positive-definite, then this strategy results
in the normal Cholesky decomposition being performed throughout. If A is not
positive-definite, then this strategy results in the normal Cholesky decomposition being
performed for k[0, n-2] iterations, followed by the application of the modified
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Cholesky decomposition to Ak+I, which results in the Cholesky decomposition of
Ak+I-I-E for some nonnegative diagonal matrix/. The overall result is the Cholesky
decomposition of A+ E, where E is E augmented with zeros in the first k diagonal
positions (modulo pivoting).
The crucial question is "how large is I1 11, and hence lIE [[oo?." Section 5.1 gives a

bound for ]1/ ]] that depends on the sizes of the elements of Ak+l. In Theorem 5.2.1,
we show that our two-phase strategy assures that no element in Ak+l has grown by
more than the value of the largest diagonal element in A. This in turn means that our
decomposition still achieves a good bound on E [1 in terms of the original matrix a.

THEOREM 5.2.1. Let A R"", and let y max {[Aii], 1 <= <-_ n},
max {]AI, 1 <= <j <- n}. Suppose we perform the standard Cholesky decomposition
as described in 3 for k >= 1 iterations, yielding the remaining principal submatrix
Ak+I R(n-k)x(n-k) (whose elements are denoted (Ak+l)0, k+ 1-<_ i,j<= n), and let

max {l(Ak+l),], k + 1 <-_ <= n} and =,, max {[(Ak+l)q], k + 1 <-_ <j <= n}. Then if
Ak+ 1) u >= O, k + <- <= n, then 3/<- 3/and <= (+ 3/.

Proof Let A [ FC], where B Rkk, C R"-k)k, F R"-)"-). After k
iterations of the Cholesky factorization, the first k columns of the Cholesky factor L
have been determined; denote them by [] where
R"-kk. Then

(5.2.1) B =/2/2r, C M/2r, F MMr + ak+l.
From (5.2.1), F, Mrow [[ + (Ak+),, k + 1 <- <= n, so that from F, <- y and (Ak+l), >= O,

5.2.2) Mrow I1 -<- Y.

Thus for any off-diagonal element of Ak+I, (5.2.1), (5.2.2), and the definition of : imply
(5.2.3) I(Ak+l),.l<]Fi.-(Mrow)(Mrow.)T[<--_+%
which shows that _-< + 3’. Also for all the diagonal elements of Ak+l, (Ak+l), >- O,
(5.2.1), and the definition of 3’ imply

(5.2.4) 0 <= (Ak+l)ii <= Fii <=
which shows that 4/=< y and completes the proof.

We note that the result of Theorem 5.2.1 is independent of the diagonal pivoting
strategy that is used. We also note, however, that the technique of proof of Theorem
5.2.1 actually shows that the largest off-diagonal element in Ak+l is at most equal to
the largest off-diagonal in F plus the largest diagonal in F, where F, as defined in the
proof of Theorem 5.2.1, is the diagonal submatrix of A that corresponds to Ak+l. Thus
a pivoting strategy that uses the larger diagonal elements as pivots in the first phase
will limit the growth in the off-diagonal of A+I even more than is indicated by Theorem
5.2.1. Our phase-one algorithm pivots the largest remaining diagonal element to the
top, and thus is likely to have this effect of further limiting element growth.

The possibility ofincorporating this two-phase strategy into the method ofGMW81
is discussed in the next section.

5.3. The complete new algorithm. We have now presented all the main parts of
our new modified Cholesky decomposition algorithm. An outline of the complete
algorithm is given in Algorithm 5.3.1, and a fully detailed description is given in
Appendix 1. To summarize, the first phase of the algorithm applies the standard
Cholesky decomposition, using a diagonal pivoting strategy that pivots the largest
remaining diagonal element to the top left. This phase ends when the next iteration
of the standard Cholesky decomposition would cause any diagonal element in the
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remaining submatrix to become nonpositive. In the second phase, the modified
Cholesky decomposition described in 5.1 is applied to the remaining submatrix. This
phase determines what to add to the diagonal at each iteration from the lower
Gerschgorin bound of the pivot row, and pivots based upon estimates of these lower
Gerschgorin bounds.

Three additional, relatively minor features have been incorporated into Algorithm
5.3.1 to guard against the resultant A + E being singular or very ill-conditioned:

ALGORITHM 5.3.1. Modified Cholesky Decomposition.
Given A R symmetric and " (e.g., r (macheps)l/3),

find factorization LLT of A + E, E => 0
7 := maxi. ]aii]; j := 1
(*Phase one, A potentially positive-definite*)

While j n do
Pivot on maximum diagonal of remaining submatrix
If min+. {Aii mi/mjj} < T

then go to phase two
else perform jth iteration of standard Cholesky factorization and
increment j

(*Phase two, A not positive-definite*)
k:=j-1 (*k =number of iterations performed in phase one*)
Calculate lower Gerschgorin bounds of A+
Forj:=k+l to n-2do

Pivot on maximum lower Gerschgorin bound estimate
Calculate E22 and add to A22

i=j+l

update Gerschgorin bound estimates
perform jth iteration of factorization

complete factorization of final 2 x 2 submatrix using its eigenvalues

First, the switch to phase two is made when any diagonal element of the remaining
submatrix would become less than % rather than less than zero as is discussed in

5.2. Here 7 is again the maximum diagonal of A, and r is a small constant (we
choose (macheps)l/). This means we may peurb a positive-definite matrix if its
condition number is greater than 1/. Second, in phase two, to assure that A+ is
positive-definite rather than positive semidefinite, we set (using the notation of 5.1)
each

6j max {0, -a + max {llajIll, y},

where the ry term is new. This causes the bound (5.1.3) on lIE I1 to increase a tiny
bit, to

(5.3.1) E N Maxaddcv+ ry,

but in conjunction with the preceding change, allows us to bound the condition number
of A + E. Finally, at the final iteration of phase two, when only a 2 x 2 submatrix
remains, we use a different strategy: we calculate the eigenvalues Alo and Ahi of A,_,
and 6,-1 is chosen as the smallest nonnegative number so that
condition number of A,_ + n-lI N 1/, and Alo+ 6,_ ry. This generally gives a
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smaller value of tn_ than the Gerschgorin circle theorem based strategy would, and
in theory it is straightforward to show that

6,,-1 max n-2, --/1o "1- max
1 ’r

(5.3.2)
l+r 2r

----<
1-z 1-z

since -ho_-< Maxaddc and h- ho_-< 2 (Maxaddc+ y).
The theoretical properties of our full algorithm are summarized in Theorem 5.3.2.
Tnog 5.3.2. Let A, 3’, and be defined as in Theorem 5.2.1, suppose we apply

the modified Cholesky factorization algorithm in Appendix 1 to A, resulting in the
factorization LL7 ofA + E. IfA is positive-definite and at each iteration, L >-zy, then
E O. Otherwise, E, is a nonnegative diagonal matrix, with

2z
(5.3.3) [IE I1 --< Gersch + (Gersch + y),

1--"

where Gersch is the maximum of the negative of the lower Gerschgorin bounds OfAk/
that are calculated at the start ofphase two. If k 0 then

(5.3.4) Gersch Maxaddcv
where Maxaddca- is given by (5.1.1)-(5.1.2), otherwise

(5.3.5) Gersch =< In-(k+ 1)](y + ).

Proof The proof is immediate from Theorem 5.1.2, Theorem 5.2.1, and equations
(5.3.1)-(5.3.2).

It is also possible to produce an upper bound on the condition number of A + E,
of the same sort that is provable for the GMW81 algorithm. The key properties needed
for this are that I1 11, and hence max{L,,}, is bounded above, that min {L,,} is bounded
below (by x/-), and that [t,jI < Lii for all 1 _-<j < =< n. (The final property comes from
diagonal pivoting and the look-ahead property in phase one, and from the Gerschgorin
bound strategy for choosing in phase two.) The bound on the condition number
that we can obtain is of mainly theoretical interest, since it is exponential in n; the
computational results of 6 show that the condition number of A+ E is bounded
above by about 1/z in practice.

We note that our two-phase strategy could also be incorporated into the method
of GMW81, and that this would result in a significant improvement in their upper
bound on IIE II. This could be done by using the same two-phase structure, and
replacing our phase two by their modified Cholesky decomposition. If this were done,
their algorithm could simply choose f12_ //(n k)2-1 in phase two, rather than the
maximum of this quantity and (where and are defined as in Theorem 5.2.1)
because it would know that it is dealing with a nonpositive-definite matrix. Hence the
resultant method would achieve the bounds (4.3)-(4.4) if it switched to phase two
immediately, and

liE I1-<_ 4(n k)+ 24/-<_ 4( n k)(: + 3/)+ 23,

otherwise. This would be a significant improvement over the current bound (4.5),
although it is still inferior to (5.3.3)-(5.3.5).

Our new algorithm meets our goal of not significantly increasing the cost of the
standard Cholesky decomposition, which is about n3/6 each additions and multiplica-
tions. The additional costs of the modified factorization are (n-k)2 additions to
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calculate the Gerschgorin bounds of Ak+ at the start of phase two (where k is the
number of iterations performed in phase one), (n-k)2/2 additions to calculate the 11
norms of the pivot rows during phase two, and at most (n- k)2/2 each multiplications
and additions to update the Gerschgorin bounds during phase two. In addition there
is a small multiple of n- k additional work. (The strategy for precalculating the new
diagonal during phase one, in order when to determine when to switch to phase two,
only costs a small multiple of n operations as long as the precalculated values are
stored and used when phase one is continued.) Thus the total additional cost of the
modified Cholesky decomposition is at most 2n2 additions and n2/2 multiplications,
in the case when phase two is started immediately (k=0). In many cases in our
experience k is close to n so the additional costs are very small.

We have not performed a rounding error analysis of our modified Cholesky
factorization. (To our knowledge, no such analysis has been performed for the method
of GMW81 either.) It seems likely to us that the factorization should have similar
finite precision properties to the standard Cholesky factorization (see, e.g., Wilkinson
[5], [6]).

Finally, we include a small worked example to demonstrate the performance of
the new modified Cholesky algorithm. Consider the matrix used by GMW81 to illustrate
their modified Cholesky factorization:

1 1 2
A= 1 1 3

2 3 1

Our new algorithm will proceed as follows. At the first iteration, no pivoting is performed
in phase one, and then the algorithm immediately switches to phase two because
A33-Al/All <0. The Gerschgorin intervals of A are

[-2,4], [-3,5], [-4, 6].

The row with the maximum lower Gerschgorin bound is also row 1, so no pivoting is
required in this iteration for phase two either. The modified Cholesky algorithm then
choses 6 2 =-(Gerschgorin lower bound of row 1), and after the elimination step,

A2- 7/3 -1/3’
and the estimated Gerschgorin bounds are unchanged. The algorithm now enters the
final, 22 submatrix stage. The eigenvalues of A2 are (-2.2196,2.5538), so that
62 2.2196 and 6total 2.2196. Thus for the new algorithm,

E 2.22

2.22

and lie ]Iv 2.22. This is one percent greater than the magnitude of the most negative
eigenvalue of A, which is 2.2109. (If we had continued the Gerschgorin strategy for
A2 rather than use the eigenvalue strategy, 62 would be 2.67.)

Using the same matrix A, the GMW81 algorithm computes
2.77

E 5.01

2.24

with u 5.01.
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6. Computational results. We have compared the performance of our new modified
Cholesky factorization (Algorithm 5.3.1 and Appendix 1) to the algorithm of GMWS1
on a number of indefinite test matrices. The measures we used to assess the performance
of the algorithms are the ratios [[E[Jo/JAI(A)[, termed "relative maxadd," which reflect
how well the algorithm has satisfied the goal of adding as little as possible to the
diagonal of A, and the condition numbers of A + E. We already know that the other
two goals stated at the beginning of 3, low cost and not disturbing safely positive-
definite matrices, are satisfied by both algorithms.

We tested both algorithms on matrices of dimension 25, 50, and 75, with eigenvalue
ranges of [- 1, 10000], [- 1, 1 ], and [- 10000, 1 ]. For each combination of dimension
and eigenvalue range, 10 matrices were created. Thus (the same) 90 test problems
were used to test each algorithm. Each test matrix was created by forming the product
QQ2Q3D (Q1Q2Q3)T, where each Qi is a Householder matrix of the form

Qi I-
Ilwll 

ww

and each component of each w is randomly generated from a uniform distribution in
the range [- 1, 1 ]. Each D is a diagonal matrix whose elements were randomly generated
from a uniform distribution in the desired eigenvalue range, with the exception that
for the set of test matrices with eigenvalue range [-1, 10000], one element of D was
generated from the range [-1, 0], thus guaranteeing at least one negative eigenvalue
in the test matrices of that range.

The relative maxadds for the 90 tests of each algorithm are shown in Figs. l(a),
(c), (e), 2(a), (c), (e), and 3(a), (c), (e) in Appendix 2. In summary, the relative
maxadds for the new algorithm were always small, and sometimes considerably superior
to those for the GMW81 algorithm, although this algorithm’s performance was also
good in most cases. The relative maxadds for the new algorithm ranged from 1.06 to
2.5, and was below 1.71 for all but five of the 90 cases. The relative maxadds for the
GMW81 algorithm ranged from 1.6 to 77.8, distributed as follows among the various
groups of test matrices. For the matrices with eigenvalues in the [-1, 10000] range,
the relative maxadds ranged from 2.1 to 5.6. In the [-1, 1 eigenvalue range, the relative
maxadds were in the range 4.9 to 77.8, and in the final [-10000,-1] eigenvalue range
the relative maxadds ranged from 1.6 to 5.1. Comparing on a problem by problem
basis, the new algorithm performed from 3.5 to 60.9 times better than the GMW81
method in terms of the relative maxadd for the problems with the [-1, 1] eigenvalue
range, and from 1.3 to 4.2 times better for the remaining test cases.

Figures 4(a)-4(i) show the relative maxadds for the new algorithm only, to
illustrate more clearly how close IIEII is to -A,(A) for this method. Also included in
Figs. 4(a)-4(i) are the results for a version of the new algorithm that differs only in
that it bases its pivots at each iteration of phase two upon the actual Gerschgorin
bounds rather than their estimates. The additional cost of calculating these bounds is
about (n k)3/3, or at most n3/3, additional additions. The results in Fig. 4 show that
pivoting on the exact Gerschgorin bounds leads to some improvement in the size of
relative maxadd, but we do not consider the improvements sufficient to warrant the
extra cost in general.

The condition numbers of A + E for the two methods are given in Figs. l(b), (d),
(f), 2(b), (d), (f), and 3(b), (d), (f) in Appendix 2. Basically, both methods produced
acceptably conditioned matrices in all cases. The condition numbers for the matrices
produced by the new method varied from 101 to 106, whereas the condition numbers
for the GMW81 method varied from 101 to 108. The condition numbers for the new
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method are sometimes directly related to the final step of the algorithm, which, if it
increases liE I1, does so by the amount necessary to make the final 2 x 2 submatrix
positive-definite with condition number -. In our test cases, the tolerance r was
(macheps) 1/3, or roughly 10-5.2 on the Sun 3/75 used for these tests. This accounts for
the condition numbers of almost 106 in all the cases where the final step increased
E I1. Decreasing this tolerance generally was found to decrease the condition number,

usually without appreciably increasing liE I].
Interestingly, in the cases where the new algorithm produced the most significant

improvements in relative maxadds, the test problems with the [-1, 1] eigenvalue range,
it also produced much better conditioned matrices than the GMW81 algorithm. For
this test set, the ratios of the GMWS1 condition numbers to the condition numbers of
the new algorithm were between 102 and 104 for n 25, between 104 and 105 for n 50,
and between 105 and 10 for n 75. For the other two eigenvalue ranges, the ratios of
the condition numbers produced by the two algorithms all varied by at most two orders
of magnitude, with the condition numbers for the new algorithm consistently higher
for the test problems in the [-1, 10000] eigenvalue range, and the GMW81 condition
numbers usually higher for the test problems in the [-10000,-1] range.

Finally, Figs. 5(a), (b) in Appendix 2 contain the test results for a different set of
matrices of dimension n 25 with eigenvalue range [-1, 10000]. The difference between
these test matrices and the ones used in Figs. l(a), (b) is that these matrices were
created to have at least three negative eigenvalues, whereas the original test problems
in the [-1, 10000] range were created with at least 1 negative eigenvalue. What is
interesting about the results of this new test set is that on one particular matrix out of
the 10, the new algorithm performs significantly worse than the GMW81 algorithm.
(This phenomenon did not occur with the test sets of size 50 or 75 in this range with
three negative eigenvalues, so we have not included this data.) The poor behavior
occurred when the algorithm was at the (n -4)th iteration, so we created a 4 x 4 matrix
with similar characteristics that illustrates the problem even more markedly.

The matrix

-1,705.6 -315.8 3,000.3
1,705.6 1,538.3 284.9 -2,706.6
-315.8 284.9 52.5 -501.2

3,000.3 -2,706.6 -591.2 4,760.8
has eigenvalues -0.378, -0.343, -0.248, and 8242.869. The first few steps performed
by the new algorithm are as follows:

(1) Interchange row and column 4 with row and column 1, because A4,4 is the
maximum diagonal element.

(2) Switch to phase two because A3,3-(A3,1):Z/AI,1
(3) Calculate the lower Gerschgorin bounds {-1447.3, -3158.8, -1049.4,

-3131.4}, and since -Glow3 is the maximum value, interchange row and column 3
with row and column 1.

(4) Add (-G1owpivotrow) 1049.4 to Al,1.
At this point in the computation, the new algorithm has already added much more

to the diagonal than is necessary to make A positive-definite. From this point on it
does not increase E I1, so that the final value of I1 I1 is 1049.4. On the other hand,
the GMW81 algorithm produces IIEII--1.03. This behavior occurs because, at the
first iteration, the GMW81 algorithm pivots on the maximum diagonal element and
then adds nothing to the diagonal, which after elimination results in a 3 x 3 submatrix
all of whose entries have absolute value less than 0.52. This is guaranteed to then lead
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to a small lIE I1 . (Indeed, if our algorithm performed the same first step as the GMW81
algorithm and then proceeded as usual, it would produce IIE11-0.665.)

The essential characteristic of this example is that A is equal to a large symmetric
rank-one matrix plus a small indefinite matrix. Thus, if nothing is added to All at the
first iteration, the remaining submatrix after the elimination has very small elements,
and IIEII is small. The GMW81 algorithm will usually outperform ours on matrices of
this type. We have experimented with modifications to our algorithm that perform well
for this case, but all of them resulted in degradation of our algorithm’s performance
in other cases. Since the case only occurred once in the 120 test cases discussed in this
section, we would hope that it is not common in practice.

7. Summary and conclusions. We have presented a new modified Cholesky fac-
torization algorithm that does a good job of meeting the objectives outlined at the
start of 3. It is based upon two new techniques, the use of Gerschgorin circle theorem
bounds to decide how much to add to the diagonal, and the use of a two-phase structure
to differentiate between positive-definite and nonpositive-definite matrices. It costs at
most 2n2 additions and n2/2 multiplications more than the standard Cholesky factoriz-
ation, and its theoretical bound on IIEI[ is a factor of n lower than for the GMWS1
method. In computational tests on nonpositive-definite matrices, it virtually always
produces a smaller IIEIl than the method of GMW81, and the conditioning of A + E
is always quite acceptable. On the class of test problems where the GMW81 algorithm
had the most difficulty, those with eigenvalue range [-1, 1], the decreases in IIEII
and in the condition number of A + E are both substantial.

In our computational tests, both our method and that of GMW81 virtually always
produce values of IIEII that are orders of magnitude smaller than the worst-case
theoretical bounds. Empirically, this seems to occur because the matrix elements, and
hence lie I1 do not grow nearly as quickly as in the worst-case analysis. This disparity
between theory and practice makes it unclear whether the practical improvement of
our method over the method of GMW81 is tied to its theoretical improvement. We
believe that it is, for two reasons. First, basing the amount to add on the 11 norm of
the pivot row rather than the l norm may cause us to add less, and second, separating
the two phases of the algorithm may allow us to add less in practice as well as save
a factor of n in theory. A more rigorous explanation would be useful.

We have not tested the effect of substituting our new modified Cholesky factoriz-
ation for that of GMW81 in optimization algorithms. The most common optimization
test problems have small n and few if any indefinite iterations, so probably there would
be little effect on these. The new algorithm might make a difference on problems where
n is larger and there is some indefiniteness. In our opinion, the biggest advantage of
the new method for optimization purposes is its improved theoretical bound on lie I1
and the corresponding reduction in IIEII that has been observed in practice.
These properties guard against overflows during the factorization, and against steps
(A + E)-lTf(x) that are far too small.

In addition, the new algorithm leads to an easy implementation of trust region
methods for optimization, because IIEIl is generally within a factor of 1.5 of the
negative of the smallest eigenvalue AI(A) of A. By first calculating E, then replacing
A with A+(IIEII)I if E 0, and then using the trust region method for positive
definite matrices, we will usually get the solution to the exact, possibly indefinite trust
region problem without using any other special provisions for dealing with nonpositive-
definite matrices. We have already used the factorization successfully in this context.
If there are other computational algorithms where a crude estimate of the most negative
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eigenvalue of a matrix is useful, either by itself or as a starting estimate of some iterative
procedure, then this factorization may provide a good way to find it.

Finally, Dr. N. Gould of Harwell Laboratory, England, reports that our modified
Cholesky factorization has proven useful to him for a different reason than those
discussed above. He is using it in a large, sparse optimization code, where the linear
system is solved by a multifrontal method, and diagonal pivoting during the modified
Cholesky factorization is unnecessary due to the properties of the Hessian matrices.
In this case, our method has the advantage that it does not require the full matrix to
be known a priori, so that it may be assembled incrementally, with only the front and
the diagonals needed in storage at any given time. In contrast, in the GMW81 method,
the entire matrix must be known during the initialization phase to calculate the terms
y and in the notation of 3. Gould has implemented an unpivoted version of our
factorization in this code and reports very satisfactory performance.

Appendix 1. Complete Modified Cholesky Decomposition Algorithm.
Given A R symmetric (stored in lower triangle) and " (e.g., ’= (macheps)l/3),

find factorization LL of A + E, E _-> 0

phaseone := true
y := maxl__<i<__n IAii]
j:=l
(*Phase one, A potentially positive-definite*)
While j =< n and phaseone true do

(*Pivot on maximum diagonal of remaining submatrix*)
i:= index of maxj<=i=. A.
if i#j, switch rows and columns and j of A

Ai/Ajj} < ryif min+l_<i_< {Aii 2

then phaseone := false (*go to phase two*)
else (*perform jth iteration of factorization*)

Lj v/Aj (*Lj overwrites A)
For i:=j+ 1 to n do

Li := Ai/Lj (*Lij overwrites A)
Fork:=j+lto ido

Aik := Aik- LLk
j:=j+l

(*end phase one*)

(*Phase two, A not positive-definite*)
If phaseone false then

k:=j-1 (*k =number of iterations performed in phase one*)
(*Calculate lower Gerschgorin bounds of Ak+l*)

For i:=k+l to n do

i-1

gi:=Aii ., IA,I- ]mil
j=k+l j=i+l

(*Modified Cholesky Decomposition*)
Forj:=k+lto n-2do

(*Pivot on maximum lower Gerschgorin bound estimate*)
i:= index of
if i#j, switch rows and columns and j of A
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(*Calculate Ejj and add to diagonal*)

normj :: IA,I
i=j+l

6(*= E)= max {0,-A.:i + max { normj, ’T}, @rev}
if 6 > 0 then

@rev:= 6 (*@rev will contain
(*update Gerschgorin bound estimates*)
If Aj # normj then

temp := 1 normj/A
for i:=j + 1 to n do

gi := gi-F IAil* temp
(*perform jth iteration of factorization*)

same code as in phase one
(*final 2 2 submatrix*)

Alo, Ahi := eigenvalues of [A_,_I A,_I ]A.,_ A,
6 := max {0,-AIo+ ’* max {1/(1 ’)(Ahi- Alo), T}, @rev}
if 6 > 0 then

An-l,n-1 :-- A.-1,.- + 6
An, :-- An, + 6
6prey := 6

Ln_.._ := x/A._, A._l (*overwrites A._,._*)
Ln, := An,n_I/ Ln_,n_ (*overwrites An,n-1
L.. := (A.,. 2 1/2( g:)Ln,n_) *overwrites An,

(*End phase two*)
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Appendix 2. Computational results are given in Figs. 1-5.
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PERTURBATION ANALYSIS OF MATRIX QUADRATIC EQUATIONS*

M. M. KONSTANTINOV’, P. HR. PETKOV, AND N. D. CHRISTOV

Abstract. Nonlocal perturbation analysis of a general type matrix quadratic equation is presented using
the technique of contractive operators. The continuous-time algebraic matrix Riccati equation arising in
linear-quadratic optimization is considered as a particular case.

Key words, perturbation analysis, matrix quadratic equations, algebraic Riccati equations
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In this paper we study the sensitivity of the regular solutions of a general matrix
quadratic equation relative to perturbations in its coefficients. Upper bounds for norms
of the perturbed solutions are obtained without the assumption that the coefficient
perturbations are asymptotically small. The well-known continuous-time algebraic
Riccati equation is considered as an example.

Consider the matrix quadratic equation

N

1 R(X) A + E BiXCi + DiXEiXFi 0
i=1

where A []Pq, Bi, Di EP’", Ci, Fi I"q, Ei Im’, and X En., is the unknown
matrix. In what follows we assume summation from 1 to N for the repeated
subscript i, rewriting (1) as A + BiXCi + DiXEiXFi 0. It is also supposed that there
is at least one triple (Di, Ei, Fi) with Di O, Ei O, Fi 0 since in the opposite case,
(1) reduces to a linear equation.

To ensure that (1) is consistent and has isolated solutions, it is supposed that
mn pq k.

Denote by Sc En-m the set of real solutions of (1). For X S the tangent set
(relative to S) at X is X + Ker Tx, where Tx """- []Pq is defined from

(2) Tx( Y) BirCi @ Di(XEi rat- rEiX)Fi.

The solution X S is said to be regular if Ker Tx O. The latter is valid if and
only if

(3) detMxO, Mx=C.T, @Bi+F.T, @(DiXEi)+(EiXFi)T@DiIk’k.

Let

(4) t(X) min (llTx(r)]]" YII- 1).

Then X S is regular if and only if t(X)> O.
Note that the function t" E"" - E+ is a generalization of the function separating

two square matrices [1]. Following similar arguments as in [1] it may be shown that
if I1"11 is the Frobenius norm then t(X) is the smallest singular value of Mx (equal to

IIM?III= if (3) holds).
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Present address, Department of Mathematics, High School of Architecture and Civil Engineering (VIAS),
Hr. Smirnenski Blv., 1421 Sofia, Bulgaria.

$ Department of Automatics, Higher Institute of Mechanical and Electrical Engineering, B1. 2, 1156
Sofia, Bulgaria.
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Now let A*, B*, , F* be perturbations of the corresponding matrix coefficients
A, Bi,’’", Fi in (1). Denote a*= IIa*ll,
and

/x =(a*, b c b’N, c* d e f d’N, e *N f*N T 1 N+1.

Let X S be a fixed regular solution of (1). The main problems to be solved in
this paper are"

(i) Find conditions for/x such that the perturbed equation

(5) U(Y)=A+A*+(Bi+B* )Y(Ci+C* )+(Di+D* )Y(Ei+E* )Y(Fi+F* )=O

has a solution Y X + X*, where the elements of X* are analytic functions of the
elements of the perturbation matrices A*, B*,..., F*, and X*= 0 for /x =0.

(ii) Find an estimate of the form IIX*II =< r(/z), where r: RSN+I- R/ is an analytic
function, nondecreasing in each component of/z, and such that r(0)=0.

Since

where

u(x + x*) R(X) + T(X*) + V*(X*),

V*x(Z) A* + K*(X) + K*(Z) + L*(X, X) + L*(X, Z) + L*(Z, X)

+L*(Z,Z)+L(Z,Z),

K*(Z) B* ZC, + B,ZC* + B* ZC*
()

L*(Z, Z:) D* ZEZFi + DiZE* ZFi + DZE,Z_F* + D* ZIE*i Z_F
+ D*iZEiZF*i + DiZ,E*ZF*i + D*ZE*Z_F*i,

L(Z Z.) DiZEiZFi,

and R(X)=0, then for Y X +X* equation (5) is reduced to

(7) Tx(X*) + V*x(X*) O.

In (6) K*’""--> Rp’q is a linear operator, whereas L*, L’"" x "" "->P’q are
bilinear operators, such that

IIK*(Z)II =< k*llzll,

(8) IIL*(Z,, Z=)ll--< *llm, IIZ=ll,
IlL(Z1, Z)ll =< rllZ, IIZ=ll,

where

k* (b, + b*i )(c, + c* )- bici,

g* (di + d* )(e, + e* )(f +f* )- dieifi,

# dieifi.
When life is small the constants k*, g* are also small and of asymptotic order

o(1111).
Rewrite (7) as an operator equation

(9) X*= P*x(X*)

where

P*x =-Tc1 V*x I"" --> "".
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We will show that under some conditions on/z there exists r-- r(/x) such that P*x
is contractive and maps the set Sr- (Z" IIzll =< r)into itself.

Let x- IIxll. Having in mind (6) and (8) for Z Sr, we have

v*(z)II =< IIA*ll / IIK*(X)II / IIK*(Z)II / L*(X, X)ll / L*(X, Z)ll

(10) + L*(Z, X)ll / L*(Z, Z)ll / L(Z, Z)ll
<- a* + k*(x + r) + *(x + r) + gr2.

Similarly, for Z1, Z2 Sr it follows from (8) that

K*(z,) K*(Z)II <= k*llZ,- ZII,
L*(Z,, X) L*(Z, X)II -< *x IIZ,- Zll,
L*(X, Z,)- L*(X, Z)ll =<
L*(Z,, Z,) L*(Z, Z)ll-- L*(Z, Z) L*(Z, Z) / L*(Z, Z_) L*(Z, Z)ll

=< IIL*(Z,, Z,)- L*(Z,, Z)ll
/ L*(Z, Z)- L*(Z, Z.)

-<_ r*(llZ, + Zll)II Z,- Zll =< r*,llZ, Z,. II,
L(Z,, Z,) L(Z, Z)ll-<- mrIlZl- Zll.

Hence

(11)

(12)

V*x(Z)- V*x(Z)II K*(z,)- K*(Z)II + L*(X, Z,)- L*(X, Z)ll
/ L*(Z,, X)- L*(Z, X)II
+ L*(Z,, Z,)- L*(Z2, Z.) II.
+ IlL(Z,, Z,)- L(Z, Z)II

,-<_ (k* + 2*(x + r)+ 2&)IIz,- zll.
In accordance with (4)we have r(X)IIYII<=IITx(Y)II for all Y"’. Therefore

1
T-1 --< -, t(x).

Now the inequalities (10)-(12) yield

(13)
IIP*(z)ll--< Tb’II V*(Z)

<-- a* + k*(x + r) + *(x + r)2 + &)/ go(r),

P*x(Z,)- P*x(Z)II Tb’ll V*x(Z,)- V*x(Z)

1
(1 4) <-- (k* + 2*(x + r) + 2&)IIZ1 Z211

g,(r)llz,-z,_ll

for all Z, Z1, Z2 S In view of (14), (13) the operator P*x is a contraction and maps
the compact set Sr into itself if there exist r > 0 such that g0(r)_<-r and gl(r)< 1. The
necessary and sufficient condition for the last three inequalities to hold is

(15) k*+2{*x+2((+{*)(a*+k*x+{*x))l/2<t.
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In this case we may choose

r- r(tx)=(t-k*-2g*x-((t-k*-2{*x)2

(16)
-4(g+ g*)(a* / k*x + g*x2))1/2)/(2(g+ g*)).

The above considerations are summarized in the following theorem.
THEOREM. Let X S and the conditions (3) and (15) befulfilled. Then theperturbed

equation (5) has a unique solution y- X / X* such that the elements ofX* are analytic
functions of the elements ofA*, B’i,’’’, F’i, and

(17)

(the uniqueness of Y X + X* is claimed only in a r(tx)-neighborhood ofX).
Note that the estimate (17), (16) is true for all k satisfying (15), i.e., the norm

II/xll of the perturbation vector/x need not be asymptotically small. If, however,
is small, then it follows from (17), (16) that

a* + k* x + g* x2

IIx*ll--< + o(11 I1 ), 0,

where

k* b,c*i + b* c, o(ll ll),

g* d,e.,f* + die*if + d*i e.,f o(11 11).

If X 0 (i.e., if A # 0) then the relative perturbation in the solution may be estimated
as

An important application ofthe above perturbation analysis is the continuous-time
algebraic Riccati equation

(18) Q+ GrX + XG XHX =0

arising in the theory of linear-quadratic optimization. Here Q, G, H, X e N""; Q Qr __>

0; H= Hr>_-0 (H0). If the pair [G, H) is stabilizable and the pair (Q, G] is
detectable, then (18) has a unique solution X Xr _-> 0 (note that this is also the unique
solution of (18) for which the matrix G-HX is stable) [2].

Let Q*, G*, H* be perturbations of Q, G, H, and q*= IIQ*II, g*= IIG*[[, h*=
IIH*[[, h [[HI[. Then in the notation of the theorem,

k*=2g*, g*=h*, {=h, x=[lX]], tx (q*, g*, g*, h*) T,
t=min ([[(G-HX)rY+ Y(G-HX)[[" [[Y[[ 1)>0.

Hence we may formulate the following corollary.
COROLLARY. Let the inequality

2(g* + h*x +((h + h*)(q* + 2g*x + h’x2)) 1/2) (

be satisfied. Then the perturbed Riccati equation

Q+Q*+(G+G*)rY+ Y(G+G*)- Y(H+H*)Y=O
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has a unique solution Y X + X* such that the elements ofX* are analytic functions
of the elements of Q*, G*, H*, and

(19)
x* r(/x (t- 2g* 2h*x ((t- 2g* 2h’x)2 -4(h + h*)

x (q* + 2g*x + h*x2))l/2)/(2(h + h*))

(the uniqueness ofX + X* is claimed in the r(tx)-neighborhood ofX).
It is worth mentioning that for arbitrary small II/z > 0 the solution X +X* may

be nonsymmetric, and the matrix X +(X*+ X’T)/2 may not be positive semidefinite
(the latter is possible only if the pair (Q, G] is not observable).

For small I1 , the function r from (19) may be represented as

k

(20) () Z r()+ o(1111/), r() 0(1111),
j=l

The first three terms in the asymptotic series (20) are

1
rl() --7 (q* + 2g*x + h’x2),

(21) r2(/x) r,(/x.) (2(g* + h’x)+ hrl(/X)),

rl(/X)).r3(/x) - (2(g*+ h*x)r:(tx)+ 2hrl(tx)r:(Ix)+ h*

If (18) is scaled so that h H 1, and

z=max(q*,g*,h*)< 2y(l+(ty)l/:) -1, y=(l+x)/t,

then according to (20), (21)

Ilx*ll<=zty2+z2ty3(2+ y)+z3ty4(5+6y+2y2)+O(z4), z-->+o.

We conclude the perturbation analysis of matrix quadratic equations with the
following remark. The estimate (17), (16) (respectively, (19)) cannot be improved in
the sense that for each positive constant w < 1 there exists an equation of type (1)
(respectively, (18)) such that IIx*ll- wr(,). Moreover, if condition (15)is not fulfilled
then the analytic dependence of X* on A*, B/*,..., F* may not exist, or (5) may
not even have a solution.
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SENSITIVITY ANALYSIS USING THE MONTE CARLO
ACCEPTANCE-REJECTION METHOD*

GEORGE S. FISHMAN"

Abstract. This paper describes a Monte Carlo sampling plan for estimating how a function varies in
response to changes in its arguments. Most notably, the plan effects this sensitivity analysis by applying the
acceptance-rejection technique to data sampled at only one specified setting for the arguments, thus saving
considerable computing time when compared to alternative methods. The plan which applies for a 0-1
response on each replication has immediate application when estimating variation in system performance
measures in reliability analysis.

The paper derives the variances of the proposed estimators and shows how to use worst-case bounds
on these or on corresponding coefficients of variation to choose the arguments, at which to sample, that
minimize the worst-case bounds. Individual and simultaneous confidence intervals are derived and an

example based on s-t reliability illustrates the method. The paper also compares the proposed method and
an alternative Monte Carlo approach that uses an importance function.

Key words, acceptance-rejection sampling, Monte Carlo method sensitivity analysis, importance func-
tion, reliability
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Many Monte Carlo sampling experiments aim at estimating quantities of the form

(1) g(q) E b(x)P(x, q)
x’

where {b(x)} is a 0-1 binary function, {P(x, q),x } is a probability mass function
(pmf) with given parameter vector q, and domain of support so large as to make
exact evaluation via (1) intractable. Occasionally, the objective is to estimate the
function {g(q), q } where {ql, ",qw}. Problems of this type arise in reliability
theory where g(q) represents system reliability and %=(qjl,’", qgr) denotes the
reliabilities of components of types 1 through r that compose the system in the jth of
w component reliability vectors of interest. Analysis of g(ql),..-, g(qw) enables us
to assess the benefits ofthe alternative reliability vectors ql, , qw on system reliablity.

Although we can simply run w experiments, sampling from
{P(x, q)},..., {P(x, qw)} to produce estimates of g(q),..., g(qw), respectively, a
more efficient method samples from {P(x, p)} on a single experiment and uses these
data together with the Monte Carlo importance function technique or the acceptance-
rejection technique to produce the desired estimates. These approaches are not new,
the importance function technique being implicit in Kahn [8] and Kahn and Harris
[9] and the acceptance-rejection technique being implicit in von Neumann [13].
Beckman and McKay [3] have more recently discussed both methods. However, until
recently little was known about how the binary property of {b (x)} affected the sampling
properties ofthese techniques for estimating (1). Fishman 6] provides a comprehensive
account of these properties for the importance function approach. The present paper
focuses on the acceptance-rejection method and provides a comprehensive description
of the sampling properties of the resulting estimators that exploit the binary property
of {b(x)} and the use of a modified pmf {Q(x, p)}, based on {P(x, p)} and information

Received by the editors September 30, 1988. Accepted for publication (in revised form) October 23,
1989. This research was supported bythe Air Force Office of Scientific Research under grant AFOSR-84-0140.

? Department of Operations Research, University of North Carolina, Chapel Hill, North Carolina 27599.
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on bounds for {b(x)} and {g(q),q}, to sample the data. This last modification
allows the acceptance-rejection method to work with considerably improved efficiency.
Although the paper focuses on applying the proposed technique to reliability estimation,
we emphasize that the methodology applies to the considerably wider class of problems
with binary {b(x)}.

Section 1 gives basic definitions and 2 describes estimation at a single point.
Section 3 then describes how to perform function estimation using the acceptance-
rejection method. Section 4 shows how to choose the design parameter p to minimize
either the worst-case variance or the coefficient of variation of the resulting function
estimator, thereby dramatically increasing the efficiency of the proposed Monte Carlo
procedure. Section 5 shows that even in the worst case, the proposed technique is at
least as good as crude Monte Carlo sampling. Sections 6 and 7 derive individual and
simultaneous confidence intervals. Section 8 illustrates the proposed technique with
an example and 9 compares the characteristics of the acceptance-rejection method
with those of the importance function method.

1. Problem setting. Consider a network G (, ) with node set 7/" and edge set. Assume that nodes function perfectly and that edges fail randomly and indepen-
dently. Let

r number of distinct types of edges,

probability that an edge of type functions 1,..., r,

q= (ql, qr),

ki number of edges of type i,

k--(kl,...,kr)

eij =jth edge of type i, j 1,. , ki, i= 1,..., r,

xij 1 if edge e0 functions

(2) 0 otherwise,

X -’-EjkL1 Xij number of functioning edges of type i,

X-- (Xll ", Xlk Xrl Xrkr)
set of all edge states x,

k

P(x,q)--P(x,k,q)-- I I-I [xiqi+(1-xi)(1-q,)]= I q’(1-qi) k’-x’
i=lj=l i=1

pmf of state x ,
b(x) 1 if the system functions when in state x

0 otherwise,

(3)

g(q) E b(x)P(x, q)

-probability that the system functions.

We also assume that G describes a coherent system. A system of components is coherent
if its structure function {b(x)} is nondecreasing in each argument and each component
is relevant (Barlow and Proschan [2, p. 6]). Let denote a set of w I1 component
reliability vectors of interest. Then the purpose of analysis is to estimate the reliability
function {g(q), q }.
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2. Estimation at a point. Crude Monte Carlo sampling offers a baseline against
which potentially more efficient sampling plans can be compared. Let XI), Xc)

denote K independent samples drawn from {P(x, q), x }. Then

1 c

(4) gc(q)= )(X(i))
i=l

is an unbiased estimator of g(q) with

(5) var gc (q) g(q)[ 1 g(q)]/K.

To compute g:(q), we perform K trials sampling X from {P(x, k, q)} and evaluate
b(X) on each trial. The corresponding mean total computation time has the form

where

and

T(g/ (q))= a0+ g[ol -- + (, q)]

a3(, q)= P(x, q)C(x)

C(x) expected time to evaluate b(x).

The quantities ao, a l, a2 and a3(, q) are machine dependent.
We now show how to modify the sampling plan to improve statistical efficiency

using information on bounds as described in Fishman [5]. Suppose that there exist
0-1 binary functions {4L(x), x } and {bt(x), x } such that

(x) _-< 6(x) -< (x) Vx .
Then g(q) has lower and upper bounds g(q) and gu(q), respectively, where

gi(q)-- qbi(x)P(x, q), i {L, U}.
x

Suppose that we now sample X<I), .., X<r) independently from the modified pmf

(6) Q(x, q) [ bt (x) b/(x) 1 P(x, q), x
A(q)

where

Then

A(q) gt(q) g(q).

I K

(7) (q) g(q) + A(q) -- i__ ()(X(i))

is also an unbiased estimator of g(q), but with variance

(8) var c (q) [gt (q) g(q)][g(q) g(q)]/K =< A2(q)/4K.
Compared to crude Monte Carlo sampling, we have

var gr (q)
> D(q) 1/[{g/(q)[1 gu(q)]} 1/2 {gu(q)[1--gL(q)]}l/2]2

(9) var ff: (q)-
_->1,

indicating that ff/ (q) always has a variance no larger than var g:(q).
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To compute /(q) using precomputed bounds, we perform K trials sampling X
from Q(x, q)) and evaluate b(X) on each trial. Here mean total time assumes the form

T(,K (q))= flo + K[fll + fl] ’l + a3(Ol, P)/A(q)]

where

-01 {X E : (L(X) 0 and thu(X) 1 }

and/30,/31, and/32 denote machine-dependent constants.
Observe that

K (q) K var CK (q)/var K (q)

denotes the number of observations we would have to take with crude Monte Carlo
to achieve the same variance that arises in K observations using (Q(x, q)). Then
Al(q)- T(K(q)(q))/T(K(q)) measures the efficiency of K(q) relative to CK(q) and
for large K and [gl has the approximate form

[ a2+o3(,q)/[c] ] g(q)[1 g(q)]
Al(q) /32---(-o];1(--)[’1 [gu(q)--g(q)][g(q)--gL(q)]

(10)

>[ ce2+ a3(, q)/, l ]D(q)
where (9) defines D(q)-> 1. A ratio greater than unity favors the alternative sampling
plan. Experience (Fishman [5]) has shown this to be the case for moderate and high
component reliabilities for s-t reliability.

3. Function estimation based on the acceptance-rejection method. To estimate g(q)
for each component reliability vector q E {ql," qw}, we can perform w separate
experiments, sampling from {Q(x, qi)} in (6) on the ith experiment for i= 1,..., w.
This procedure incurs the cost of running w individual sampling experiments. However,
we can actually avoid this cost by performing a single experiment, sampling data from
{ Q(x, p)}, and then using these same data to estimate g(ql)," ", g(qw). We later show
that if the component reliablity vector p at which sampling occurs belongs to , the
proposed approach leads to estimates of specified accuracy at a cost no larger than
that incurred by performing all w individual experiments to achieve the identical
accuracies.

Consider the pmf

(11) f(x) ab(x)c(x), x

where

c(x) =>0, E c(x)=l, O=<b(x)=<l, a=l/E b(x)c(x).
x x

Suppose we sample X from the pmf {c(x)} and Z from //(0, 1). If Z =< b(X), then X
has the pmf {f(x)} in (11). This acceptance-rejection method of sampling is due to
von Neumann [13]. For the current problem,

R(x, q, p)
(12) c(x) Q(x, p), b(x)

R*(q, p)
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where

(13)

and

R(x, q, p)
P(x, q)
P(x, p)

R*(q, p) max R(x, q, p) subject to bt(x)=0 and bu(x)= 1.
’

The quantity

A(p)R*(q, p)
(14) a

+/-(q)

denotes the mean number of trials required until we successfully obtain an X from
{ Q(x, q)}.

A small modification increases the efficiency of this procedure. Let

(15a) Ro(q, p)=max R(x, q, p) subject to th(x) =0 and bt(x) 1,

(15b) Rl(q, p) --max R(x, q, p) subject to bL(x)= 0 and b(x)= 1,
x

and

R(x,q,p)
(16) F(x, i, q, p) 0, 1.

Ri(q, p)

Suppose we sample X from {Q(x, p)}, sample Z from (0, 1), and determine b(X).
If Z -< F(X, b (X), q, p), then X has the pmf { Q(x, q)} with mean number of trials until
success

gt: (P) g(P) g(P) gL(P)
a Ro(q, p)+ Rl(q, p)

A(q) A(q)

A(p)R*(q, p)
A(q)

since max [gt:(P)- g(P), g(P) g(P)] <- A(p) and max [Ro(q, p), Rl(q, p)] =< R*(q, p).
The computations of Ro(q, p) and Rl(q, p) depend on the choice of bounding functions
{b(x)} and {bt:(x)} and are discussed in the example in 8.

We next describe the statistical properties of data generated by the acceptance-
rejection method.

THEOREM 1. Let X and Z denote samples drawnfrom {Q(x, p)} in (6) and (0, 1),
respectively. Define Ro =- Ro(q, p), R1 Rl(q, p),

(17)

(18a)

and

0i (x, u, q, p) l if 0 _-< u =< R (x, q, p)/ Ri, i=0,1,

0 otherwise,

o(X, u, q, p) gt(q) a(p)Ro[ 1 b (x)] 0(x)(X, u, q, p),

(18b) /l(X, u, q, p)= g(q)+A(p)Rldp(x)O4,<x)(X u, q, p).
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Then

(i)

(ii)

(iii)

(iv)

(v)

(vi)

E{[1 -b(X)] 0(x)(X, Z, q, p)} [gv(q)- g(q)]/A(p)Ro,

E[b (X) 0(x)(X, Z, q, p)] [g(q) gt(q)]/A(p)R1,

EIX,(X, Z, q, p)- g(q), i-0, 1,

var IXo(X, Z, q, p) [gt (q)- g(q)][g(q)- gt: (q)/ A(p)Ro]

v(q)/ [gt(q) g(q)][A(p)go- A(q)],

var IXl(X, Z, q, p) [g(q)- gL(q)][A(p)gl / g(q) g(q)]

v(q) / [g(q) gL(q)][A(P)R1 A(q)],

cov [IXo(X, Z, q, p), IXl(X, Z, q, p)] v(q) [gt:(q) g(q)][g(q) gt(q)]-

Proofi Straightforwardly,

E{[1- @(X)]O(x)(X, Z, q, p)) pr [th(X) O, Oo(X, Z, q, p)= 1]

([l_b(x)]R(x’q’P)} [bu(x)-bL(x)]x R,(x A(p)

[gt(q) g(q)]
(p)

P(x, p)

have expectations g(q) with var iK (q, P) --var L/i(X Z, q, p)/K. Observe that the
inequalities vat Ixo(X, Z, q, p) > v(q) and vat IXl(X, Z, q, p)] > v(q) for q # p, when they
occur, signal an inflation of variances over what is obtained if we were to sample from
{Q(x, q)} directly. Therefore, it is of interest to assess how much these variances and
corresponding coefficients of variation grow when using the proposed acceptance-
rejection method. Theorems 2 and 3 provide worst-case upper bounds.

THEOREM 2. Let X and Z denote samples from {Q(x,p)} in (6) and (0, 1),
respectively. Then

[A(p)Ri]2/4 if A(q) > A(p)Ri/2,
(20)

var ixi(X’ Z’ q’ P) <= Mi(q’ P)
A(q)[A(p)Ri-A(q)] if A(q) <- A(p)Ri/2,

i=O, 1.

Proofl Since go(q) -< g(q) =< gt(q), A [gt(q) g(q)][g(q) gt(q) + A(p)Ro] has
its maximum at g*(q)= go(q)+ max [0, A(q)-A(p)Ro/2], from which (20) follows for
i=0. Similarly, B=[g(q)-gc(q)][A(p)R1 + g/(q)-g(q)] has its maximum at g*(q)
gt(q)-max [0, A(q)-A(p)R1/2], from which (20) follows for 1.

Observe that evaluation of (20) for i=0, 1, prior to sampling, enables us to
determine which estimator has the smallest worst-case variance.

THEOREM 3. Let

Ti(q, P)= [var IX,(X, Z, q, p)]’/2/[1 g(q)], i=0, 1.

(X(1
E ix, ,q,p), i=O, 1(19) ,K(q, p) =j=l

establishing (i). Part (ii) follows in analogous fashion and the proofs of parts (iii)-(vi)
are then immediately obvious.

Suppose we perform K independent replications generating X<I>, XK> from
(6) and Z<I), Z</> from (0, 1). Then
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Then

max
(21a) gL(q)--g(q)gu(q)

yo2(q, p) No(q, p) [A(p)Ro]2/4[1 gt(q)+ A(p)Ro][1 gt:(q)]

if A(p)go[1 gt: (q) A(q)] <- 2A(q)[ 1 gt: (q)]

(21b) =A(q)[A(p)Ro-A(q)]/[1-gz(q)]2 otherwise

and

max
(22a) gL(q)--g(q)--gu(q)

y12(q, p) Nl(q, p) [A(p)R1]2/4[1 g(q) A(p)R1][1 gL(q)]

if A(p)RI[ 1 gL(q)+ A(q)] -< 2A(q)[ 1 g/(q)

(22b) A(q)[A(p)R1-A(q)]/[1-gt:(q)]2 otherwise.

Proof We give the proof for max yo2(q, p). Let

(23) A=var/o(X, Z, q, p) /[1- g(q)]-.
Then

OA -g(q)(2[ 1 gt (q)] + A(p)Ro} + 2gt:(q)[ 1 gu(q)] A(p)Ro[ 1 2gt: (q)]
Og [1 g(q)]3

Since OA/Og(q)lg(q)=gu(q) < 0 and A/Og(q)-0 at

g*(q) {2gt: (q)[ 1 gt: (q)] A(p)Ro[ 1 2gv (q)]}/{2[ 1 gt: (q)] + A(p)Ro},

A has its maximum at g*(q) if g*(q)_-> gz(q), which upon substitution of g*(q) for
g(q) in (23) gives (21a). If g*(q)< gL(q) then the maximum occurs at gz(q), giving
(21b). A completely analogous result holds for max y(q, p).

4. Choosing the sampling probabilities p. The results in Theorems 2 and 3 play a
critical role in deciding at which component reliability vector p we should conduct
the Monte Carlo sampling experiment. For each 0, 1, one procedure finds the Pi
that minimizes maxq Mi(q,p) where (20) defines Mi(q,p) as the worst-case
var {/i(X, Z, q, p). Then we use

P Po if max Mo(q, Po) -< max Ml(q, p),
q q

(24)
Pl otherwise,

so that sampling from {Q(x, p)} with p as in (24) minimizes the worst-case variance
that can arise. Finding p takes w2 evaluations of Mi(q, p). Also, note that

K, [min [max Mo(q, Po), max Ml(q, p)]/v,
q q

gives the worst-case sample size required to obtain estimates of g(ql),""", g(qw) with
variances no greater than a specified v.. This valuable information can assist a user
of the Monte Carlo method before any sampling begins.

The proposed technique can also accommodate a relative accuracy specification.
For i= 0, 1, an alternative procedure finds the p that minimizes maxq N(q, p)
where (21) and (22) define No(q, p) and Nl(q, p), and then uses

P Po if max No(q, Po) --< max Nl(q, p)
q q.

Pl otherwise.
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Sampling from {Q(x, p)} with this p minimizes the worst-case coefficient of variation.
Also,

2(25) K** [min [max No(q, Po), max Nl(q, Pl)]/u,
q.

provides the worst-case sample size needed to estimate g(ql),’" ",g(qw) with
coefficients of variation no greater than a specified u..

5. Efficiency. Naturally, the appeal of any proposed sampling plan depends on
the cost saving it offers, when achieving a specified accuracy as compared to other
more conventional methods. These cost considerations have two components, one
based on variances and the other based on computer times expended per replication.
Theorem 4 derives an expression for the smallest variance ratio that we can expect to
achieve when comparing a crude Monte Carlo estimate / (q) to an estimate i/ (q, P)
based on the proposed method. This smallest ratio is analogous to D(q) in (9) and
reveals the least favorable circumstance that we can expect to encounter. The ratio
can be computed prior to sampling, thereby providing a lower bound on what to expect.

THEOREM 4. Let Y denote a samplefrom {P(x, p)}, X a sample drawnfrom { Q(x, p)}
and Z a sample drawn from R(O, 1). Let

Bi(g(q), p)--var b(Y)/var [i(X, Z, q, p),

Then

min
gL(q) g(q) gu (q)

(26)

and

min
gL(q) g(q) gu (q)

i=0, 1.

Bo(g(q), p) 1/{{go(q)[1 -go(q)+ A(p)Ro]}1/2

{[ 1 go(q)][gu (q) A(p) Ro]} 1/2}2
A(q){g(q)[ 1 g(q)] + gt (q)[ 1 g(q)]}

if A(p)Ro --< A2(q) / gt (q)[ 1 gt: (q)]

g(q)[1-gl(q)]/A(q)[A(p)go-A(q)] otherwise

Bl(g(q), p)= 1/{{gL(q)[1--gL(q)-- A(p)R1]}1/2

{[ 1 gL(q)][gL(q) + A(p) R1]} 1/2}2
A(q){gL(q)[ 1 gt(q)] +g(q)[ 1 gL(q)]}

(27) if A(p)RI

gt:(q)[1-gu(q)]/A(q)[A(p)Rl-A(q)] otherwise.

Proof. We prove the result for Bl(g(q), p). Observe that OB1/Og(q)=O has roots

(28) ri=l/{l+(-1)i[ 1-gL(q) (1-gL(q)-A(p)R1)] 1/2}g(q) gL(q) +A(p)R1
1, 2.

If A(p)R1 _-< 1- gL(q), the roots are real with either rl _-<0 or rl--> 1 and g/(q)-< r2 _<- 1.
Since OB1/Og(q)[gq)=gu<q)< 0, then

min Bl(g(q), p)= Bl(r2, p) if r2_-< gt(q)
gL(q) g (q) gu (q)

Bl(gt(q), p) if r2->- gt(q).

Expression (27) follows from substituting (28) for r2 in the inequality. If A(p)RI>
1 gL(q), then the roots are complex and OB/Og(q) < 0 for all g(q) 6 [gL(q), gt(q)] so
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that the minimum occurs at g(q)- gu(q). Moreover, complex roots imply that the
condition in the upper branch of (27) is always true, thus completing the proof. An
analogous result holds for Bo(g(q), p).

The availablity of (26) and (27) for each q in again provides valuable information
to the Monte Carlo user prior to experimentation. In particular, it identifies at which
q adverse variance ratios may occur. However, measuring the statistical efficiency of
{o: (q, P), q } and {IK (q, P), q } as estimators of {g(q), q } calls for a more
elaborate analysis than that for estimation at a single point. In particular, the sobering
observation that Ro and R1 in (26) and (27) increase exponentially with Il makes one
circumspect about the benefit of the proposed method as the size of G grows. We now
show that this benefit is assured for finite w [1 and number of edge types r, provided
that p .

Recall that ={ql,..., qw} where q/=(qlj,’", qrj) and qi is the reliability
assigned to components oftype in the jth component reliability vector forj 1, , w.
Let Y={1,..., r} and

Y(* { : Pi # qi for at least one j; j 1, , w},

so that [’1 component reliablity types vary in
Algorithm A-R describes the steps for computing the estimates and provides the

basis for measuring efficiency:

ALGORITHM A-R.
Purpose: to estimate the reliability function {g(q), q ).
Input: Network G (, ); number of type of components r; k number of

components of type for 1, , r; sampling distribution { Q(x, p), x
); * set of components types that vary in ; lower and upper bounds
{g(q), gt(q); q U {p}}; and number of independent replications K.

Output: {oK (q, P), fflK(q, P), V[oc (q, p)], V[IK(q, p)]; q } as unbiased esti-
mates of {g(q), g(q), vat or (q, P), var r(q, p); q }.

Method:
1. Initialization

(a) A(p) <- gu(P) gt(P).
(b) For each q "K(O, q) K(1, q) <- O.

For each *.

log [qi(1 -pi)/pi(1 qi)]and fli(q)-log [(1 -qi)/(1 -Pi)].

2. On each of K independent trials:
(a) Sample X0, j= 1,..., ki, i= 1,. ., r from {Q(x, p)}.
(b) Determine 4(X).
(c) For each Y*" Xi k’= Xi.
(d) Sample Z from (0, 1).
(e) For q:

T(q) - O.
For each *: r(q) - T(q) + kifli(q) + Xiai(q).
R(X, q, p) exp r(q)].
F(X, b (X), q, p)<- R(X, q, p)/R6(x>(q, p).
q(x)(X, Z, q, p) <- [Z + F(X, b (X), q, p)].
K (4,(X), q)<- K(b(X), q)+ p6(x)(X, Z, q, p).
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3. Computation of summary statistics
For each q "OK(q, P) <-- gu(q) A(p)Ro(q, p)K(0, q)/ K.

IK (q, P) - g(q) + A(p)gl(q, p)K(1, q)/K.
V[OK (q, p)] - [A(p)Ro(q, p)][K (0, q)/K][ 1 K (0, q)/K]/(K 1).

V[IK (q, p)] -- [A(p)Rl(q, p)]2[K (1, q)/K][ 1 K (1, q)/K]/(K 1).

In addition to computing {o/(q, P), lK(q, P); q }, it computes {V[o/(q, p)],
V[,li(q, p)]; q } as unbiased estimators of {var o/(q, P), var l/(q, P); q }.
Observe that preprocessing in step 1 takes o(l*lw) time, postprocessing in step 3
takes O(w) time, and, on each replication, sampling in step 2(a) takes o(11) time
using Procedure Q in Fishman [5], summation in step 2(c) takes O(Yi. ki)=< O(1 1)
time, and step 2(d) takes O([Yg*lw) time. We can also show that the mean total time
for K replications using Algorithm A-R has the form

T({OK (q, p), IK (q, P)))

Oo / W,lY*lw / ow / g [o3 / w41l / a(:To,, p)/A(p) / osl*lw / w6
i* Nil

time where Wo,’", 0-)6 denote machine-dependent constants. To reduce numerical
error, all computation in step 3 should be performed in extended precision arithmetic.

Let us now compare this approach to estimating {g(q), q } with the alternative
approach based on the w point estimates {:(q,p)(q), q } using (4), where we choose
the sample sizes {H(q, p), q} to achieve equal variances under the two methods.
That is,

(29)

where

and

Observe that

var gH(q,p)(q) g(q)[ 1 g(q)]/H(q, p)

H(q, p)= KA (q, p)

A(q, p)
g(q)[1 g(q)]

ming{o, 1} var/z(X, Z, q, p)"

A (p, p) g(p)[ g(P)]/[gc(P) g(P)][g(P) gL(P)]

and, except in special cases, for any edge type i Y(*

Let

(30)

and observe that

(31)

Therefore, the time ratio

(32)

lim A(q,p)=O forqp.

() Z (q, p)
q

lim A (p) A (p, p).
k

T({gH(q,p)(q)})il(, p)--
T({o (q, p), IK (q, P)})’
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where

T({u(q,p)(q)}) Y T(u(q,p)(q)),

measures the efficiency of the proposed method relative to using crude Monte Carlo
sampling with (4) w times to obtain estimates with equal variances var nq,p(q)-
minjE{0,1} var jK (q, P) for each q . As ki increases, (32) assumes the form

p)Eq [a2/ a3(, q)/k,]A (q, p)
AI(.,

w4+ a3(0,, p)/A(p)k, + o)6

+(, p)/g,
_-> , (p, p)
to + w6 4- a3(o, p)/A(p)k

(33)

where the lower bound is analogous to (10). This implies that we should expect
efficiency to exceed that which is obtained from estimating g(p) only. As the example
in 8 shows, the realized efficiency can be considerably greater.

6. Individual confidence intervals. Since

lim Pr{ IiK (q’ p) g(q)] }K- [var iK(q, P)] 1/2< fl 2(fl)- 1

where (. denotes the distribution function of the standard normal distribution, we
can immediately compute an approximating confidence interval for g(q). In particular,
based on -= OK (q, P) and Theorem 1, we have the approximating 100 x (1 6) percent
confidence interval

(34)

+ [2gu(q)-A(p)Ro]fl2/2K + fl{A(p)Ro2/K
+ [gu (q) ][A(p)Ro- gu(q) + ]/K}/

l +2/K,
for g(q) where

An analogous interval can be computed based on lK(q, P).
Because of the nonuniform convergence to normality, this approach inevitably

incurs an error of approximation. An alternative approach avoids this error, albeit at
the cost of a wider interval.

THEOREM 5. Let

m(z,w)=zlog(w/z)+(1-z)log[(1-w)/(1-z)], O<z, w<l,

let oo(z, 6/2, K) denote the solution to re(z, w)= 1/K log (6/2) for fixed z (O, 1] and
6 (0, 1), and let

(35)

Then, the interval

(36a) (i)

w*(z, 6/2, K): oo(z, 6/2, K)

0 otherwise.

ifO<z<=l

(gu(q)-A(p)Row*(1-K(O, q)/K, 6/2, K), gu(q)

-A(p)Row*(K(O, q)/K, 6/2, K))

covers g (q) with probability > 1 6, and
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(36b) (ii) (gL(q) + A(p)Rlw*(K(1, q)/K, 6/2, K), gL(q)

+ A(p)RltO*(1- K(1, q)/K, 6/2, K))

covers g(q) with probability > 1 6.

The proof exploits the observation that

pr [gt:(q) A(p)R0 --</o(X, Z, q, p)=< gt:(q)] 1

and

pr [g/(q) _--</I(X, Z, q, p) =< g/(q) + A(p)R1] 1.

The resulting confidence intervals follow from Theorem 1 of Fishman [7]. [3

Since the slowest convergence to normality for ir (q, P) occurs for g(q) close to
zero and unity, and since we are often interested in g(q) near unity, the wider confidence
intervals that result from this approach seem a reasonable price to pay to be free of
the error of approximation inherent in normal intervals. Since {re(z, to)} is concave in
to, we can compute the required roots by bisection.

7. Simultaneous confidence intervals. Although each confidence interval in 6
holds with probability > 1-6, the joint confidence intervals for {g(q), q} hold
simultaneously only with probability > 1- w6. This result follows from a Bonferroni
inequality. See Miller [10, p. 8]. To restore the joint confidence level to 1 3, we replace
3/2 by 6/2w in (36a) and (36b) and determine the corresponding solutions. The effect
of this substitution is to increase the constant of proportionality in the interval widths
from approximately [2 log (2/3)] 1/2 to [2 log (2w/6)] 1/2 (see Fishman [7]). For 6 .01
and w 20 we have [log (2w/6)/log (2/6)] 1/2 1.25. For 6 .01 and w 100, it is 1.37
and for 6 .01 and w 1000 it is 1.52. However, if denotes a continuous region in
the Il-dimensional hypercube (0, 1) I1, then the resulting confidence intervals have
infinite widths and are therefore useless.

For the case Q= {ql <"" <qw}, an alternative approach derives simultaneous
confidence intervals for {g(q),q} by exploiting the fact that {K(O, qj)/K;j=
1,-.., w} and {K(1, qj)/K;j= 1,..., w}, in step 3 of Algorithm A-R, satisfy the
definition of an empirical distribution function. Since

K-1EK(O, q): p(0, q)= [gt (q)- g(q)]/A(p)Ro

and

K -1EK (1, q) p( 1, q) [g(q) g(q)]/A(p)R1,

Pr{ [IK(O, qj)/K-p(O,q)l<dr(6)]) >-1-6,

and

pr [IK(1, q)/K-p(1, q)l<di,:(6)] >-_1-,5
j=

where dr(3) denotes the critical value of the Kolmogorov-Smirnov distribution for
sample size K at significance level 3. Therefore,

(37a) gt(q)-A(p)Ro(qj, p)[K(0, qj)/K :i:dr(6)] ’j= 1,..., w



1176 GEORGE S. FISHMAN

cover g(ql),""", g(qw) simultaneously with probability ->1- 8 and similarly

(37b) gi(qj)+A(p)Rl(qj, p)[K(1, qj)/KdK(8)] Vj=I,..., w

cover q(ql),"" ",g(qw) with probability _->1-8. For 8=.05, limK_.K1/2dK(.05)
1.3581 and for 8 .01 limK_, K1/2dK(.O1)- 1.6276. Since d(.OS)/dK(.05)<= 1.013 for
K _-> 100 and d(.01)/dK (.01) _--< 1.014 for K _--> 80 (Birnbaum [4]), little error arises when
replacing dK(.05) by 1.3581/K 1/2 and dK(.01) by 1.6276/K 1/2 above for K _-> 100. The
appeal of this alternative approach is that the widths ofthe intervals are all independent
of w. The limitation is that all intervals are of the same width. In practice, we can
compute the intervals based on (36a) and (36b) with 8/2w replacing 8/2 and the
intervals based on (37a) and (37b), and choose the set with smaller widths.

8. Example. An analysis of the network in Fig. 1 illustrates the proposed method.
The network has 30 edges and 20 nodes. The example assumes r 1 so that all edges
have identical reliabilities, allowing us to write q q. Note that any other specification
with r> 1 can be accommodated easily. The objective is to estimate {g(q), q =.80+
.01(i-1), i= 1,..., 20} where g(q)=probability that nodes s 1 and t- 20 are con-
nected when edge reliabilities are q. For sampling, we use p =p, again merely as a
convenience. The lower and upper bounding functions {gL(q)} and {gt(q)} were
computed beforehand using edge-disjoint minimal s-t cutsets for {gL(q)} and edge-
disjoint minimal s-t cutsets for {gt(q)}, as in Fishman [5]. To determine these paths
takes O(II l) time, where I denotes the size of the smallest minimal s-t cutset and to
determine the cutsets takes O(I l) time. The determination of Ro and R is discussed
in Fishman [7]. The evaluation of b(X) using a depth-first search as in Aho, Hopcroft,
and Ullman [1] takes O(max (I l, Irl)) time.

An experiment was run with p .80, which minimized the worst-case variances
as in (24), and with sample size K 22= 1,048,576. Since results for {o/ (q, P)} were
considerably more favorable than those for {l/ (q, p)}, the analysis focuses on
{oK(q, P)}. Table 1 shows individual point estimates and confidence intervals, the
latter having been computed as in (36a). Table 2 compares the precomputed worst
case and the empirically observed coefficients of variation and variances, and Table 3

:0 29

20

FIG. 1. Network.



SENSITIVITY ANALYSIS 1177



1178 GEORGE S. FISHMAN

TABLE 2
Coefficients of variation and variances.

(p .80)

[var/o(X, Z, q, p)]/2
Yo(q, P) var/o(X, Z, q, p)

Ego(X Z, q, p)

q Worst case Observed Worst case Observed

.80 2.06 2.02 .207D-01 .539D-02

.81 2.37 2.35 .262D-01 .491D-02

.82 2.72 2.72 .322D-01 .432D-02

.83 3.11 3.11 .383D-01 .368D-02

.84 3.53 3.53 .435D-01 .303D-02

.85 4.00 3.93 .455D-01 .239D-02

.86 4.51 4.46 .443D-01 .181D-02

.87 5.06 4.95 .406D-01 .128D-02

.88 5.64 5.44 .349D-01 .876D-03

.89 6.26 5.93 .282D-01 .567D-03

.90 6.91 6.37 .212D-01 .335D-03

.91 7.57 6.74 .147D-01 .182D-03

.92 8.23 7.08 .928D-02 .918D-04

.93 8.87 7.37 .520D-02 .423D-04

.94 9.44 7.41 .250D-02 .156D-04

.95 9.89 7.29 .982D-03 .473D-05

.96 10.13 6.76 .287D-03 .983D -06

.97 10.04 5.95 .527D-04 .127D-06

.98 9.37 4.59 .415D-05 .617D-08

.99 7.55 2.69 .396D-07 .308D- 10

Computed from (21).
Estimated from data.
Computed from (20).

shows the worst case and empirically observed variance ratios, where the variance in
the numerator corresponds to that for crude Monte Carlo sampling.

Recall that the worst-case results can be computed and used prior to sampling.
For example, suppose that we want a coefficient of variation no larger than u. .01
for all point estimates. Since the largest worst-case result in Table 2 is 10.13, we would
use (25) to compute the worst-case sample size r/** 1,008,016. All results in columns
4-8 ofTable 1 took 74.9 minutes to compute in total, or 4.28 milliseconds per replication.

This network was chosen for illustration because its computing time fit within the
budget available for computing. As intended, it clearly demonstrates the superiority
of the proposed technique when compared to crude Monte Carlo sampling. Shier 12]
and Page and Perry [11] provide exact solutions to this particular problem with
evaluation times considerably smaller than our experiment takes, and an analyst
contemplating the evaluation of reliability for networks of this size is well advised to
consider these exact methods. However, as the size of the network under consideration
grows, these exact methods inevitably show their exponential time growth, whereas
the time per replication for the Monte Carlo approach remains O(max (11,11)).
Therefore, for substantially larger networks there will always exist sets of component
reliabilities such that estimating {g(q), q } as proposed here will be more efficient
timewise than these exact methods of solution.

9. A comparison. At least one alternative method exists for using the data from
a single experiment with input vector p to generate estimates of {g(q), q }. This
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TABLE 3
Variance ratios.

var 4/( (q)
var oK (q, P)

q Worst case Observed

.80 5.15 6.48

.81 4.32 5.88

.82 3.71 5.47

.83 3.27 5.20

.84 2.95 5.06

.85 2.75 5.07

.86 2.60 5.21

.87 2.54 5.61

.88 2.56 6.18

.89 2.68 7.06

.90 2.91 8.55

.91 3.31 10.95

.92 3.97 14.73

.93 5.10 20.81

.94 7.14 34.12

.95 11.23 63.00

.96 20.88 149.23

.97 50.53 471.61

.98 197.50 2771.75

.99 2490.13 67040.00

Computed from (27).
Estimated from data.

method is based on using the importance function (13) to form

q (x, q, p) g(q) + A(p)b(x)R(x, q, p)

and

qb (X, q, p)= gt (q)+ X(p)[ 1- b (x)]R(x, q, p)

so that q, (X, q, p) and q,b(X, q, p) both have expectation g(q) when X is from {Q(x, p)}.
Fishman [6] studies these estimates in detail using the same network, and a comparison
between these importance functions (IF) and the currently proposed acceptance-
rejection (A-R) estimators seems appropriate.

For every q , the IF estimators have smaller variance that the A-R estimators
do and both methods have about the same computation time per replication. If variance
is the dominant consideration, then the IF method prevails. However, there are other
issues that also deserve consideration. The A-R estimators have considerably simpler
expressions for variance and coefficient of variation than the IF estimators do. Also,
on each trial/xo(X, Z, q, p) and/x(X, Z, q, p) for the A-R approach each assume binary
values thus allowing standard techniques of analysis for binary data to apply. In
contrast 6(X, q, p) and qb(X, q, p) in the IF approach each assume O(I]= (k+l))
values precluding the use of the simpler analysis.

With regard to confidence intervals, the A-R approach allows us to compute
individual asymptotically normal intervals without nuisance parameters, whereas the
IF estimators do not. For individual confidence intervals based on Theorem 5, both
methods give intervals of about the same length. This is a consequence of ignoring
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estimated variance information for the IF method. For simultaneous confidence inter-
vals the A-R method allows the development in 7 when ql,’", qw, are ordered,
whereas the IF method does not.

The IF method relies on the quantities Ro(q, p) and Rl(q, p) to derive confidence
intervals whereas the A-R method uses them to determine acceptance or rejection. If
these quantities are difficult to compute, then we may derive upper bounds for them,
as in Fishman [6], resulting in wider confidence intervals for the IF method and lower
acceptance frequencies for the A-R method.
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A NEW ALGORITHM FOR NUMERICAL PATH FOLLOWING APPLIED
TO AN EXAMPLE FROM HYDRODYNAMICAL FLOW*

JACQUES HUITFELDT? AND AXEL RUHE?

Abstract. A numerical algorithm for following a path of solutions to a nonlinear eigenvalue problem
is described. It is an Euler-Newton continuation method, where the linear systems are solved with an
Arnoldi iteration, where a factorization of the Jacobian matrix at an earlier point is used as a preconditioner.
It is shown how the eigenvalues of the Hessenberg matrix produced in the Arnoldi iteration can be used
to localize singular points, i.e., turning points or bifurcations along the path. A case of the Taylor problem
from hydrodynamics is reported as a numerical example.

Key words, bifurcation, nonlinear equations, eigenvalue, Arnoldi algorithm, spectral transformation
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1. Introduction. In the present contribution we describe a numerical algorithm
for following paths of solutions and localize turning points and bifurcations ofnonlinear
eigenvalue problems of the form

(1.1) F(x, A) :0,

where F:" ". Usually A is a real physical parameter (i.e., Reynolds number
in hydrodynamical flow, load in structural mechanics, etc.) and x x(A) represents
an approximation to the solution (i.e., flow field, displacements, etc.).

We have focused our interest on large and sparse cases where the path following
involves solution of large linear systems, but our most notable finding is a new way
of predicting singular points along the way, using a spectral transformation of the kind
that earlier proved to be successful for linear eigenvalue problems [7].

In 2 we will briefly recall the Euler-Newton continuation method, which is
explained in the pioneering papers of Keller [8], Rheinboldt [11], and Riks [12].
Furthermore, we describe a method, proposed in 12], for prediction of singular points
along the path, by solving a linear eigenvalue problem (see also [13]).

We continue in 3 by describing how a factorization of the Jacobian matrix in
one point can be used as a preconditioner in an iterative solution of linear systems in
later points. We also show how this technique can provide the information needed to
predict singular points along the path. In [3] and [4] other preconditioning techniques
have been proposed. We believe our preconditioning is a new approach. A preliminary
version of the material of 3 has appeared in 16]. In 4 we describe how to overcome
difficulties at singular points and how to switch branches. We have used an adaptation
of methods described in [8].

In the last section we will test the new method on one example of the Taylor
problem of hydrodynamics, which is the steady axisymmetric flow of an incompressible
viscous fluid between two concentric rotating circular cylinders. The steady-state
Navier-Stokes equations govern the flow and a discretization gives a problem of the
form (1.1). This problem is interesting because it is a nontrivial example that has been
tried by several other authors, see, for instance, [9] and [10].
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Let A be a real n x n matrix; then we denote by N(A) the null space of A,
{zRn" Az=0} and by R(A) the range space of A, {w6En" w=Ay for some yR"}.
The vector norm used is the usual Euclidean vector norm, Ilxl12 (x’x) 1/. ek is the
coordinate vector with a 1 in the kth position.

2. Natural parametrization. If (Xo, Ao) is a known solution of our problem (1.1)
and the matrix of partial derivatives Fx(xo, Ao) is regular, then (Xo, Ao) is called a
regular point, and the implicit function theorem guarantees the existence of a unique
path of solutions (x(A), A) through (Xo, Ao), parametrized by the naturally occurring
parameter A, with X(Ao)--Xo. If Fx(xo, Ao) is singular then (Xo, Ao) is called a turning
point if the nullspace is one-dimensional

(2.1) dim N(Fx(xo, Ao))= 1,

and the A derivative is not in the range

(2.2) Fx (Xo, Ao) R(Fx(xo, Ao)).
That means that the tangent to the path becomes orthogonal to the A direction.

If, on the other hand, the A derivative is in the range space, then (Xo, Ao) is called a
simple bifurcation point. We postpone the discussion of nullspaces of higher
dimensions.

The basic tool for the numerical computation of a path of solutions is the use of
a continuation method. All continuation methods depend on the implicit function
theorem and are based on some predictor-corrector scheme. The continuation method
that is most commonly used is the Euler-Newton method, which we now describe.

2.1. The Euler-Newton continuation method. Assume (Xo, Ao) is a known regular
solution of (1.1) and that we want to compute the solution xl at A A. Differentiation
of (1.1) with respect to A gives the differential algebraic system

(2.3) F,(x(;t ), ;t )x’(,X -F (x(,X ), ).

We predict the solution x at A with an Euler step,

(2.4) x= Xo+ (A Ao)x’(Ao),
where x’(Ao) is found from (2.3). Now we use this prediction as an initial guess to
solve F(x, A1)= 0 with the Newton method, solving systems

(2.5) Fx(x’) ll)(xi+l)-xi))--F(x]i) /1) i=0,1,’’"

until convergence.
A continuation method may fail or encounter difficulties when approaching a

singular point along the path. At a turning point these problems can be overcome by
augmenting equation (1.1) with an artificial continuation parameter and some addi-
tional constraint or normalization. At a bifurcation point some method for switching
from one branch to another is needed. In both cases it is desirable to be able to predict
the location of the singularity.

2.2. Prediction of singular points along the path. Suppose we have a solution path
(x(A), A). For what value of A is A(A) Fx(x(A), A) singular? Instead of solving the
usually nonlinear eigenvalue problem A(A)u =0, we make a linearization

(2.6) A(A) A(Ao) + (A Ao)A’(Xo) +(A Ao)R(A),
where A’(A Fxx (x(A), X )x’(A + Fxx (x(A), A and R(A is bounded if F is sufficiently
differentiable, and get a generalized linear eigenvalue problem,

(2.7) A(Ao)W + uA’(Ao)W 0.
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Now if ’o and Wo solve this eigenvalue problem, then As Ao / ’o gives a prediction
of A at a singular point. Furthermore, if o is close to zero we have a singular point
close to Ao. Then (Wo, 0) gives an approximation to the tangent to the path at the
singular point, if it is a turning point. If it is a simple bifurcation point, (x’(Ao), Ao)
and (Wo, 0) span an approximation to the tangent plane at the bifurcation point,
provided that the norm IIx’(Ao)ll2 is small enough. In 4 we will augment equation
(1.1) with an additional equation. The corresponding augmented eigenvalue problem
will always give an approximation to the tangent line or tangent plane at the singular
point, if some eigenvalue is close to zero.

3. The preconditioned Arnoldi iteration. Since factorization of large matrices is
costly, solving linear systems by a direct method in each continuation step is unfavorable
for large problems. Different iterative methods have been proposed (see, for instance,
[2] and the references cited therein). The number of iterations is related to the condition
number of the matrix, and in ill-conditioned cases it is reduced if an appropriate
preconditioning technique is used. We have chosen to factor F, in some selected points,
and use these factors as a preconditioner in the Arnoldi iteration in a sequence of
continuation steps. When many Arnoldi iterations are needed, we select a new factoriz-
ation point.

In 3.1 we recall the preconditioned Arnoldi algorithm and in 3.2 we describe
how to approximate the solutions of the eigenvalue problem (2.7) in terms of quantities
available during the computation. We summarize the computations in an algorithm in
the last section.

3.1. Solution of linear systems. Suppose we know a solution point (Xo, Ao) and
that we have factored the Jacobian M =-F,(Xo, Ao) there. In each continuation step
we want to solve several linear systems of the form F,d b (see (2.3) and (2.5)) where
the Jacobian F is evaluated near or on the solution path. Multiplication with M-from the left gives the system

(3.1) M-1Fxd M-lb.

If M is close to Fx then M-1F is close to the identity matrix, and we can expect
fast convergence in the Arnoldi iteration. Given an approximation do to the solution,
the algorithm can be described as follows.

ALGORITHM PA (preconditioned Arnoldi).
1. Compute to:- M-(b- Fxdo), and take /)1 :--" /’0/, where
2. For j 1, 2, , until convergence.

(1) r:= M-1Fvl
(2) For i= l, 2, ,j

hij:= vi r
r := r l)ihq

(3) hj+lj: Ilrll
V/l := rh/

(4) Test for convergence.

After m steps we have

(3.2) M-’FV,- VmHmm-- hm+lmVm+leTm,
where H,, is an upper Hessenberg matrix with the hq’s as its nonzero entries and V,
is an orthogonal matrix with the vj’s as columns. E, is a basis of the Krylov subspace

(3.3) K-,F(ro) =span {ro, (M-Fx)ro, (M-’F)"-lro}.
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(3.4)

If we solve the (small) linear system,

H,,,,,y,,, fle
we obtain a new approximate solution

(3.5) d,,, do + V,,y,,

to Fxd b. The residual norm can be estimated by the formula
T(3.6) IIr,,l12 IIM-l(b -Fdm)ll-hm+lmlemyml,

which follows immediately from the relation (3.2). Note that this estimate can be
computed without actually forming d,,, only the system (3.4) must be solved. If a
subdiagonal element h,,+,, =0, then d,, is the exact solution of the linear system. In
practice this seldom happens, but we can hope that eventually the last component of
the vector y,, will become very small.

In 1] a local convergence theory is presented for Newton’s method in connection
with Krylov subspace methods, and in 14] Krylov subspace methods for solving linear
systems are described. We have used the solution named FOM in [6]. We have not
tested the GMRES solution 15], but believe that the distinction is very small in this case.

3.2. Prediction of singular points by Arnoldi. Let us now turn to the problem of
predicting singular points along the path. When we use the Algorithm PA of the
preceding section, we can avoid the problem of finding the derivative (2.7), if we
replace the Taylor expansion (2.6) by the Lagrange interpolation formula

A -Ao(3.7) A(A)-
/ A1 A(Ao) +
Ao--A A1-A0

1
A(A 1) -}-- (/ *o)(/ -/I)R(A ),

z

where R(A) is bounded if F is sufficiently diiterentiable.
An approximative solution to A(A)u =0 is then given by solving

or

(3.8)

where

[(A A,)A(Ao) (A Ao)A(A,)]w 0,

A(Ao)-’A(A1)w=wO

(3.9) 0
A -Ao’

or

0

1-0

The interesting fact is now that, if we let Ao be the factorization point in the
preconditioned Arnoldi algorithm and A1 be the point where the solution is sought,
then in formula (3.2)

M A(Xo), Fx A(A1),

and the Arnoldi iteration will yield approximations to the transformed increment 0
(3.9), as eigenvalues of the Hessenberg matrix

(3.10) Hmmsm SmOm, Wm Vmsm.
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We note from the spectral transformation (3.9) plotted in Fig. 3.1, that the singular
points A closest to the [Ao, A 1] interval correspond to the absolutely largest eigenvalues
0 of (3.8). These are precisely those that will converge first in the Arnoldi process
(3.10), giving us a good prediction of the closest singular points already at a very small
number of iteration steps in Algorithm PA. Usually the 0 are in the interval 0 < 0 < 2.
A negative 0 means that there is a singular point between Ao and A 1, and a 0 _-> 2 means
that there is a singularity close behind Ao. In this paper we are only interested in real
A-values.

3.3. The preconditioned Arnoldi continuation. Let us now summarize the algorithm
we have described. Given a regular solution (Xo, Ao) of (1.1), the following algorithm
will follow a path of solutions (x(A), A) and predict the location of singularities along
the path.

ALGORITHM PAC (preconditioned Arnoldi continuation).
1. Make a factorization of the Jacobian M =- Fx(xo, Ao).
2. Fork-0,1,...

(1) Compute X’(Ak) from (2.3) using Algorithm PA with Fx- F(Xk, Ak) and
b --Fx (Xk, Ak).

(2) If k 0 then: Solve (3.10), with H,, from step (1), to predict the location
of the singularities, A, Ak + 0,(1- O)-(Ak--Ao).

(3) Choose Ak+ and perform the Euler step (2.4), to predict the solution at Ak+.
(4) Perform the Newton correction (2.5) to obtain the solution Xk+l at Ak+.

Solve the linear systems using Algorithm PA with Fx F’(t.k+l, Ak+l) and
b =--’( Ak+l)\"k+l

FIG. 3.1. The spectral transformation. Each eigenvalue 0 of (3.8) corresponds to a predicted singular
h-value, As h + 0(1- 0)-l(h- ho). Note that a O-value less (greater) than one corresponds to a singularity
with h-value greater (less) than ho.
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(5) If too many Arnoldi iterations are needed to solve the linear systems, use
(Xk+l, Ak+l) as the new (Xo, Ao) and return to step 1.

Let us now comment on step 2(2).
We can estimate the residual norm of the eigenvalue problem (3.8) by the formula

T(3.11) IIa(Ao)-lA(Ak)W,,- WmOmll2 hm+lmlemS,,I,
which follows immediately from the relation (3.2). This estimate can be computed
without forming the large vector w,,, only the small eigenvalue problem (3.10) must
be solved. If this estimate is not small enough, for a real positive 0,,, either we restart
Algorithm PA with a random starting vector, if m is very small, or we continue
Algorithm PA with the same vector, until the residual norm is small enough. In the
latter case we reorthogonalize the basis matrix Vr,.

We address some more implementation issues in 5.2.

4. Augmented problem. We can follow the solution path beyond turning points
in A, if we augment equation (1.1) with an additional artificial parameter, which is
often related to arclength and some constraint or normalization. Consider the equation

(4.1) H(y, o’)=-
N(x, A, =0’

where H :.+l x .+l and y --- (x, h). We can apply the implicit function theorem
to this new equation (4.1), provided that the Jacobian, with respect to y,

[ Fx(x,h) F(x,h) ](4.2) gy(y, or)=-
Nx(x, A, or) N (x, , o’)

is regular. If the dimension of the nullspace of Fx is at most one, it is easy to show
that at a regular point of (1.1), Hy is regular if and only if

(4.3) N NxF-IF 0

and at a singular point of (1.1), Hy is regular if and only if

(4.4) F R(F,),

(4.5) N N(F) +/-

Condition (4.3) simply states that the normal vector to the surface defined by the
equation N(x, A, tr)= 0, may not be orthogonal to the tangent to the solution path. If
(4.4) holds we can always choose N in (4.1) such that (4.3) and (4.5) hold. We note
that condition (4.4) holds at turning points of (1.1) but not at bifurcation points.

For properly chosen N, regular points and turning points of (1.1) are regular
points of (4.1). Hence, provided an initial solution (Xo, ho) is known, a continuation
method applied to the augmented equation (4.1) will compute connected components
of the solution manifold of (1.1) containing regular points and turning points.

4.1. Additional equation. Several different choices of additional constraints have
been proposed. Some often used constraints are

(4.6) N(x,h,o’)=-h-o,

(4.7)

(4.8)

(4.9)

N(x, h, o’)=- Xk--O’,

N(x, A, or) IIx’( ) / 1,

S(x, A, tr) x’(o’o) r(x(o) Xo) + h’(tro)(h (tr) ho) (r tro).
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Equation (4.6) gives the natural parametrization, a coordinate direction (4.7) for
a proper choice of k is used by Rheinboldt and others (see [11]), the arclength gives
the constraint (4.8), and the normalization (4.9) is the pseudo arclength used by Keller
[8] and Riks [12].

We choose to use the tangent direction, at the point where we factor the matrix,
as parameter direction for several steps. This corresponds to a change of coordinates.
When we make a new factorization or approach a singular point, we take a new tangent
direction. That is, we use the same pseudo arclength equation (4.9) for several steps
in the continuation method in order to be able to make consistent predictions of the
location of singularities.

4.2. Prediction of singular points. We can follow a path of solutions to the aug-
mented problem (4.1), solve linear systems, and predict the positions of singular points,
now in terms of the artificial parameter o-, with the methods described in 2 and 3
with A(A) replaced by

(4.10) A(o)=- Hy(y(cr), o’)=-[Fx(x(cr), A(cr)) F(x(o’), A(o’))]x’(o) ;t’(o)

Note that now the tangent vector (x’(tro), A’(cr0)) and the eigenvector w (2.7) are
always orthogonal, since the last row of A’(tr) is identically zero. If we want to switch
branches at the bifurcation point, we can use the eigenvector w to predict a regular
point on the bifurcating branch.

4.3. Arnoldi iteration on augmented linear systems. The preconditioned Arnoldi
iteration described in 3 can be applied to the augmented problem, if we have a
factorization of the bordered matrix M A(o-0) (4.10). M is sparse since Fx is sparse,
so we could factor M directly with a sparse factorization algorithm. However, even if

Fx has a sparse factorization, M does not necessarily have a factorization that is just
as sparse. This is because if Fx is nearly singular then some pivoting with the last row
or column of M is needed for numerical stability when factoring M, which may cause
fill-in. If Fx was well conditioned we could factor Fx and apply a block-elimination
(see [8]) but this would break down if Fx is singular. In that case we could make a
deflated block-elimination as suggested by Chan in [2].

5. Numerical example. In this section we will test the new method on a Taylor
problem of hydrodynamics, which is the steady axisymmetric flow of an incompressible
viscous fluid between two concentric infinitely long rotating circular cylinders. The
inner cylinder is rotating with angular velocity Wl; the outer cylinder is at rest.

The steady-state Navier-Stokes equations in cylindrical coordinates govern the
flow. For any value of wl they admit a stationary solution, the Couette flow, consisting
of circular orbits with velocity depending on the distance from the inner cylinder. The
Couette flow is stable for small wl, but for a critical value of wl the fluid breaks up
into horizontal bands called Taylor vortices, and a new fluid motion periodic in the
axial direction is superimposed on the Couette flow. When w is increased still further
the Taylor vortices will eventually lose their stability and the fluid will bifurcate into
a more complicated time-periodic flow.

5.1. Formulation of the problem. We carefully follow Meyer-Spasche and Keller
(see [9], [10]) using the same setup and the same discretization technique.

If R1 is the radius of the inner cylinder and R2 is the radius of the outer cylinder,
then R is used as length scale and wRa as velocity scale. The relative gap width 6 is
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defined by 6-= (R2-R1)/R1, and the Reynolds number is defined by

tOlRRe

where , is the kinematic viscosity of the fluid. Cylindrical coordinates (r, b, z) are
used with respective velocity components (u, v, w) and the pressure is denoted by p.
The Navier-Stokes equations for these flows are, in dimensionless form:

(5.1)

U
tt "f" q- W O,

Au --;5 Pr Re tltl t_ WU

Aw p Re[ uw,. + WWz ].

Here A is the axisymmetric cylindrical Laplacian

02 1 0 02
A_= -t--m+

Or2 r Or OzTM

The wavelength of the flow is denoted by A and the wavenumber by k. These
parameters are related by A6-= 27r/k and enter into the boundary conditions which
require periodicity of period 27r/k. The boundary conditions are:

u(r, -Tr/k)= u(r, 7r/k),

v( r, -r/ k) v( r, 7r/ k), 1 <-_ r <-_ 1 + 3"
(5.3)

w(r, -Tr/k) w(r, "rr/k),

p(r,-Tr/k)=p(r, 7r/k).

Making a Fourier expansion in the axial direction and using centered finite
differences in the radial direction (see [9]), we obtain a two parameter equation of the
form

(5.4) F(x, A, Re) T(A )x Re f(x, A b O,

where x represents the values of the Fourier coefficients at the radial net points, T(A)
is a sparse square matrix, f:R x R - R" is a nonlinear function with a sparse Jacobian,
and the vector b is a forcing term due to the boundary conditions. For fixed A or Re
we get a problem of the same form as (1.1).

We have used the same gap width 6 0.3755 as in 10], and we have concentrated
our computations to the region, 0.5 _-< h _-< 5.5, 0 _-< Re-< 600. The bifurcation diagram in
Fig. 5.1(a) shows the bifurcation from Couette flow to Taylor vortex flow. The numbers
in the figure indicate the number of vortices in a period of the bifurcated branch.

u(1, z)=0, u(l+6, z) =0,

(5.2) v(1, z)= 1, v(l+3, z)-0, Izl>=2rr/k,

w(1, z)=0, w(l+6, z)=O,
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Bifurcation diagram Solution diagram

L

!. LL L
1.5 2.5 3.5 4.5 5.5 .5 1.5 2.5 3.5 4.5 5.5

Wavelength L Wavelength- L

FIG. 5.1. Bifurcation and solution diagrams. (a) Bifurcation from Couette flow to Taylor vortex flow. The
numbers indicate the number of vortices in the Taylor flow. (b) Solutions along the dashed line in Fig. (a). The
Taylor solutions form closed loops. Bifurcation points are marked by circles and turning points by crosses.

In all computations reported here we have used N=6 modes in the Fourier
expansion and M--15 uniformly spaced internal radial gridpoints in the finite-
difference approximation. The number of dimensions in our problem then is n
(2N+ 1)(2M+ 1) 403.

5.2. Implementation details. We have made a FORTRAN implementation of our
Algorithm PAC, applied to the augmented problem (4.1).

In step 2(1) of Algorithm PAC, we have chosen to factorize the bordered Jacobian
matrix (4.10) directly with the sparse factorization routine MA28 [5].

In step 2(5) of Algorithm PAC we have used the following heuristics to decide
when to factorize the Jacobian matrix Fx:

oooOOe

".-" .."r"
,....::.’.""

4::;/
_*** ,0"

..." ".
g;**

:.,
".5 1.5 2.5 3.5 4.5 5.5 .5 1.5 2.5 3.5 4.5 5.5

Wavelength % Wavelength- L

FIG. 5.2. Prediction of singular points. (a) Predicted singular A-values as functions of the actual l-value

in the contituation. (b) The O-values as functions ofI in the same run. 0 passes infinity as A passes the singular
A-value. Note that when we pass the double singularity at A 3.6 two O-values pass infinity.
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The cost for an iteration of the algorithm PA is essentially a matrix-vector product
and a solve; we denote this cost by c. Let r/k denote the total number of iterations with
Algorithm PA, when computing the tangent and performing the Newton correction in
the kth iteration of Algorithm PAC. The cost of this iteration is then r/k. Furthermore,
let f denote the cost of one matrix factorization.

If we had made a factorization of the Jacobian before the kth iteration, the cost
would have been f+ k, where we estimate /k by no. We decide to factor before the
next iteration if f+ noc < rlkC.

5.3. Continuation in k---the wavelength. As in [10] we have chosen Re=
1.51/2 Recr-268.3, the dashed line in Fig. 5.1(a), and have calculated the solution
diagram using continuation in A for 0.5 -<_ A -<_ 5.5--this is shown in Fig. 5.1(b). The
bifurcation points were located with the technique described in 4.2 and we switched
branches as described in that section. In the figures we represent the solution by
u(1 + 6/2, 0), that is, the radial velocity component in the middle of the gap at z =0.

If we move along the dashed line of Fig. 5.1(a), with increasing A, we will first
encounter a bifurcation to a two-vortex flow, then a bifurcation to a four-vortex flow,

FIG. 5.3. Snapshots of the (u, w)-field as we take a tour around the first closed loop. If we travel
counterclockwise, two new cells are born at the turning point between D and E, and the two old cells die off
when passing the turning point near H.
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and finally a multiple bifurcation to both two-vortex and six-vortex flow. As we continue
in the direction of increasing h we will encounter an eight-vortex flow, then a ten-vortex
flow, and once again the four-vortex flow, and so on.

In Fig. 5.2(a) we have plotted the predicted singular h-values as we move along
the Couette branch. On the Taylor branches we also get predictions of singularities
ahead, but the plot would not look so nice since we have to change parameter directions
from time to time. In Fig. 5.2(b) we have plotted the 0-values corresponding to the
A-values of Fig. 5.2(a). As we pass a singular h-value, the corresponding 0-value passes
infinity.

If we move around the first closed loop of Fig. 5.1(b) starting at the bifurcation
from the Couette branch, we first pass a turning point, then we pass a secondary
bifurcation with the second closed loop, and then we pass a second turning point, and
finally we reach the starting point. In Figs. 5.3 and 5.4 we show snapshots of the
(u, w)-field and pressure lines during this tour. They show that we started with a
two-vortex flow, then two new vortices were formed as we passed the first turning
point, giving a four-vortex flow as we pass the bifurcation with the four-vortex flow

|11111
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FIG. 5.4. Snapshots of the pressure lines as we take a tour around the first closed loop. The pressure is

highest at the right side of the section, that is, near the outer cylinder, and the pressure levels are equally spaced
in the total variation of the pressure.
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of the second loop. The two old vortices die off when we pass the second turning
point, giving a two-vortex flow in the opposite direction compared with the two-vortex
flow on the lower half of the loop. The snapshots show the right section of the gap
over one period in the axial direction.

5.4. Continuation in Re--the Reynolds number. For different values of h ho we
computed solutions for 0<-Re=<600. We predicted singular points and changed
branches as for the A-continuation. The solutions show no closed loops and no
secondary bifurcations, at least not in the parameter ranges we covered.

The prediction of singular Re-values along the Couette branch are rather special
since the scaling makes the solution constant on the Couette branch x(Re)---x0. This
makes the Jacobian affine in Re"

A(Re) -= Fx(x(Re), Ao, Re) T(Ao) Re f(xo, Ao) Ao- Re Bo,

where Ao and Bo are constant matrices. The linearization then only amounts to a
spectral shift. Instead of the curved lines of Fig. 5.2(a) we get straight horizontal lines,
that is, we could make a single prediction to get all bifurcation points of (5.4), for
fixed A Ao on the Couette branch.
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ANALYZING HIGH-DIMENSIONAL DATA WITH MOTION GRAPHICS*

CATHERINE HURLEYt AND ANDREAS BUJA$

Abstract. Some new methods for analyzing high-dimensional data, based on real-time graphics, are
described. Three-dimensional point cloud rotations provide the canonical example of the applications of
motion graphics to data analysis. Similarly, motion may be used to good effect to explore data of arbitrarily
high dimension. This will be demonstrated by describing how a data analyst guides a projection plane as
it moves through high-dimensional data space.

Key words, high-dimensional data, exploratory data analysis, multivariate analysis, motion graphics,
projections, grand tour, guided tour, high-interaction interfaces
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1. Introduction. Graphical methods provide major data analysis tools; they are
invaluable for obtaining and presenting information. We use histograms and scatter-
plots routinely to display univariate and bivariate data. With the limitations of two-
dimensional plotting surfaces, effective display of multivariate data presents more of
a challenge. In this case, we usually resort to projections of the observations onto one-
or two-dimensional subspaces.

Motion graphics is one way of adding power to a display. The illusion of motion
is created by displaying new plots in quick succession on the screen. Provided the
motion is reasonably smooth, we may visually connect the plots by following points
as their position changes throughout the sequence. Therefore, a moving plot contains
far more information than a sequence of static plots.

The potential of motion graphics for data analysis has been demonstrated by the
PRIM-9 system (Fisherkeller, Friedman, and Tukey (1974)), and more recently, by
the PRIM-H (Donoho et al. (1982)) and ORION systems (Friedman, McDonald, and
Stuetzle (1982); McDonald (1982)). Commercial systems have become available on
affordable hardware (Donoho, Donoho, and Gasko (1985); Parker (1986); Young,
Kent, and Kuhfeld (1988)). These programs produce moving scatterplots by projecting
observations onto a sequence of two-dimensional subspaces in R3. The human visual
system interprets the result as a rotating three-dimensional point cloud, enabling us
to see its full three-dimensional structure.

The subject of this paper is motion graphics for analyzing data of possibly more
than three dimensions. More precisely, we consider moving plots obtained by projecting
observations onto a sequence of low (one or two) dimensional subspaces in Rp, where
p may be arbitrarily large. Of course, except for p 3, such moving plots generally
cannot display the entire p-dimensional shape of the data. Nevertheless, this approach
is fruitful. With motion, several types of low-dimensional structure are easily recogn-
ized: heterogeneity such as presence of outliers, and low-dimensional manifolds such
as clusters, curves, and two-dimensional surfaces. For an investigation into the power
of projection-based methods, see an interesting paper by Furnas (1988).
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Effective use of motion demands that the data analyst control the sequence of
projections. Therefore, we developed a small but powerful set of tools for constructing
guided toursmuser-controlled sequences of projections. These are described in 2.
Guided tours have been implemented in a program called the data viewer (see also
Buja et al. (1988); Hurley (1987)). The success of these methods hinges on easily
guided motion, leading us to questions of user-interface design. This is discussed in

3, where we describe a graphical interface and give some practical illustrations with
the aid of a few (static) displays. The term "guided tour" was chosen to indicate the
closeness of the present work to the "grand tour" (Asimov (1985)) as well as the
critical differences between the two concepts (see 2.1).

2. Projections of high-dimensional data. Suppose the data set consists ofp numeri-
cal variables observed on each of n cases. Each case may be represented by a
p-dimensional observation vector zi, whose jth element is its value for variable j. The
canonical basis vectors in Rp, denoted by ej, j 1,..., p, are in one-to-one correspon-
dence with the observed variables.

Consider plots formed by projecting observations from Rp to R2 or R1. Typically,
we use projections orthogonal with regard to the canonical inner product in Rp, since
this allows us to plot pairs of observed variables on perpendicular x and y axes. Note
that this inner product assigns unit length to the observed variables, therefore it may
be necessary to pretransform them to some standard units, such as zero-mean and unit
standard deviation. A two-dimensional projection results in a scatterplot where each
point represents a case. Naively, a one-dimensional projection would be displayed as
a "dot-plot" consisting of points along a line, but this contains limited information.
Instead, we chose to display a marginal density estimate for the projected observations.
Moving density plots have previously proven useful in the PRIM-H system (Donoho
et al. (1982)) as enhancements of three-dimensional motion graphics.

Moving plots (scatterplots or density plots) are produced by displaying a different
projection every fraction of a second. These projections may be characterized by a
sequence of planes P1, P2, P3,""" in Rp. We now describe a construction for such
sequences of planes.

Convention. For brevity, we will use the term planes to refer to both one and
two-dimensional subspaces.

2.1. Requirements for the sequence of planes. A moving plot should have the
following properties which can be expressed as requirements for the sequence ofplanes:

(1) The plot should move smoothly, so that we may observe the changing position
of individual points. In practice, a plot appears to move smoothly as long as the
position of each point varies smoothly. This is the case if the planes Pi step in small
increments along a smooth one-parameter family of planes (Asimov (1985)).

(2) Since our purpose is exploratory data analysis, the moving plot should be
under user control so the data analyst can pick particular (sequences of) projections.

(3) Plot motion should be performed in real time. The alternative is animation,
where all computations are performed in advance. The need for real-time motion is a
consequence of (2).

From an implementer’s point of view it is far easier if the sequence of planes is
constructed without allowing human intervention. For example, Asimov (1985) and
Buja and Asimov (1985) describe some algorithms for automatically constructing
smooth sequences of two-planes. Their grand tour sequences are designed to be dense

Implemented on a Symbolics Lisp machine, a single-user graphics workstation.
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among all two-planes in Rp, so the moving scatterplot comes closemeventuallymto
any given two-dimensional projection. However, grand tours suffer from a lack of user
control; in dimensions of five or more, there is no guarantee of observing existing
structure in a reasonable time period. In six dimensions, it takes a minimum of6,000,000
planes to get within 10 degrees of all possible planes (Asimov (1985)). At the rate of
10 planes a second, this is 160 hours of viewing time! (In fairness, though, these figures
neglect to account for additional information yielded by smooth motion.)

2.2. Constructing the sequence of planes. At the opposite extreme from automati-
cally provided sequences of planes, the data analyst is responsible for choosing
sequences where consecutive elements are close. Clearly, this task is far too demanding.
A more reasonable, intermediate approach simplifies the analyst’s task at the expense
of limiting motion control.

Our proposal is to construct sequences of planes by interpolating between consecu-
tive elements of a user-chosen sequence of planes called target planes. We refer to the
resulting sequences as guided tours, because the analyst guides the motion by selecting
target planes. Smoothness of motion then depends on the interpolation scheme.

2.2.1. Interpolating between planes. In a similar context, Buja and Asimov (1985)
proposed geodesic interpolation paths between pairs of planes, notably for their ideal
smoothness properties. Such a geodesic path is generated by rotations in the subspace
spanned by the two planes (Wong (1967)).

In the simplest case, the two planes Uo and U1 are one-dimensional subspaces,
which may be characterized by the unit vectors ao and al, respectively. Geodesic
interpolation is obtained by moving a unit vector a along the great circle connecting
ao and al. More concretely, let a be the angle between ao and al, and a* be the unit
vector obtained by orthogonalizing al with regard to ao by a Gram-Schmidt step. A
geodesic path U(t) from Uo to U1 is given by a(t)=cos ao+sin al*, for 0=< t_-< c.

Geodesics between general pairs of two-planes Uo and U1 are more intricate. To
describe them, we first introduce the so-called principal vectors: Let ao Uo, al U1 be
unit vectors attaining the smallest angle between Uo and U. Supplement them with
vectors bo Uo and bl s U1, so that (ao, bo), (al, bl) form orthonormal bases for Uo
and U1, respectively. These four vectors are called principal vectors for Uo and U1,
and the angles t (between ao and al) and fl (between bo and bl) are the corresponding
principal angles. One can show that ao and bl are orthogonal, and same for al and bo.
Geodesic interpolation between Uo and U1 may be described as a one-parameter family
of pairs of orthonormal vectors (a(t), b(t)), where a(t) moves from ao to al along a
great circle, and b(t) similarly from bo to hi. Both vectors move on great circles at
constant (but generally unequal) speeds, arriving simultaneously at their respective
targets, al and bl.

The computational steps are as follows: First find the principal directions ao, al,

bo, b, and the principal angles a and ft.2 Construct a unit vector a 1" by orthogonalizing
a with regard to ao; similarly, construct hi* from bl and bo. A geodesic U(t) from Uo
to U1 is given by the moving vectors (a(t), b(t)) where

(1) a( t)= cos ta ’ao + sin tt ’a 1", b(t) cos tfl’bo + sin tfl’b*,

Bjorck and Golub (1973) describe a general-purpose method for finding the principal vectors of two
subspaces. In the special case where the subspaces have dimension two, the calculation is far simpler: given
arbitrary orthonormal bases (rio, o) and (r, ) for Uo and U, respectively, we can maximize (cos /ro +
sin Yo, cos / sin) by solving a quadratic equation.
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a’=al(a2+2)1/2 and fl’=fll(aZ+fl2) ’/2. Then U(t), O<-t<-(az+fl2) 1/2, is a
geodesic from Uo to U1. Note that the vectors a(t) and b(t) rotate at relative rates
a//3. The first principal angle a is zero if and only if the two planes have a nontrivial
intersection, and so are contained in a three space. In this case, the interpolation
amounts to a three-dimensional rotation in the bo-bl-plane around the ao a axis.

A few important points should be noted for the proper understanding of this
interpolation scheme. First, the vectors a(t) and b(t) generally do not correspond to
the horizontal and vertical plotting axes on the screen. Changing from one geodesic
path to another typically involves a change in principal vectors within the current
projection plane. If we were to insist on using the principal vectors as horizontal (x)
and vertical (y) screen projections, we would have to subject the current screen to a
trivial within-screen rotation before motion along the new geodesic path could be
resumed. To avoid this artifact, we use properly rotated principal vectors for horizontal
and vertical projection in such a way that continuity is preserved at the point of change
from one path to the next:

a,(t) cos ba(t) + sin bb(t),

ay(t) -sin ba(t) + cos bb(t).

The angle b for within-screen rotation stays constant for a fixed path and changes at
time of changeover in such a way that ax(t) and ay(t) remain continuous as functions
of t.

As a consequence, the same target plane--if approached from two different starting
planes--will generally produce two scatterplots which differ by a rotation (and possibly
a reflection). Within a target plane, the pair of basis vectors corresponding to the
horizontal (x) and vertical (y) axis cannot be prescribed in geodesic interpolation.
Given a starting plane and within it the two directions corresponding to the x and y
axes, the geodesic interpolation algorithm automatically determines the corresponding
x and y directions in the target plane. This is in agreement with the idea that we
interpolate planes rather than specific pairs of basis vectors of a plane.

2.2.2. Real-time aspects. So far, we have described how a sequence of planes may
be constructed by interpolating along geodesic paths between user-chosen target planes.
Clearly, once a sequence of target planes has been chosen, it is possible to precompute
a denser sequence of interpolating planes. However, we prefer real-time motion to
animation for the superior control it offers the data analyst. In principle, control of
speed and backward-forward motion are possible with animation, but only real-time
controls allow for on-the-spot improvisation--an essential element of data exploration.
The principal human interference consists of interrupting the current motion path and
selecting a new target, thereby switching to a new motion path starting from the current
point. Whenever the data analyst chooses a new target, motion immediately changes
direction.

Real-time control over motion speed is also useful. Since the processor of a
graphics workstation runs at a constant pace, speed of motion graphics is effectively
controlled by a stepsize parameter which specifies the distance between adjacent planes.
As a consequence, there is a trade-off between speed and smoothness; the larger the
increment, the rougher the motion. A suitable choice for the stepsize parameter depends
largely on the time necessary to produce a new plot which in turn depends on processor
speed and the number of cases in the data set. Motion graphics systems usually do
not attempt to compute reasonable default speeds, but provide interactive control over
the stepsize parameter instead.
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In practice, sequences of planes are constructed as follows. Let Uo be the current
plane, while U1 is the current target. U( denotes the interpolating path from Uo to

U1. Each new plane is formed by stepping an amount 6 along U(). Following this,
the data is reprojected and a new plot appears. If at position d on U(), the analyst
chooses a new target U2, motion changes direction, immediately proceeding from
U(d) to U2. Otherwise, motion stops on reaching U1 and waits until another target
is supplied.

2.3. User-chosen lflanes. That leaves the problem of choosing the target planes.
Consider a target plane U, with orthonormal basis (ax, ay), where the directions a,,
ay correspond to the horizontal and vertical plotting axes, respectively. Some obvious
choices of planes are:

(i) ax =ei, ay =ej. Projection onto this plane results in a scatterplot of the ith
and jth observed variables.

(ii) a =al, ay=a2, where the p-vectors al and a2 are the first two principal
component vectors of the data.

Dynamic interpolation of plots will allow viewers to literally move between such
projections if they are given means to specify target planes.

However, typing in 2p numbers per plane requires far too much effort, detracting
from the impact of real-time motion. Aside from a few obvious choices, the data analyst
may not have much idea what planes to choose. For these reasons, the data analyst
should not have to fully specify the target planes. Rather, we propose that she/he
restricts targets to subspaces of Rp. This is easily achieved by imposing orthogonality
constraints on the vectors a and ay. It remains to produce target planes satisfying the
constraints.

2.3.1. Orthogonality constraints. The purpose of orthogonality constraints is to
restrict the target planes to useful subspaces of Rp. A sufficient number of constraints
will fully determine a target, but usually they confine exploration to subspaces. For
the kind of constraints which we propose below, it suffices that they be imposed on
the target planes: as long as successive targets satisfy the same orthogonality constraints,
geodesic interpolation will guarantee that intermediate planes will also satisfy the
constraints.

As before, let a data set of p variables and n cases be given. Again, the raw
variables are held in one-to-one correspondence with the canonical basis vectors ej in
Rp. Linear combinations of the data are called derived variables. For generality, we
assume that a set ofp linearly independent derived variables associated with coefficient
vectors Cl, c2,-.., Cp is given. For now, we assume that these coefficient vectors are
orthonormal with regard to the canonical scalar product.

As an illustration, we can always obtain a set of derived variables by principal
component directions, sorted according to decreasing variance. An analyst may explore
a low-dimensional approximation to the data by confining the planes to the space
spanned by the first few principal components. In terms of orthogonality constraints,
this is achieved by keeping the sequence of target planes orthogonal to the remaining
principal components.

The most obvious way of setting up constraints is to classify variables as active
or inactive, where only active variables can have nonzero components in the target
projection. However, considerable flexibility is gained by allowing different constraints
for the horizontal and vertical projection directions, ax and ay. This implies a further
division of active variables into categories which we denote by A, X, or Y. Intuitively,
a variable c is in category A (fully active) if both a and ay are allowed to have a
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ej-component. The variable ej is in category X (horizontally active) when ax can have
a e)-component, but ay cannot. Category Y (vertically active) variables are similarly
defined. Assuming that the e)’s are orthogonal, this may be formalized as follows:

The variable e is
(i) An A variable, if the target is unconstrained with regard to
(ii) An X variable, if aj is orthogonal to c),
(iii) A Y variable, if ax is orthogonal to cj,
(iv) Inactive, if the target (both ax and ay) is orthogonal to e).
For a given set of variables, there are only a limited number of orthogonality

constraints from which to choose. Therefore, constraint selections can be easily made
and modified in real time.

Suppose a plot is obtained by projecting observations onto a target satisfying
some of the above orthogonality constraints:

When all active variables are A variables, projection onto the target plane gives
a two-dimensional projection from the subspace spanned by the active variables.

If the active variables consist of q X-variables and s Y-variables, a plane
satisfying the constraints yields a special kind of two-dimensional projection termed
an x-y projection. In an x-y projection, a, and ay belong to orthogonal subspaces, each
spanned by disjoint sets of variables. The class of x-y projections are particularly
suitable for predictor-response data (with possibly multiple responses). If q s 1,
the constraints determine a unique projection, resulting in a bivariate scatterplot of
the Y variable versus the X variable.

The constraints result in one-dimensional projections when all active variables
are X variables. In this way, marginal density estimates for variables and linear
combinations become available.

Some constraint combinations should be avoided. For instance, there should be
at least two A variables, or one X variable. (In our current implementation, the
treatment of X and Y variables is not quite symmetric, because density estimates are
drawn on the horizontal axis only.) At any one time, active variables should be either
all A variables, or all X and Y variables. Combinations of A variables with either X
variables or Y variables are not easily interpretable, and without any obvious applica-
tions.

On the side, we note that geodesic interpolation of x-y projections permits
computational and conceptual simplifications in comparison to general two-
dimensional projections: When both start and target are x-y projections where the
horizontal and vertical directions satisfy the same orthogonality constraints, geodesic
interpolation boils down to motion along great circles from the x and y start to the
respective x and y target. This ensures that the geodesic interpolation will indeed
produce a smooth motion to the target plane in its appropriate x-y orientation.

2.3.2. Nonorthogonal constraint vectors. Canonical correlation and discriminant
analysis often provide linear combinations (derived variables) with interesting structure.
These derived variables could be used to place orthogonality constraints on the sequence
oftargets. However, unlike principal components, the canonical or discriminant variates
are not orthogonal (with regard to the canonical inner product). For example, consider
a g group discriminant analysis. Assuming for simplicity that p <_- g- 1, this produces
linear discriminants d, j= 1,...,p spanning data space. (If p> g-1, additional
vectors dg,..., dp may be constructed.) As a rule, these will not be orthogonal--by
definition, projections onto d have unit variance, and projections onto dk, d are
uncorrelated, 1 <-_j k<-p (see Mardia, Kent, and Bibby (1982)).
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Nonorthogonality causes the following problems"
Orthogonality constraints become uninterpretable. When the projection direc-

tions ax and ay are orthogonal to the inactive variables, they are not necessarily linear
combinations of the active variables alone.

Two disjoint sets of variables will no longer span orthogonal subspaces, so that
x-y projections cannot be formed.

A projection onto the plane spanned by dl and d2, for example, will not give
a bivariate scatter plot of the first two discriminants. But, data analysts routinely
examine the results of a discriminant analysis by plotting pairs of discriminants, one
against the other, just as for observed variables.

These problems arise because we initially chose to represent cases by their coordin-
ates for the observed variables zi, i= 1,. ., n, and to use projections orthogonal with
regard to the canonical inner product in Rp. This amounts to declaring that the observed
variables are orthonormal. We can get around the difficulty by representing cases in
discriminant coordinates, or equivalently, by choosing an inner product for which the

tl vectors are orthonormal.
The example of discriminant analysis illustrates that we cannot afford to insist on

a fixed notion of orthogonality, since this would place unnecessary limitations on the
applications of our methods. The obvious solution is to define a new inner product
corresponding to each set of variables Cl, c2, , Cp, so that these directions form an
orthonormal basis. Then, by accompanying a change of variables with a change to the
associated inner product, the desired effect is obtained.

Many authors (Tukey and Tukey (1981); Friedman (1987)) recommend sphering
the data prior to viewing as a means of removing linear structure. Data is sphered by
performing a linear transformation, such that the transformed data has identity covari-
ance matrix. The linear discriminants have this property, as do the standardized
principal components aj/v/-, where aj are the principal component directions, and v
is the variance of the derived variable associated with the vector a.

2.4. Sequences of targets. The previous section described how constraints may be
used to guide plane selection. To complete our description of guided tours, it remains
to describe the construction of target sequences.

Target planes satisfying the selected constraints are easily obtained: Generate a
unit vector ax which is orthogonal to any inactive or Y variables. Similarly, generate
a second vector ay orthogonal to both inactive and X variables, orthogonalize it with
regard to a, and then renormalize. These two vectors form an orthonormal basis for
the target plane.

If the two unit vectors are sampled from the uniform distribution on the unit
sphere in Rp, we obtain a random two-plane. The disadvantage of using such random
planes as targets is that they can depend on the data only in a limited sense, that is,
through the constraints. Alternatively, planes may be chosen on the basis of some
index that measures some "interesting" feature of the data (Buja, Hurley, and
McDonald (1986)). However, with current hardware, producing such planes is too
computationally demanding to be performed in real time, except for some trivial
applications. By comparison, random planes are quickly obtained, since no data-based
calculations are necessary.

Even when relying on random target planes, there is still a need for additional
guidance from the data analyst. Since it is the sequence of targets which determine the
moving plot, the targets could be combined in different ways to form the sequence.
We consider the following five target sequence constructor schemes, described below.
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Suppose Uo is the current plane and... U_3, U_2, U_l, U0 is the sequence of targets
to date. Each new plane U, j-> 0 is constructed randomly, subject to the orthogonality
constraints at the time. Then, targets may be arranged as follows:

(i) Scan: U1, U2, U3,’".
(ii) Local scan: U1, Uo, U2, Uo, U3,
(iii) Cycle: U1, Uo, U1, Uo, U1,’’’.
(iv) Backtrack: U-I, U-E, U-a," ", U-k,’’’, U-a, U_2, U-I, Uo.
(v) Rotate: Uo’’" (U1).
The scan scheme results in moving plots formed by interpolating between randomly

selected planes U1, U_. .. In fact, this is an algorithm proposed by Buja and Asimov
(1985) for producing a grand tour, and the orthogonality constraints allow for a variety
of grand tour like options. When the q < p active variables are A variables, the result
is a grand tour restricted to a subspace. In light of the huge numbers of planes required
for a "complete" grand tour, this variation is a necessity for its practical application
to data sets with more than four variables. If the active variables consist of q X-variables
and s Y-variables, we obtain a so-called correlation tour (Buja and Asimov (1985)). A
correlation tour scans one-dimensional projections of the X variables simultaneously
with one-dimensional projections of the Y-variables. It can expose relationships
between two groups of variables, providing an exploratory alternative to regression
and canonical correlation analysis. Finally, a one-dimensional tour is obtained when
only X variables are active. If we use density plots to display one-dimensional
projections, watching a one-dimensional tour lets us scan the marginal distributions.

Local scan is a variation on scan, designed for exploring the "neighborhood" of
a plane. Alternate planes are randomly selected from a neighborhood of Uo. A stepsize
parameter determines the size of the neighborhood, by specifying how far away from
Uo the random targets can be. By viewing a local scan, the data analyst may establish
how the plot changes subject to small changes in the projection plane.

Cycle moves repeatedly along the same path segment by forming a sequence of
targets made up solely of two planes. As the projection changes from Uo to U1, the
viewer mentally connects the sequence of plots, identifyin_g where points in one are
located in another. Obtaining this information takes more than one iteration, hence
the need for cycle.

Backtrack is a limited form of history mechanism, faithful to the path of planes.
It is not guaranteed to reconstruct plots exactly as they appeared in the past; for
instance, some cases might since have received a new plotting symbol, different color,
even been removed from the display. For the simplest case of moving back to the most
recent previous target, cycle may be used instead of backtrack.

Rotate is somewhat different from the previous four schemes. Typically, the
geodesic interpolation produces a rotation towards the user-chosen target, as described
in 2.2. With rotate, the data analyst may choose a particular rotation in the subspace
spanned by a pair of planes, Uo and U1, say.

When two planes span a three-dimensional subspace, choosing a rotation is
equivalent to choosing an axis of rotation. This allows the data analyst to control the
rotation of the three-dimensional point cloud obtained by projecting the observations
into the three-dimensional subspace.

In the general case where the planes span a four-dimensional subspace, there are
too many possible rotations to choose from. Therefore, we restrict consideration to
paths which are similar to the geodesic from Uo to U1 in the following sense. Recall
that the geodesic from Uo to U1 is characterized by a one-parameter family of two
orthonormal unit vectors (a(t), b(t)), where a(t) and b(t) rotate at relative speeds a/ft.
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Then we consider the paths obtained.by varying the ratio a/ft. Usin.g ao, a*, bo, b*
as defined in 2.2 for (1), such paths U(t) are characterized by ((t), b(t)),

(2) (t) cos t0aa0+sin tOaa*l, cos tObbo + sin tOb b*l,

where the ratio 0/0b is chosen by the analyst. (Compare this to (1).) For example, if
ao=el, al =e2 and bo=e3, bl--e4, this allows us to plot any linear combination of
variables one and two against any linear combination of variables three and four. If
0, Ob form an irrational ratio, the motion path is dense in the set of all possible such
linear combinations. It should be noted that the "target" U is no longer part of such
paths, unless Oa/0b is of the form (a + mTr)/(fl + nTr) where m, n are integers.

3. Implementation and interpretation. The previous section described a construc-
tion for guided toursmuser-controlled sequences of projections. This section describes
some elements of an implementation (called data viewer) which are crucial to the
successful use of these techniques. Unlike other procedures for data analysis, power
tools for graphical data exploration come into their own only when embedded in a
highly interactive environment. Analytical aspects and human interface questions are
hard to separate in an endeavor which tries to bring together the power of dynamic
displays and the analytics of multivariate statistics. The goal is to convince the reader
that guided tours provide useful and practical tools for analyzing data. Unfortunately,
there can be no substitute for actual use. However, we hope to illustrate the potential
of these methods by first giving some examples of data viewer displays, and second,
describing some aspects of the user interface. The static displays presented here should
be thought of as either intermediate steps or destinations of dynamic plot interpolation.

3.1 Display components: Representing cases and variables Data viewer displays
appear in rectangular areas on the screen called data viewer windows. Figure 1 shows

X

3ATE DEPTH

LATITUDE MAGNITUD_E

LONGITUDE

IROTATE

ST.HELENS

FIG. 1. A data viewer window.
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a data viewer window for a data set which consists of earthquake data recorded in
Mount Saint Helens during May 1980. The central item appearing in a data viewer
window is the point scatter, obtained by projecting the observations onto some plane.

An important role in the interpretation of a display is assigned to the variable
boxes on the left-hand side, where each box represents one variable: The lines or
vectors emanating from the box centers identify the current projection plane. More
precisely, the line in the box for the jth variable represents the projection of the basis
vector ej (the unit vector corresponding to the jth variable) onto the current plane.
For instance, in Fig. 1 the variable date is plotted horizontally while lat+/-ude is
plotted vertically. The projection plane is orthogonal to all variables whose boxes do
not show a projection vector. For an example of a less trivial projection see Fig. 3,
which is explained below. The projected variable vectors in the variable boxes are the
means by which we identify the position of the projection plane in data space since
they are a visual equivalent of the projection directions ax and ay. The jth components
of ax and ay are proportional to the horizontal and vertical lengths of the jth projected
variable vector. In the language of psychometrics, they represent normalized "factor
loadings."

In comparison, it has become customary in three-dimensional graphics to display
a three-pod representing the three projected basis vectors. This would not easily
generalize to a p-pod for p-dimensional graphics as dealt with in this paper. The clutter
would prohibit easy identification of vectors and their association with variables.

Other items appearing in the data viewer display give auxiliary information. For
instance, the variable box labels drawn in the upper left of the variable boxes informs
us about the current orthogonality constraints. A label of X, , or A indicates that the
variable is currently classified as X, Y, or A, while no label means the variable is
inactive. The rectangular region in the lower left is a control panel. Its bottom third
allows us to control speed and gives a sense of motion via mouse clicks. The top of
the panel allows us to select target sequence constructors such as rotate or scaa in the
right half, and to toggle between smoothly interpolating motion and discontinuous
sequences of projections in the left half.

3.1.1. Density plots. For displays of one-dimensional projections, the y coordin-
ates consist of the estimated density at each projected observation, so the density
appears as a series of glyphs instead of the usual curve (see Fig. 2). As long as the
data set is not too small, such a plot can give a reasonably good picture of the density’s
shape. Speed is the primary motivation for this plotting technique, since the hardware
at hand is not sufficient to display curves moving in real time. In addition, it has the
advantage of allowing us to distinguish particular cases, or groups of cases, as the
motion proceeds.

As a density estimate we use a frequency polygon average shifted histogram (Scott
(1985)), which is a proper density estimate contrary to its name. Speed is the main
advantage of this procedure over more commonly used kernel density estimators. Like
the histogram, it takes time proportional to the number of data points, but avoids the
usual lack of smoothness caused by binning. Particularly for motion, it is important
that the density estimate be smooth. A slight modification in the one-dimensional
projection causes discrete jumps in the histogram bin counts, but only small changes
in level for smooth density estimates. Jumps distract us from observing how small
changes to the projection affect the marginal distribution. On the other hand, smooth
changes enable us to see, for example, how the distribution becomes more skewed as
the projection changes.
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FIG. 2. A density estimate.
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FIG. 3. Four-dimensional rotations.
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3.1.2. Higher dimensional projections. Figure 3 illustrates a projection from a
higher dimensional subspace. The sat+/--0c3 data consist ofmicrowave bright-
ness temperatures recorded by satellite from a narrow strip stretching from the Bering
Sea to the North Pole. The six microwave variables correspond to three frequencies
with values for horizontal and vertical polarizations. An examination of the variable
box labels and the control panel in Fig. informs us that this projection was obtained
by rotating the x-vector a in the space spanned by 8-V and 37-V, and simultaneously
rotating the y-vector ay in the 22-H and 22-V plane. The scatterplot has a pronounced
"Z"-like shape. By investigating the locations of the rods forming the "Z," we find
that the left and right clusters are located at high and low latitudes, respectively, and
the remaining points at middle latitudes. In fact, these clusters are the dominant feature
of the data.

3.1.3. Derived variables. In the examples so far, the observed variables were used
as the current variable set. When derived variables form the current set, we could
simply let each variable box represent a derived, rather than an observed variable.
Instead, we draw additional boxes on the right-hand side for the alternative set of
variables (see Fig. 4). This has a number of advantages:

18-H ,37-H

18-V 37-V

22-H LATITUDE

22-V LONG[l".ODE

[SCAN

ATELL TE-tDCT"i

:.,’2" .;

Y

PC-1 :C;-.5

X

,PC-2 PC-6

IPC-3 LATITUDE

PC-4 LONGITUDE

FIG. 4. Principal components.

The user can readily switch from one set of variables to the other, since both
are represented in the window.

More information is displayed: Due to the projected variable vectors drawn in
each box, any plot may be interpreted as a linear combination of either the observed
or derived variables.

A principal components analysis of the microwave readings produced six derived
variables, with latitude and longitude included so that the derived variables span
data space. (In this case, it is important that standardization preserves the relative
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scales of the microwave readings, which all have the same units.) Figure 4 contains a
bivariate scatterplot of the first two principal components, displaying a sharper version
of the structure evident in Fig. 3. Due to the variance optimizing properties of principal
components, Fig. 4 shows a far greater spread of points in the y direction, as derived
variables are not restandardized prior to plotting. The first two principal component
dimensions together account for 99 percent of the variability in the data set, so the
remaining principal components will appear as very small blobs in the middle of the
plot region. By examining the projected variable vectors in the left-hand side boxes,
we see that

(1) The first principal component is a weighted average of the original variables
since all variable vectors point upwards;

(2) The second principal component contrasts high- and low-frequency measure-
ments since the variable vectors for 18-H and 18-V point left, the ones for 37-H and
37-V point right, while the ones for 22-H and 22-V are more or less vertical.

The first point above is hardly surprising: Microwave readings are strongly influen-
ced by the surface temperature, which we would expect to be the primary source of
variability, given the range of latitudes involved. Therefore, it seems as if the first
principal component is a surrogate for temperature.

This example demonstrates the analytic interpretation of graphical outputs. More
traditionally, principal components are examined by displaying the coefficient vectors
in a numerical format. Particularly for large numbers of variables, our graphical
representation allows for more immediate, though less precise, interpretation.

The right-hand side boxes in Fig. 5 represent sphered variables, obtained by a
standardization of the principal components to unit variance. In Fig. 5(a) we note a
(at least initially) surprising effect which derives from restandardization" the current
projection onto the variables 18-V and 18-H loads almost exclusively on the first
standardized principal component (i.e., the first sphered variable). This implies that
the current projection is highly nonorthogonal with respect to the scalar product in
standardized principal component space (i.e., sphered coordinates). However, it is
immediately clear that this should be so: due to the strong correlation between 18-V
and 18-H the direction with small variance (from SE to NW in Fig. 5(a)) will be
strongly affected by restandardization to unit variance.

To sphere the scatterplot, we could imagine stretching it in the SE-NW direction.
The effect of this manipulation (together with a rotation of about 45 degrees clockwise)
is shown in Fig. 5(b), formally produced by a switch to sphered coordinates. Such
restandardizations or changes in scale drastically affect perception, as is also docu-
mented in Buja et al. (1988). What were the upper right and lower left dense portions
of a long narrow point cloud in Fig. 5(a) are two parallel and vertically elongated
clusters in Fig. 5(b). The same effects extend to the projected variable vectors: the
variables 18-V and 18-H (which still span the projection plane) are no longer orthogonal
to each other with regard to the sphered scalar product. Their positions reflect once
more the fact that Fig. 5(b) is obtained basically by stretching Fig. 5(a) in the SE-NW
direction and rotating it about 45 degrees. In fact, all of these changes in the scatterplot
are the result of a single operation, notably the change from observed to sphered
coordinates. Of course, geodesic interpolation does not allow for a smooth transition
between the plots of Fig. 5, so the second plot appeared instantaneously, with the
choice of orientation being made arbitrarily by the system. (An additional operation
allows within-screen rotation of projections.) As a side remark, note that variable box
labels "A" appear in the right-hand side boxes of Fig. 5(b) indicating that the sphered
variables form the current set of variables.
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FIG. 5. Sphered coordinates.
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3.2. Designing the user interface. User control was a primary consideration in our
development of methods for constructing moving projections. As pointed out, for
applications in data analysis, motion should be under immediate user control. At the
same time, placing too much of a burden on the user will render guided tour methods
inaccessible to all but the most dedicated. We hope to avoid this by providing a small
set of motion controls, available to the user through a graphical interface.

3.2.1. A graphical interface. In conventional systems for data analysis such as S
(Becker, Chambers, and Wilks (1988)), Minitab (Ryan, Joiner, and Ryan (1976)), or
MATLAB (Moler (1980)), the user types in commands such as plo’c (x, y) to produce
a scatterplot. In contrast, the data viewer user operates the program by using a mouse
cursor to point at items in a data viewer window, many of which are mouse sensitive.
Clicks on one of the three mouse buttons cause the display to change. Such a graphical
interface is appropriate for applications in real-time graphics, where fast user-program
communication is essential.

In 2.3, we saw that user-guided target selection is the key element in the data
viewer’s construction of sequences of planes. User-guided target selection is achieved
by

(i) Choosing orthogonality constraints, and
(ii) By choosing a target sequence constructor.
The following describes a graphical interface for these user controls. The rec-

tangular area in the window’s control panel showing the current choice of target
sequence constructor (rotate, scan,...) is mouse sensitive. When the mouse cursor
moves into this area, a documentation string appears at the bottom of the screen saying
L: Scan, L2: Local Scan, M: Rotate, R: Cycle. This indicates that, for instance,
a double click on the left mouse button changes from scan to local scan. The
symbols L, L2, M, R denote left, double left, middle, and right mouse clicks, respec-
tively.

Choosing constraints is somewhat more involved, but is achieved by changing the
variable box labels. The circular area marked in each variable box is mouse sensitive
and clicks in this region change the labels. As represented in Fig. 6, the mouse cursor’s

X

DATE
FIG. 6. Changing shape of the mouse cursor as a function of location within the circular area ofa variable

box.
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shape changes as it moves through the circular area, where the shape demonstrates
the effect of a mouse click. When the cursor shape is X, Y, A, or 0, a single click on
the left or middle mouse button changes the label to an X, Y, A or blank, respectively.
For X and cursor shapes, middle clicks have an additional effect. If the box with the
mouse cursor receives an X label, then an X in any other variable box is replaced by
a blank label. This reduces the number of clicks necessary to pick bivariate scatterplots.
Changing the variable box labels usually has no instantaneous effect on the displayed
projection, as the labels only affect future target selection. However, smooth motion
towards the target is not always of interest, for example, when examining bivariate
scatterplots. Therefore, we use double clicks on a mouse button in the variable boxes
to mean a change of label and a jump to a new target. As a result, mouse clicks in
two boxes are sufficient to produce a bivariate scatterplot.

Mouse clicks on the plot region itself toggle motion from off to on. When rotate
is the target sequence constructor, the position of the mouse cursor specifies a particular
rotation within the current four-dimensional subspace. In the degenerate case of a
three-dimensional subspace, the points spin around an axis orthogonal to the direction
given by the plot region’s center and the cursor position. For four-dimensional sub-
spaces, the slope of the line from the mouse cursor to the plot region’s center gives
the relative rotation speeds Oa/Ob (see 2.4, eq. (2)). In either case, the visual effect
is of points moving towards the mouse cursor. For example, note that when the mouse
click is near the horizontal line through the plot region’s center, the rotation speed for
the y direction is comparatively small, so the motion is "almost" a three-dimensional
rotation around the y axis.

3.2.2. Consistency of the interface. Ideally, we would like a particular user action
to have identical effects in all cases. This makes the system easier to learn and use,
because there are no special cases to memorize (Foley and Van Dam (1982, Chap. 6)).
As the examples below illustrate, this is not always achievable with our application.
At least, the interface should be consistent, so that each user action always has a similar
effect, whatever the circumstances.

As mentioned previously, clicks in the plot region cause the plot to move. However,
when rotate is the target sequence constructor, these clicks also specify the direction
of motion.

The effect of changing constraints depends to some extent on the target sequence
constructor. Constructors such as backtrack that reuse old targets, simply ignore the
orthogonality constraints, whereas schemes like scan that provide new targets observe
the constraints. Most of the time, label changes do not affect the current projection
right away. They affect subsequent motion through immediate selection of a new target
which satisfies the new orthogonality constraints, at least in those cases where the
target sequence constructor creates new targets.

There are some cases of label changes where one encounters problems with smooth
interpolation:

Switching between two- and one-projections does not allow meaningful interpo-
lation. A discontinuous jump to the target is appropriate and easily anticipated by the
user.

When the start is a general two-dimensional projection, and the target is an x-y
projection, a problem in the geometry of geodesic interpolation arises: In this case,
geodesic plane interpolation need not arrive at the x-y projection, but a rotated x-y
projection. As explained in 2.2.1, for true plane interpolation the target projection
can only be prescribed up to a rotation within the screen, whereas an x-y projection
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calls for a fixed orientation of the x and y axes up to a sign (unless there is only one
x or y axis, in which case even its sign should be prescribed in order to prevent plotting
of the negative of a variable). To avoid this conflict, the geodesic interpolation would
have to be followed by a trivial within-screen rotation to achieve the desired x-y
projectionman option which is not provided in our current system but could easily be
implemented.

A similar case is when start and target planes both give x-y projections, but the
start’s x (y) subspace overlaps with the target’s y (x) subspace. Again, geodesic
interpolation would have to be followed by a within-screen rotation.

An unresolvable case may occur when all but two variables are inactive, but
the activated ones change role, e.g., from X, Y to Y, X or A, A to X, Y: in this case,
the start and the target would be the same, but they may have opposite orientations.
Only a discontinuous reflection or a continuous rotation involving an inactive variable
allows us to proceed from start to target.

Other than for certain label changes of variables, a jump (rather than continuous
interpolation) is appropriate also when the scalar product changes, as for example,
when switching to sphered coordinates. This is indeed one of the more disconcerting
transitions for a viewer since rescaling of data space forces a complete rethinking and
reinterpretation of perceived structure, as is illustrated by a comparison of Figs. 5(a)
and 5(b) (see 3.1.3).

4. Conclusions. The goal of this work has been to devise and implement ways of
exploring multivariate data based on motion through sequences of projections. The
application demands a highly interactive implementation, so that the data analyst
controls the exploration process. To summarize, the key issues involved are:

Guided tours. We developed a general paradigm for constructing guided tours
of data--namely, by interpolating between consecutive elements of a user-determined
sequence of target planes.

Choosing target planes. Rather than precisely specifying each target, orthogonal-
ity constraints are imposed which restrict the targets to subspaces. This implies that
guided tours include a variety of methods for data exploration, both old and new,
from three-dimensional rotations to grand tours on user-defined subspaces.

Data-dependent motion. Arbitrary linear combinations may be used to define
new variables. Most usefully, these variables are data derived, for example, through
such multivariate methods as principal components, canonical correlations, dis-
criminant analysis, and data sphering. Orthogonality constraints together with data-
derived variables allow for data-dependent targets and therefore data-dependent
motion paths.

The user interface. A graphical interface is necessary for guided tours. Para-
meters controlling the motion have graphical representations, so that the user is always
aware of their current state. Via mouse interaction, a user can make instantaneous
choices in a direct manipulation mode. This is particularly important in a system which
is capable of exposing a viewer to graphical output in the form of relentless motion.

This paper described a fairly comprehensive set of tools for constructing sequences
of projections. But many additions are possible, even within the scope of our paradigm
for guided tours. First, we could consider alternative interpolation paths between pairs
of planes. More importantly, we could consider further tools for selecting projections.
Here, we give brief mention to just a few of the possibilities. Frequently, a variable
with a small coefficient in a particular projection (for example, the first principal
component) is disregarded when drawing conclusions. For safety, one should examine
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the plot obtained when the coefficient of this variable is set to zero. Choosing a target
by orthogonalizing the current plane with regard to the direction of the variable will
achieve this. Conversely, one could choose a target which increases the coefficients of
a selected variable, while keeping the relative contributions of the others constant.
Additional capabilities could be specially designed for the regression problem. If the
best-fitting linear combination and residuals obtained from a user-chosen response
and explanatory variables were available at the click of a mouse button, we could
produce residual plots, added-variable plots and do interactive stepwise regression.
The authors hope to develop methods along these lines in the near future.

Acknowledgments. We thank D. Asimov, G. W. Furnas, J. A. McDonald, and W.
Stuetzle for helpful discussions at various stages of this work. We also owe thanks to
a referee for invaluable comments and suggestions.

REFERENCES

D. ASIMOV (1985), The grand tour: a toolfor viewing multidimensional data, SIAM J. Sci. Statist. Comput.,
6, pp. 128-143.

R. A. BECKER, J. M. CHAMBERS, AND A. R. WILKS (1988), The New S Language, Wadsworth, Belmont,
CA.

A. BJORCK AND G. H. GOLUB (1973), Numerical methods for computing angles between linear subspaces,
Math. Comp., 27, pp. 579-594.

A. BUJA AND D. ASlMOV (1985), Grand tour methods: an outline, in Computer Science and Statistics: Proc.
17th Symposium on the Interface, Elsevier, Amsterdam.

A. BUJA, O. ASIMOV, C. HURLEY, AND J. A. MCDONALD (1988), Elements of a viewing pipeline for data
analysis, in Dynamic Graphics for Statistics, W. S. Cleveland and M. E. McGill, eds., Wadsworth,
Belmont, CA.

A. BUJA, C. HURLEY, AND J. A. MCDONALD (1986), A data viewer for multivariate data, in Computer
Science and Statistics: Proc. 18th Symposium on the Interface, Elsevier, Amsterdam.

D. L. DONOHO, P. J. HUBER, E. RAMOS, AND M. THOMA (1982), Kinematic display of multivariate data,
in Proc. 3rd Annual Conference and Exposition of the National Computer Graphics Association,
Fairfax, VA.

A. W. DONOHO, D. L. DONOHO, AND M. GASKO (1985), MacSpin Graphical Data Analysis Software, D
Software, Austin, TX.

M. A. FISHERKELLER, J. H. FRIEDMAN, AND J. W. TUKEY (1974), PRIMo9 An interactive multidimensional
data display and analysis system, in Data: Its Use, Organization, and Management, Association for
Computing Machinery, New York.

J. D. FOLEY AND A. VAN DAM (1982), Fundamentals of Interactive Computer Graphics, Addison-Wesley,
Reading, MA.

J. H. FRIEDMAN (1987), Exploratory projection pursuit, J. Amer. Statist. Assoc., 82, pp. 249-266.
J. H. FRIEDMAN, J. A. MCDONALD, AND W. STUETZLE (1982), An introduction to real time graphics for

analyzing multivariate data, in Proc. 3rd Annual Conference and Exposition of the National Computer
Graphics Association, Fairfax, VA.

G. FURNAS (1988), Dimensionality constraints on projection and section views of high dimensional loci, in
Computer Science and Statistics: Proc. 20th Symposium on the Interface, American Statistical Associ-
ation, Alexandria, VA.

C. HURLEY (1987), The data viewer: a program for graphical data analysis, Ph.D. thesis and Tech. Report,
Department of Statistics, University of Washington, Seattle, WA.

K. V. MARDIA, J. T. KENT, AND J. M. BIBaV (1982), Multivariate Analysis, Academic Press, New
York.

J. A. MCDONALD (1982), Interactive graphicsfor data analysis, Ph.D. thesis, Stanford University, Stanford,
CA.

C. B. MOLER (1980), MATLAB user’s guide, Tech. Report CS81-1, Department of Computer Science,
University of New Mexico, Albuquerque, NM.

D. PARKER (1986), Acrospin, software running on IBM PC compatibles, ACROBITS, Menlo Park, CA.
T. A. RYAN, B. L. JOINER, AND B. F. RYAN (1976), Minitab Student Handbook, Duxbery Press, North

Scituate, MA.



ANALYZING DATA WITH MOTION GRAPHICS 1211

D. W. SCOTT (1985), Average shifted histograms: Effective non-parametric density estimation in several
dimensions, Ann. Statist., 13, pp. 1024-1040.

P. A. TUKEY AND J. W. TUKEV (1981), Preparation: Pre-chosen sequence ofviews, in Interpreting Multivariate
Data, V. Barnett, ed., John Wiley, New York.

Y.-C. WONG (1967), Differential geometry of Grassmann manifolds, Proc. Nat. Acad. Sci. U.S.A., 57,
pp. 589-594.

F. W. YOUNG, D. P. KENT, AND W. F. KUHFELD (1988), Dynamic graphics for exploring multivariate data,
in Dynamic Graphics for Statistics, W. S. Cleveland and M. E. McGill, eds., Wadsworth, Belmont, CA.



SIAM J. ScI. STAT. COMPUT.
Vol. 11, No. 6, pp. 1212-1220, November 1990

()1990 Society for Industrial and Applied Mathematics
012

TIMELY COMMUNICATION

Under the "timely communications" policy for the SIAM Journal on Scientific and Statistical
Computing, papers that have significant timely content and do not exceed five pages automatically
will be considered for a separate section of the journal with an accelerated reviewing process. It will
be possible for the note to appear approximately six months after the date of acceptance.

A DOMAIN DECOMPOSITION ALGORITHM USING A
HIERARCHICAL BASIS*

BARRY F. SMITH AND OLOF B. WIDLUND:

Abstract. Over the last five years, several new fast algorithms have been developed for the solu-
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1. Introduction. We consider second order, self-adjoint, uniformly elliptic dif-
ferential equations on a two-dimensional polygonal domain gt. The problems are solved
numerically by using continuous, piecewise linear finite elements. The domain is first
subdivided into nonoverlapping, triangular subregions i, also called substructures,
and these are further triangulated into elements. H denotes the diameter of a typical
substructure and h the diameter of its elements.

We develop a domain decomposition algorithm similar to those considered by
Bjcrstad and Widlund [4], [5]; Bramble, Pasciak, and Schatz [6], [7]; Dryja and Wid-
lund [15]; and Widlund [25]. When using these methods, the variables interior to
individual substructures are first eliminated. The resulting reduced system, the Schur
complement, therefore involves only the variables associated with F, the set of edges
and vertices of the substructures. This system is then solved by a preconditioned con-
jugate gradient method, where the preconditioner is constructed from certain prob-
lems associated with the interfaces Fij Oti Oj between the substructures, and
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a global coarse problem associated with the vertices of the substructures. We note
that it is shown in Dryja and Widlund [15] that such a preconditioner naturally can
be viewed in terms of a splitting; cf. Varga [24]. In the splitting, the couplings be-
tween the groups of variables, associated with individual edges of the substructures,
are eliminated. It is also shown in [15] how results and algorithms for the case of two
substructures can be used to construct and analyze problems on many substructures.

Various preconditioners have been proposed for the subproblems associated with
the edges Fij. For each Fij, this is essentially a two-subregion problem, and we can
therefore take advantage of a number of results obtained in early work on domain
decomposition algorithms. Already in 1980, Dryja [13], see also [14], introduced an
effective preconditioner J, which is the square root of a discrete, one-dimensional
Laplacian on Fij. The same preconditioner was also discussed in BjCrstad and Wid-
lund [5] and Bramble, Pasciak, and Schatz [6]. Other preconditioners for these two
subregion subproblems, such as the Neumann-Dirichlet algorithm, were considered by
Bjcrstad and Widlund [5]; Bramble, Pasciak, and Schatz [7]; Chan and aesasco [10];
Chan and Keyes [9]; Dihn, Glowinski, and Priaux [12]; and Golub and Mayers [18]. A
number of the resulting algorithms for the many-substructure case are known to be al-
most optimal in the sense that the condition number is bounded by C(1 + log(H/h))2.
For a more complete discussion, see Bjcrstad and Widlund [5] and Widlund [25] for
the two-subregion and many-subregion cases, respectively.

An alternative almost optimal algorithm, which uses a hierarchical basis, has
been introduced by Yserentant [27]. His bound on the condition number is of the
same form. The construction of this preconditioner is carried out in two steps. The
standard finite element nodal basis is replaced by a hierarchical basis, resulting in
a transformed matrix which is much better conditioned. The preconditioner for the
transformed matrix is then obtained by discarding the off-diagonal blocks and by
replacing all but one of the diagonal blocks by identity (or diagonal, cf. [19]) matrices.
The block matrix retained corresponds to the finite element discretization on the
coarse mesh defined by the substructures.

In this paper, we consider a hybrid method demonstrating that a successful and
simple preconditioner can be obtained by changing the bases of the spaces associated
with individual edges Fij. Our proof uses only tools of linear algebra and Yserentant’s
main result. We show that the new method has a smaller condition number than
Yserentant’s original method; thus it grows no faster than C(1 + log(H/h)) 2, a result
confirmed in our numerical experiments.

Our work has been inspired by the recent works of Babugka et al. [1]; Babugka,
Griebel, and Pitkranta [2]; and Mandel [20], [21], [22], where efficient preconditioners
for the p-version of the finite element method are developed by using hierarchical basis
functions and partial orthogonalization of the basis functions. Similarly, our algorithm
for the h-version involves a change of basis. It is extremely easy to carry out, and it
results in a much better conditioned linear system.

We note that an accelerated version of Yserentant’s algorithm has been developed
by Bank, Dupont, and Yserentant [3]. It can be viewed as a symmetric, successive
block overrelaxation method, while the original method is a block Jacobi method. Our
hybrid algorithm could similarly be accelerated, but we have not yet implemented such
a method. Although we have chosen not to do so in this paper, all the algorithms
considered here and in [3] can be viewed as particular instances of additive or multi-
plicative Schwarz algorithms, cf. Dryja and Widlund [16], [17]. For recent important
work on the general multiplicative case, see Bramble et al. [8].
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FIG. 1. Hierarchical basis functions in one dimension.

2. Yserentant’s algorithm and iterative substructuring methods. In this
section we provide the necessary background to make it possible to define the new
algorithm and to put it in some perspective.

We consider a second order, self-adjoint, uniformly elliptic, bilinear form an(u, v)
on and, for simplicity, impose a homogeneous Dirichlet condition on OFt:

a(u, v)= (f, v), V v C H(t), u C H(t).
For the two levels of triangulations into substructures ti and elements introduced

earlier, we assume shape regularity and the satisfaction of the usual rules of finite
element triangulations; see, e.g., Ciarlet [11]. vH(fl) and vh(2) are the spaces of
continuous, piecewise linear functions, on the two triangulations, which vanish on the
boundary 0f.

The discrete problem is then of the form

(1) a(uh, Vh) (f, Vh), VVh e vh(t), Uh e vh(t).
2.1. The hierarchical basis method. The hierarchical basis method provides

a general-purpose preconditioner for second order elliptic problems in the plane; see
Yserentant [26], [27]. The algorithm is given in terms of a set of spaces Yh,
0,... ,j, which are successive refinements by a factor of two of Vh Vg. Vh is
the set of piecewise linear finite element functions after levels of refinement from the
original coarse triangulation with Vh Vh. Vh is a direct sum of subspaces

where Voh Vh and Vih Vh \ Vh-l. In other words, V/h is the set of piecewise
linear functions in Vh which are zero at the nodal points of the triangles of all coarser
triangulations (see Fig. 1 for a one-dimensional case). For the spaces Vh, we choose a
basis of standard nodal functions of Vh associated with the new nodes. The resulting
basis for the entire space Vh is much closer to being orthogonal in the H1 sense than
the standard nodal basis functions, and the stiffness matrix is therefore much better
conditioned.

Yserentant’s preconditioner is a block diagonal matrix in the new basis. The first
block is defined by the finite element model for the subspace Vg and the others are
diagonal. In matrix notation the resulting system, which is solved by a conjugate
gradient method, is of the form

D-I/2HTKHD-1/2&
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or equivalently,

D-1HTKHc [7.

Here K is the original stiffness matrix, H represents the transformation from the
hierarchical to the nodal basis, and D is block diagonal and obtained from HTKH,
as described above. In an implementation, there is no need to represent the stiffness
matrix explicitly in the new basis. Instead, we perform the basis change on the vectors
as needed.

In [27], Yserentant develops the algorithms needed for performing the basis change
from hierarchical basis to nodal basis and back; he also demonstrates that each requires
fewer than 2n additions and n divisions by 2, where n is the dimension of the finite
element space. The following algorithm is valid for both one and two dimensions.

Algorithm to form x - Hx
for k 1 to number of levels

for on level k
xi xi + (xIl, + xI2)/2

next
next k

The integer arrays 11 and 12 contain pointers to the two neighbors of which are on
the next coarser level. We can regard the algorithm as defining a factored form of
the matrix H. The nodal-to-hierarchical transformation x ,-- H-Ix is similar. We
note that the coarse mesh need not be uniform; see Fig. 1. If the refinements are not
uniform, then the weights in the algorithms have to be adjusted. It is also possible to
continue the refinement only in selected subregions.

2.2. Iterative substructuring methods. Iterative substructuring algorithms
use a different splitting of the space Vh into N + 1 subspaces;

Vh ViCarm ( v0h("l)(... ( Voh(N).

For each substructure ti, we thus have a subspace v0h(i) Yh [H(i). The
elements of Yhharm are piecewise, discrete harmonic functions, i.e., they are orthogonal,
in the sense of the bilinear form a(., .), to all the other subspaces. It is easy to show
that an element of Vhharm is uniquely determined by its values on F

In a first step of many substructuring algorithms, the variables interior to the
gti are eliminated. We partition the vector x (xi,xB) and the stiffness matrix
K accordingly. The system that remains to be solved is, after a block Gaussian
elimination step,

(3) Schur(K)xB gB.

Here Schur(K) is a Schur complement defined by

Schur(g) KBB KBK-KIB.
A particular iterative substructuring method is defined by the choice of a pre-

conditioner for (3). Finally, when accurate enough values on F have been computed,
the values elsewhere are determined by solving N separate Dirichlet problems on the
individual substructures. We note that it is not necessary to compute the elements
of Schur(K) since, in the conjugate gradient iteration, this matrix is needed only
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in terms of matrix-vector products. Such a product can be found at the expense of
solving one problem on each of the substructures.

A number of preconditioners can be described as follows: We first carry out a
partial change of basis, associating the standard basis functions of VH with the vertices
of the substructures. In the new basis, we represent the Schur complement as

STEv SVV

Here Svv denotes the part of the Schur complement associated with the vertices of
the substructures, SEE the part associated with the edges between substructures and
SEV is the part which contains the coupling between the edges and the vertices of the
substructures.

The preconditioner for this system is given by

0 vv
where vv is the coarse mesh finite element problem and EE is a block diagonal
matrix. Each of its blocks is associated with the variables of a single edge Fij. The
operator J, mentioned before, can be used for this purpose; for other examples of such
algorithms, see the references given in the third paragraph of 1.

3. The hybrid algorithm. We could combine the two main ideas of 2 as fol-
lows: We first represent the stiffness matrix in the hierarchical basis to obtain the
system given in (2) and then eliminate the interior variables of all the substructures.
We proceed by solving the remaining Schur complement system approximately with-
out further preconditioning. Finally, we use the resulting values as boundary data for
the local problems on the individual substructures.

In the new algorithm, we proceed differently, but as we shall see, we will obtain the
same approximate solution without the considerable expense of converting the stiffness
matrix into the hierarchical basis. In our algorithm we work with the standard nodal
basis while eliminating the interior variables, only changing to the hierarchical basis
on F, the set of interfaces and vertices. The resulting linear system is similar to that
of 2.2:

-1 TDBBHBBSChur(K)HBBB 9B.

It is important to note that we do not use any further preconditioning of the variables
associated with the edges Fij.

This method offers several possible advantages over the standard hierarchical
basis. The conjugate gradient iteration is carried out over a much smaller set of
unknowns and we will show that the condition number is smaller. The solution of
the subproblems is easily parallelizable since they are independent. The hierarchical
basis method in its original form appears to offer less opportunity for this trivial type
of parallelization. The change of basis required in each iteration step now consists
of completely independent one-dimensional problems instead of a two-dimensional
problem. The basic observation is that the values at a node on Fij can be computed
using only the coefficients for the hierarchical basis functions related to that edge.

We now prove the almost optimality of our algorithm using two simple lemmas
and Yserentant’s result.
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LEMMA 1. Let G represent a change of basis, which leaves the space of variables
on F invariant. Then the Schur complement associated with this set of unknowns is
independent of the choice of bases for Voh(tk).

Proof. Let xi be the vector of unknowns associated with v0h(Ftk), V k, and XB
be those associated with F. The most general basis transformation considered here is
of the form

XB 0 GBB S

In the new basis, the stiffness matrix is

K- GB GB KB KBB 0 GBB
A straightforward calculation shows that its Schur complement satisfies

Schur() GTBBSChur(K)GBB. []

The following result follows easily by a Rayleigh quotient argument.
LEMMA 2. Let K be symmetric, positive definite. Then, the condition numbers

of K and its Schur complement satisfy

a(Schur(K)) < a(K).

Our main result is given in the following theorem.
THEOREM 1. The condition number of the hybrid algorithm, introduced in this

section, is bounded by the corresponding condition number of Yserentant’s method.
Thus, it is bounded by C(1 + log(H/h))2.

Proof. We use Lemma 1 twice and the block diagonality of D to obtain

Schur(D-1/2HTKHD-1/2) 1/2-’BBr-I/2Schur(HTKH)DB
I-I/2HBSChur(K)HBBDIB/2’BB

By using Lemma 2, we obtain

t(DlB/2 T -1/2HBBSChur(K)HBBDBB tc(Schur(D-1/2HTKHD-1/2))
<_ tc(D-1/2HTKHD-1/2),

which is bounded by C(1 + log(H/h))2; see Yserentant (Whm. 4.1) [27].
4. Numerical experiments. In a first set of experiments, we consider the do-

main t 1 I.J t2, where tl and t2 are unit squares aligned along an edge F
tl t2. We use the standard regular mesh and the usual five-point discretization for
the Laplacian. The results are listed in Table 1. We note that here the values of H/h
are 4, 8,..., 256 and log2(H/h is equal to the number of refinement levels.

Remark. Our experiments show that the condition number grows more quickly
than (1 + log(H/h)) for the two-subdomain case. We note that for a number of
preconditioners the condition number remains bounded in this case. This is true for
the preconditioner J if we solve a Dirichlet problem, cf. [5], but not for a Neumann
problem. Yet, our method and that based on the J operator both have condition
numbers which grow like (1 + log(H/h))2 in the many-subdomain case.
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TABLE 1
Condition numbers for the two-subdomain case.

Refinement levels 1 2 3 4 5 6 7
# of unknowns on F 3 7 15 31 63 127 255
New method 1.68 2.66 3.82 5.18 6.75 8.52 10.50
No preconditioning 3.05 6.88 14.20 28.63 57.37 114.79 230.49

TABLE 2
Condition numbers for the many-subdomain case.

Refinement levels 3 4 5 6 7 8 9
# of unknowns in 72 152 312 632 1272 2552 5112
Yserentant’s results 10.59 19.53 31.85 47.14 65.38 86.51 110.49

4 Subdomains
# of unknowns on F 13 29 61 125
New method 3.35 5.18 10.87 15.45
No preconditioning 9.77 21.50 44.97 91.98

16 Subdomains
# of unknowns on F 81 177 369 753
New method 4.89 7.94 11.81 16.45
No preconditioning 35 75 155 316

64 Subdomains
# of unknowns on F 385 833 1729 3521
New method 5.29 8.52 12.54 17.32
No preconditioning 137 290 599 1217

256 Subdomains
# of unknowns on F 1665 3585 7425 15105
New method 5.46 8.71 12.78 17.61
No preconditioning 546 1152 2372 4766

In a second set of experiments, we consider the case of many substructures. The
unit square is subdivided uniformly into 4, 16, 64, or 256 square subdomains and
the same model problem is solved using uniform meshes, see Table 2. We compare
our results with a set of experiments reported in Yserentant [27]. We note that in his
experiments, Yserentant does not solve any linear system corresponding to a coarse
mesh. Our experiments are therefore not directly comparable to his.

The values of H/h can easily be computed. Thus if there are 16 subdomains,
H 1/4 and if the number of unknowns in is 312, then h 1/32.

The coarse problem and the problems associated with the edges, which together
make up the preconditioner, are independent. We can therefore scale the contribution
of the coarse model by a scalar factor a selecting the value of the parameter for which
the convergence is fastest. In our numerical experiments, we have found that for our
model problem a . 3.6 is the best for a wide range of refinements. We note that the
condition number grows quadratically in the logarithmic factor for any fixed a > 0.
All of our numerical results are reported for a 3.6.

In other experiments, which will be reported in Smith [23], we have found that
there is very little difference in the performance of the new and several previously
known domain decomposition methods. We also note that a version of our algorithm
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has been tested successfully for a membrane model of plane linear elasticity by Anders
Hvidsten and Petter Bjcrstad of the University of Bergen, Norway.
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